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Abstract

This paper describes a method for solving a class of forward-looking Markov-switching Ra-
tional Expectations models under noisy measurement, by specifying the unobservable expec-
tations component as a general-measurable function of the observable states of the system,
to be determined optimally via stochastic control and filtering theory. Solution existence
is proved by setting this function to the regime-dependent feedback control minimizing
the mean-square deviation of the equilibrium path from the corresponding perfect-foresight
autoregressive Markov jump state motion. As the exact expression of the conditional (ra-
tional) expectations term is derived both in finite and infinite horizon model formulations,
no (asymptotic) stationarity assumptions are needed to solve forward the system, for only
initial values knowledge is required. A simple sufficient condition for the mean-square sta-
bility of the obtained rational expectations equilibrium is also provided.
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1 Introduction

A number of recent studies have made important progress toward connecting the re-
duced form econometric literature on regime switching autoregressive processes, which
can be traced back to [19], with structural economic theory, by developing the notion
of Markov-switching Rational Expectations (MSRE) models, that is dynamic forward-
looking stochastic frameworks in which the parameters governing the behaviour of the
system are taken to be functions of a discrete-state Markov chain.

Since able to account for parameter instability and yield quantitatively different re-
sponses of macroeconomic variables to fundamental shocks from those implied by fixed
regime models, MSRE systems have recently been advocated to investigate the role of
regime switching monetary policy in New-Keynesian frameworks (e.g. [12]) or rather to
gauge the effects of uncertainty over structural parameters governing the optimal behavior
of rational agents (e.g. [23]).

From a technical viewpoint, regime dependency engenders structural nonlinearities
which prevent from employing standard solution tools for linear RE systems, such as
[5]’s, [20]’s and [30]’s. In this respect, a number of authors have been interested in
deriving determinacy (local uniqueness) conditions for RE equilibria to MSRE models.
In their seminal contribution to the generalization of the Taylor principle, [12] study
how regime switching alters determinacy properties of RE solution and provide analytical
restrictions on monetary policy behavior to ensure local uniqueness of the equilibrium
path. By focusing on bounded solutions, [12] find out that, while accounting for structural
shifts noticeably enlarges the determinacy region relative to the constant parameter setup,
regimes that fail to fulfil the generalized Taylor principle may well be characterized by
improved time series properties as reaction to fundamental shocks, even when sunspot
noise or nonfundamental uncertainty are ruled out. The nonlinearity problem is addressed
by introducing a two-step solution method that consists in studying an augmented system
which is linear in fictitious variables, the latter coinciding with the actual ones in some of
the regimes, and then using the solution to the linear representation in order to construct
solutions for the original nonlinear system.

In a more general perspective, [16] and [17] have provided a series of characterization
results for the set of minimal state variable (MSV) solutions as well as the full set of RE
equilibria - also sunspot ones - to MSRE frameworks, which satisfy a suitable stability
concept. Their approach rests on expanding the state-space of the underlying stochastic
system and to focus on an equivalent model in the expanded space that features state-
invariant parameters. Furthermore, [17] demonstrate an equivalence property between
determinacy for MSRE models and mean-square stability in a class of Markov jump
autoregressive systems.

The aim of this paper is to extend the model reference adaptive technique developed in
[7] to solution of dynamic MSRE models in state-space form, with past expectations and
noisy measurement on the state vector. In the linear (time-varying) setup, [7] show that,
for an important class of purely forward-looking RE systems, a solution can be obtained
via a causal (controllable) system forced by a general-measurable function of the available
information, estimated via a Kalman filter technique. More specifically, an exact solution
of the RE system is determined by forcing it with the optimal minimum variance estimate
of the future state, recursively computed on the autoregressive equation describing the
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perfect-foresight dynamics of the economy.

In this work, we define nearly perfect-foresight equilibrium dynamics in a class of
MSRE models under noisy measurement, as the outcome of a Kalman filter-based mech-
anism of information processing and optimal state estimation. This approach, which can
be traced back to [3], complies with a broader definition of rationally formed expectations,
comparable to some form of dynamic optimizing behaviour, which does not require - as
typically done in the RE macroeconomic literature - that economic agents possess a priori
knowledge of the structure of the model’s solution itself. Indeed, we depart from RE
and specify the unobservable expectations component as a (square-integrable) random
function adapted to the filtration - the actually available information - generated by the
Markov switching system itself.

Formally, the novelty of our solution method is based on using dynamic programming
arguments and optimal filtering techniques applied to a causal Markov jump system, where
RE are replaced by a specific control sequence, the latter being measurable with respect
to the observable states of the system. Such input is chosen optimally as the feedback
regime-dependent control law minimizing the mean-square deviation of the equilibrium
path from the corresponding autoregressive Markov jump state motion (the reference
model). We present a recursive algorithm, based upon optimal stochastic control and
Kalman filtering theory, for the design of the control law and show that the latter has
the same structure of the conditional expectations operator featuring in the canonical
(possibly regime switching) RE systems.

It is well known that the dimension of the solution set for RE models is closely related
the stability properties of the latter, and that stability restrictions can be advocated in
order to weaken the multiplicity issue (e.g. [5], [28]). However, as the agents’ expectations
in RE frameworks are typically obtained by recursively iterating the system into the
future, (asymptotic) stationarity is needed for this process to be well-defined (e.g. [17]).
While equilibrium stability is usually enforced by the existence of transversality conditions
in the underlying (infinite horizon) dynamic economic frameworks, there exist models for
which no such boundary conditions arise or rather, though present, they do not serve as
necessary optimality requirements (e.g. [18]; [14]). In this respect, we emphasize that, by
providing a readily computable expression of the RE component both in finite and infinite
horizon model representations, our method need not invoke approximation hypotheses
or stability concepts to solve forward the system, for only initial conditions knowledge
is required. We also provide an easy-to-check sufficient condition for the mean-square
stability of the obtained RE equilibrium.

While concerned with computational issues in MSRE models, our analysis also re-
lates to studies on the process of expectation formation. Previous work on this subject
differs from the present one in that it generally focuses on learning behavior, that is
the way systematic forecasting biases are eliminated over time (e.g. [25], [15]). Specifi-
cally, the adaptive learning literature endows boundedly rational agents with a forecasting
model - the perceived law of motion of the economy - which can be an arbitrary function
of past endogenous and past and current exogenous variables, and has to be optimally
parameterized based on new data and observable (past) forecast errors. RE equilibria
are thus regarded as asymptotic outcomes of this learning process, whenever conditions
for convergence of agents’ beliefs to the equilibrium values hold. Though methodolog-
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ically related, our method also differs from the Bayesian learning literature (e.g. [26],
[6]), as these studies typically assume that agents employ filtering techniques to update
estimates of (possibly time-varying) parameters within not fully rational forecasting func-
tions. Rather, our approach posits that rational agents may be thought of as revising
their (best) estimate of the (hidden) variables governing the dynamics of the economic
system as new observations are generated, when only a reduced information set - the
measurement process - is available to them.

The paper is organized as follows. In Section 2 the class of stochastic MSRE models
we deal with is introduced. In Section 3, we develop the solution algorithm, whereas
Section 4 is devoted to the stability analysis. Section 5 concludes.

2 The class of MSRE models

We study the following class of forward-looking MSRE models with noisy observations on
the state vector, defined on a properly filtered probability space (Ω,F , {Ft} ,P):

xt+1 = Γ−1
s(t)E[xt+2|Ft] + Γ−1

s(t)Ψs(t)vt, x0 = x̄ (1)

yt = Φs(t)xt + wt (2)

where xt is an n-dimensional real vector of random variables of economic interest, yt is
an l-dimensional real vector of observables, and the state error vt ∈ ℜn, the measurement
noise wt ∈ ℜl and the initial state x̄ ∈ ℜn are zero-mean white Gaussian processes. With
no loss of generality, the covariances of the unobserved structural disturbance and of the
measurement noise are normalized to the In×n and Il×l identity matrices respectively,
whereas x̄ has covariance P0. Γs(t),Ψs(t) and Φs(t) are conformable matrices holding the
coefficients of the underlying economic model, with Γs(t) assumed invertible, as in [17].

In (1)-(2), the regime switches are governed by an ergodic discrete-state Markov chain

indexed by s(t), with s(t) ∈ S := {1, . . . , S}. Let S̃ denote the σ-field of all subsets in S,

and F̃t the σ-field of ℜn+l in which (xt, yt) lie. We define:

Ω :=
∏

t∈T

(
ℜn+l

t × St

)

where ℜn+l
t ,St are copies of ℜn+l,S and T denotes a discrete-time set of interest. Let

Tt := {k ∈ T ; k ≤ t} for each t ∈ T , then:

F := σ

{
∏

t∈T

(αt × βt) ;αt ∈ F̃t, βt ∈ S̃, ∀t ∈ T

}

and for each t ∈ T :

Ft := σ




∏

ι∈Tt

αι × βι ×
∏

τ∈T \Tt

ℜn+l
τ × Sτ ;αι ∈ F̃ι, βι ∈ S̃, ι ∈ Tt





with Ft ⊂ F . Then (Ω,F , {Ft} ,P) defines a stochastic basis for (1)-(2), with P repre-
senting a probability measure such that:

P {s(t+ 1) = j|Ft} = P {s(t+ 1) = j|s(t)} = ps(t)j
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with pi,j ≥ 0 for i, j ∈ S and
∑S

j=1 pij = 1 for each i ∈ S. The initial conditions (x̄, s0)
are taken to be independent random variables.

More specifically, the information set available at time t, upon which conditional (ratio-
nal) expectations E[·|Ft] in (1) are built, includes the complete filtrations generated by the
output process (2), namely {yk, k ≤ t}, and by the Markov state realizations {sk, k ≤ t}.
We thus allow for observable shifts in modes solely, as in most of the macroeconomic lit-
erature on regime switching RE models (e.g., [12], [17])1. Accordingly, while the current
values of parameters are known, future ones are uncertain. As a working assumption, we
also require that x̄, vt, wt and st be mutually independent.

A Rational Expectations Equilibrium (REE) is any process {xt, yt} which, for fixed
initial conditions and in both finite and infinite model horizon, satisfies equations (1)-(2).
The goal of this paper is to develop a model reference adaptive technique in order to solve
(1)-(2) for a particular REE by directly computing the conditional expectations term from
actually available information, without imposing any a priori stability concept. This will
be accomplished by specifying the RE component as a (general-measurable) function of the
t-dated filtration Ft of the stochastic economy, and employing optimal stochastic control
and filtering techniques to adapt the actual system evolution to the perfect-foresight
Markov jump autoregressive state motion (the reference model); we finally demonstrate
equivalence to RE equilibrium of the obtained solution, both in finite and infinite horizon
representations, by showing that the optimal feedback control has the same structure of
the RE term.

3 The solution algorithm

In this work we are interested in reconsidering RE models from a point of view which,
along the lines of [3] and [7], departs to some extent from the approaches typically adopted
in the macroeconomic literature (e.g. [5]). To illustrate this point, we set the following
Markov jump (controllable) system with linear noise corrupted observations:

xt+1 = Γ−1
s(t)ut + Γ−1

s(t)Ψs(t)vt, x0 = x̄ (3)

yt = Φs(t)xt + wt (4)

where ut is an Ft-measurable input process, and define the perfect-foresight (Markov jump
autoregressive) dynamics where the two-step ahead values of the xt variables are perfectly
anticipated and no (endogenous) forecasting errors are made:

x∗
t+1 = Γ−1

s(t)x
∗
t+2 + Γ−1

s(t)Ψs(t)vt, x∗
0 = x̄, x∗

−1 = 0 (5)

y∗t = Φs(t)x
∗
t + wt (6)

where both (3)-(4) and (5)-(6) are defined on (Ω,F , {Ft} ,P).
Let us introduce:

ǫt := xt − x∗
t , z′t :=

(
ǫ′t x

∗′

t x∗′

t+1

)

1For theoretical work dealing with unobserved current regimes, see, among others, [2], [22] and [11].
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and consider the problem of finding an input sequence u = {ut}t∈T, T = [0, T ] ⊂ IN,
ut ∈ Ut - with Ut denoting the space of all square-integrable Ft-measurable random
vectors - which minimizes the objective functional:

J(u) = E

T+1∑

t=0

(z′tMzt) (OF)

under the following state-space recursive constraints2:

zt+1 = As(t)zt +Bs(t)ut + Cs(t)vt, z0 = z̄ (7)

yt = Φ̄s(t)zt + wt (8)

where M consists of the identity matrix In×n as first block on the main diagonal and
0’s elsewhere. Expression (8) can be properly used as the observation equation for the
augmented Markov jump system (7) in which the first n entries of the state vector zt
describe the evolution of the deviation from the autoregressive behavior of the MSRE
model.

The design of an input sequence {ût}, t ∈ T minimizing (OF) subject to (7)-(8) is
accomplished by employing an optimal Markov jump feedback controller in conjunction
with the minimum mean-square estimate (MMSE) obtained by a time-varying Kalman
filter. We indeed show that a separation principle holds for the system at issue - i.e.,
the optimal input sequence depends on the observed state only through the optimal
estimate of the latter. In the classical literature on Markov jump linear quadratic (MJLQ)
problems (e.g. [10]), it has been shown that the solution of such problems engenders
a twofold set of coupled Riccati equations, each associated to the filtering and control
programs respectively. Since these backward-recursive equations cannot be represented
as a single higher-dimensional Riccati equation, structural concepts and algorithms from
the classical linear theory are not directly applicable to Markov jump systems. While
further requirements are generally needed to determine the existence of a steady-state
solution for the coupled Riccati equations (e.g. [4], [8], [1]), we prove that, when applied
to the solution method for MSRE models we propose in this paper, this issue vanishes
for the Riccati gain is shown to admit a simple time-invariant and state-independent
representation, both in finite and infinite horizon problems. The following statement
clarifies this insight:

Theorem 1. Given the system (3)-(4), the input sequence ût := {ût} which produces for
any t = 0, 1, . . . the mean-square minimum deviation from the Markov jump autoregressive
state motion (5), is in the form:

ût = Γs(t)x̂
∗
t+1|t (9)

where the optimal estimate x̂∗
t+1|t := (0 0 I 0)′E[zt|Ft] is obtained recursively via a time-

varying Kalman filter.

Proof. - See Appendix B.

2See Appendix A.
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The estimator of the one-step ahead perfect-foresight state, x̂∗
t+1|t, is mean-square

optimal with respect to the σ-algebra generated by the actual measurement process (2),
the only available data3. Our final claim rests on showing that, for any t and the input
(9), the optimal two-step ahead prediction of the perfect-foresight state x∗

t following the
regime switching law of motion (5), given the measurement (y0, . . . , yt) and the filtration
σ(st) = (s0, . . . , st), is equal to that relative to the actual state xt in (3):

Corollary 1. Let x = (xt), y = (yt) be the solution of (3)-(4) under the control law ût.
Then, for any t and Markov state s(t) = i ∈ {1, 2, . . . , S}, it holds:

x̂t+2|t = x̂∗
t+2|t (10)

Proof. - It readily follows from Theorem 1 and the independence assumption between vt
and st.

Consider now the perfect-foresight Markov jump state motion (5). It is easily verified
that:

Γ−1
s(t)E[x∗

t+2|Ft] = Γ−1
s(t)ût

which shows, in conjunction with the assertion of Corollary 1, that the optimal feed-
back controller (9) has the same structure of the conditional (rational) expectation term
E[xt+2|Ft], and hence the solution x = (xt), y = (yt) of (3)-(4) with ût ≡ E[xt+2|Ft] is an
REE for the Markov-switching model (1)-(2). In other words, both in finite and infinite
horizon formulations, there always exists an REE x = (xt) - that is, a stochastic sequence
of (functions of) states and observables in Ft fulfilling the noncausal regime switching RE
model (1)-(2) - which is computable via a causal Markov jump (controllable) system of
the form (3)-(4) forced by the optimal Markov jump feedback control law û inducing the
minimum variance displacement between the actual x-state and the perfect-foresight one
x∗
t .

4 The stability of the RE equilibrium

As in [17], we focus on the concept of mean-square stability for RE equilibria under
regime switching. We set ut = ût in (3)-(4), and consider the evolution equation for the
RE solution as derived in Section 3:

xt+1 = x̂∗
t+1|t + Γ−1

s(t)Ψs(t)vt (11)

with:
x̂∗
t+1|t = Γs(t−1)x̂

∗
t|t−1 + K̄t−1Φ̄s(t−1)ηt−1 + K̄t−1wt−1 (12)

where K̄t is the precomputable filter gain and η := zt − ẑt denotes the estimation error4.
We study the first two moments of the equilibrium process xt, i.e. mt = E [xt] and

γt = E [xtx
′
t], which characterize its mean-square stability. Indeed, system (11) is mean-

square stable if its first and second moments converge to finite (possibly zero) values in

3This result, presented in [7], improves upon [13]’s filtering approach to solution of linear RE models,
as their MMSE estimator rather exploits the fictitious observations y∗

t
according to (6), which are clearly

not available. Moreover, [13] only find an approximate solution to the original (linear) RE model.
4See the optimal filter derivation in the proof of Theorem 1 (Appendix B).
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the limit for t → ∞. From (11) we have mt → 0 if and only if m∗
t = E[x̂∗

t+1|t] → 0.
Moreover, provided that the noise covariance is uniformly bounded with respect to t, i.e.
there exists L ∈ ℜ such that:

S∑

i=1

‖Γ−1
i ΨiΨ

′
iΓ

′
i

−1
‖P{s(t) = i} ≤ L < +∞, ∀t (13)

then γt → 0 if and only if γ∗
t = E[x̂∗

t+1|tx̂
∗′

t+1|t] → 0.

Taking expectations in (12) yields:

E
[
x̂∗
t+1|t

]
= E

[
Γs(t−1)

]
E
[
x̂∗
t|t−1

]

from which m∗
t → 0 obtains if:

max
i

max
j

∣∣∣λj(Γi)
∣∣∣ < 1 (14)

where λj(Ξ) denotes the j-th eigenvalue of a matrix Ξ.
As to the second moment, since ηt is orthogonal to x̂∗

t+1|t and the measurement noise

wt proves independent of xt and the σ-algebra {yk, k ≤ t}, we readily derive:

γ∗
t = E

[
Γs(t−1)γ

∗
t−1Γ

′
s(t−1)

]
+ E

[
K̄t−1K̄

′
t−1

]

+E
[
K̄t−1Φ̄s(t−1)P̄t−1Φ̄

′
s(t−1)K̄

′
t−1

]
(15)

where P̄t = E [Pt] and Pt := E [(zt − ẑt)(zt − ẑt)
′|sk, k ≤ t] is the mean-squared error

covariance5. Thus, γ∗
t → 0 for t → ∞ obtains if:

max
i

max
j

∣∣∣λj(ΓiΓ
′
i)
∣∣∣ < 1 (16)

and:
S∑

i=1

‖ΦiΦ
′
i‖P{s(t) = i} ≤ L < +∞, ∀t (17)

‖P̄t‖ ≤ L < +∞, ∀t (18)

In fact, (17) is always verified as P is a probability measure, and from (18) it follows that
K̄tK̄

′
t is bounded as well6. As for P̄t, its evolution is described by the following recursive

equation7:

P̄t+1 = E[As(t)P̄tA
′
s(t)] + E[Cs(t)C

′
s(t)]

−E[As(t)P̄tΦ̄
′
s(t)

(
I + Φ̄s(t)P̄tΦ̄

′
s(t)

)†
Φ̄s(t)P̄tA

′
s(t)] (19)

where P̄0 = cov(z0, z0). Riccati equations with Markov jump coefficients have been exten-
sively studied in the engineering literature (e.g. [8], [9], [1], [10]). According to well-known
results established in the mentioned references, condition (14) entails condition (18). It
follows that requirement (14) - which also implies (16) - is sufficient for the mean-square
stability of the obtained RE equilibrium.

5See Appendix B.
6Note that E[As(t)A

′
s(t)] has the same eigenvalues as E[Γs(t)Γ

′
s(t)] and in addition zero eigenvalues.

7Given a matrix Ξ, we denote its pseudoinverse by Ξ†.
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5 Conclusion

In this paper, we describe a model reference adaptive approach to solution of noisily ob-
served MSRE models containing past expectations of future states, which are replaced
by a (general-measurable) function of the actually available information. By applying
dynamic programming techniques along with a time-varying Kalman filtering algorithm,
the evolution of a causal system is adapted to the corresponding Markov jump perfect-
foresight state behaviour (the reference model); the resulting state motion is shown to
be an RE equilibrium for the original noncausal regime switching model for the optimal
feedback control features the same structure of the (unobservable) conditional expecta-
tions component. As a consequence, our equilibrium existence result does not rest on
any stochastic stability requirements or approximation hypotheses, with no reference to
model determinacy either.
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APPENDIX

A. Definition of matrices for the augmented system

The matrices As(t), Bs(t), Cs(t) and Φ̄s(t) appearing in (7)-(8) have the following block
structure:

As(t) =




0 0 −I

0 0 I

0 0 Γs(t)


; Bs(t) =




Γ−1
s(t)

0
0




Cs(t) =




Γ−1
s(t)Ψs(t)

0
−Ψs(t)


; Φ̄s(t) =




Φs(t)

Φs(t)

0




B. Proof of Theorem 1

To save notation, let us define u+
t = [u′

t, u
′
t+1, ..., u

′
T ]

′, and let ξt = [ξ′0, ..., ξ
′
t]
′ denote a

sequence of random vectors ξ0, ..., ξT . The σ-algebra generated by ξ0, ..., ξt, namely σ(ξt),
will be for simplicity identified with the vector ξt.
We first derive the conditional expectations for the augmented state vector zt. This is
accomplished by employing a time-varying Kalman filter for the state-space system (7)-
(8). Indeed, the objective is to identify at every time step t, an estimate ẑt that minimizes
the mean-squared error covariance:

Pt = E
[
(zt − ẑt)(zt − ẑt)

′|st
]

A potential issue lies in that the noise provides information about the state since the
regime switching matrices multiplying the two depend on the same underlying Markov
state. However, as long as the current realization of the Markov chain is observable, the
state variable zt and the noise vt become independent. Likewise, though the noise turns
correlated, conditioned on the current state estimate and the Markov state, the next
period noise remains (conditionally) zero-mean.
Since the estimator at time t has access to observations (y0, ..., yt) and the Markov state
values (s0, ..., st), the optimal linear MMSE filtering estimate E[zt|Ft] is obtained from a
time-varying (sample path) Kalman filter (e.g. [9]). Let st = i ∈ S be the Markov state
observed in time t, then:

ẑt = ẑt|t−1 + K̄t

(
yt − Φ̄iẑt|t−1

)
, ẑ0 = E{z0} (20)

K̄t = Pt|t−1Φ̄
′
i

(
I + Φ̄iPt|t−1Φ̄

′
i

)†
(21)

ẑt+1|t = Aiẑt +Biut

Pt = Pt|t−1 − K̄tCiPt|t−1

Pt+1|t := E
[
(zt+1 − ẑt+1|t)(zt+1 − ẑt+1|t)

′|st
]
= AiPtA

′
i + CiC

′
i

10



where P0 = cov(z0, z0|s0).
Using the measurement equation (8), (20) rewrites:

ẑt+1 = Aiẑt +BiutK̄t

(
Φ̄i(zt − ẑt) + wt

)

which along with (7) yields the equation of the estimation error ηt := zt − ẑt:

ηt+1 =
(
Ai − K̄tΦ̄i

)
ηt + Civt − K̄twt (22)

from which we observe that ηt is independent of ut.
We turn now to the Markov jump LQG problem described by (OF)-(7)-(8). Let us define
the cost-to-go at t:

Jt(u
+
t ,Ft) = E

{
T+1∑

s=t

zTs Mzs

∣∣∣Ft

}
(23)

and the optimal cost-to-go (at t):

J∗
t (Ft) = min

u∈U
Jt(u

+
t ,Ft), (24)

where U readily follows from the above defined Ut, and the min is taken samplewise with
respect to Ft. Finally denote:

u+
t

∗
= argmin

u∈U
Jt(u

+
t ,Ft) (25)

The optimality principle ensures that
(
u+
t

∗)+
t+1

= u+
t+1

∗
, i.e. the restriction of the optimal

control sequence for the t-th instance of the sequence (24) of optimal control problems,
is the optimal control for the t + 1-th problem. Straightforward computation yields the
following recursive relation between the optimal cost-to-go functionals (24):

J∗
t (Ft) = E {z′tMzt|Ft}+min

ut

E
{
J∗
t+1(Ft+1)

∣∣Ft

}
(26)

which is the general equation of the Dynamic Programming Algorithm (DPA). Going
backwards, at the last stage one has:

u+
0
∗
= argmin

u∈U
J0(u

+
0 ,F0)

hence a fortiori:
u+
0
∗
= argmin

u∈U
E
{
J0(u

+
0 ,F0)

}
= argmin

u∈U
J(u)

which delivers the desired solution.
As to the initial stage, we need J∗

T (FT ), which requires us to solve for:

u∗
T = argmin

uT

JT (uT ,FT ) = argmin
uT

E
{
z′TMzT + z′T+1MzT+1

∣∣FT

}
(27)

and then to substitute it into the functional:

J∗
T (IT ) = JT (u

∗
T ,FT )

= E
{
z′TMzT + z′T+1MzT+1

∣∣∣FT

}

= E
{
z′TMzT + z′TA

′
s(T )MAs(T )zT + u∗

T
′B′

s(T )MBs(T )u
∗
T

+2z′TA
′
s(t)MBs(T )u

∗
T + v′TC

′
s(T )MCs(T )vT

∣∣∣FT

}
(28)
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where it has been used the independence of zT , s(T ) and vT , which implies:

E
{
z′TA

′
s(T )MCs(T )vT |FT

}
= E

{
z′TA

′
s(T )MCs(T )E{vT}|FT

}
= 0 (29)

as well as:

E
{
u′
TB

′
s(T )MCs(T )vT |FT

}
= E

{
u′
TB

′
s(T )MCs(T )E{vT}|FT

}
= 0 (30)

by the independence of sT , yT , hence of uT ≡ uT (FT ), and vT .
Noting that uT only affects the quadratic form of zT+1 in (27), thus using the system
equation, it holds:

u∗
T = argmin

uT

E
{
z′T+1MzT+1

∣∣FT

}
(31)

Using (29), (30), and noting that uT does not affect the quadratic terms in zT and vT , we
obtain:

u∗
T = argmin

uT

E
{
uT

′B′
s(T )MBs(T )uT + 2z′TA

′
s(t)MBs(T )uT

∣∣∣FT

}

= argmin
uT

{
uT

′B′
s(T )MBs(T )uT + 2ẑ′TA

′
s(t)MBs(T )uT

}

By setting to zero the derivative respect to uT of the positive quadratic functional in the
above equation, and solving with respect to uT , we get u∗

T :

u∗
T = −

(
B′

s(T )MBs(T )

)−1
B′

s(T )MAs(T )ẑT (32)

and substituting (32) into (28), the following expression of the optimal cost at time T

obtains:

J∗
T (IT ) = E

{
z′TKT zT + (zT − ẑT )

′LT (zT − ẑT ) + v′TC
′
s(T )MCs(T )vT

∣∣∣FT

}
(33)

where:

LT = A′
s(T )MAs(T ) (34)

KT = M − LT + A′
s(T )MAs(T ) = M (35)

Now, the DPA (26) for t = T − 1 implies:

u∗
T−1 = arg min

uT−1

E
{
J∗
T (FT )

∣∣FT−1

}

= arg min
uT−1

E
{
z′TKT zT

∣∣FT−1

}
,

= arg min
uT−1

E
{
z′TE{KT}zT

∣∣FT−1

}
(36)

where the second equality comes from being the estimation error (zt − ẑt) not affected by
ut, and the third one from being zT ,FT−1 independent of s(T ). Equations (31) and (36)
show the recursive representation of the problem at hand, thereby the following general
characterization holds for the optimal control:

u∗
t = argmin

ut

E
{
z′tE{Kt}zt

∣∣Ft−1

}

12



whose value is given by:

u∗
t = −

(
B′

s(t)E{Kt}Bs(t)

)−1
B′

s(t)E{Kt}As(t)ẑt (37)

where the gain Kt solves the backward-recursive equations:

Lt = A′
s(t)E{Kt+1}Bs(t)

(
B′

s(t)E{Kt+1}Bs(t)

)−1
B′

s(t)E{Kt+1}As(t) (38)

Kt = E{Kt+1} − Lt + A′
s(t)E{Kt+1}As(t), KT+1 = M (39)

As M is a square, idempotent matrix, from (35) it follows that Kt = M for all periods
t = 1, · · · , T and states s(t) ∈ S.
Finally, by substitution of Kt in (37) we derive8:

u∗
t = Γs(t)x̂

∗
t+1|t (40)

Insofar as the expression for the feedback matrices does not depend on the finite horizon
T , it yields the optimal control law for all the LQG control problems in the (OF)-(7)-(8)
form for any T = 1, 2, . . ..

8The third entry of ẑt is E[x∗
t+1|Ft].
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