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Abstract

Within the Internal Ratings-Based (IRB) approach of Basel II it is assumed
that idiosyncratic risk has been fully diversified away. The impact of undiversified
idiosyncratic risk on portfolio Value-at-Risk can be quantified via a granularity
adjustment (GA). We provide an analytic formula for the GA in an extended single-
factor CreditRisk+ setting incorporating double default effects. It accounts for
guarantees and their effect of reducing credit risk in the portfolio. Our general
GA very well suits for application under Pillar 2 of Basel II as the data inputs are
drawn from quantities already required for the calculation of IRB capital charges.
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1. Introduction

In the portfolio risk-factor frameworks that underpin both industry models of

credit Value-at-Risk (VaR) and the Internal Ratings-Based (IRB) risk weights of

Basel II, credit risk in a portfolio arises from two sources, systematic and idiosyn-

cratic. Idiosyncratic risk represents the effects of risks that are particular to indi-

vidual borrowers. Under the Asymptotic Single Risk Factor (ASRF) framework on

which the IRB approach is based, it is assumed that bank portfolios are perfectly

fine-grained in the sense that the largest individual exposures account for an infin-

itely small share of total portfolio exposure. In such a portfolio idiosyncratic risk

is fully diversified away, so that economic capital depends only on systematic risk.

Real-world portfolios are not, of course, perfectly fine-grained. The asymptotic as-

sumption might be approximately valid for some of the largest bank portfolios, but

clearly would be much less satisfactory for portfolios of smaller or more specialized

institutions. When there are material name concentrations, there will be a resid-

ual of undiversified idiosyncratic risk in the portfolio. The IRB formula omits the

contribution of this residual to the required economic capital.

The impact of undiversified idiosyncratic risk on portfolio VaR can be assessed via

a methodology known as granularity adjustment (GA). It is derived as a first-order

asymptotic approximation for the effect of diversification in large portfolios. The

basic concepts and approximate form for the granularity adjustment were first in-

troduced by Michael Gordy in 2000 for application in Basel II (see Gordy [2003]).

It was then substantially refined and put on a more rigorous foundation by Wilde

[2001] and Martin and Wilde [2003] using theoretical results from Gouriéroux et al.

[2000]. Recently, Gordy and Lütkebohmert [2007] proposed and evaluated a gran-

ularity adjustment suitable for application under Pillar 2 of Basel II.1

All these methods, however, do not account for guarantees and general hedging

instruments within a credit portfolio. This paper aims at filling this gap as the

exclusion of hedging instruments represents, of course, a rather severe limitation

since it is not at all rare that credit exposures are hedged in some way. For ex-

ample, granting loans and transferring the risk afterwards is a typical business for

a bank. The relevance of hedging instruments is also acknowledged by the Basel

1Two other earlier works on the GA are Emmer and Tasche [2005] and Pykthin and Dev

[2002]. See Lütkebohmert [2009] for more information on the development of the GA and a

discussion of the different methods. Note also that recently the GA methodology to quantify the

effect of idiosyncratic risk has proved useful in quite different contexts. Gouriéroux and Monfort

[2008] derive GAs for optimal portfolios. That is, they quantify the error in efficiency if one uses

an optimal portfolio consisting of finitely many assets only in order to proxy the true, perfectly-

diversified market portfolio. In Gagliardini and Gouriéroux [2009] the authors define and compute

a GA within a derivative pricing model.



Committee as Basel II (Basel Committee on Banking Supervision [2006]) discusses

extensively credit risk mitigation (CRM) techniques. These include, for example,

ordinary guarantees, collateral securitization and credit derivatives such as credit

default swaps. Today, credit derivatives might be the most common guarantee

instrument. At least their market has grown rapidly over the last years. In the

Mid-Year 2007 Market Survey Report of the International Swaps and Derivatives

Association (ISDA), the notional amount of outstanding credit derivatives was es-

timated to be $45.46 trillion.2

It is reasonable that a financial institution should be able to decrease its capital

requirements if it buys protection for its exposures. This is also important from

a regulatory point of view, because it sets the incentive for banks to hedge their

credit risk. Therefore, in 2005 the Basel Committee made an amendment to the

2003 New Basel Accord concerning the treatment of guarantees in the IRB ap-

proach (see Basel Committee on Banking Supervision [2005]).3 In the New Basel

Accord of 2003, banks were allowed to adopt a so-called substitution approach to

hedged exposures. Roughly speaking, under this approach a bank can compute the

risk-weighted assets for a hedged position as if the credit exposure was a direct

exposure to the obligor’s guarantor. Therefore, the bank may have only a small

or even no benefit in terms of capital requirements from obtaining the protection.

Since the 2005 amendment, for each hedged exposure the bank can choose between

the substitution approach and the so-called double default treatment. The latter,

inspired by Heitfield and Barger [2003], takes into account that the default of a

hedged exposure only occurs if both the obligor and the guarantor default (“double

default”). There are rather strict requirements on the obligor and the guarantor

for application of the double default treatment. Moreover, the parameters chosen

in calculating the double default probability are quite conservative. We refer to

Grundke [2008] for a meta-study on this issue. It has been shown in Heitfield and

Barger [2003]) that this double default treatment can lead to a significant decrease

in capital requirements under the Advanced IRB approach.

Since the double default treatment in the IRB approach is also based on the

assumption of an infinitely granular portfolio, it seems natural to investigate the

impact of guarantees on possible adjustments for undiversified idiosyncratic risk

as represented e.g. by the GA. In this paper we address this issue and derive a

GA that takes into account double default effects. The GA is derived as a first-

order asymptotic approximation for the effect of diversification in large portfolios

2See O’Kane [2008] for a comparison of several studies on the topic.
3Meanwhile the amendment also has been incorporated in a revised version of the 2003 Basel

accord, Basel Committee on Banking Supervision [2006]. If not noted otherwise, this is the version

we refer to as “Basel II”.
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within an extended version of the CreditRisk+ model that allows for idiosyncratic

recovery risk.4 Note, however, that our methodology could in principle be applied

to any model of portfolio credit risk that is based on a conditional independence

framework. We derive an analytic solution for the granularity adjustment in a very

general setting with several partially hedged positions where the guarantors can

also act as obligors in the portfolio themselves. Moreover, we present some results

on the performance of our new formula. In particular, we study the impact of guar-

antees and double default effects on the risk weighted assets of Basel II. Similar to

the revised GA of Gordy and Lütkebohmert [2007] our generalization only requires

data inputs which are already available when calculating IRB capital charges and

reserve requirements. The fact that the GA is analytical allows for a fast computa-

tion and avoids the simulation of the rare double default events. Thus it very well

suits for application under Pillar 2 of Basel II.

We start in Section 2 by introducing our basic notations and the CreditRisk+

setting we apply. Moreover, in this section we provide a review of the GA method-

ology without guarantees. In Section 3 we provide some illustrative examples of

our main result and discuss the main difficulties that occur when deriving a GA

in the presence of guarantees. In particular, we discuss the various scenarios and

interactions between obligors and guarantors that can occur in practice. Section 4

gives the main result for an arbitrary number of partially hedged positions in the

portfolio and discusses multiple hedging of a single obligor. Here we also provide a

numerical example on the performance of our novel GA. In Section 5 we conclude

and discuss our assumptions and results. The Appendix A provides proofs of our

results. Appendix B contains a comparison study of our model with the treatment

of double default effects within the IRB approach.

2. Notations and Basic GA Methodology

Our model presents an extension of the granularity adjustment introduced in

Gordy and Lütkebohmert [2007] which is based on the single factor CreditRisk+

model allowing for idiosyncratic recovery risk. Note, however, that our general GA

can in principle be applied to any risk-factor model of portfolio credit risk that is

based on a conditional independence framework.

Let X denote the systematic risk factor which we assume to be unidimensional to

achieve consistency with the ASRF framework of Basel II. Denote the probability

density function of X by h(X). In our specific setting we assume X to be Gamma

4CreditRisk+ is a widely used industry model developed by Credit Suisse Financial Products

[1997].
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distributed with mean 1 and variance 1/ξ for some ξ > 0.5 We consider a portfolio

consisting of N obligors indexed by n = 1, 2, . . . , N. Suppose that exposures of each

obligor have been aggregated so that there is a unique position for each obligor in

the portfolio. We refer to Gordy and Lütkebohmert [2007] for a discussion of this

assumption. Assume that the first K ≥ 0 positions are hedged by some guarantors

who might or might not be part of the portfolio themselves. The remaining N −K

positions are unhedged.6 Denote by EADn the exposure at default of obligor n and

let sn = EADn /
∑N

i=1
EADi be its share on total exposure. Applying an actuarial

definition of loss as in the CreditRisk+ model we define the loss rate of obligor n

as Un = LGDn ·Dn, where Dn is a default indicator equal to 1 if obligor n defaults

and 0 otherwise. Here LGDn ∈ [0, 1] denotes the loss given default rate of obligor n

which is assumed to be random and independent of Dn with expectation ELGDn

and volatility VLGDn . The systematic risk factor X generates correlation across

obligor defaults by shifting the default probabilities. Conditional on X = x the

default probability of obligor n is

(2.1) PDn(x) = PDn ·(1 − wn + wn · x)

where PDn is the unconditional default probability and wn is a factor loading

specifying the extent to which obligor n depends on the systematic factor X.

We denote the loss variable of a portfolio with K hedged positions and N − K

unhedged positions by LK,N−K .
7 Note that in the situation without guarantees

we have conditional independence between obligors in the portfolio and thus can

express the portfolio loss as

(2.2) L0,N =
N∑

n=1

snUn.

Denote the qth percentile of the distribution of some random variable X by αq(X)

and for ease of notation we will sometimes use xq = αq(X) instead. When eco-

nomic capital is measured as Value-at-Risk at the qth percentile, we wish to estimate

αq(LK,N−K). The IRB formula, however, delivers the qth percentile of the condi-

tional expected loss αq(E[LK,N−K |X]). The difference

(2.3) αq(LK,N−K) − αq(E[LK,N−K |X])

is the “exact” adjustment for the effect of undiversified idiosyncratic risk in the

portfolio. This interpretation is justified in a conditional independence setting by

the fact that αq(E[LK,N−K |X]) converges to αq(LK,N−K) as the portfolio becomes

5For the calibration of the parameter ξ we refer to Gordy and Lütkebohmert [2007].
6In the following quantities with a subindex n refer to the single obligor n and are defined for

arbitrary n = 1, . . . , N.
7In general, when we use notations with two lower subindices, the first index gives the number

of hedged positions and the second index gives the number of unhedged positions in the considered

portfolio. This will be convenient when we derive the GA for portfolios with K hedged positions.
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more and more fine-grained.8 Such an exact adjustment cannot be obtained in

analytical form, but we can construct a Taylor series approximation in orders of

1/N. Therefore, we define the conditional expectation and conditional variance of

obligor n’s loss variable by µn(x) = E[Un|x] and σ2
n = V[Un|x] and on portfolio

level the quantities

µK,N−K(x) = E[LK,N−K |x](2.4)

σ2
K,N−K(x) = V[LK,N−K |x].(2.5)

Based on theoretical results of Gouriéroux et al. [2000] one can show that a first-

order approximation of (2.3), which defines our granularity adjustment, can be

obtained as

(2.6) GAK,N−K =
−1

2h(xq)

d

dx

(
σ2

K,N−K(x)h(x)

µ′

K,N−K(x)

)∣∣∣
x=xq

.

This result is independent of the question whether there are some hedged positions

in the portfolio since only the quantities µK,N−K(x) and σK,N−K(x) are sensitive

to this decision. Gordy and Lütkebohmert [2007] reformulate this result within

a CreditRisk+ framework and derive a simple analytic formula for the GA in the

case without guarantees which we will briefly review in the remainder of this section.

Assume a portfolio with N unhedged exposures. First, note that due to the con-

ditional independence framework in the case without hedged positions the quanti-

ties in equations (2.4) and (2.5) can be expressed as

µ0,N (x) = E[L0,N |x] =

N∑

n=1

snµn(x)(2.7)

σ2
0,N (x) = V[L0,N |x] =

N∑

n=1

s2nσ
2
n(x).(2.8)

In analogy to Gordy and Lütkebohmert [2007] we now reparameterize the inputs

of the GA formula (2.6), i.e. the quantities µn(x) and σ2
n(x) for n = 1, . . . , N.

Therefore, for every obligor n let Rn be the expected loss (EL) reserve requirement

and Kn the unexpected loss (UL) capital requirement as a share of EADn . In the

default-mode setting of CreditRisk+ these quantities can be expressed as

Rn = E[Un] = ELGDn ·PDn(2.9)

Kn = E[Un|xq] − E[Un] = ELGDn ·PDn ·wn · (xq − 1).(2.10)

Further, let K0,N =
∑N

n=1
snKn denote the required capital per unit exposure for

the portfolio as a whole. Since the conditional default probability in a CreditRisk+

8See Gordy [2003], Proposition 5, for assumptions and a proof of this result.
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framework equals PDn(x) = PDn ·(1 − wn + wn · x) we obtain

(2.11)

µn(xq) = Kn + Rn

µ′

n(xq) = Kn/(xq − 1)

µ′′

n(xq) = 0.

Moreover, it can be shown that

(2.12) σ2
n(x) = Cnµn(x) + µ2

n(x)
VLGD2

n

ELGD2
n

and thus

(2.13)
d

dx
σ2

n(xq) = Cnµ
′

n(xq) + 2µ′

n(xq)µn(xq)
VLGD2

n

ELGD2
n

with

Cn =
ELGD2

n + VLGD2
n

ELGDn

.

Noting that µ′(xq) =
∑N

n=1
snKn/(xq − 1) = K0,N/(xq − 1) and exercising the

differentiation operator, one can reformulate equation (2.6) in the case without

hedging as

(2.14)

GA0,N =
1

2K0,N

·
(
−(xq − 1)

h′(xq)

h(xq)

)
σ2

0,N (xq)

−1

2
·
(

d
dx
σ2

0,N (xq)
)
µ′

0,N (xq) − σ2
0,N (xq)µ

′′

0,N (xq)

(µ′

0,N (xq))2
.

Defining

δ = −(xq − 1)
h′(xq)

h(xq)

and using that µ′′

0,N (xq) = 0 the previous equation simplifies to

(2.15)
GA0,N =

1

2K0,N

· δσ2
0,N (xq) −

1

2
·

d
dx
σ2

0,N (xq)

µ′

0,N (xq)

=
1

2K0,N

(
δσ2

0,N (xq) − (xq − 1)
d

dx
σ2

0,N (xq)

)
.

Inserting the CreditRisk+ representations of the terms µ0,N (xq) and σ2
0,N (xq) and

their derivatives, Gordy and Lütkebohmert [2007] obtain

(2.16)

GA0,N =
1

2K0,N

N∑

n=1

s2n

[(
δCn(Kn + Rn) + δ(Kn + Rn)2 · VLGD2

n

ELGD2
n

)

−Kn

(
Cn + 2(Kn + Rn) · VLGD2

n

ELGD2
n

)]
.

It is the aim of this paper to extend this result to the situation with guarantees

and to derive a simple closed-form GA that is able to account for double default

effects and which is consistent with the ASRF model underlying Basel II.
6



3. Some Illustrative Examples and Discussion of the Methodology

In this section we provide some illustrative examples of our general GA formula

given in Theorem 1. We start by discussing in some detail the main problems that

occur in the presence of guarantees. Therefore it suffices for the beginning to study

the case K = 1, i.e. we consider a portfolio consisting of an exposure to obligor 1,

which is partially hedged by a guarantor g1, and N − 1 unhedged positions.9 Note

that partial hedging is of particular importance here as for the GA computation,

exposures to a single obligor first have to be aggregated.10 Thus if one exposure to

an obligor is hedged and there are also some unhedged exposures to this obligor, we

have to face the problem of partial hedging in the GA computation. For 0 ≤ λ ≤ 1

denote by (1 − λ) EAD1 the unhedged portion and by λEAD1 the hedged portion

of the exposure to obligor 1. All derivations in this paper will be given for the case

where there is direct exposure to guarantors. That is, guarantors are themselves

obligors in the portfolio. In the current case we thus let g1 = 2 and s2 is the ex-

posure share of the guarantor, obligor 2. The situation where there is actually no

direct exposure to the guarantor then simply is obtained as the special case where

the exposure s2 = 0.

In this situation the loss rates associated with the unhedged exposure to obligor 1,

the direct exposure to the guarantor and the hedged exposure to obligor 1 can no

longer be treated as conditionally independent. The IRB treatment of double de-

fault effects, however, ignores this issue by not specifying the relationships of the

guarantors with the credit portfolio. Implicitly it is assumed that there are only

perfect full hedges, that guarantors are not obligors in the portfolio themselves and

that different obligors are hedged by different guarantors. To treat the possible in-

teractions appropriately we construct a composite instrument with loss rate Û1 and

exposure share ŝ1 = λs1 consisting of the hedged portion λEAD1 of the exposure

to obligor 1. Note that the loss rate of the unhedged portion (1 − λ) EAD1 of the

exposure to obligor 1 is given by U1. In the following we will use the notation “hat”

for a quantity referring to a hedged obligor and its guarantor. Thus, in general,

such a quantity will depend on characteristics of both the hedged obligor and its

guarantor. Note that, when obligor 1 defaults and the guarantor 2 survives, the

latter will pay for the hedged exposure such that the exposure to obligor 1 is only

lost in case when both obligor 1 and obligor 2 default. Therefore, let Û1 = U1U2.

9From now on we will think of ordinary guarantees as the hedging instruments although our

results can be applied to all types of CRM techniques as indicated in the Introduction. For

example, the “guarantor” could also be the protection seller within a credit default swap contract.
10For a detailed discussion of this problem we refer to Gordy and Lütkebohmert [2007].
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We define the EL capital requirement for the composite instrument as

R̂1 ≡ E[Û1] = E[U1U2] = E[E[U1U2|X]] = E [E[U1|X] · E[U2|X]]

= ELGD1 ELGD2 ·E[PD1 ·(1 + w1 · (X − 1)) · PD2 ·(1 + w2 · (X − 1))]

= ELGD1 ELGD2 PD1 PD2 ·(1 + w1w2 · V[X])

= R1R2 +
K1K2

(xq − 1)2ξ
,

which follows from the fact that the Bernoulli random variables D1 and D2 are

independent conditional on the systematic risk factor X, which is Gamma dis-

tributed with mean 1 and variance 1/ξ. Moreover, the UL capital contribution for

the composite instrument is given by

K̂1 ≡ E[Û1|xq] − E[Û1] = E[U1U2|xq] − E[U1U2]

= ELGD1 PD1 ·(1 + w1(xq − 1)) · ELGD2 PD2 ·(1 + w2(xq − 1)) − R̂1

= K1K2 + K1R2 + R1K2 −
K1K2

(xq − 1)2ξ
.

The portfolio loss L1,N−1 in case of a single partial hedge can no longer be

expressed by equation (2.2) but is given by

(3.1)

L1,N−1 = L0,N−1 + λs1Û1 + (1 − λ)s1U1

= L0,N−1 + s1U1 (λU2 + (1 − λ)) .

Note that in the definition of L0,N−1 the exposure shares are also defined as

EADn /
∑N

i=1
EADi, i.e. with respect to the portfolio consisting of N positions.

Remark 1. We want to point out here that the loss rates in the above definition of

the portfolio loss are no longer conditionally independent as the loss rates U2 for

the guarantor, U1 for the unhedged exposure to obligor 1 and Û1 for the composite

instrument are conditionally dependent. However, it still makes sense to define

the GA as the difference in terms of percentiles between the portfolio loss and its

conditional expectation, equation (2.3), as long as the exposures that are hedged

by internal guarantors are sufficiently small as shares of total portfolio exposure.

Otherwise, the asymptotic result underlying the computation of portfolio VaR un-

der the ASRF model breaks down.11 Within the IRB treatment of double default

effects this problem is more severe because of the additional correlation assumed in

that setting.12

11See Gordy [2003], p.203, for further details.
12See Section 5 and the Appendix B for details.
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To obtain the GA we must compute the conditional expectation µ1,N−1(x) and

the conditional variance σ2
1,N−1(x) referring to the above definition of loss, equa-

tion (3.1), and also derivatives of these expressions. Since in the current case no

other obligor in the portfolio is hedged by guarantor 2, all of theN−2 ordinary oblig-

ors are independent of obligor 2 and the composite instrument conditional on the

systematic risk factorX. Thus our approach will be to express L1,N−1 as a deviation

from L0,N−2, µ1,N−1(x) as a deviation from µ0,N−2(x), and so on. We then show

that these quantities also can be expressed as deviations from L0,N−1, µ0,N−1(x)

and so on. This way the GA computation can partially be traced back to the one

in Gordy and Lütkebohmert [2007] that was sketched in Section 2. This is the

main idea for the proof of our first result which is summarized in the following

Proposition. For the proof we refer to the Appendix A.

Proposition 1 (GA Formula in Case of a Single Partial Hedge). The granularity

adjustment for the case where a portion λ of the exposure to obligor 1 is hedged by

obligor 2 is given by

(3.2)

G̃A1,N−1 =
K0,N−1

K1,N−1(λ)
GA0,N +

s1λK1K2

(K1,N−1(λ))2
σ2

0,N−1(xq)

+

(
s21Ĉ1(λ) + 2s1s2λC2

)

2K1,N−1(λ)

(
δ(K̂1 + R̂1) − (K1(K2 + R2) + K2(K1 + R1))

)

where

K1,N−1(λ) := K0,N−1 + s1 (λ (K1(K2 + R2) + K2(K1 + R1)) + (1 − λ)K1)

and

(3.3)

GA0,N := GA0,N−1 +
s21(1 − λ)2

2K0,N−1

[
δ

(
C1(K1 + R1) + (K1 + R1)

2 VLGD2
1

ELGD2
1

)

−
(

2K1(K1 + R1)
VLGD2

1

ELGD2
1

+ C1K1

)]
.

Here GA0,N−1 is the GA formula for the portfolio with N − 1 ordinary obligors,

equation (2.16). Further, we used the notation

(3.4) Ĉ1(λ) := λ2C1C2 + 2λ(1 − λ)C1.

The notation G̃AK,N−K indicates that we simplified the expression for the GA by

neglecting terms that are of order O( 1

N2 · PD3 ·ELGD3) or even higher and thus

would contribute little to the GA.13

13For more details on this argument see the proof and Remark 2.
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The second term in equation (3.3) is the standard GA contribution of the non-

hedged part (1 − λ)s1 of the exposure to obligor 1.14 Thus in the first term of

equation (3.2) we have summarized the contribution to the GA belonging to the

unhedged part of the portfolio, i.e. to exposures EAD2, . . . ,EADN and to the

unhedged portion (1 − λ) EAD1 of the exposure to obligor 1. The third term of

equation (3.2) depends only on the hedged obligor and its guarantor. It represents

the contribution to the GA that is purely due to the hedged exposure to obligor 1.

Note that this term also contains a part which vanishes when there is no direct

exposure to the guarantor, i.e. when s2 = 0, which leads to a reduction of the

GA. The second term depends on all obligors in the portfolio. Hence, there is no

additive decomposition of G̃A1,N−1 into the portfolio components belonging to the

N − 1 ordinary obligors and the hedged position and its guarantor. Note that for

λ = 1 we have Ĉ1(λ) = C1C2 and GA0,N = GA0,N−1.

Remark 2. Studying equation (3.2) in more detail we will see that double default

effects are second order effects O(1/N2) in the GA. Therefore, we assume a homo-

geneous portfolio where each exposure share equals sn = 1/N and PDs and ELGDs

are constant for all obligors. Assume that the exposure to obligor 1 is fully hedged

by obligor 2, i.e. λ = 1. Recall that by the definition of K1,N−1(λ) for such a

portfolio we have

K1,N−1(λ) =

N∑

n=2

snKn + s1(K1(K2 + R2) + K2(K1 + R1))

=
N − 1

N
K1 +

1

N
(2K2

1 + 2K1R1).

Thus for large N the terms Kn/K1,N−1(λ) = N/(N − 1 + 2(K1 + R1)) are ap-

proximately equal to 1. Similarly one can show that K0,N−1/K1,N−1(λ) is also

approximately equal to 1. Moreover, one can easily show that for a homoge-

neous portfolio GA0,N−1 is proportional to 1/N. Thus the first term in equa-

tion (3.2) is of order 1/N. Furthermore, for a homogeneous portfolio the quantity

σ2
0,N−1(xq) =

∑N

n=2
s2nσ

2
n(xq) = 1

N2

∑N

n=2
σ2

n(xq) is proportional to (N − 1)/N2.

Hence, for large N the second term in equation (3.2) is approximately proportional

to 1/N2. Similarly we obtain that the third term is proportional to 1/N2. Hence the

main contribution to the portfolio GA comes from the unhedged part of the portfo-

lio while double default effects still contribute second order to the GA. Therefore,

also in terms of the GA, a bank will be rewarded significantly with lower capital

requirements when buying credit protections.

We now extend the previous model by allowing for several hedged positions in

the portfolio. For the analysis it is sufficient to consider only two hedged positions

14Compare with formula (2.16).
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as this illustrates all possible interactions between obligors and guarantors and

the extension to more than two hedged positions will be straightforward. Let us

first generalize the notations from the previous situation to the case with several

guarantees. Therefore, consider a portfolio where the exposures to the first K

obligors are partially hedged by some guarantors g1, . . . , gK ∈ {K + 1, . . . , N}.15
Denote the hedged fraction of the loan to obligor n ∈ {1, . . . ,K} by λn ∈ [0, 1] and

define the vector λ = (λ1, . . . , λK) ∈ [0, 1]K . We define composite instruments for

all hedged obligors by Ûn = Un · Ugn
for n = 1, . . . ,K. The portfolio loss is then

given by

(3.5) LK,N−K = L0,N−K +

K∑

n=1

sn

(
λnÛn + (1 − λn)Un

)
.

Moreover, we generalize the definition for the EL and UL capital of the composite

instruments for arbitrary n as follows

R̂n = RnRgn
+

KnKgn

(xq − 1)2ξ

K̂n = KnKgn
+ KnRgn

+ RnKgn
− KnKgn

(xq − 1)2ξ
.

Furthermore, we also extend the definition of Ĉ1(λ) to

(3.6) Ĉn(λn) = λ2
nCnCgn

+ 2λn(1 − λn)Cn

and we generalize the notation K1,N−1(λ) to the case ofK partially hedged positions

by setting

KK,N−K(λ) = K0,N−K+

K∑

k=1

sk [λk(Kk(Kgk
+ Rgk

) + Kgk
(Kk + Rk)) + (1 − λk)Kk] .

Finally, we naturally extend the definition of GA0,N to the case with K partially

hedged loans.

In the case of two guarantees we have to distinguish two different scenarios. First

it is possible that two different guarantors hedge two different obligors. Therefore,

we consider a portfolio with two partially hedged obligors (1 and 2) and N − 2

ordinary obligors (3, . . . , N) where g1 6= g2. The portfolio loss is then given by

(3.7)

L2,N−2 = L0,N−2 + s1

(
λ1Û1 + (1 − λ1)U1

)
+ s2

(
λ2Û2 + (1 − λ2)U2

)
.

Note that in the above equation, terms referring to the hedged obligor 1 are condi-

tionally independent from those referring to the hedged obligor 2. This is why we

can compute the conditional mean and conditional variance of the corresponding

composite instruments for the hedged exposure to obligor 1 and obligor 2 separately

15We will discuss the case gn ∈ {1, . . . , K} in Remark 3.
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by applying the same methods as in the case of a single hedged position. For details

see the Appendix A.

Another possible scenario with two guarantees is that one guarantor hedges two

different obligors. Similarly to the previous case, we consider a portfolio with two

hedged obligors (1 and 2) and N − 2 ordinary obligors (3, 4, . . . , N). However, the

obligors now have the same guarantor g1 = g2. For ease of notation let g1 = g2 = 3.

Then the portfolio loss is given by

(3.8)

L2,N−2 = L0,N−3 +
(
s3U3 + s1λ1U1U3 + s2λ2U2U3

)

+
(
s1(1 − λ1)U1 + s2(1 − λ2)U2

)
.

Neglecting third and higher order terms in EL and UL capital contributions, one

can show that the expressions for µ2,N−2(xq) and σ2
2,N−2(xq) and their derivatives

do not depend on whether both obligors have different guarantors or the same

guarantor. Consequently the formula for the granularity adjustment also has to be

the same as in the case with different guarantors. It is summarized in the following

proposition. For the proof we refer to the Appendix A. It can be shown that the

granularity adjustment in the case of the same guarantor is larger, but only in third

order terms which are neglected in our simplified version.

Proposition 2 (GA Formula in Case of Two Partial Hedges). The GA in the case

where a portion λ1 of the exposure to obligor 1 is hedged by guarantor g1 and a

portion λ2 of the exposure to obligor 2 is hedged by guarantor g2 is given by

(3.9)

G̃A2,N−2 =
K0,N−2

K2,N−2(λ)
GA0,N +

s1λ1K1Kg1
+ s2λ2K2Kg2

(K2,N−2(λ))2
σ2

0,N−2(xq)

+

(
s21Ĉ1(λ) + s1sg1

λ1Cg1
(λ)
)

2K2,N−2(λ)

(
δ(K̂1 + R̂1) − (K1(Kg1

+ Rg1
) + Kg1

(K1 + R1))
)

+

(
s22Ĉ2(λ) + s2sg2

λ2Cg2
(λ)
)

2K2,N−2(λ)

(
δ(K̂2 + R̂2) − (K2(Kg2

+ Rg2
) + Kg2

(K2 + R2))
)

where we again neglected terms that are of order O( 1

N2 · PD3 ·ELGD3) or higher.

4. Granularity Adjustment for a Portfolio with Several

Guarantees

In this section we provide a general formula for the GA of a portfolio with several

guarantees. Here we not only extend the previous result from 2 toK hedged obligors

in the portfolio16, but we further allow for different parts of the exposure to the

16From the computations in the previous section this essentially is straightforward.
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same obligor to be hedged by several distinct guarantors.17 This generalization is

necessary for several applications. Suppose, for example, there are three loans to

obligor 1 (indexed by 1, 2 and 3) in the portfolio. Loans 1 and 2 are guaranteed by

two different guarantors g1,1 and g1,2, respectively, whereas loan 3 is unhedged.18

For the computation of the GA all three loans first have to be aggregated into a

single loan. Let λ1,1 and λ1,2 denote the fractions of the first and second loan to

obligor 1, respectively, on the aggregated position. The fraction 1 − λ1,1 − λ1,2 of

the aggregated position is the unhedged part. In this section we will derive the

contribution of such a partially hedged obligor 1 to the GA.

More generally, suppose we have a portfolio with N obligors of which the first

K ≤ N are hedged and the entries of the tuple λn = (λn,1, . . . , λn,jn
) are the

portions of the exposure EADn to obligor n (n = 1, . . . ,K) which are hedged by

guarantors gn,1, . . . , gn,jn
, respectively. Denote by Λ the collection of all tuples

λ1, . . . , λK . In this situation the portfolio loss can be written as

LK,N−K = L0,N−K +

K∑

n=1

jn∑

i=1

snλn,iUnUgn,i
+ sn

(
1 −

jn∑

i=1

λn,i

)
Un.

To write down the final version of the GA, we generalize the notations of Section 3.

First we naturally generalize the notation KK,N−K(λ) to the case of multiple hedges

per obligor which we then denote by KK,N−K(Λ) and we generalize the notation

Ĉn(λn) in the following way

Ĉn(λn,i) = λ2
n,iCnCgn,i

+ 2λn,i

(
1 −

jn∑

i=1

λn,i

)
Cn.

Similarly the notation GA0,N is adapted by replacing the terms 1 − λn by the

quantities 1 −∑jn

i=1
λn,i.

We can now formulate our main result, a single analytic formula for the granularity

adjustment that applies to any of the afore mentioned hedging situations.19

Theorem 1 (General GA Formula). Consider a portfolio with an arbitrary number

of hedged positions where every hedging instrument may be any type of credit risk

mitigation technique. Exposures to the same obligor may be hedged by different

guarantors and for every exposure only parts may be hedged. Guarantors may or

may not be obligors in the portfolio themselves and they may hedge exposures of

more than one obligor. The total exposure shares of the positions that are hedged by

guarantors who are part of the portfolio themselves, however, has to be sufficiently

small such that the asymptotic result underlying the ASRF model still holds. With

17For the case when the same exposure is hedged by more than one guarantor, see Remark 3.
18For simplicity, think of full hedges, although the argument works as well for partial hedges.
19By treating the case of multiple hedging of the same exposure as proposed in Remark 3 the

formula indeed applies to all possible hedging combinations.
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the notations above the granularity adjustment of such a portfolio can be computed

by means of the following analytic formula

(4.1)

G̃AK,N−K =
K0,N−K

KK,N−K(Λ)
GA0,N +

σ2
0,N−K(xq)

(KK,N−K(Λ))
2

K∑

n=1

jn∑

i=1

snλn,iKnKgn,i

+
1

2KK,N−K(Λ)

K∑

n=1

jn∑

i=1

(
s2nĈn,i(λn,i) + 2snsgn,i

λn,iCgn,i

)

·
(
δ(K̂n,i + R̂n,i) − (Kn(Kgn,i

+ Rgn,i
) + Kgn,i

(Kn + Rn))
)
.

The notation G̃AK,N−K indicates that we simplified the expression for the GA by

neglecting terms that are of order O( 1

N2 · PD3 ·ELGD3) or even higher and thus

would contribute little to the GA.

Remark 3. Note that by the previous derivations it is obvious that a loan which is

hedged by several guarantors will contribute only third order to the GA. The same

is true when a guarantor itself is hedged. In these cases, we suggest a substitution

approach as applied in Basel Committee on Banking Supervision [2006]. That

is, whenever there are multiple guarantors to a single loan, the risk manager can

choose one guarantor whose characteristics (i.e. PD, ELGD, EL and UL capital

contributions) enter the GA formula.

Before we begin with a discussion of our main result in Section 5 we provide a

numerical example in order to study the impact of hedging on the GA.

Example 1. Consider an artificial portfolio P which is the most concentrated port-

folio that is admissible under the EU large exposure rules.20 To this purpose we

divide a total exposure of e 6000 into one loan of size e 45, 45 loans of size e 47

and 32 loans of size e 120. We assume a constant PD of 1% and constant ELGD of

45%. Now suppose that all 32 loans of size e 120 are completely hedged by different

guarantors who are not part of the portfolio themselves. For these guarantors we

assume a constant PD of 0.1% and a constant ELGD of 45%. Moreover, we fix the

effective maturity for all obligors and guarantors to M = 2.5 years.

Our generalized GA formula (4.1) leads to an add-on for undiversified idiosyncratic

risk of G̃A32,46 = 0.83% of total exposure, i.e. e 49.80.21 To study the impact of

hedging on economic capital we computed the IRB capital for portfolio P using the

double default treatment in the IRB approach.22 Then the economic capital for port-

folio P with 32 guarantees equals 4.71% or e 282.41. Hence, our novel GA formula

20See Directive 93/6/EEC of 15 March 1993 on the capital adequacy of investment firms and

credit institutions.
21In our numerical results we always fix the variance parameter of the systematic risk factor as

ξ = 0.125. Moreover we computed the variance of LGD as VLGD2
n = 1

4
ELGDn · (1 − ELGDn).

22See the Appendix B for more details on this approach.
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leads to an add-on on economic capital of 17.62%. We now compare this result

with the analogous computations using the GA formula (2.16) that does not take

into account the hedging relations. The latter formula would yield a granularity

adjustment of GA = 1.68% of total exposure, i.e. e 100.80. Thus, if we had to

ignore the hedging relationships in portfolio P in the GA computation the add-on

would be 35.67%. Hence, accounting for guarantees within the computation of the

GA can significantly reduce the capital requirement for undiversified idiosyncratic

risk. In our example of portfolio P the reduction is by approximately 50%. Table 1

summarizes the results of our example.

Table 1: Impact of Guarantees on GA and IRB Capital Requirements

Portfolio P GA IRB capital add-on for GA

without guarantees 1.68% 4.71% 35.67%

with guarantees 0.83% 4.71% 17.62%

The EC is in both cases computed using the IRB treatment of double default effects and

thereby accounting for the 32 hedged positions in Portfolio P. The add-on for GA on EC

is defined as the quotient of the sum of GA and EC over the EC.

Remark 4. Note that for a homogeneous portfolio where all exposures have the same

size and PDs and ELGDs are also identical for all obligors, hedging can also have

the opposite effect and increase the GA. This is due to the fact that hedging can

shift the exposure distribution of the portfolio to a more concentrated distribution.

For such a homogeneous portfolio for example, the exposure distribution is uniform

and the portfolio can be considered as almost perfectly diversified for largeN.When

we assume now that some of the exposures in the portfolio are guaranteed by some

other obligors in the portfolio, the portfolio becomes more concentrated and thus

the GA increases.

5. Discussion and Conclusion

In this paper we derived a granularity adjustment that accounts for credit risk

mitigation techniques in a very general setting. The derivation of our main result,

Theorem 1, is rather complex because it considers all possible interactions between

obligors and guarantors that can occur in practice. However, it relies on a simple

model of double default that allows for an analytical solution. Therefore, simula-

tions of the very rare double default events can be avoided. Moreover, the GA is

parsimonious with respect to data requirements as its inputs are needed for the

computation of Pillar 1 economic capital under the IRB approach anyway. This is

a very important quality since the data inputs can post the most serious obstacle
15



for practical application. Thus, our general GA formula is very well suited for ap-

plication under Pillar 2 of Basel II.

Let us now discuss the underlying assumptions of our main result, formula (4.1),

in more detail. Here, we will focus only on the assumptions related to the treatment

of double default effects in the GA. For a discussion of the general assumptions of

the GA methodology we refer to Gordy and Lütkebohmert [2007] and Lütkebohmert

[2009]. The latter also contains a comparison with related approaches.

Our model of double default effects is based on the assumption that the loss rate of

the exposure to an obligor which is hedged by a guarantor is given by the product

of the individual loss rates which are assumed to be independent conditional on

the systematic risk factor. Thus we implicitly assume that the obligor’s default

(triggering the guarantee payment) must not be too much of a burden to the guar-

antor. The same problem arises in the IRB treatment of double default effects.

To mitigate it, conditions on obligors and guarantors can be imposed in order to

qualify for their hedging relationship to be accounted for. See Basel Committee on

Banking Supervision [2005] and Grundke [2008] for a discussion of the conditions.

The IRB treatment of double default effects further assumes some additional cor-

relation since the obligor and its guarantor are correlated not only through the

systematic risk factor but also through an additional factor. It should be noted,

however, that correlation cannot capture the asymmetry in their relationship, i.e.

the guarantor should suffer much more from the default of the obligor than vice

versa. Therefore, we argue that assuming extra high correlation as is implied by

the dependence on an additional factor in the IRB approach, is problematic, in

particular, when there is direct exposure to the guarantor. Given the default of the

guarantor this would imply a higher probability of default for the obligor which does

not seem to be empirically justified. A better approach in our opinion would be

to increase the guarantor’s unconditional default probability appropriately as this

also caputers the before mentioned asymmetry. Within a simple structural model

of default, Grundke [2008] shows that the additional correlation of 0.7 fixed in the

IRB treatment of double default effects approximately corresponds to an increase

of 100% in the guarantors unconditional probability of default.

We further note that under the ASRF model that underpins Basel II one must be

careful when introducing additional correlation between obligors in the portfolio.

The exposure shares of obligors that are correlated through more than the common

risk factor must be sufficiently small. This is because otherwise the asymptotic

result underlying the computation of portfolio VaR under the ASRF model breaks

down (see Gordy [2003], p. 209, for further details). This might be the case if

e.g. several loans in the portfolio are guaranteed by a large insurance company

and, in particular, if there is direct exposure to that guarantor. This problem is
16



not addressed in Basel Committee on Banking Supervision [2005]. For a detailed

comparison between the IRB treatment of double default effects and our approach

within the GA we refer the reader to Appendix B.

As our GA formula is parameterized to achieve consistency with the IRB ap-

proach, one could also argue to compute the GA with double default effects in a

two-step approach, where in a first step we compute the GA without considering

double default effects (and obtain the result of Gordy and Lütkebohmert [2007],

formula (2.16)). In a second step we could then compute the UL capital require-

ment KDD
n for a hedged obligor n as in the IRB treatment of double default effects

and insert this parameter instead of Kn in the GA formula. This two-step pro-

cedure, however, essentially ignores any interaction of the guarantor with the rest

of the portfolio. That is, it even ignores the common dependence induced by the

systematic risk factor. Hence, roughly speaking, under a two-step approach the

computation of EL and UL for a given portfolio and the computation of the GA

are solved separately (rather than jointly) and then are put together naively. This,

of course, implies a fairly easy derivation, however, with the shortcoming of missing

any mathematical justification.

In contrast to this procedure, the bottom-up approach we used to derive the GA

given by formula (4.1) incorporates double default effects right in the beginning.

More precisely, our treatment of double default effects enters the model setup (the

portfolio loss distribution) rather than just the model’s “solution”, the final GA

formula. Thus it avoids the inconsistencies and disadvantages involved with a two-

step procedure. The drawback is that this fully rigorous derivation is much more

complex. In the current case, however, we saw that the derivation is tractable and

even leads to a rather simple (in terms of parameters) analytical solution which

can easily be implemented. This solution correctly incorporates all the different

interactions between the obligors and the guarantors that can occur. In the case of

our Example 1 the two-step method would lead to a GA of 1.49% of total exposure,

i.e e 89.40. Thus the capital reducing effect of the guarantees would be much lower

in this approach than in our rigorous model-based approach.

Appendix A. Proofs

Proof of Proposition 1. In the situation of a single partial hedge the portfolio

loss L1,N−1 is given by equation (3.1). The conditional expectation of the loss ratio

of the composite instrument Û1 is given by

(A.1) µ̂1(x) = E[Û1|x] = ELGD1 ELGD2 PD1(x) PD2(x) = µ1(x)µ2(x).
17



Equations (3.1) and (A.1) imply that the conditional mean of the portfolio loss is

(A.2) µ1,N−1(x) = µ0,N−1(x) + λs1µ̂1(x) + (1 − λ)s1µ1(x).

Taking the derivative yields

µ′

1,N−1(x) = µ′

0,N−1(x) + λs1 (µ′

1(x)µ2(x) + µ1(x)µ
′

2(x)) + (1 − λ)s1µ
′

1(x)

and for the second derivative we obtain

µ′′

1,N−1(x) = 2λs1µ
′

1(x)µ
′

2(x)

since the second derivative of µn(x) vanishes for any n = 1, . . . , N. Using the

CreditRisk+ notation of Section 3, the conditional expectation of the portfolio loss

ratio and its derivatives can be expressed as

(A.3)

µ1,N−1(xq) = µ0,N−1(xq) + s1λ(K̂1 + R̂1) + s1(1 − λ)(K1 + R1)

µ′

1,N−1(xq) =
K1,N−1(λ)

xq − 1

µ′′

1,N−1(xq) =
2s1λ

(xq − 1)2
K1K2

where K1,N−1(λ) is defined in Proposition 1. Hence, it remains to compute the

conditional variance of the portfolio loss and its derivative. For the conditional

variance of the portfolio loss ratio we obtain

(A.4)

V[s2U2 + λs1Û1 + (1 − λ)s1U1|x]

= V[s2U2 + (1 − λ)s1U1|x] + V[λs1Û1|x] + 2 Cov[s2U2 + (1 − λ)s1U1, λs1Û1|x]

and the last term can be written as

2s1s2λCov[U2, U1U2|x] + 2s21λ(1 − λ) Cov[U1, U1U2|x].

Since U1 and U2 are conditionally independent one can show that

(A.5) Cov[U2, U1U2|x] = µ1(x)σ
2
2(x) and Cov[U1, U1U2|x] = µ2(x)σ

2
1(x).

Recall that for independent random variables Y1 and Y2 the following relation holds

(A.6) V[Y1Y2] = V[Y1]V[Y2] + V[Y1]E[Y2]
2 + V[Y2]E[Y1]

2.

Using these results equation (A.4) can be written as

V[s2U2 + s1λU1U2 + s1(1 − λ)U1|x]

= s2σ
2
2(x) + s21(1 − λ)2σ2

1(x) + s21λ
2
(
σ2

1(x)σ2
2(x) + σ2

1(x)µ2
2(x) + σ2

2(x)µ2
1(x)

)

+2s1s2λµ1(x)σ
2
2(x) + 2s21λ(1 − λ)µ2(x)σ

2
1(x)
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and therefore the conditional variance of the portfolio loss ratio is

(A.7)

σ2
1,N−1(x) = σ2

0,N−1(x) + s21(1 − λ)2σ2
1(x)

+2s1s2λµ1(x)σ
2
2(x) + 2s21λ(1 − λ)µ2(x)σ

2
1(x)

+s21λ
2
(
σ2

1(x)σ2
2(x) + σ2

1(x)µ2
2(x) + σ2

2(x)µ2
1(x)

)
.

Evaluating at xq and inserting equations (2.11) and (2.12) gives an expression in

Kn and Rn. These quantities are typically quite small so that products of these

contribute little to the GA.23 As double default effects will be second order effects,

i.e. of order O(1/N2) as discussed in Remark 2, we will throughout this paper

neglect third and higher order terms in Kn and Rn. For this argument note that

due to relations (2.11) and (2.12) the terms µn(xq) and σ2
n(xq) and their derivatives

are all of order 1 in Kn and Rn. Moreover, if an expression for the conditional

variance of the loss ratio involves a product of three or more of these terms it

will also yield products of three or more of these terms in the derivative. Finally,

when computing the GA using formula (2.6), third or higher order terms in Kn

and Rn can never turn into more significant lower order terms. This is obvious

from the following derivations. Therefore, in the following we will always compute

the expressions for the conditional variance of the portfolio loss and its derivative

without third or higher order terms in Kn and Rn since these terms are of order

O(1/N2·PD3 ·ELGD3) or even higher and thus would yield negligible terms anyway.

Thus with these simplifications we obtain

σ2
1,N−1(xq) ≈ σ2

0,N−1(xq) + s21(1 − λ)2
(
C1(K1 + R1) + (K1 + R1)

2 VLGD2
1

ELGD2
1

)

+2s1s2λC2(K̂1 + R̂1) + s21
[
λ2C1C2 + 2λ(1 − λ)C1

]
(K̂1 + R̂1)

d
dx
σ2

1,N−1(xq) ≈ d

dx
σ2

0,N−1(xq) +
s21(1 − λ)2

xq − 1

(
C1K1 + 2K1(K1 + R1)

VLGD2
1

ELGD2
1

)

+
2s1s2λC2

xq − 1
(K1(K2 + R2) + K2(K1 + R1))

+
s21
[
λ2C1C2 + 2λ(1 − λ)C1

]

xq − 1
(K1(K2 + R2) + K2(K1 + R1)) .

We define the variance of the unhedged part of the portfolio as

(A.8) σ̄2
0,N (xq) := σ2

0,N−1(xq) + s21(1− λ)2
[
C1(K1 + R1) + (K1 + R1)

2 VLGD2
1

ELGD2
1

]
.

23Kn and Rn are essentially products of PDn ∈ [0, 1] and ELGDn ∈ [0, 1].

19



Applying further the notation of Ĉ1(λ) in Proposition 1, we can reformulate the

conditional variance of the portfolio loss and its derivative at xq as

(A.9)

σ2
1,N−1(xq) ≈ σ̄2

0,N (xq) + s21Ĉ1(λ)(K̂1 + R̂1) + 2s1s2λC2(K̂1 + R̂1)

d

dx
σ2

1,N−1(xq)≈
d

dx
σ̄2

0,N (xq) +
s21Ĉ1(λ) + 2s1s2λC2

xq − 1
(K1(K2 + R2) + K2(K1 + R1)) .

We now use these representations to compute the GA in the case of one hedged

position. Therefore, first note that the formula for the “full” GA, equation (2.6),

can be reformulated as

(A.10)

GA1,N−1 =
1

2K1,N−1(λ)

(
δσ2

1,N−1(xq) − (xq − 1)
d

dx
σ2

1,N−1(xq)

+(xq − 1)
σ2

1,N−1(xq)µ
′′

1,N−1(xq)

µ′

1,N−1
(xq)

)
.

Rearranging and using the simplified expressions for the conditional variance and

its derivative, equation (A.9), this becomes

(A.11)

G̃A1,N−1 =
1

2K1,N−1(λ)

(
δσ̄2

0,N (xq) − (xq − 1)
d

dx
σ̄2

0,N (xq)

)

+

(
s21Ĉ1(λ) + 2s1s2λC2

)

2K1,N−1(λ)

(
δ(K̂1 + R̂1) − (K1(K2 + R2) + K2(K1 + R1))

)

+
1

2K1,N−1(λ)

(
(xq − 1)

σ2
1,N−1(xq)µ

′′

1,N−1(xq)

µ′

1,N−1
(xq)

)
.

Unlike in the case without hedging the last summand of equation (A.11) does not

vanish since µ′′

1,N−1(xq) = 2λs1µ
′

1(xq)µ
′

2(xq) = 2λs1K1K2/(xq − 1)2 is in general

not zero. We have

σ2
1,N−1(xq)µ

′′

1,N−1(xq)

µ′

1,N−1
(xq)

=
2λs1K1K2

K1,N−1(λ)(xq − 1)

(
σ̄2

0,N (xq) + s21Ĉ1(λ)(K̂1 + R̂1) + 2s1s2λC2(K̂1 + R̂1)
)
.

The last two summands are very small and can be neglected.24 Using this result,

inserting the GA formula for the portfolio with N − 1 ordinary obligors, equation

(2.16), and using the notation GA0,N we obtain from equation (A.11) the GA

formula of Proposition 1. �

Proof of Proposition 2. We start with the situation where two different

guarantors hedge two different obligors. Therefore, we consider a portfolio with

24The expression Kn/K1,N−1 should be reasonably close to 1 so that the neglected terms are

of order O(1/N3).
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two partially hedged obligors (1 and 2) and N − 2 ordinary obligors (3, . . . , N)

where g1 6= g2. The portfolio loss is then given by equation (3.7). Similarly to

equation (A.3) we obtain for the conditional expectation of the portfolio loss and

its derivatives

(A.12)

µ2,N−2(xq) = µ0,N−2(xq) + s1λ1(K̂1 + R̂1) + s1(1 − λ1)(K1 + R1)

+s2λ2(K̂2 + R̂2) + s2(1 − λ2)(K2 + R2)

µ′

2,N−2(xq) =
K2,N−2(λ)

xq − 1

µ′′

2,N−2(xq) =
2

(xq − 1)2
(s1λ1K1Kg1

+ s2λ2K2Kg2
) .

Note that in the equation for the portfolio loss, terms referring to the hedged

obligor 1 are conditionally independent to those referring to the hedged obligor 2.

This is why we can compute the contributions to the variance of the portfolio loss

separately for obligor 1 and obligor 2. Each component is obtained as in the proof

of Proposition 1. Thus, for the conditional variance of the portfolio loss ratio and

its derivative we obtain the natural extensions of equation (A.9), namely

σ2
2,N−2(xq) ≈ σ̄2

0,N (xq) + s21Ĉ1(λ1)(K̂1 + R̂1) + 2s1sg1
λ1Cg1

(K̂1 + R̂1)

+s22Ĉ2(λ2)(K̂2 + R̂2) + 2s2sg12λ2Cg2
(K̂2 + R̂2)

d

dx
σ2

2,N−2(xq) ≈ d

dx
σ̄2

0,N (xq)

+
s21Ĉ1(λ1) + 2s1sg1

λ1Cg1

xq − 1
(K1(Kg1

+ Rg1
) + Kg1

(K1 + R1))

+
s22Ĉ2(λ2) + 2s2sg2

λ2Cg2

xq − 1
(K2(Kg2

+ Rg2
) + Kg2

(K2 + R2)).

Here we naturally extended the definition (A.8) of σ̄2
0,N (x) to the case with two

guarantees. Thus, in case of two partially hedged positions the equivalent to equa-

tion (3.2) is given by equation (3.9), the result of Proposition 2.

Now consider the case where one guarantor hedges two different obligors. Similarly

to the previous case we consider a portfolio with two hedged obligors (1 and 2)

and N −2 ordinary obligors (3, 4, . . . , N). However, the obligors now have the same

guarantor g1 = g2 = 3. Then the portfolio loss is given by equation (3.8). It is

obvious that the conditional expectation of the portfolio loss and its derivatives are

also given by equation (A.12) where terms referring to the composite instrument

of course have to be adjusted to the current situation. The conditional variance of
21



the portfolio loss can be written as

(A.13)

V[L2,N−2|x]

= V[L0,N−3|x] + V[s1(1 − λ1)U1 + s2(1 − λ2)U2|x]

+V [sg1
Ug1

+ s1λ1U1Ug1
+ s2λ2U2Ug1

|x]

+2 Cov
[
sg1
Ug1

+ s1λ1U1Ug1
+ s2λ2U2Ug1

, s1(1 − λ1)U1 + s2(1 − λ2)U2|x
]
.

We can compute the individual terms further using the same technique as in the

case of a single partial hedge. Applying formula (A.5) then reduces the covariance

term to

2 Cov [sg1
Ug1

+ s1λ1U1Ug1
+ s2λ2U2Ug1

, s1(1 − λ1)U1 + s2(1 − λ2)U2|x]

= 2s21λ1(1 − λ1)σ
2
1(x)µg1

(x) + 2s22λ2(1 − λ2)σ
2
2(x)µg1

(x)

and the second variance term equals

V[s1(1 − λ1)U1 + s2(1 − λ2)U2|x] = s21(1 − λ1)
2σ2

1(x) + s22(1 − λ2)
2σ2

2(x).

The third variance in equation (A.13) can be computed using formula (A.6). Ne-

glecting again higher order terms in capital contributions one can show that

V[Ug1
(sg1

+ s1λ1U1 + s2λ2U2) |xq]

= σ2
g1

(xq)
(
λ2

1s
2
1σ

2
1(xq) + λ2

2s
2
2σ

2
2(xq) + 2sg1

λ1s1µ1(xq) + 2sg1
λ2s2µ1(xq) + s2g1

)
.

Then the conditional variance of the portfolio loss can be expressed as

σ2
2,N−2(xq) = σ̄2

0,N (xq)

+µg1
(xq)µ1(xq)

(
λ2

1s
2
1C1Cg1

+ 2sg1
λ1s1Cg1

+ 2s21λ1(1 − λ1)C1

)

+µg1
(xq)µ2(xq)

(
λ2

2s
2
2Cg1

C2 + 2sg1
λ2s2Cg1

+ 2s22λ2(1 − λ2)C2

)
.

Inserting the definition (3.6) for Ĉn(λn) and for the EL and UL capital R̂n and K̂n,

respectively, we obtain

(A.14)

σ2
2,N−2(xq) = σ̄2

0,N (xq) + s21Ĉ1(λ1)(K̂1 + R̂1) + 2sg1
s1λ1Cg1

(K̂1 + R̂1)

+s22Ĉ2(λ2)(K̂2 + R̂2) + 2sg1
s2λ2Cg1

(K̂2 + R̂2)

which coincides with the expression for σ2
2,N−2(xq) in the previous case. That

is, if higher order terms in EL and UL capital contributions are neglected, the

expressions for µ2,N−2(xq) and σ2
2,N−2(xq) and their derivatives do not depend on

whether both obligors have different guarantors or the same guarantor. Obviously
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the formula for the granularity adjustment also has to be the same as in the case

with different guarantors. Thus, it is given by equation (3.9). �

Proof of Theorem 1. The generalization to the case of several guarantees uses

the same techniques as the proof of Proposition 2 since no further interactions will

appear. We omit the proof here because the computations become rather tedious

and do not provide any additional insight. �

Appendix B. Comparison with the Treatment of Double Default

Effects within the IRB Approach

There are certain similarities between our approach to the treatment of double

default effects within the GA and the way double default effects are accounted

for in the IRB approach of Basel II. For a better comparison of both methods

we will briefly review the derivation and final formulas for the latter. Within the

IRB approach banks may choose between the simple substitution approach outlined

in the Introduction and a double default approach where risk-weighted assets for

exposures subject to double default are calculated as follows.25 One first computes

the UL capital requirement Kn for the hedged obligor in the same way as the UL

capital requirement for an unhedged corporate exposure26 with ELGDn replaced

by ELGDgn
and in the computation of the maturity adjustment PDn is replaced by

the minimum of PDn and PDgn
. Then the capital requirement KDD

n for the hedged

exposure is calculated by multiplying Kn by an adjustment factor depending on the

PD of the guarantor, namely

KDD
n = Kn · (0.15 + 160 · PDgn

).

Finally, the risk-weighted asset amount for the hedged exposure is computed in the

same way as for unhedged exposures. Note that the multiplier (0.15 + 160 · PDgn
)

is derived as a linear approximation to the UL capital requirement for hedged ex-

posures using the exact conditional expected loss function and the capital require-

ment for the unhedged exposure according to the usual IRB formula. Therefore,

the ASRF framework, which also presents the basis for the computation of the risk

weighted assets in the IRB approach, is used in an extended version. Specifically,

it is assumed that the asset returns rn (resp. rgn
) of an obligor and its guarantor

are no longer conditionally independent given the systematic risk factor X but also

depend on an additional risk factor Zn,gn
which only affects the obligor and its

25Compare Basel Committee on Banking Supervision [2006], paragraph 284.
26The latter is defined in paragraphs 272 and 273 of Basel Committee on Banking Supervision

[2006].
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guarantor. More precisely,

rn =
√
ρnX +

√
1 − ρn

(√
ψn,gn

Zn,gn
+
√

1 − ψn,gn
ǫn

)
,

where ρn is the asset correlation of obligor n, ψn,gn
is a weight specifying the

sensitivity of obligor n to the factor Zn,gn
and ǫn is the idiosyncratic risk factor of

obligor n. By implicitly assuming that all hedges are perfect full hedges, guarantors

are themselves not obligors in the portfolio and all guarantors are external, the joint

default probability of the obligor and its guarantor can be computed explicitly as

P ({default of obligor n} ∩ {default of guarantor gn})

= Φ2

(
Φ−1(PDn),Φ−1(PDgn

); ρn,gn

)
,

where ρn,gn
is the correlation between obligor n and its guarantor gn. Here Φ2(·, ·; ρ)

denotes the cumulative distribution function of the bivariate normal distribution

with correlation ρ.

This setting translated into an actuarial definition of loss corresponds to our ap-

proach when Zn,gn
= 0, i.e. when the obligor and the guarantor are conditionally

independent given the systematic risk factor X and where X is assumed to be

Gamma distributed. For the composite instrument, however, we have a direct de-

pendence between obligor and guarantor such that its default probability is given

by the joint default probability27

P (Dn = 1, Dgn
= 1) = PDn PDgn

·
(

1 + wnwgn

1

ξ

)
.

We want to point out that in contrast to the IRB treatment of double defaults, our

approach also holds when we have partial hedging and when several obligors are

hedged by the same guarantor. To include internal guarantors in our model only a

weak additional assumption is necessary in order to ensure the assumptions underly-

ing the ASRF model.28 Since the expected loss Φ2

(
Φ−1(PDn),Φ−1(PDgn

); ρn,gn

)
·

ELGDn ELGDgn
should in general be rather small, in Basel Committee on Bank-

ing Supervision [2005] this term is set equal to zero. In our case we could argue

similarly and thus set R̂n = 0 which implies that the UL-capital for the composite

instrument equals K̂n = KnKgn
+ KnRgn

+ KnKgn
. This would also simplify the

expressions in our final GA formula slightly.

Further, we want to point out that in Basel Committee on Banking Supervision

[2005] no double recovery effects are recognized within the double default treatment

under Pillar 1.29 Our GA formula is more flexible in this sense as it is given for

arbitrary ELGDgn
, although, of course, we could impose the same requirement by

setting the loss given default of the guarantor equal to 100%.

27Compare this to the computation of R̂1 in Section 3 and note that the probability of the

Bernoulli event equals the expectation of the Bernoulli random variable.
28This cannot be expected under the assumptions of additional correlation.
29See Basel Committee on Banking Supervision [2005], paragraph 206, for their reasoning.
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