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Abstract

It is well known that cointegration between the level of two variables (labeled Yt and yt in
this paper) is a necessary condition to assess the empirical validity of a present-value model
(PV and PVM, respectively, hereafter) linking them. The work on cointegration has been so
prevalent that it is often overlooked that another necessary condition for the PVM to hold is
that the forecast error entailed by the model is orthogonal to the past. The basis of this result
is the use of rational expectations in forecasting future values of variables in the PVM. If this
condition fails, the present-value equation will not be valid, since it will contain an additional
term capturing the (non-zero) conditional expected value of future error terms.
Our article has a few novel contributions, but two stand out. First, in testing for PVMs,

we advise to split the restrictions implied by PV relationships into orthogonality conditions
(or reduced rank restrictions) before additional tests on the value of parameters. We show
that PV relationships entail a weak-form common feature relationship as in Hecq, Palm, and
Urbain (2006) and in Athanasopoulos, Guillén, Issler and Vahid (2011) and also a polynomial
serial-correlation common feature relationship as in Cubadda and Hecq (2001), which represent
restrictions on dynamic models which allow several tests for the existence of PV relationships to
be used. Because these relationships occur mostly with financial data, we propose tests based on
generalized method of moment (GMM) estimates, where it is straightforward to propose robust
tests in the presence of heteroskedasticity. We also propose a robust Wald test developed to
investigate the presence of reduced rank models. Their performance is evaluated in a Monte-
Carlo exercise.

∗Corresponding address: João Victor Issler, Graduate School of Economics - EPGE, Getulio Vargas Foundation,
Praia de Botafogo 190 s. 1100, Rio de Janeiro, RJ 22250-900, Brazil. E-mail: Joao.Issler@fgv.br. The authors
gratefully acknowledge the financial suport of INCT-Brazil (CNPq and FAPERJ). We also thank Søren Johansen for
bringing to our attention several of his recent papers.
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Second, in the context of asset pricing, we propose applying a permanent-transitory (PT)
decomposition based on Beveridge and Nelson (1981), which focus on extracting the long-run
component of asset prices, a key concept in modern financial theory as discussed in Alvarez and
Jermann (2005), Hansen and Scheinkman (2009), and Nieuwerburgh, Lustig, Verdelhan (2010).
Here again we can exploit the results developed in the common cycle literature to easily extract
permament and transitory components under both long and also short-run restrictions.
The techniques discussed herein are applied to long span annual data on long- and short-

term interest rates and on price and dividend for the U.S. economy. In both applications we do
not reject the existence of a common cyclical feature vector linking these two series. Extracting
the long-run component shows the usefulness of our approach and highlights the presence of
asset-pricing bubbles.

JEL: C22, C32
Keywords: present value, common cycles, cointegration, interest rates, prices and dividends.

1 Introduction

Since Campbell and Shiller (1987), it is well known that cointegration between the level of two
variables (labeled Yt and yt in this paper) is a necessary condition to assess the empirical validity
of a present-value model (PV and PVM, respectively, hereafter) linking them. To make Yt and yt
concrete, in our context, we consider a long-run relationship between prices and dividends, long
and short-term interest rates or between consumption and income. If they are integrated processes,
they will cointegrate; see also Campbell (1987) and Campbell and Deaton (1989), inter alia, which
are reviewed in Engsted (2002), and the interesting recent contribution of Johansen and Swensen
(2011).

The work on cointegration has been so prevalent that it is often overlooked that another neces-
sary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal
to the past. We can refer to Hansen and Sargent (1981, 1991) and Baillie (1989) for initial work on
rational expectations linked to PVMs, and Johansen and Swensen (1999, 2004, 2011) and Johansen
(2000) for a recent fresh look on the subject. The basis of this result is the use of rational expec-
tations in forecasting future values of variables in the PVM. Indeed, as shown by Campbell in a
discussion on “saving for a rainy day”, there is a first-order stochastic difference equation generating
the PVM relating saving and the expected discounted value of all future income changes, where its
error term must be unforecastable regarding past information, i.e., must have a zero conditional
expectation. If this condition fails, the present-value equation will not be valid, since it will contain
an additional term capturing the (non-zero) conditional expected value of future error terms.

On the one hand, regarding the first-order stochastic difference equation generating PVMs,
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cointegration imposes the transversality condition allowing to discard the limit I (0) combination
of Yt and yt. On the other hand, the existence of an unforecastable linear combination of the
I (0) series in the difference equation generating the PVM is crucial to guarantee that the dynamic
behavior of the variables in the PVM is consistent with theory. We need both conditions to validate
PVMs. Thus, it is ideal to work with an integrated econometric framework encompassing the joint
existence of these two phenomena.

This is the starting point this article. We show that the orthogonality conditions entailed by
PVMs are equivalent to reduced rank restrictions for dynamic systems, which imply the presence
of common cyclical features1 for different econometric representations containing them. Since these
restrictions apply to the short-run behavior of the variables in PVMs, they complement the long-run
restrictions implied by cointegration. Because the toolkit of the common-cycle literature allows the
joint treatment of these two types of restrictions in dynamic models (usually a vector autoregression
(VAR) model or a VECM, but not restricted to them), it is ideally designed to be the basis of the
investigation of PVMs.

Given the well known problem that existing tests appear to reject PV theory too often, even
when theory looks appropriate, we propose first to look at the statistical properties of the data
in terms of cointegration and common-cyclical features, later applying additional tests on specific
values of the parameters of the PVM. Testing every restriction implied by the PVM in “one shot”
makes it diffi cult to interpret possible rejections of the joint hypotheses underlying the model. This
is an important issue, since, as shown below, a small modification in the timing of the PV equation
changes the cross-equation restrictions and hence the value of some parameters but neither the
orthogonality condition embedded on PVMs nor the reduced-rank properties of the cointegrated
VAR are affected by these changes. Hence, reduced-rank tests should be preferred to full cross-
equation restriction tests.

Focussing on the dynamics of PVMs, this paper has two main contributions. First, we show
that PV relationships entail a weak-form common feature restriction as in Hecq et al. (2006) and
in Athanasopoulos et al. (2011) in the vector error correction representation for Yt and yt as well as
a polynomial serial correlation common feature relationship (see Cubadda and Hecq, 2001) in the
VAR representation for ∆yt and the cointegrating relationship Yt−θyt. These represent restrictions
on the short-run dynamics of VECM/VAR models. Taken together with the long-run restriction
implied by cointegration, we are able to devise new tests for the existence of PV relationships.
Because PVMs occur mostly with financial data, the tests proposed here are robust to the presence
of heteroskedasticity of unknown form. Their good performance is confirmed in a Monte-carlo
exercise, where their empirical size is investigated.

1See, inter alia, Engle and Kozicki (1993), Vahid and Engle (1993, 1997), Cubadda and Hecq (2001), Vahid and
Issler (2002), Hecq, Palm, and Urbain (2006), Athanasopoulos, Guillén, Issler and Vahid (2011).
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Second, in the context of asset pricing, we propose employing a permanent-transitory (PT)
decomposition based on Beveridge and Nelson (1981), which focus on extracting the long-run
component of asset prices, a key concept in modern financial theory as discussed in Alvarez and
Jermann (2005), Hansen and Scheinkman (2009), and Nieuwerburgh, Lustig, and Verdelhan (2010).
Here, we advance with respect to standard Beveridge and Nelson (BN) decompositions in which we
compute the transitory component by directly using the PVM short-run restrictions under common-
cyclical features. Since our decomposition is in the Beveridge and Nelson class, the permanent
component is a fairly good approximation of the limit to which the conditional expectation of asset
prices converges to. Thus, we can think of asset-price deviations from trend as bubbles in asset
prices2, for which there has been a renewed interest since the last global recession.

The techniques discussed in this paper are applied to two different data sets. The first contains
annual long- and short-term interest rates for the U.S., ranging from 1871 to 2011. The second
application involves price and dividends for the S&P Composite index on the period 1871-2010. In
both case we test the degree of integration, the presence of cointegration and common cycles. We
also extract the common long-run component using our proposed PT decomposition. The results
show promise for its application since we were able to associate peaks and throughs in our bubble
estimate with peaks and throughs of the stock market.

The rest of the paper is divided as follows. Section 2 reviews PV formulas and notations.
Section 3 discusses the types of restrictions a simple present value model imply for the VECM
as well as for a transformed VAR. Section 4 discusses different tests of PVMs, where their small-
sample performance is evaluated in Section 5. Section 6 discusses the novel permanent transitory
decomposition under PVMs which is used to measure asset pricing bubbles in the empirical part
in Section 7. Finally, Section 8 concludes.

2 A present value equation

Consider the present value equation3:

Yt = θ(1− δ)
∞∑
i=0

δiEtyt+i, (1)

which states that Yt is a linear function of the present discounted value of expected future yt,
where Et (·) is the conditional expectation operator, using information up to t as the information

2 In principle, since the limit conditional expectation does not depend on the stochastic properties of asset prices,
i.e., on whether asset prices have or not a unit root, bubbles can be measured regardless of one’s belief in unit roots,
although in practice one usually takes a stand on the issue.

3For simplicity, we do not inlcude a constant term c at this level of presentation as some papers do.
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set. In most cases Yt and yt are I(1) variables. Examples of Yt and yt include, respectively: long
and short-term interest rates, stock prices and dividends, personal consumption and disposable
income, etc. (see the survey Engsted, 2002). Here and elsewhere, it is assumed constant expected
returns with a discount factor δ = 1

1+r . The coeffi cient θ is a factor of proportionality. For example,
θ = δ/(1− δ) in the price-dividend relationship; θ = 1 for the interest rates case and the link with
the discount factor is given by the term structure of the interest rates (see inter alia Campbell and
Shiller, 1987; Chow, 1984; Johansen and Swensen, 2011). The choice of θ only impacts the value
of the cointegrating vector. Hence, here, in what follows, we set its value equal to θ = δ/(1 − δ),
such that:

Yt = δ
∞∑
i=0

δiEtyt+i. (2)

Following Campbell and Shiller (1987), the actual spread is defined as:

St ≡ Yt −
δ

1− δ yt, (3)

where St is I(0) if Yt and yt are cointegrated. Subtracting δ
1−δyt from both sides of (2) produces

the theoretical spread S
′
t:

S
′
t =

δ

1− δ

∞∑
i=1

δiEt∆yt+i. (4)

This shows that series must be theoretically cointegrated because the right-hand side is a function of
I(0) terms with exponentially decreasing weights. Further, subtracting δEtYt+1 = δ

∑∞
i=0 δ

iEtyt+i+1
from Yt in (4), we obtain:

Yt = δEtYt+1 + δyt. (5)

From (5), if one adds and subtracts δYt, leading to Yt = δEt∆Yt+1 + δYt + δyt or (1 − δ)Yt =

δEt∆Yt+1 + δyt, one finally obtains:

S
′′
t =

δ

1− δEt∆Yt+1. (6)

Equation (6) gives the spread as a function of one-step ahead forecasts of ∆Yt+1.
We can always perform the following decomposition:

∆Yt+1 = Et∆Yt+1 + (∆Yt+1 − Et∆Yt+1)︸ ︷︷ ︸
ut+1

. (7)
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Plugging (7) into (6), and lagging the whole equation by one period we have:

St−1 =
δ

1− δ∆Yt + ut (8)

or alternatively,

∆Yt =
1− δ
δ

St−1 + vt (9)

where ut (or vt = −1−δδ ut) is orthogonal to the past in expectation. From (9) we also obtain:

(1− δ)St−1 = δ∆Yt + (1− δ)ut (10)

St−1 − δYt−1 + δ
δ

1− δ yt−1 = δYt − δYt−1 +

{
δ

δ

1− δ yt − δ
δ

1− δ yt
}

+ (1− δ)ut

St−1 = δSt + δ
δ

1− δ∆yt + (1− δ)ut

which gives

St =
1

δ
St−1 −

δ

1− δ∆yt + εt (11)

with εt = (1−δ)
δ ut.

As stressed by Campbell (1987), in the context of saving, equation (11) plays a very important
role: it is the first order stochastic difference equation that generates the PVM. There are two
important conditions to go from (11) to (4): cointegration delivers the transversality condition
lim
k→∞

δkEt (St+k) = 0, whereas unforecastability of εt regarding the past, i.e., Et (εt+1) = 0, ensures

that there is no additional term in the right-hand side of (4) invalidating it. The first represents
a long-run restriction between Yt and yt. The second restricts the dynamics of the stationary
representation of the system, making St and ∆yt specific functions of their own past alone. Thus,
they can be viewed as short-run restrictions on the behavior of St and ∆yt. These are exactly
the types of restrictions studied in the common cycle literature. Therefore, applying the toolkit
developed there allows a fresh view of PVMs as we show below.

Johansen and Swensen (2011) discuss the properties of the three spreads St, S
′
t, and S

′′
t . Their

setup is slightly different than ours, since, in (1), they define the present-value relationship to be
Yt =

∑∞
i=1 δ

iEtyt+i instead of Yt = θ(1 − δ)
∑∞

i=0 δ
iEtyt+i, i.e., they discount only future values

of yt and not its current value. Some authors prefer the latter to the former using the argument
that, in the discrete time setup, the cash flow is accrued at the end of every period. Here, we
follow Campbell and Shiller in their choice of PV formula using (1). The cointegrating vector is
not affected by this choice, but the short-run dynamic coeffi cients are, as we shall see in the next
section. For that reason, some of our results are not identical to those in Johansen and Swensen
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(2011).

3 Common cyclical feature restrictions: Model representations

Assume that the bivariate system for the I(1) series (Yt, yt)
′ follows a V AR(p) in levels, and that

St = Yt − θyt is the stationary error-correction term. In the price-dividend case θ = δ
1−δ . The

corresponding vector error-correction model (VECM) representation is given by:(
∆Yt

∆yt

)
= Γ1

(
∆Yt−1
∆yt−1

)
+ ...+ Γp−1

(
∆Yt−p+1
∆yt−p+1

)
+

(
α1

α2

)
St−1 +

(
η1t
η2t

)
(12)

where we assume that the disturbance terms are white noise and that conditions for avoiding I(2)-
ness are met. The Γis are the short-run coeffi cient matrices, and α1 and α2 are the loadings on the
error-correcting term.

As is well known, PV relationships imply restrictions on dynamic models of the data. Campbell
and Shiller (1987) and others have exploited the fact that VARs have cross-equation restrictions.
Here, however, we exploit a different nature of these restrictions — the fact that there are also
reduced-rank restrictions for the VECM (12), which opens up the application of the common
cyclical feature toolkit in dealing with PVMs.

Proposition 1 If the elements of (Yt, yt)
′ obey a PV relationship as in (8), i.e., St−1 = δ

1−δ∆Yt +

ut, then, their VECM obeys a weak-form common feature relationship (see Hecq et al., 2006, and
Athanasopoulos et al., 2011): there exists a 1× 2 vector γ́ such that γ́Γ1 = γ́Γ2 = .... = γ́Γp−1 = 0,

but γ́

(
α1

α2

)
6= 0. Moreover, γ́ = (1 : 0), the first row of every Γi, i = 1...p− 1, must be zero, and

the following restriction must also be met: α1 = 1−δ
δ .

The usual cross-equation restriction within the VAR and proposed by Campbell and Shiller
(1987) can also be seen from a transformed VAR on St and ∆yt; see Johansen and Swensen (2011).

To go from the VECM (12) to the transformed VAR representation we use C =

[
1 0

−θ 1

]′
, the

2× 2 nonsingular matrix formed by stacking the transpose of the cointegrating vector

[
1

−θ

]
and

the transpose of the selection vector

[
0

1

]
, such that C

(
∆Yt

∆yt

)
=

(
∆St

∆yt

)
. Premultiplying
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both sides of (12) by C, and solving for St and ∆yt, we obtain:(
St

∆yt

)
=

(
Γ11(L) Γ12(L)

Γ21(L) Γ22(L)

)(
St−1

∆yt−1

)
+

(
ε1t

ε2t

)
(13)

where Γ11(L) and Γ21(L) are polynomials of order p − 1 and Γ12(L) and Γ22(L) are polynomials
of order p − 2. Indeed, one important issue is to note is that the transformed VAR (13) is a VAR
of order p both in St and in ∆yt in which the two coeffi cients of ∆yt−p are zero. Cross-equation

restrictions for the system are imposed on the coeffi cient matrices of Γ(L) =

(
Γ11(L) Γ12(L)

Γ21(L) Γ22(L)

)
=

Γ1 + Γ2L+ ΓpL
p−1 in (13).

We have the following proposition.

Proposition 2 A PVM as in (11), i.e., St = 1
δSt−1 −

δ
1−δ∆yt + εt, implies a polynomial serial-

correlation common feature relationship (see Cubadda and Hecq, 2001) for the transformed VAR
(13): there exists a vector γ̃

′
0 such that γ̃

′
0Γ2 = .... = γ̃

′
0Γp = 0, with γ̃

′
0Γ1 = γ̃

′
1 6= 0. Moreover in

the PVM γ̃
′
0 = (1 : δ

1−δ ) and γ̃
′
1 = (−1δ : 0).

Thus, a PVM entails cointegration and additional orthogonality conditions associated with
reduced rank restrictions in VECMs or transformed VARs. It is interesting to gain some intuition
on this result. For that, we resort to the triangular representation of cointegrated systems used,
inter alia, by Phillips and Hansen (1990) and Phillips and Loretan (1991), which was adapted to
account for reduced-rank dynamics (weak-form SCCF) by Athanasopoulos et al. (2011). In our
context, their representation for (Yt, yt)

′ would be:

Yt = θyt + µ1t (14)

∆yt = µ2t, (15)

where the error terms, stacked on a vector (µ1t, µ2t)
′ follow a stationary and ergodic V AR(p− 1),

where the coeffi cient matrices (2 × 2 matrices) have all rank one. Notice that the long-run value
for Yt is θyt, making µ1t to be the gap between the two.

Here, the reduced-rank nature of the VAR for (µ1t, µ2t)
′ is what generates common features for

(St,∆yt)
′. To see it, subtract θyt from both sides of (14), to get:

Yt − θyt = St = µ1t,

∆yt = µ2t,

thus, (St,∆yt)
′ = (µ1t, µ2t)

′, and have the dynamic structure of equation (13), discussed in Propo-
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sition 2.
One of the explanations for observing a rejection of the PVMs is the use of cross-equation re-

strictions that impose both reduced-rank restrictions and particular values on the parameters. Mis-
specifications such as proxy variables or measurement errors can affect the value of the parameters,
leaving unaffected the reduced-rank restrictions. As an example, instead of the PV representation
given in our Section 2, i.e. Yt = θ(1 − δ)

∑∞
i=0 δ

iEtyt+i one can find in the literature that the
series Yt is a function of the future discounted expected value of yt such that Yt =

∑∞
i=1 δ

iEtyt+i.
Johansen and Swensen (2011) as well as Campbell, Lo and Mackinlay (1996) use that formulation
when they consider the stock price at the end of the period. This slight change is not innocuous as
we show next.

To see that, apply the algebra of Section 2 to Yt =
∑∞

i=1 δ
iEtyt+i to obtain the following

expressions:

∆Yt = −∆yt +
1− δ
δ

St−1 + ut, (16)

where γ́ = (1 : 1) and α1 =
1− δ
δ

in Proposition 1. (17)

St = − 1

(1− δ)∆yt +
1

δ
St−1 + vt, (18)

where γ̃
′
0 = (1 :

1

1− δ ) and γ̃
′
1 = (−1

δ
: 0) in Proposition 2. (19)

What emerges now is that the unpredictable linear combinations involve three variables: ∆Yt, ∆yt,
and St, both in the VECM and the transformed VAR. Moreover the values of the parameters are
now different from before —the weights used in the linear combinations (16) and (18) differ from
the ones in (8) and (11), respectively.

Put differently, regarding the use of Yt =
∑∞

i=1 δ
iEtyt+i versus Yt = θ(1 − δ)

∑∞
i=0 δ

iEtyt+i,
respectively, yields the following orthogonality conditions for each specific difference equation:

Et−1
[
∆Yt + ∆yt −

1− δ
δ

St−1

]
= 0, versus Et−1

[
∆Yt −

1− δ
δ

St−1

]
= 0, and, (20)

Et−1
[
St +

1

(1− δ)∆yt −
1

δ
St−1

]
= 0, versus Et−1

[
St +

δ

1− δ∆yt −
1

δ
St−1

]
= 0. (21)

Despite the differences in parameter values in the linear combinations above, the existence of a
reduced-rank model is not affected by how one writes the PV equation linking Yt and yt. Hence,
the reduced-rank properties of the VECM and of the transformed VAR are invariant to this choice:
in both cases, there exists weak-form SCCF for the VECM and the transformed VAR.
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4 Testing present-value models: a for common-cycle approach

The discussion in the last section suggests that, for integrated Yt and ∆yt, there are three different
instances in which we can investigate the validity of PVMs. First, the cointegration test for Yt and
yt, if both are I (1). Second, the (invariant) rank restrictions in the VECM or the transformed
VAR. Third, the coeffi cient restrictions and unpredictability properties for linear combinations in
(20) and (21).

In order to test for PVMs, we propose the following steps:

1. Choose consistently the order of the V AR(p) for the joint I(1) process (Yt, yt)
′ using different

information criteria. Alternatively, we can compute a robust Wald test for the null hypothesis
that the last coeffi cient matrix in the VAR has zero coeffi cients (see the empirical section).

2. Given our choice of p, test for the existence of cointegration between Yt and yt. If that
is the case (there exists one cointegrating vector), estimate the long-run coeffi cient θ, in
St = Yt − θyt, super-consistently using the likelihood-based trace test proposed by Johansen
(1995). Alternatively, the Engle and Granger (1987) regression test can be carried out. In
either case, form Ŝt = Yt − θ̂yt. If there is no cointegration, the PVM is rejected.

3. Given p and Ŝt, test for the weak form common feature using a reduced rank test for
(∆Yt,∆yt)

′. We present in this section both multivariate approaches (e.g. a canonical cor-
relation analysis) and a single-equation approach (e.g. GMM). Because most present-value
relationships apply to heteroskedastic financial data, one may prefer a GMM framework on
the basis that it easily embeds robust variance-covariance matrices for parameters estimates.
Indeed the canonical correlation approach assumes i.i.d. disturbances. However, we also
provide a multivariate robust Wald test to investigate the reduced rank hypothesis under
GARCH innovations.

Note that we can improve over steps 1 to 3 using steps 4 and/or 5 below. Given that we only
work with bivariate systems for a relatively large number of observations in this paper we do
not introduce those small sample improvements into our analysis. But, these are:

4. Integrate steps 2 and 3, estimating jointly long-run and short-run parameters as in Centoni,
Cubadda and Hecq (2008).

5. Integrate steps 1, 2 and 3, estimating jointly the lag length of the VAR and long-run and
short-run parameters as in Athanasopoulos et al. (2011).

10



4.1 Multivariate tests

4.1.1 LR tests for i.i.d. disturbances

The canonical-correlation approach entails the use of a likelihood ratio (reduced-rank regression)
test for the weak-form common features in the V ECM (p− 1) for (∆Yt,∆yt)

′. It can be undertaken
using the canonical-correlation test on zero eigenvalues, which are computed from:

CanCor



(
∆Yt

∆yt

)
,



∆Yt−1
...

∆Yt−p+1
∆yt−1
...

∆yt−p+1


| (Dt, Ŝt−1)


, (22)

where CanCor {Xt,Wt|Gt} denotes the computation of canonical correlations between the two sets
of variables Xt andWt, concentrating out the effect of Gt (deterministic terms and a disequilibrium
error-correction term) by multivariate least squares. The previous program (22) is numerically
equivalent to

CanCor



 ∆Yt

∆yt

Ŝt−1

 ,



∆Yt−1
...

∆Yt−p+1
∆yt−1
...

∆yt−p+1
Ŝt−1


| Dt


(23)

which is more convenient to directly obtain the coeffi cient of Ŝt−1 in (11). The likelihood ratio test,
denoted by ξLR, considers the null hypothesis that there exist at least s common feature vectors.
It is obtained in

ξLR = −T
s∑
i=1

ln(1− λ̂i), s = 1, 2, (24)

where λ̂i are the i-th smallest squared canonical correlations computed from (22) or (23) above,
namely from

Σ̂−1XXΣ̂XW Σ̂−1WW Σ̂WX , (25)
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or similarly from the symmetric matrix

Σ̂
−1/2
XX Σ̂XW Σ̂−1WW Σ̂WXΣ̂

−1/2
XX , (26)

where Σ̂ij are the empirical covariance matrices, i, j = X,W .
In the bivariate case, the unrestricted VECM has 4(p−1)+2 parameters, whereas the restricted

model has 2(p−1)+2+1. The number of restrictions when testing the hypothesis that there exists
one WF common feature is then 2(p − 1) − 1 = 2p − 3 for p > 1.4 As proposed in Issler and
Vahid (2001), we can obtain the same statistics by computing twice the difference between the
log-likelihood in the unrestricted V ECM (p− 1) for (∆Yt,∆yt)

′ and in the pseudo-structural form
estimated by FIML:(

1 −γ0
0 1

)(
∆Yt

∆yt

)
=

(
0

Γ̃1

)(
∆Yt−1
∆yt−1

)
+...+

(
0

Γ̃p−1

)(
∆Yt−p+1
∆yt−p+1

)
+

(
(α1 − γ0α2)

α̃2

)
St−1+

(
v1t
v2t

)
.

For the transformed VAR the restriction underlying the restricted PSCCF can be tested using:

CanCor



 Ŝt

∆yt

Ŝt−1

 ,



Ŝt−1
Ŝt−2
...

Ŝt−p
∆yt−2
...

∆yt−p+1


| Dt


,

where the number of parameters in the unrestricted model is 4(p− 1) + 2; the restricted model has
4 + 2(p− 2) + 1 + 1, the number of restrictions is 2p− 4 in case of unrestricted γ̃1(

1 −γ̃0
0 1

)(
St

∆yt

)

=

(
Γ̃1a
Γ̃1b

)(
St−1

∆yt−1

)
+ ...+

(
0

Γ̃p−1

)(
St−p+1

∆yt−p+1

)
+

(
0 0

Γ̃p,p 0

)(
St−p

∆yt−p

)
+

(
u1t
u2t

)
.

4 In the VECM, the general formula for n series that can be annihilated by s combinations is sn(p− 1)− s(n− s).
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If γ̃1 is restricted we have 2p− 3 restrictions and the pseudo structural form is(
1 −γ̃0
0 1

)(
St

∆yt

)
+

(
ϑ1 0

Γ̃2,1 Γ̃2,2

)(
St−1

∆yt−1

)

=

(
0

Γ̃p−1

)(
St−2

∆yt−2

)
+ · · ·+

(
0 0

Γ̃p,p 0

)(
St−p

∆yt−p

)
+

(
u1t
u2t

)
Notice that this set of rank restrictions are identical to the ones in Campbell and Shiller (1987)

if one imposes zero restrictions in the last matrix coeffi cient in their setup5. Campbell and Shiller
also take into account the fact that there are further restrictions on the parameters coming from
the economic theory. Thus, the rank condition is just a necessary condition for the PVM to hold,
but there are additional restrictions on matrices coeffi cients that have to be met for PV theory to
be correct.

The proposed approach to testing PVMs here is to first test the rank condition (necessary)
without imposing yet any further parameter restrictions. As argued above, the rank condition is
invariant to how we write the PV equation linking Yt and yt. If not rejected, then we can test
the additional restrictions on matrices coeffi cients, which are not invariant to how we write the
PV equation. Putting more weight on invariant restrictions satisfies robustness, since, not only a
different definition of the timing of Yt and/or yt, but also the presence of measurement error, data
revisions, all will lead to the correct rank condition to be met but imply different parameter values
in the difference equation generating PVMs.

An additional reason to follow this path is that we will be able to split both effects, shedding
light on the exact reason for rejecting theory if that is the case. Understanding why we reject
a given PVM is an important issue, since different authors have complained that cross-equation
restriction tests reject PVMs too often, even in cases where theory is firmly believed to hold and
that graphical analysis seems to support that view.

4.1.2 A robust Wald test

Candelon et al. (2005) have illustrated in a Monte Carlo exercise that ξLR has large size distortions
in the presence of GARCH disturbances. The solution proposed there was to use nonparametric
tests or a GMM approach (see also the next subsection) in which the variance-covariance matrix is
the robust HCSE variance-covariance proposed by White.

In order to find a multivariate robust counterpart to the canonical correlation approach, we
propose to modify ξLR in two respects. First we use a Wald approach, denoted ξW , with ξW

5This is probably implicit in their analysis but it is not discussed in the paper itself.
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asymptotically equivalent to ξLR (see Christensen et al. 2011). Then we robustify ξW , a test we
denote ξrobW , using the multivariate extension of the White’s HCSE proposed in Ravikumar et al.
(2000) for system of seemingly unrelated regressions.

To do so, let us define for the VECM the weak form reduced rank restrictions, as

Rvec(Γ1 : ... : Γp−1)
′ = 0sd×1 R = γ′ ⊗ Id

R is sd× nd, with d is the number of rows in the rectangular matrix A = (Γ1 : ... : Γp−1)′, namely
d = 2(p− 1). Using γ̂ obtained by the eigenvectors of the canonical correlation (25), the Wald test
is

ξW = (RvecÂ)′(R Var(vecÂ) R′)−1(RvecÂ),

with
Var(vecÂ) = V̂ ⊗ (W̃ ′W̃ )−1,

and with V̂ the empirical covariance matrix of the disturbance terms in the unrestricted models
and W̃ are the demeaned regressors. ξW is asymptotically equivalent to ξLR (see Christensen et
al. 2011). Now in the presence of a time varying multivariate process we compute an estimator of
Var(vecÂ) robust to the presence of heteroskedasticity (see Ravikumar et al. 2000) such that

ξrobW (s) = (R vecÂ)′(R rob_Var(vecÂ) R′)−1(R vecÂ)

where

rob_Var(Â) = (In ⊗ (W̃ ′W̃ )−1)(
T∑
t=1

η̂tη̂
′
t)(In ⊗ (W̃ ′W̃ )−1)

with
η̂tη̂
′
t = v̂.tv̂

′
.t ⊗ W̃.tW̃

′
.t

where v̂.t = (v̂1t, ...v̂Nt)
′ and W̃.t = (W1t, ...,Wdt) the explanatory variables for observations t. ξrobW

is asymptotically equivalent to ξW and hence to ξLR. Note finally that Christensen et al. (2011)
report some small-sample distortions in ξW , while Hecq et al. (2011) report size distortions for
ξrobW .

4.2 Regression-Based Tests

Testing with a GMM approach entails testing the common feature null hypothesis using an or-

thogonality condition between a combination of variables in the model
(

∆Yt,∆yt, Ŝt−1
)′
and the

conditioning set W ′t . For example, in the context of (8), we would have the following moment
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restrictions:
E([∆Yt − γ1∆yt − γ2Ŝt−1]⊗W ′t) = 0, (27)

where we would have additionally to test H0: γ1 = 0 and γ2 = 1−δ
δ using a Wald test. Prior to that,

we want to estimate γ1 and γ2 and test the validity of the over-identifying restrictions in (27). The
use of IV type estimators and the associated orthogonality tests is straightforward in this context.
Let us consider Wt the vector of instruments defined as before (an intercept is added). The GIVE
estimator is simply the 2SLS or the IV estimator when the instruments are the past of the series,
namely

θ̂GIV E =
(
∆X′W(W′W)−1W′∆X

)−1 (
∆X′W(W′W)−1W′∆Y

)
, (28)

with ∆Xt= (∆yt, Ŝt−1, 1)′. The validity of the orthogonality condition and consequently the pres-
ence of a common feature vector is obtained via an overidentification J-test (Hansen, 1982):

J1(θ) = TgT (θ; .)′P−1T gT (θ; .),

whose empirical counterpart is:

J1(θIV ) = (u′W̃)(σ̂2uW̃
′W̃)−1(W̃′u).

The variance-covariance matrix of the orthogonality condition has under usual regularity properties
the sample counterpart P̂T = (1/T )σ̂2u(W̃′W̃) with ut = ∆Yt− γ̂1∆yt− γ̂2Ŝt−1. W̃ is the demeaned
W, namely W̃ = W − i(i

′
i)−1iW (with i = (1...1)′) because we do not want to impose that the

common feature vector also annihilates the constant vector.
In this Section, so far, all the estimates and tests presented above embedded the assumption of

homoskedasticity. This may be fine for macroeconomic data, such as consumption and income, but
is clearly at odds with financial data. We also propose to correct for heteroskedasticity to achieve
robust estimates. We implement the GIVE estimator by using the White’s HCSE estimator such
that (see Hamilton, 1994):

θ̂GMM =
(
∆X′W(W′BW)−1W′∆X

)−1 (
∆X′W(W′BW)−1W′∆Y

)
, (29)

where the only difference between θ̂GMM and the usual θ̂GIV E is the presence of an additional
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matrix B constructed such that

B =


u21 0 · · · 0

0 u22 0
...

. . .
...

0 0 · · · u2T

 ,

where ut = ∆Yt− γ̂1IV ∆yt− γ̂2IV Ŝt−1 are the residuals obtained under homoskedasticity using the
GIVE estimation in a first step. For testing, we form the following new sequence of residuals:

u∗t = ∆Yt − γ̂1GMM∆yt − γ̂2GMM Ŝt−1,

and use these to compute a new J-test robust to heteroskedasticity:

J2(θGMM ) = (u∗′W̃)(W̃′BW̃)−1(W̃′u∗). (30)

Note that we have also implemented a Newey and West (1987) correction in constructing B. In
this case, B is a band-diagonal matrix with q non-zero bands corresponding to the order of theMA

process being considered in the Newey-West approach. This yields robust Newey-West estimates
using (29) and a new J-test statistic using (30), which we label J3(θGMM ). Since this correction
applies to both heteroskedasticity and serial correlation in the error term, it can be viewed as an
overkill.

5 Small sample properties of PVM tests

A small Monte Carlo simulation might help to advise the use of one of the tests considered in this
paper. We use T = 100, 500 and 1, 000 observations with 10, 000 replications. Although 1, 000

data points might seem large it illustrates the asymptotic behavior of several testing strategies. In
particular it is seen that the robust Wald statistics has some size distortions for T = 100 (see also
simulations in Christensen et al., 2011).

The lag length of the VAR in the data generating process is chosen to be p = 3. However, we
estimate the model for p = 2, 3 and 5. Notice that the model with p = 2 is misspecified. The DGP
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that ensures γ
′

= (1 : 0) is:(
∆Yt

∆yt

)
=

(
0.05

0.05

)
+

(
0 0

0.5 0.2

)(
∆Yt−1
∆yt−1

)
+ ..

(
0 0

−0.4 0.2

)(
∆Yt−2
∆yt−2

)

+

(
1

0.75

)(
1 − δ

1−δ

)( Yt−1
yt−1

)
+

(
u1t

u2t

)
.

We considered two types of error terms for the VECM above: in the first DGP, labelled DGP
# 1 in Table1, the disturbance term is bivariate normal with a unit variance and a correlation of
0.5; in the second process, labelled DGP # 2, the disturbance terms are governed by a bivariate
GARCH process with a yesterday news coeffi cient of 0.25, a coeffi cient of persistence of 0.74, and
a long run variance equals 0.01. Note that yesterday’s news coeffi cient is larger than what is
usually found empirically (between 0.10 and 0.15). The theoretical coeffi cients in the relationship
∆Yt = −γ1∆yt + γ2St−1 + ut are γ1 = 0 and γ2 = δ

1−δ . Here, for simplicity, we set
δ
1−δ = 1.

For all the tests described in the previous section, Table 1 reports the empirical rejection
frequency at the 5% significance level (nominal size). In the iid case, the behavior of the six tests is
rather similar, but the Wald strategy is oversized when p increases for small samples, and the J3-test
(Newey-West correction) is undersized for T = 100. Results get much more worse in the presence
of time varying conditional variances. With heteroskedastic data, the only test with proper size is
J2-Test, the robust-White GMM test and, to a lesser extent, the robust Wald if T is large enough.
The other tests have large size distortions, especially the likelihood-ratio test, the non robust Wald
test, and usual GMM J1-test. Again, the J3-test (Newey-West correction) is undersized. Thus, for
macroeconomic applications we can rely either on a robust GMM or on the robust Wald if in this
latter case the number of lags in the unrestricted VECM is not too large.

As far as the estimation of the coeffi cients are concerned, we do not notice any systematic bias.
For DGP # 1, the estimated coeffi cients for the mean value of γ1 over 10, 000 replications ranges
over the different specifications on p and T from −0.001 to 0.008 in the worst case while those from
the mean value of γ2 are between 0.978 (p = 5, T = 100) and 0.999. There are no major differences
in the GARCH case (DGP #2 ) as expected. About the standard deviation over the simulations,
it lies for DGP#1 between 0.021 (p = 3, T = 500) and 0.054 (p = 5, T = 100) for γ1 and between
0.032 and 0.077 for γ2 for the same specifications. In the presence of GARCH for the DGP # 2
these standard deviations are in general higher.
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Table 1: Empirical size (nom. 5 percent) of common feature test statistic
T = 100

V AR(p) ζLR ζW ζrobW J1 J2 J3
DGP #1: iid p = 2 5.74 5.92 7.05 5.53 5.46 4.68

p = 3 6.23 6.97 9.99 5.53 5.11 3.03
p = 5 6.68 8.90 17.3 4.75 3.88 0.25

DGP #2:GARCH p = 2 12.5 12.9 8.47 12.3 5.35 3.17
p = 3 15.5 16.8 13.2 14.2 4.73 1.39
p = 5 18.1 21.7 23.6 14.9 3.29 0.12

T = 500

V AR(p) ζLR ζW ζrobW J1 J2 J3
DGP #1:iid p = 2 4.91 4.92 5.11 4.84 4.84 4.78

p = 3 5.14 5.23 5.93 5.04 5.09 4.62
p = 5 5.07 5.35 6.94 4.78 4.62 3.49

DGP #2: GARCH p = 2 23.3 23.4 6.42 23.3 4.96 3.83
p = 3 30.7 30.9 8.38 30.4 4.5 2.51
p = 5 38.3 38.9 11.8 37.8 3.93 1.07

T = 1, 000

V AR(p) ζLR ζW ζrobW J1 J2 J3
DGP #1:iid p = 2 4.92 4.94 5.07 4.92 5.00 4.96

p = 3 5.19 5.31 5.49 5.09 4.98 4.94
p = 5 5.13 5.38 5.93 5.02 4.89 4.28

DGP #2: GARCH p = 2 29.3 29.4 6.12 29.3 4.74 3.24
p = 3 40.3 40.5 8.3 40.1 4.77 2.86
p = 5 51.4 51.8 11.0 51.1 4.17 1.59
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6 PT decomposition under cointegration and common cycles

Lettau and Ludvigson (2001) propose a permanent-transitory representation for PVMs using a
Gonzalo-Granger decomposition. This decomposition has several drawbacks. However, it corre-
sponds to the Beveridge Nelson (BN hereafter) decomposition if and only if there exist in an n
dimensional model (n is the number of series in the VAR), r cointegrating vectors, and exactly
n − r serial correlation common feature vectors (see Proietti, 1997; Hecq et al. 2000). Hence, the
theoretical PVM requirements cannot match the Gonzalo-Granger setup, since the term St−1 must
be present in the unpredictable linear combination of the data. In other words, in the PVM there
are no linear combinations of ∆Yt and ∆yt alone that are unpredictable, something that is required
to use the Gonzalo-Granger decomposition.

Given that PVMs entail weak form common cyclical features, we are able to decompose series
into a permanent and a transitory component using the multivariate Beveridge Nelson with common
cycles as developed in Hecq et al. (2000). Recall that the BN decomposition of Xt = (Yt, yt)

′
in

Xt = µt + ψt, where the trend component denoted µt, and ψt is a covariance stationary cyclical
process, entails the use of the demeaned long-run forecast of ∆Xt = (∆Yt,∆yt)

′:

µt = Xt +

{
lim
l→∞

l∑
i=1

∆X̃t+i|t − E(∆Xt)

}
(31)

where ∆X̃t+i|t denotes the ith-step ahead forecast. Thus, the trend today represents the value to
which the long-term forecast of a series converges to, when we discount its deterministic terms.

Under strong serial-correlation common features (SCCF), Proietti (1997) develops an observable
permanent-transitory decomposition of Xt = (Yt, yt)

′
with both common trends and common cycles

such that β
′
µt = 0 (cointegration), where β is the cointegrating vector, and γ

′
ψt = 0 (strong SCCF),

where γ is the co-feature vector. Components µt and ψt are derived in Proietti (1997). Now, in
the weak-form SCCF, only a part of the cycle is annihilated by γ

′
. Using the companion form

of the VECM, Hecq et al. (2000) extend the results in Proietti (1997) and derive an observable
decomposition suitable for the weak-form SCCF case, in which ψt = ψAt + ψBt , with γ

′
ψAt = 0, but

γ
′
ψBt 6= 0 in:

Xt = µt + ψAt + ψBt . (32)

This can be interpreted either as a decomposition of Xt that includes also WF common cycles or
a BN decomposition of X∗t = Xt − ψBt . For more details on the components of (32) see Hecq et al.
(2000). The decomposition makes Xt to be the sum of three different components: a random walk
(martingale) common stochastic trend component (µt), a (weak form) common stochastic cycle
component

(
ψAt
)
, and an additional transitory component that is not common to any of the two
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series being decomposed
(
ψBt
)
.

From a different angle, consider a new variable:

X∗t = Xt − ψBt = µt + ψAt . (33)

The linear combination γ
′
X∗t = γ

′
µt is proportional to the common trend, therefore, disregarding

deterministic terms, its first difference is unpredictable, i.e., γ
′
∆X∗t is unpredictable. It is worth

mentioning that this decomposition is expressed in terms of observables and only involve quantities
already available from the VECM form and the estimation of common features and cointegrating
vectors.

The fact that we impose the restriction that the trend is a martingale is consistent with the idea
that the long-run component of asset prices is captured by a martingale, as put forth by Hansen
and Scheinkman (2009). Here, however, our setup is much simpler than theirs, but it still captures
the main trust in Beveridge and Nelson that, as in (31), the trend today represents the value to
which the adjusted long-term forecast of a series converges to. Any deviations of prices from trend
are therefore deviations of prices from fundamentals, which we label here as bubbles. Notice that
the concept of a bubble here is intrinsically different from what Campbell and Shiller (1987) and
West (1987) have labelled a “rational bubble”and a “speculative bubble,”respectively.

7 Empirical results

We now apply the tools covered in previous sections to two well-known economic issues. On the
one hand, these are the relationship between long- and short-term interest rates, and, on the other
hand, the relationship between price and dividend. We use the online series maintained and updated
by Shiller at http://www.econ.yale.edu/~shiller/data.htm. Our investigations are done on those
annual data spanning the period 1871-2011 (T = 141) for interest rates and on the period 1871-2010
(T = 140) for the price-dividend case. For this latter, we divide series by the consumer price index
(also from Shiller´s files) in order to obtain real prices and real dividends. Figures 1 and 2 plot the
two group of series.

The four variables being I(1) according to usual unit root tests (e.g. ADF), we go next on
testing for cointegration and for common cyclical features.

For the interest rates analysis, AIC, SBC and HQ choose p = 2 for the VAR in level. For the
price-dividend relationship AIC determines p = 8, SC p = 1 and HQ p = 2. For both systems, VAR-
residual tests reject the null of no ARCH as well as the null of Normality. In order to choose the lag
length of the VAR in the presence of time varying heteroskedasticity, we implement a robust Wald
test with the null hypothesis that the last coeffi cient matrix of a VAR(p) has only zero coeffi cients.
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Figure 1: Price and dividend series (1871-2010)
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Figure 2: Interest rates series (period 1871-2011)
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Table 2: Long run properties
ilr/isr P/D

H0 eigv. Stat. cv p-val H0 eigv. Stat. cv p-val

r = 0 0.170 28.57 15.49 0.0003 r = 0 0.085 13.38 15.49 0.101
r > 1 0.018 2.58 3.84 0.1076 r > 1 0.007 0.97 3.84 0.322

ilr = 1.079isr P = 67.648D
(0.1051) (10.195)

αlr = -0.0405 αsr = 0.3093 αP = -0.073 αD = 0.00076
(0.0409) (0.0895) (0.038) (0.00052)

We use a similar strategy that we have already applied in the test ξrobW presented above but now
with a different set of restrictions. In a bivariate case these can be written as

R = I2 ⊗K,

with K = I2 when testing for p = 1 (namely the bivariate white noise hypothesis) and K =

[02×(p−1) : I2] when testing for the last lag coeffi cient matrix when p > 1. This test follows a χ2(4)
under the null. We have investigate on our DGPs this procedure and it emerges that it allows us
to determine the correct lag length without any size distortions in the presence of heteroskedastic
errors (for our DGP #2). Using this approach, we do not reject the hypothesis of VAR(2) for both
economic applications.

As far as long-run properties are concerned, Table 2 shows the Johansen trace test with a con-
stant term for both cases within VAR(2) in levels. Table 2 shows that interest rates are cointegrated
with a cointegrating vector very close to (1 : −1) while prices and dividends are only cointegrated
with a significance level of about 10%. In this latter case, θ̂ = 67.648, the discount factor is
δ̂ = 0.985 and therefore r̂ = 0.0147 which is smaller than values found in similar studies. We
impose that cointegration exists in both cases, since the 10% level in testing has been used before
in this context. Conditional on cointegration we compute spreads using the estimated cointegrated
vector for the price/dividend series and imposing a (1,−1) long-run relationship for interest rates.

Given results on long-run properties, we now look at the existence of common cyclical feature
relationships. We present the p-values of the six different weak-form common feature test statistics
in Table 3. Recall that testing for PSCCF would give numerically identical values. For robustness,
we report results for different VAR orders, although we have determined that p = 2 using our
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Table 3: P-values of the common feature test statistic
p− values

V AR(p) ξLR ξW ξrobW J1 J2 J3
ilr/isr p = 2 0.73 0.73 0.76 0.72 0.75 0.75

p = 3 0.59 0.58 0.72 0.37 0.49 0.45
p = 4 0.54 0.53 0.53 0.11 0.09 0.15

P/D p = 2 0.18 0.18 0.4 0.16 0.46 0.52
p = 3 0.16 0.15 0.25 0.15 0.28 0.20
p = 4 0.36 0.35 0.19 0.35 0.27 0.29

preferred testing procedure in both applications.
In both the long and short-term interest rate case and in the price-dividend analysis the null that

there exists at least one weak-form common feature vector is never rejected at usual significance
levels. These tests do not reject the necessary rank condition behind the present value theory for
both applications, which completes the first step of our proposed testing procedure.

We now further restrict the systems with additional constraints. First we look whether the
VECMs are restricted to have a zero first row for lagged dependent series. For the price-dividend
case the p− values for such an hypothesis is respectively 0.21 and 0.70 using a FIML and a robust
GMM approach. If now one adds the restriction that the loading in the price equation is given by
the cointegrating vector (i.e., r̂ = 0.0147) p − values are respectively 0.11 and 0.34 for FIML and
the robust GMM.

For the long and short-term interest rates case, restricting the dynamics gives p− values lower
than 0.001 for FIML and 0.04 for robust GMM, hence rejecting the forecasts of the PVM on the
value of the coeffi cients. Hence, for the interest rate analysis we do not further investigate the
additional constraints on the coeffi cients θ, δ and r that are theoretically given by the yield curve
(see inter alia Johansen and Swensen, 2000, 2004 for a numerical example). Recall that rejecting
the PVM can come from two sides: (1) first one can reject the rank deficiency hypothesis and we
have seen that this is not the case here; (2) some coeffi cients might not match their theoretical
values. Testing (1) and (2) successively using a common feature framework helps to determine
where the problem comes from. Note that in this paper we assume that the series used adequately
match the theoretical counterparts in the PVMs.

In order to investigate whether the weak-form common feature relationship is far from the
theoretical values for the interest rate case, we obtain the following equation using a pseudo-
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structural model estimated by FIML (standard errors in brackets):

∆ilr,t = 1.423
(0.715)

∆isr,t − 0.463
(0.193)

Ŝt−1 + 0.062.
(0.188)

It emerges that the p-value associated with null hypothesis that the coeffi cient of ∆isr,t is equal
zero is slightly below 0.05, rejecting (9) at a 5% but not at 10% significance level. Moreover the
coeffi cient being positive and significantly different from −1, equation (16) which discounts future
expected values only, is also rejected. The negative estimated coeffi cient in front of Ŝt−1 is also
against the predictions of the PVM in both formulations (9) and (16).

Finally, we display for both applications the permanent-transitory decomposition of the series
in terms of common trends and common cycles. We only report pictures with constraints coming
from cointegration and common features but not with additional restrictions on the values of the
coeffi cients. Figure 3 and Figure 4 plot the main series together with their trend component.
Figures 5 and 6 show the cyclical part. For prices and dividends it appears that there is a bubble
starting before 2000 in the price series, which we identify as the dotcom bubble. It is also interesting
to notice that the recent financial crisis does not seem to have a big deviation from trend. This
means that although the situation post 2008 is dramatic for most OECD economies, prices seem
to correctly reflect the discounted dividends, something that was missing in the “dotcom bubble.”

The interest rate cycle is very volatile, especially after the second half of the past century,
showing cycles with a duration of about 10 years since the sixties. Notice that, in the last 10
years, the common cyclical component of interest rates is negative, most of the time, reflecting the
long-run expectation that they should rise in the future. Indeed, the cyclical component now is in
the vicinity of its all time low —almost −200 basis points. The joint analysis of price-dividends
and interest rates hints that if there is a bubble for the last global recession it came from interest
rates, not from stocks. One of the peculiar features of the last recession is for how long we have
observed low levels of short-term interest rates.
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8 Conclusion

The main contribution of this paper is to propose a novel framework for testing PV relationships
in economics. Here, we stress that cointegration is simply one side of the restrictions PV relation-
ships impose on the data being tested —it implies that PV equations obey certain transversality
conditions. Common-cyclical-feature restrictions form the basis of the other side — they imply
the existence of unforecastable errors in the stochastic difference-equation generating PVMs. It
is obviously preferable to test for PVMs using an integrated framework where these two types of
restrictions are jointly considered. The common-feature toolkit allows the investigation of PVMs
in multivariate data sets as well as the proposal of new tests for their existence.

Also, in the context of asset pricing, we propose a novel permanent-transitory (PT) decompo-
sition based on Beveridge and Nelson (1981), which focus on extracting the long-run component of
asset prices, a key concept in modern financial theory as discussed in Alvarez and Jermann (2005),
Hansen and Scheinkman (2009), and Nieuwerburgh, Lustig, and Verdelhan (2010). We advance
with respect to standard Beveridge and Nelson (BN) decompositions in which we compute the
transitory component directly using the PVM restrictions, which amounts to impose restrictions in
the short-run dynamics of the cointegrated VAR to recover the transitory component.

The techniques considered here are applied to two different data sets. The first contains annual
long- and short-term interest rates for the US, ranging from 1871 to 2011. The second data set is for
the study of the price and dividend relationship on the period 1871-2010. There is one cointegrating
relationship and a weak form common feature relationship in both cases, although the analysis of
interest-rate data rejects the full set of PVM restrictions. Despite that, the joint analysis of price-
dividends and interest rates hints that if there is a bubble for the last global recession it came from
interest rates, not from stocks. We are forced to conclude this because the long-run component of
asset prices is close to current price, but the same is not true for interest rates. Indeed, the cyclical
component of interest rates is now in the vicinity of its all time low —almost −200 basis points.
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