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Abstract: The paper reports simulations applied on two similar congestion games: the first is the 
classical minority game. The second one is a asymmetric variation of the minority game with linear 
payoff functions. For each game simulation results based on an extended reinforcement algorithm are 
compared with real experimental statistics. It is shown that the extension of the reinforcement model is 
essential for fitting the experimental data and estimating the players behaviour. 
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1 The Investigated Games  

1. 1.   Concestion Game I (CI) – The Minority Game 
 

The first discussed congestion game (CI) is a well known minority game. The set-up of the minority 

game introduced by W. Brian Arthur is the following: a number of players n have to choose in several 

periods whether to go to a place A or B. Those players who have chosen the less crowded place win, 

the others lose.  The number of players in each Simulation was 9, the number of periods was 100. The 

players get an payoff At  and Bt  depending on the numbers An  and Bn  of participants choosing A and 

B, respectively: 

BABA nntt <⇔== 0,1  

BAAB nntt >⇔== 0,1 . 

                                                           
1 Email: chmura@wiwi.uni-bonn.de URL: http://www.wiwi.uni-bonn.de/labor/ 
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The period payoff was At  if A was chosen and Bt  if B was chosen. There are no pure 

equilibria in this game. The pareto-optimum can be reached by 4 players on one and 5 players 

on the other pace.  

 

1.2.  Assymetric Congestion Games (CII) 

 

The second congestion game (CII) is a variation of the minority game: the number of Agents 

in this game was 18, 36, 54, 72 and 90. The number of played periods was 100.  

 
The period payoff for the 18 player setting was 40 – t with t = At  if A was chosen and t = St  

if B was chosen, where At  and Bt  depends on the numbers An  and Bn  of participants 

choosing A and B, respectively: AA nt 26 +=  and BB nt 312 += . 

All pure equilibria of the game are characterized by An = 12 and Bn = 6. The equilibrium 

payoff is 10 units per player and period. The pareto-optimum can be reached by An = 11 and 

Bn = 7. 

 

The modified payoff functions for the experiments with 36, 54, 72 and 90 agents are 18λ , 

λ =2,…,5: 

[ ]AA np 2640 +λ−λ=  

[ ]BB np 31240 +λ−λ=  

 

Table 1 shows all pure equilibria in the CII depending on the number of players. 

Number of Players Equilibrium 
 A B 

18 12 6 
36 24 12 
54 36 18 
72 48 24 
90 60 30 

 
Table 1: Pure equilibria in CII depending on the number of participating agents. 

 



 3

CI and CII are frequently interpreted as traffic scenarios [Schreckenberg, Selten, Pitz, Chmua 

(2003)]. In case of CII place A and place B are understand as road with high (main road) and 

road with low (side road) capacity road and At  and Bt  as travel times  

 

 

1.2.  Experimental Set-up of CI  and CII 

 

Each of the games CI and CII with 9 and 18 persons were played 6 times with students at the 

Laboratory of Experimental Economics in Bonn. Additionally CII was played 1 time with 36, 

54, 72 and 90 students. Subjects are told that in each period they have to make a choice 

between A and B. The subjects of CII set-up did not know the payoff function. They were 

told that if there A and B is choosen by the same number of people, subjects who had choosen  

A get a better payoff than subjects who had choosen B. At the end of an experiment each 

patricians was played an amount in Euro proportional to his cumulated payoff sum he had 

reached over the 100 periods.     

 

The experimental data statistics is listed and compared with simulation results in chapter 4.   

 

 

2.  Reinforcement Learning  

 

2.1.  Reinforcement Algorithm with Pure Strategies  

 

The reinforcement algorithm with pure strategies already described by Harley (1981) and later 

by Arthur (1991) has been used extensively by Erew and Roth (1995) in the experimental 

economics literature.  Figure 1 explains the original reinforcement algorithm. 

 

We are looking at player i who has to choose among n pure strategies 1,…,n over a number of 

periods t, t=1..T. The probabilities of “strategy x is chosen by player i” is proportional to its 
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“propensity” t
x,iq . In period 1 these propensities are exogenously determined parameters. 

Whenever the strategy x is used in period t, the resulting payoff t
xa  is added to the propensity 

if this payoff is positive. If all payoffs are positive, then the propensity is the sum of all 

previous payoffs for this strategy plus its initial propensity. Therefore one can think of a 

propensity as a payoff sum.  
 

Initialisation: For each player i let ]q,...,q[ n,i,i
11

1  the initial propensity, where n is the number of  

                       strategies, which are used in the simulations. 
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Figure 1 : The Reinforcement Algorithm 

 

2.2.  The Empirical Foundation for an Extended Reinforcement Model 

 

The only pure strategies in CI and CII are “place A” and “place B”. This strategies do not 

represent a players belief about the other participants behaviour. In our extended model we 

add two further strategies which include the consideration of players about the others based 

on last periods payoff.   
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Direct: A participant who had a good (bad) payoff may stay on the last periods place (change 

his last choice). We call this direct response mode. A change is the more probable the worse 

the payoff was. The direct response mode is the prevailing one but there is also a contrarian 

response mode.  

 

Contrarian: Under the contrarian response mode a change of the last choice is more likely 

the better the payoff was. The contrarian participant expects that a high payoff will attract 

many others in the next period.  

In CI a “bad” payoff could obviously defined by 0 a “good” payoff by 1. In CII with 

18λ ,λ =1,…,5 players the pure equilibrium payoff is ε =10λ . Payoffs perceived as “bad” 

tend to be below ε  and payoffs perceived as “good”  tend to be above ε . Accordingly we 

classified the strategie of a subject as direct if there is a change (stay) after a payoff smaller 

(greater) than 10. The opposite strategy is classified as contrarian.  

 

 

2.3  Measuring Direct and Contrarian Strategies 

 

For each subject let c- (c+) be the number of times in which a subject changes from A to B or 

from B to A when there was bad (good) payoff in the period before. And for each subject let 

s- (s+) be the number of times in which a subject stays on the same place when there was bad 

(good) payoff in the period before. 

For each subject in the experiments CI and CII a Yule coefficient Q has been computed as 

follows: 
 

−++−

−++−

⋅+⋅
⋅−⋅

=
scsc
scscQ  ,  0≠⋅+⋅ −++− scsc . 

  

The Yule coefficient has a range from –1 to +1. In the rare cases subject never (in each 

period) changes his last choise, we defined Q = 0 because the decision of such a subject 
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depends not on the last period payoff. Subject with Yule coefficients below –.5 could be 

understand as classified as direct and subjects above +.5 as contrarian.   

 

 

2.4.   Extended Reinforcement Learning 

 

In our simulations of CI 9 Agents respectively of CII 18,46, 54, 72, 90 Agents interact for 100 

periods just like in our experiments described in section 3. In CI and CII each player has two 

pure strategies: 

 

Place A:  This strategy consists in taking A. 

Place B:  This strategy consists in taking B. 

After the first period in each of the two games (CI) and (CII) the two 

extended strategies direct and contrarian are available additionaly:  

 

(CI) direct: The payoff of a player is 1, then the player stays on the same place last 

chosen. If his payoff is 0 the players changes (from A to B or from B to 

A). 

 

(CI) contrarian: The payoff of a player is 1, then the player changes (from A to B or 

from B to A). If his payoff is 0 the players will stay on the same place.  

 

(CII) direct: This strategy corresponds to the direct response mode. The payoff of a 

player is compared to his median payoff among his payoffs for all 

periods up to now. If the present payoff is lower then this median 

payoff, then the place is changed. If the payoff is greater than this 

median payoff, the player stays on the same place as before. It may also 

happen that the current payoff is equal to the median payoff. In this 

case, the place is changed if the number of previous payoffs above the 

median is greater than the number of previous payoffs below the 
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median. In the opposite case, the place is not changed. In the rare cases 

where both numbers are equal, the place is changed with probability ½. 

 

 

(CII) contrarian: A player who takes this strategy stays on the last chosen place if his 

current payoff is smaller then the median payoff among the payoffs for 

all previous periods and he changes the place in the opposite case. If the 

current payoff is equal to this median payoff, then he changes the place 

if the number of previous payoff below the median payoff is greater 

then the number above the median payoff. If the numbers of previous 

payoff below and above the median payoff are equal, the place is 

changed with probability ½. 

 

 

2.4. Initial Propensity 

 

The difficulty arises that the initial propensities must be estimated from the empirical data. 

For each game CI and CII we did this by varying the initial propensities for the strategies 

place A and place B over all integer values from 1 to 10 and the initial propensities for the 

strategies direct and contrarian over all integer values from 0 to 10. 

 

For each initial propensity we tested 1000 Simulations. To show the general behaviour of the 

simulations in Figure: 3-5 one could see several selected statistical parameters depending on 

the initial propensities listed in figure 2. The numbers refer to the strategies place A, place B, 

direct and contrarian in this order. 

 

{ }1201:]0,0,,[:0 ≤≤= qqqI ,  { }1201:]0,,,[:1 ≤≤= qqqqI , { }1201:],,,[2 ≤≤= qqqqqI  

{ }1201:],0,,[:3 ≤≤= qqqqI , { }1201:],,0,0[:4 ≤≤= qqqI  

 
Figure 2: Initial Propensities. 
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One could see in figure 3 that for each simulation run and each initial propensity the mean 

number of agents on place A is close to 4.5. The convergence to the theoretical mixed 

equilibrium was already observed in the simulation data of Roth & Erev. 
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Figure 3: Players on A. 
 

The standard deviation of number of players on place A per period (figure 4) is correlated to 

the number of changes (figure 5) per periods. It got the highest values with propensities from 

the set 1I . In this cases the strategy direct is present and contrarian is absent. The strategy 

direct forces changes after a the bad payoff 0 which is the most frequent in the majority game.       
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Figure 4: Standard Deviation of Number of Players on Place A 
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Figure 5: Number of Road Changes per Period. 
 
 

Players with high Yule-coefficients in the experiments are assigned to the direct type, this 

appears also in the figure 6. For the initial propensities, in which no contrarian change 

behaviour is implemented for example (1110) step high Yule-coefficients up. For the initial 
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propensities, in which the contrarian behaviour is favoured for example (1101) all values the 

of the Yule-coefficients are negative. 
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Figure 6: Mean Yule-coefficients. 
 

 
Similar results could get by investigations of the initial propensities for simulations of CII.  

 
 

4. Experimental Statistics and Simulation Results 

 

4.1. CI with 9 Players  

 

For each propensity vector 22
41 }10,...,0{}10,...,1{],...,[ ×∈qq  we run 1000 simulations 

according to the experiments with 100 periods. The numbers of the propensity vector refer to 

the strategies place A, place B, direct and contrarian in this order. We compared the mean 

values of each of the 1000 simulations of 6 statistical variables which are listed in table 3 with 

minimum and maximum values of the experimental data.   
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There were three parameter combinations which satisfied the requirement of yielding means 

for the six variables between the minimal and maximal experimentally observed values. This 

was the parameter combination (1,1,2,1) and (2,2,1,1) and (3,3,4,2).  

 

Experiment 
  

Simulations Experiment 
CI Minimum {1,1,2,1} {2,2,1,1} {3,3,4,2} Maximum 
Player on A [mean] 4,19 4.48 4.50 4.54 4.74 
Player on A [standard deviation] 0.67 1.45 1.48 1.50 1.50 
Changes [mean] 0.59 4.32 4.18 4.51 5.17 
Period of last Change 54.44 96.11 97.67 97.44 98.11 
Yule Q [mean] -0.01 0.10 0.04 0.14 0.87 
Yule Q [standard deviation] 0.33 0.50 0.40 0.35 0.76 
 

Table 2: CI – 9 Players - Experimental Minima & Maxima vs. Simulation Means. 
 

The parameter combinations seem to be reasonable vectors of initial propensities. There is no 

difference between place A and place B, so it is reasonable to have the same propensities for 

both places. In two of the three vectors the propensity of the direct mode is greater than the 

others propensities. It is remarkable that no initial propensities which contains only pure 

strategies does fit the experimental data.  

 

 

4.2.2.  CII with 18 Players 

 

In set-up CII with 18 player we got only one parameter combination from the set 

{ } { }22 100101 ,...,,..., ×  which satisfied the requirement of yielding means for the six variables 

between the minimal and maximal experimentally observed values. This was the parameter 

combination (4,3,3,2). In table 3 compared the mean values of each of the 1000 simulations of 

6 statistical variables which are listed in table 3 with minimum and maximum values of the 

experimental data.   
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Experiment Simulations Experiment 
CII Minimum {4,3,3,2} Minimum 
Player on B [mean] 5,85 5,95 6,17 
Player on B [standard deviation] 1,59 1,65 1,99 
Changes [mean] 4,62 5,17 5,38 
Period of last Change 64,78 83,73 90,39 
Yule Q [mean] 0,11 0,14 0,39 
Yule Q [standard deviation] 0,53 0,61 0,75 

 

Table 3: CII – 18 Players - Experimental Minima & Maxima vs. Simulation Means. 

 

In the beginning of the game the players know that the capacity of A is greater than B. It 

seems to be reasonable to suppose that at least in the beginning the pure strategies A and B 

have a greater propensity sum than direct and contrarian. Like in CI no initial propensitie 

which contains only pure strategies fits the experimental data. 

 

4.2.3. Simulations of CII with 18, 36, 54, 72, and 90 Players 

 

Finally we compared the mean of six statistical variables of  1000 simulations with 18, 36, 54, 

72, and 90 players with experiments of the same number of players. For simulations with λ18  

players we used the initial propensities ( )2334 ,,,⋅λ , λ =2,…,5.  The vector (4,3,3,2) has been 

determined in section 4.2.2.    

Statistical Data CII Data 
Sorce 

Number of Players  

    18 36 54 72 90 

E 5,98 12,21 17,98 24,2 30,02 
Mean (# players on B) 

S 5,95 11,91 17,9 23,83 29,02 

E 1,78 2,64 3,24 4,54 5,02 
st. Dev. (# players on B) 

S 1,65 2,39 3,04 3,78 4,58 

E 4,82 11,35 15,57 22,76 26,02 
Mean (# of place changes) 

S 5,17 10,07 15,98 21,32 23,04 

E 81 82 86 89 88 
Mean (last place change 

S 84 89 84 88 90 

E 0,28 0,14 0,22 0,2 0,24 
Mean (Yule-coefficient) 

S 0,14 0,16 0,15 0,15 0,16 

E 0,58 0,58 0,58 0,57 0,6 
st. Dev. (Yule-coefficient) 

S 0,61 0,54 0,54 0,52 0,56 
 

Table 5: CII –Experimental Means (E) vs. Simulation Means (S). 
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5. Conclusion 

 

We have run simulations based on a payoff sum reinforcement model. We applied this model 

on two similar experimental set ups CI and CII. Simulated mean values of six variables have 

been compared with the experimentally observed minimal and maximal of these variables. 

The simulated means were always in this range. Only four parameters of the simulation 

model, the initial propensities, were estimated from the data. In view of the simplicity of the 

model it is surprising that one obtains a quite close fit to the experimental data. With a linear 

transformation of the initial propensity the simulations fit experiments results with a higher 

number of players.  

 

Two response modes can be found in the experimental data, a direct one in which changes 

follow bad payoffs and a contrarian one in which changes follow good payoffs. One can 

understand these response modes as due to different views of the causal structure of the 

situation. If one expects that A is crowded in period t A is likely to be crowded in period t+1 

one will be in the direct response mode but if one thinks that many people will change in the 

next periode because it was crowded today one has reason to be in the contrarian response 

mode.  

  

The strategies direct and contrarian are necessary to be represented in the simulations for 

fitting the experimental data. They appear in the simulations as the result of an endogenous 

learning behaviour by which initially homogeneous subjects become differentiated over time. 
 

It is surprising that a very straightforward reinforcement model reproduces the experimental 

data as well as shown by table 5. Even the mean Yule coefficient is in the experimentally 

observed range. In spite of the fact that at the beginning of the simulation the behaviour of all 

simulated players is exactly the same. It is not assumed that there are different types of 

players.  
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6. Appendix 

Figures 9-14 illustrate the experimental means in comparison to the simulated means of table 

5. Black boxes represent the simulated values and the white boxes the empirical data. 
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Figure 9: Mean Number of Players on S in Experiments and Simulations. 
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standard deviations # players on S in experiments and simulations
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Figure 10: Standard Deviation number of Players on S in Experiments and Simulations. 
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Figure 11: Number of Changes in Experiments and Simulations. 
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last road change in experiments and simulations
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Figure 12: Last change in experiments and simulations. 
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Figure 13: Mean yule-coefficients in experiments and simulations. 
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standard deviation of yule-coefficients in experiments and simulations
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Figure 14: Standard Deviation of Yule-coefficients in Experiments and Simulations. 
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