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Hedging strategies for derivatives which are con-
sidered in theory and applied in practice are un-
derstood to perform self-financing and to dupli-
cate the final payoff. Of course, this is only valid
with respect to an assumed model, called “hedging
model”, which specifies a set of postulates about
the evolution of the underlying stock prices. For
example, without lifting the model assumptions of
Black and Scholes (1973), an option payoff can be
replicated by continuously rebalancing a portfolio
consisting of two underlying assets. On the one
hand, these portfolio strategies may fail to be ef-
fective if the “true” asset price dynamics deviate
from the assumed ones. On the other hand, there
are further sources of market incompleteness, i.e.
trading restrictions, which impede the theoretical
concept of perfect hedging. In this paper, the effects
of so—called model misspecification and the effects
of dropping the assumption that continuous rebal-
ancing is possible are examined. In particular, the
analysis of the combined effects gives rise to some
interesting insights into the topic of hedging.

Due to continuous time trading, the analysis of the
implications of model misspecification for pricing
and hedging contingent claims has already achieved
great acknowledgement in scientific research. By
assuming that the hedging strategies are carried
out according to a model which differs from the
true dynamic of market prices, the effectiveness of
such strategies is analysed in El Karoui, Jeanblanc-
Picqué and Shreve (1998) and Dudenhausen, Schlogl
and Schlogl (1998). The key result states that if the
true volatility is locally bounded, then the hedg-
ing strategies implied by Black/Scholes-like mod-
els' corresponding to the upper volatility bound
are robust with respect to convex payoff-functions.
The strategies which are self-financing and dupli-
cating with respect to the “hedging model” domi-
nate the payoff of the derivative for all stock prices

'In particular, Black/Scholes-like models or Gaussian
models are based on the assumption of a deterministic
volatility structure such that the model is complete in the
sense of Harrison and Pliska (1983), guaranteeing the ex-
istence of a self-financing trading strategy duplicating the
payoff of the claim to be hedged.

which occur with positive probability, i.e. almost
surely under any equivalent measure. Therefore,
the use of (theoretically incompatible) lognormal
models may be justified by volatility uncertainty in
the specification of the “true” model.

Unfortunately, strategies which are robust if ap-
plied continuously fail to be robust if applied in dis-
crete time. In particular, they incorporate a hedg-
ing bias which originates from the effects of time—
discretising strategies meant to be applied contin-
uously. This is in particular transparent if one ab-
stracts from model misspecification and only con-
centrates on discrete trading, i.e. testing the con-
sistency of the hedge model. It is often stated that
hedging discretely does not bias the outcome of the
hedge in either direction when all other parame-
ters (volatility, rates and dividends) are known, c.f.
Derman and Kamal (1999). However, this is not
true unless the asset prices are martingales under
the real world measure. The discrete application of
Black/Scholes-like strategies to hedge convex pay-
offs yields a subhedge on average, i.e. it is not
sufficiently hedged in the mean, if the asset price
dynamic with respect to the objective probability
measure includes a drift component which does not
change its sign.

Understanding the bias intuitively

Figure 1 gives an intuitive way to understand the
duplication bias. The first graph illustrates the
difference of the payoff of a European—call-option
with strike 100 and the terminal value of a three
months (static) Black/Scholes hedging strategy com-
posed at—the-money and with hedging—volatility
o = 0.3. Dominating the payoff results in nega-
tive costs, subdominating the payoff gives positive
costs. Additionally, three densities are given re-
sulting from the assumption that the asset price
process follows a geometric Brownian motion with
volatility equal to the volatility of the Black/Scholes
hedge, i.e. ¢ = 0.3, and drift coefficient u equal to
-0.4, 0 and +0.4 respectively. Notice that the track-
ing error vanishes in expectation if and only if there
is no drift in the underlying asset price process, i.e.
= 0. Otherwise (u = —0.4 or y = +0.4) there is
a shift of probability mass to the area of positive
costs such that the duplication costs are positively
biased, i.e. the payoff is not sufficiently hedged in
the mean.

Obviously, the bias motivated above can only be



Figure 1: Tracking error and duplication
bias
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avoided if a discrete-time hedging model is spec-
ified on the basis of the asset price dynamics un-
der the real world measure. However, in contrast
to this, the discrete Black/Scholes hedge must be
interpreted as the result of specifying a discrete—
time hedging model on the basis of the dynamics
under the martingale measure which explains the
duplication bias. The interesting question can be
formulated as follows:

How is it possible to obtain a robust hedge in terms
of superhedging and to avoid at the same time the
duplication bias which is caused by discrete time
trading?

To give an answer to this question, a financial mar-
ket consisting of two assets X and Y is considered.
With respect to this framework, the hedging of an
option to exchange X for Y at maturity date T, i.e.
a European option with payoff [X7 — Yr|T is anal-
ysed. For notational convenience, a forward market
in terms of the numeraire Y is assumed such that
actually the assets Z = % and 1 are traded. The
dynamic of Z is described by a strictly positive,
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continuous semimartingale. Assuming that the un-
derlying probability space (2, F, P) supports a d—
dimensional Brownian motion W and adding some
technical requirements, the dynamic can without
loss of generality be written as

(1) a2, = 7, () dt + o7 amy) .

At first a short review is given of the robustness
result concerning the problem of misspecification
without the introduction of trading restrictions. Af-
ter this, the discretisation bias is derived which
arises if the robust continuous—time strategies are
applied due to discrete time. Finally, a robust
discrete—time hedging model is introduced which
gives the solution for robust hedging in discrete
time without causing a hedging bias.

Robustness of the Black/Scholes model

. ._ X
In a model where the quotient process Z := +

is lognormal, the hedge portfolio ® = (®)o<s<7 for

the exchange option in terms of the assets X and

Y is given by

(2) ¢ = NOO(, 2y)
and ¢y = -N(P(t,2))

N denotes the cumulative distribution function of

the standard normal distribution and the functions
(Y and h? are given by

In(z) + 3 J;' 1152(s)]2ds
S 162(5))12ds

hV(t, z) — \//t 152 (s)||*ds.

In particular, the price process of the exchange op-
tion which is assumed for hedging purposes is given
by

units of X

units of Y.

ROt 2) =

RO (t,z) =

C(t, X, Vy) = X,N(HMY) — VN (HP)
or
C*(t, 2) = ZN (HY) - N (H?),
where H; = h(t, Z;).
Notice that the assumed volatility ¢ may deviate

from the “true” volatility o. Therefore, with re-
spect to a “Gauss” hedger, we call the expression

T
B(t) = \/ /t 152(s)12ds

hedging volatility.




At maturity T of the exchange option, the dupli-
cation costs arising from misspecification are given
by

T
Li(d) = [Zr — 11" — C*(0, Zo) — /O oY dz,

Assuming that the “true” dynamic of Z is given by
equation (1), it is a well known result, cf. El Karoui,
Jeanblanc-Picqué and Shreve (1998) or Avellaneda,
Levy and Pards (1995), that the misspecification
costs are given by

(3) Li(¢) =
JE 2D (104 ()P = 162(w)?) du

U 297 (u)

Thus, if the purpose of hedging is the complete
elimination of risk, given uncertainty about present
and future volatility, one should hedge at the upper
volatility bound. In cases where this upper bound
is too high for this to be practicable, one should
hedge at the upper bound for some confidence in-
terval for the volatility, resulting in a superhedge
as long as the realised volatility remains below this
upper bound. However, the above hedging decision
should not be used if continuous time trading is not
possible.

Trading restrictions

Assume now that trading is only possible at a dis-

crete set of dates, i.e.
T:{tOZOStl,---StN:T}.

An application of the Gauss hedge, cf. equation (2),
with respect to the discrete set of trading dates 7
yields the following duplication costs

Li(,7) ZC* i, Zy) — (68,2, + ), ) -

Using
C*(tj, Zy;) = C(tj-1,24_,)

t; X t; .
+ | 95 dZs + / dL;(4)
tji—1 ti—1
implies
(4) Li(¢,7) = L7(4)
T
+ fo ¢§ dZs — Z;V:I ¢g§_1 (th o th—l) :

The duplication costs associated with the discrete
time Gauss hedge can thus be interpreted as the
sum of misspecification costs and the difference of
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trading gains resulting from continuous—time hedg-

ing and discrete-time hedging. The discretisation
error can thus be defined by

T N
= /0 ¢ dZs = > i (Zy; — Zi,_,) -
j=1

A change of measure and an application of It0’s
lemma gives the following representation of the dis-
cretisation bias.

Expected discretisation costs

(5)  Ep[Dr(4,7")]

Zox PO 3 (o)~ 52(6) )

- [;,;%@H J (||az<s>||2—||az<s)||2)] ds

where dP? = Df dP; with

=onf [osmaw, -3 [z an} .

A detailed proof is provided in Dudenhausen (2002).
Notice that the strategies under consideration are
understood to be self-financing with respect to an
assumed model called “hedging model” only. How-
ever, while facing the problem of model misspec-
ification combined with trading restrictions, it is
worth mentioning that the discrete time Gaussian
hedge is in fact, cf. equation (5), neither consistent
with the hedging model nor with the true model,
ie.

Dy

If 0z(t,w) = 6z(t,w) and either puz(t,w) > 0 or
pz(t,w) < 0 for \'\@P-almost all (t,w) € [0,T]x,
then the discrete—time Gaussian strategy is posi-
tively biased, i.e.

Ep [D3(¢,m)] > 0.

This result has already been motivated, cf. figure
1, and is further illustrated in figure 2 which shows
the distribution of a discrete-time Gaussian hedge
under different drift scenarios. Each cost distribu-
tion is generated by a Gauss—kernel density esti-
mation from 50000 simulated hedging paths. The
parameters for the underlying asset price process Z
under the objective probability measure are given



Figure 2: Distributions of hedging costs for
a discrete time Gauss hedge under different
drift scenarios
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by oz = 0.3 and pz = 0.4 (-0.4 and zero respec-

tively). Time to maturity of the (plain vanilla call)
option to be hedged is one year, the initial underly-
ing price is equal to the strike K = 100. The dupli-
cation portfolio is composed according to 7 = oz
but is rebalanced only monthly instead of continu-
ously. In particular, figure 2 illustrates that the av-
erage final profit/loss is zero if and only if uz = 0,
i.e. the real world measure P is already a mar-
tingale measure. However, for positive asset price
drift, i.e. for uz = 0.4, and for negative asset price
drift, i.e. for uz = —0.4, a positive duplication bias
is observed.

How to avoid the hedging bias

Of course, the incompleteness associated with pos-
tulating continuous—time asset price dynamics given
by equation (1), while hedging in discrete time is
non hedgeable in the sense of superhedging. How-
ever, one may be tempted to discretise the hedg-
ing model instead of time-discretising an originally
continuous time trading strategy. This gives the
advantage that the strategies under consideration

are compatible with their underlying hedging model.

Besides, the hedging model and its corresponding
strategies can be specified according to the asset
price dynamics under the real world probability
measure, i.e. including p and o. What is true con-
cerning the concept of perfect hedging is true for
robust hedging, too. Continuous—time trading is
independent of y but discrete-time trading is not.
In particular, a discrete-time hedging model is nec-
essary to avoid the positive hedging bias due to
convex payoff-profiles.

Discrete—time hedging model

Concerning the above setup a binomial hedging
model is needed. It is shown that binomial strate-
gies incorporate similar robustness features as the
Gaussian hedge and can be specified such that the
duplication bias is avoided. Besides, the distribu-
tion of the cost process associated with the bino-
mial hedge coincides, in the limit, with the distri-
bution of the Gaussian hedge.

Without loss of generality, an equidistant set of
trading dates 7" with {} = % is assumed. Fur-
thermore, for ease of notation the parameters defin-
ing the up— and down—-movements of the binomial
hedging model which was first motivated by Cox,
Ross and Rubinstein (1979), are given only in de-
pendence of the degree of refinement n. Let g; and

go be defined by

CORrR(th41:Un2)—Clrr (154 1,0n2)
(6) gt (ty,2) =

(un—dn)z ’
(7) g3 (tg, 2) == CCrr(ty, dnz) — g7 (tg2)dnz,

where C8py (&7, 2) = [z — 1]* and

Clrr(ty,2) =

) () (o)

= J Uy, — dpy Uy — dp,
[u%dz_k_jz - 1]+,

for k=0,...

,nm—1.

Notice that any arbitrage free binomial model can
exclusively be specified through d,, and u,, satisfy-
ing the condition d, < 1 < wup. The uniquely de-
fined martingal-measure (concerning the hedging
model) is then determined by the transition prob-
abilities py = 1 d"n for the up—movement respec-
tively 1 — p}; for the down-movement of the risky
asset. Consequently, Cllrp denotes the arbitrage
free price according to the hedging-model. CGrp
is relevant for hedging purposes only and does not
need to match the true market price. The hedging
strategy of a binomial-hedger can thus be specified
in terms of g7 and g5 .

The duplication costs LS for Cr = [Zr — 1]T asso-
ciated with the trading strategy ®" = (47, ¢Y ) in
the assets (Y, ), where

o} = (9711(7% ZtZ)’gg(tZ’ Ztﬁ)) for t €y, Z—H]



and Z; = Y , are then given by

LE(2™) Z CCrr (tg , Zt") — Ve (2").

j=1
Notice that

CCrr (t?a Zt;b) — Vi (2")
= CCrr (t;'lazt;-”)
- (91 ( 5— 17Zt" I)Zt}-’ +92( j— laZt]" 1)) .

Inserting g7 and g7 according to equation (6) and
2

equation (7) and defining Tyn = ylelds

+n
J

n n
CCRR (t] ; .’L't;b Zt;l_1> —

T —dn oy (o
=, o (0%,
Un — Ttp
+ﬁCCRR (t],d Ztn 1):| .
n

It is well known that Cligzgr (t?,z) is convex in z
which allows the formulation of a robustness result.

Robustness of the CRR model

A superhedge is achieved if and only if the returns
of the underlying asset are within the range of the
up— and down— parameters of the assumed binomial
process for each trading period, i.e. if and only if

Zin
Zin

j—1

€ [dn,un] P-a.s. forall j=1,...,n

Obviously, a binomial hedging strategy is not able
to dominate the payoff of the exchange option al-
most surely if the true asset price can move outside
the interval. The requirement that the asset price
stays in the interval defined by the assumed up-—
and down-movements of the binomial model out-
weighs the requirement that the “true” volatility
is dominated by the volatility of the continuous—
time Gauss hedge. In particular, superhedging ac-
cording to a binomial strategy requires the incor-
poration of the upper volatility bound as well as
the “true” asset price drift under the real world
measure P into the placement of the nodes d,, and
uy. Suitably specifying u, and d, in dependence of
volatility and drift allows to avoid the discretisation
bias associated with a Gaussian hedge which is ex-
clusively defined via the assumed volatility. Again,
it is worth mentioning that it is only possible to
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Figure 3: Distributions of hedging costs for
JR-like hedging strategies under known
volatility referring to different drift

scenarios
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avoid the discretisation error if the robust discrete—
time hedging model is specified on the basis of the
asset price dynamics under the real world mea-
sure P. Discretising the continuous-time hedging
model according to its risk neutral dynamic yields
the same duplication bias as the application of the
discrete time Gauss hedge.

However, using the specification of Jarrow and Rudd
(1983) of the binomial parameters u and d, i.e. let

1~ 12 ~
— 3|0z o
Up 1= exp{—'uz ZH “ +—\/Zﬁ},

pz —3l6zl> 62
b " NAK

gives no duplication bias caused by the asset price
drift. In particular, the stepwise shortfall-probability
is independent of y. In addition, it turns out that
the expected duplication costs,

_ ZH:EP [chR (t?,Zt}z) - W?(cbn)] ;
j=1

d, :=

Ep [L7(2")]

tend to be negative, i.e. the binomial hedge is over—
financing on average. Furthermore, the above spec-
ification of u, and d, additionally guarantees the
convergence of the cost process associated with the
binomial hedge to the one of a Gaussian hedge in
distribution if the incompleteness arising from trad-
ing restriction vanishes, i.e. if n — oo.

Once again, each cost distribution illustrated in fig-
ure 3 is generated by a Gauss—kernel density esti-
mation from 50000 simulated hedging paths. The
parameters for the underlying asset price process Z



under the objective probability measure are given
by 0z = 0.3 and uz = 0.4 (-0.4 and zero respec-
tively). Time to maturity of the (plain vanilla call)
option to be hedged is again one year, the initial
underlying price is 100, the strike K of the option
is chosen to be 100 and the duplication portfolio is
rebalanced monthly. This time, the strategies are
given by a binomial model with a Jarrow—Rudd
specification as described above. A comparison of
these simulation results with the ones based on the
time discretised Gauss hedge, cf. figure 2, shows
that the model discretisation in form of the bino-
mial hedge is clearly favoured when suitably ad-
justed to the asset price drift. While, on average,
the discrete-time Gauss hedge yields a subhedge
only, the binomial hedge even manages to achieve
a superhedge.?

Conclusion

The results of this paper present a strong argu-
ment to discretise the hedging model instead of dis-
cretising the hedging strategies if the rebalancing of
the portfolio is restricted to a set of discrete—time
trading dates. Black/Scholes—type strategies and
binomial strategies to hedge derivatives with con-
vex payoff-profiles can be understood to incorpo-
rate comparable robustness features in the sense of
superhedging. Due to continuous time, dominating
the payoff of a contingent claim almost surely with
respect to all equivalent measures is obviously in-
dependent of the drift of the underlying under the
objective measure. However, if market incomplete-
ness is not only due to sources of model and param-
eter misspecification, but also to trading restric-
tions in the sense of discrete trading, a non—trivial
superhedge cannot be obtained even if volatility is
bounded. A discrete—time superhedge requires that
asset prices do not move outside an interval. There-
fore, it is adequate to allow the strategy to depend
on more parameters than only on the hedge volatil-
ity with vanishing influence if the distance of trad-
ing dates converges to zero. This can easily be done
with binomial strategies, but not with a discrete—
time version of a Gaussian hedge. In comparison to
a simple Black/Scholes strategy, the advantage of

2It is worth mentioning that, in order to keep consistent
with the limit, the initial value of the binomial hedge under
consideration was not fixed to match the initial value of the
corresponding Gauss hedge. In fact, due to the above exam-
ples, the to—prices of the “drift-adjusted” binomial hedging
models were even less than the initial Gauss price.
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the CRR-like hedging strategy is particularly trans-
parent if the market is complete without the intro-
duction of trading restrictions. On the one hand, a
Gaussian hedging strategy which is applied in dis-
crete time subdominates the convex payoff to be
hedged on average for positive as well as negative
asset price trends under the objective probability
measure. On the other hand, the binomial hedge
which is suitably adjusted to the “real world” drift
component is (almost) self-financing in the mean,
tending to favour the outcome of the hedge. Since
the cost processes coincide in the limit, there is
nothing lost by using the binomial hedge instead of
the Gaussian hedge if the trading frequency is in-
creased. While the use of (theoretically incompati-
ble) lognormal models may be justified by volatility
uncertainty in the specification of the “true” model,
the use of binomial models may be justified by trad-
ing restrictions even if continuous time price pro-
cesses are assumed to describe the true dynamics.
With respect to discrete—time trading, a discretisa-
tion bias for convex payoff—profiles is only avoided
if a discrete—time hedging model is specified on the
basis of the asset price dynamics under the real
world measure.
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