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The paper generalizes and refines the Fundamental Theorem

of Asset Pricing of Dalang, Morton and Willinger in the following
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1 Introduction

Let (Ω,F ,P) be a probability space and F0 ⊆ F1 ⊆ ... ⊆ FT a family of σ-

subalgebras of the σ-algebra F . We denote by L0(Ft, R
d) = L0(Ω,Ft,P, Rd)

the linear space (of equivalence classes) of Ft-measurable d-dimensional ran-

dom vectors endowed with the topology of convergence in measure. For

x = (x1, ..., xd) ∈ L0(Ft, R
d), we write x ∈ Lp(Ft, R

d) (p ∈ [1,∞)) or

x ∈ L∞(Ft, R
d) if the random variable |x|p = (|x1| + ... + |xd|)p has finite

expectation E|x|p or is essentially bounded, respectively. If d = 1, we omit

”Rd ” in the notation and write Lp(Ft)= Lp(Ω,Ft,P) for all p.

Let Ct ⊆ L0(Ft, R
d) (t = 0, ..., T − 1) be non-empty sets and xt ∈

L0(Ft, R
d) (t = 0, 1, ..., T ) random vectors. For t = 1, 2, ..., T , define

(1.1) Rt = {
t∑

m=1

hm−1xm : hm ∈ Cm, m = 0, 1, ..., t− 1},

where hm−1xm =
∑d

i=1 h
i
m−1x

i
m for hm−1 = (h1

m−1, ..., h
d
m−1) and xm = (x1

m, ...,

xd
m). Let L0

+ = L0
+(F) denote the cone of non-negative elements in L0 =

L0(F). Consider the condition:

(NA) RT ∩ L0
+ = {0}.

This work is aimed at the development and refinement of the following result

of Dalang, Morton and Willinger (1990), playing an important role in models

of securities markets.

Theorem 1.1. Let Ct = L0(Ft, R
d) ( t = 0, ..., T − 1). Then condition

(NA) holds if and only if there exists a strictly positive random variable λ ∈
L∞(Ω,F) such that Eλ = 1, Eλ|xt| <∞ ( t = 0, ..., T ) and

(1.2) E(λxt|Ft−1) = 0

almost surely for all t = 1, ..., T .

In models of securities markets, vectors ht = (h1
t , ..., h

d
t ) ∈ L0(Ft, R

d)

represent portfolios of d assets at time t = 0, 1, ..., T − 1. The number hi
t
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indicates the amount of asset i in the portfolio ht. Sequences (h0, ..., hT−1),

ht ∈ L0(Ft, R
d), are interpreted as investment strategies. Those strategies

which satisfy the constraints ht ∈ Ct (t = 0, ..., T − 1) are admissible. The

random vectors xt describe the increments

(1.3) xt = st − st−1 (t ≥ 1), x0 = s0,

of the price vectors st ∈ L0
+(Ft, R

d), t = 0, 1, ..., T , that are supposed to be

given in the model. The ith coordinate of st = (s1
t , ..., s

d
t ) specifies the price

of one unit of asset i at time t. The amount
∑t

m=1 hm−1xm (t = 1, ..., T ) is

the net gain from the strategy (h0, ..., hT−1) over the time interval 0, ..., t. If

the investor’s wealth at time 0 is w0 [∈ L0(F0)], then the investor’s wealth at

time t can be expressed as

(1.4) wt = w0 +
t∑

m=1

hm−1xm.

This formula presumes that there are no external sources of funding (the

assumption of self-financing) and no consumption, so that the increment

wt − wt−1 of wealth in each time period between t − 1 and t depends only

on the price change xt = st − st−1 and the portfolio ht−1 held during this

period. Condition (NA) is interpreted as the absence of arbitrage over the

time horizon 0, ..., T : there is no investment strategy allowing to gain a non-

negative amount almost surely and a strictly positive amount with positive

probability. If λ > 0, Eλ = 1 and Eλ|xt| < ∞, then, as is easily seen, prop-

erty (1.2) holds if and only if the price process st is a martingale with respect

to the filtration F0 ⊆ ... ⊆ FT and the probability Pλ(dω) := λ(ω)P(dω),

i.e., Pλ is an equivalent martingale measure. Equivalent martingale measures

play a key role in the design of pricing rules for derivative assets. This has

led to the term ”Fundamental Theorem of Asset Pricing” (FTAP), that is

often associated with Theorem 1.1 and its variants. Such results go back to

the seminal work of Harrison and Kreps (1979), Harrison and Pliska (1981)
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and Kreps (1981); for introductory expositions see Pliska (1997) and Björk

(1998) (discrete- and continuous-time models, respectively). An account of

current research in the field is given in the survey by Kabanov (2001).

We develop the above theorem in the following two directions. (a) We con-

sider proper subsets Ct in L0(Ft, R
d), i.e., we deal with portfolio constraints.

(b) We show that the function λ, appearing in (1.2), can be selected from

some special functional classes that are much narrower than the totality of all

strictly positive elements in L∞(Ω,F). These classes are described in terms

of conditionally finite-valued random variables (see below).

Models with portfolio constraints, in discrete and continuous time, have

been considered by many authors – see, in particular, Cvitanić and Karatzas

(1993), Karatzas and Kou (1996), Jouini and Kallal (1995), Schürger (1996),

Föllmer and Kramkov (1997), Brannath (1997), Pham and Touzi (1999),

Pham (2000), Carassus, Pham and Touzi (2001) and references therein. In

the previous studies aimed at generalizations of FTAP, the main focus has

been on constraints of the form ht ∈ G almost surely (a.s.) or

(1.5) (s1
th

1
t , ..., s

d
th

d
t ) ∈ G (a.s.),

where G is a non-random set in Rd and (s1
t , ..., s

d
t ) is the vector of prices

at time t. In this paper, we analyze systematically restrictions of a more

general type, defined in terms of fairly general random sets Gt(ω) adapted

to the given filtration (Ft).
1 Under such restrictions, the set of admissible

portfolios might depend on random factors in a way more complex than (1.5)

(for example, short sales of an asset might be allowed or not depending on

whether the price of the asset decreases or grows). The results we obtain

appear to be final in the framework under consideration.

The second of our themes, (b), is entirely new in the present context.

1Versions of FTAP involving similar constraints have been considered in the unpub-

lished work of Brannath (1997). However, the approach and the structure of the results

in that work are substantially different from those in the present paper.
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Our main result along this line shows that the function λ involved in (1.2)

can be selected from a class of functions of the form λ = λ0...λT , where the

conditional distribution of λt given Ft−1 is concentrated on a finite set. The

cardinality of the set can be restricted: it is sufficient to consider distribu-

tions concentrated on not more than d+ 1 points, where d is the number of

assets in the market. There is a parallelism between this refinement of FTAP

and a number of known results in control theory and statistics that demon-

strate the possibility of achieving the objectives of control or optimization

by using not all admissible strategies but only those belonging to some finite

set. The minimum necessary number of elements in this set can usually be

estimated based on the dimensionality of the problem. The related theory

and techniques are usually referred to as bang-bang control (see Sonnenborn

and Van Vleck 1965, Hermes and LaSalle 1969, and Artstein 1980). Because

of the similarity of the results and the underlying methodology (centering

around Lyapounov’s and Carathéodory’s theorems) we associate the term

”bang-bang no arbitrage criteria” with those refinements of the conventional

no arbitrage criteria we consider in this work.

The Dalang–Morton–Wilinger (1990) theorem has attracted attention of

many researchers. During the last decade, several different methods for prov-

ing the theorem have been proposed – see Schachermayer (1992), Kabanov

and Kramkov (1994), Rogers (1994), Jacod and Shiryaev (1998), and Ka-

banov and Stricker (2001). Our approach to the subject is close to the orig-

inal one, as suggested by Dalang, Morton and Wilinger (1990). We reduce

the problem under study to the analysis of ”conditional” versions of property

(NA), that are formulated in terms of conditional distributions given the σ-

algebras Ft. The technical tools we employ are measurable selection theorems

and convex analysis in spaces L0 with measures depending on parameters.

The paper is organized as follows. In Section 2, we state and discuss

the main results. Sections 3 – 5 focus on various aspects of the model at

hand, aiming basically (but not only) at the preparation for the proof of the
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main theorem (Theorem 2.1). This proof is given in Section 6. Section 7

provides equivalent formulations of the main hypotheses. Two appendices,

I and II, assemble several general facts of measure theory and functional

analysis exploited in this work.

2 The main results

Suppose that, for each t = 0, 1, ..., T − 1 and ω ∈ Ω, we are given a closed

cone2 Ht(ω) ⊆ Rd and a set Mt(ω) ⊆ Rd (ω ∈ Ω) satisfying the following

condition:

(M) For each a ∈ Ht(ω), there exists a number r > 0 such that ra ∈
Mt(ω).

According to this condition, the set

(2.1) Gt(ω) := Ht(ω) ∩Mt(ω)

generates the cone Ht(ω), and 0 ∈ Gt(ω). Clearly (M) is fulfilled, in partic-

ular, if 0 belongs to the interior of Mt(ω).

We will assume that the graphs {(ω, a) : a ∈ Mt(ω)} and {(ω, a) : a ∈
Ht(ω)} of the multivalued mappings ω 7→ Mt(ω) and ω 7→ Ht(ω) are Ft ×
B(Rd)-measurable. Here and in what follows, B(·) stands for the Borel σ-

algebra in a topological space. The assumption imposed means that Mt(ω)

and Ht(ω) are Ft-measurable random sets.

We will examine the model described in the previous section in terms of

the random vectors xt ∈ L0(Ω,Ft,P, Rd), t = 0, 1, 2, ..., T , and the constraint

sets Ct, t = 0, 1, ..., T − 1, assuming that Ct are defined by

(2.2) Ct = {h(·) ∈ L0(Ω,Ft,P, Rd) : h(ω) ∈ Gt(ω) (a.s.)}.
2By a cone we mean a set containing with each vector a the vector ra where r is any

non-negative number (convexity is not included in this definition).
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The sets Gt(ω) = Ht(ω)∩Mt(ω) include constraints of two types. The cones

Ht(ω) can be defined, in particular, in terms of linear inequalities of the

form αij
t h

i
t + βij

t h
j
t ≥ 0, where αij

t , β
ij
t are some given Ft-measurable random

variables and hi
t, h

j
t (i, j = 1, 2, ..., d) are positions of the portfolio ht =

(h1
t , ..., h

d
t ). By an appropriate choice of αij

t , β
ij
t , one can establish bounds on

the proportions between coordinates hi
t and hj

t of the vector ht = (h1
t , ..., h

d
t ).

If βij
t = 0 and αij

t = τ i
t , where τ i

t ∈ {−1, 0,+1}, the above inequalities specify

conditions τ i
th

i
t ≥ 0 on the signs of hi

t (i = 1, 2, ..., d), that may incorporate,

for example, short selling restrictions depending on the random situation ω.

The sets Mt(ω) allow to impose upper bounds hi
t ≤ βi

t for long positions of

the portfolio and lower bounds αi
t ≤ hi

t for its short positions [αi
t, β

i
t ∈ L0(Ft),

αi
t < 0 < βi

t ]. One can consider analogous constraints defined in terms of the

values si
th

i
t of assets (expressed in terms of the current prices si

t), rather than

their physical units hi
t. Further examples of Mt(ω) include constraints of the

form
∑

i∈J s
i
th

i
t ≤ βJt or αJt ≤

∑
i∈J s

i
th

i
t, where J is a subset of {1, 2, ..., d}

and αJt < 0 < βJt are Ft-measurable random variables.

The fundamental assumptions under which our results are obtained are

concerned with the random cones Ht(ω) and the vectors xt. We shall not

need any conditions on the sets Mt(ω) except for those introduced above.

To formulate the assumptions, denote by P t
ω(Γ) (ω ∈ Ω, Γ ∈ B(Rd)) the

conditional distribution of the random vector xt+1(ω) given the σ-algebra

Ft, t = 0, 1, ..., T − 1 (see Appendix I). Put B := Rd, B := B(Rd) and, for

each ω ∈ Ω, define

(2.3)

Xt(ω) := {v(·) ∈ L0(B,B, P t
ω) : v(b) = ab P t

ω-a.e. for some a ∈ Ht(ω)}.

The cone Xt(ω) is the image of the cone Ht(ω) under the linear mapping of

Rd into L0(B,B, P t
ω) that transforms a vector a ∈ Rd into the element va(·)

of L0(B,B, P t
ω) for which va(b) = ab P t

ω-almost everywhere (P t
ω-a.e.) on B.

If X and Y are sets in a linear space, we write X ± Y := {x ± y :
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x ∈ X, y ∈ Y }. The main assumptions are as follows.

(X.1) The set Xt(ω) is closed in L0(B,B, P t
ω) with respect to convergence

in measure.

(X.2) The set Xt(ω)− L0
+(B,B, P t

ω) is convex.

Conditions (X.1) and (X.2) are supposed to hold for each t = 0, 1, ..., T − 1

and for ω ∈ Ωt, where Ωt is an Ft-measurable set with P(Ωt) = 1. Clearly

(X.2) holds if the cone Ht(ω), and hence the cone Xt(ω), are convex. We

will present equivalent versions of assumptions (X.1) and (X.2), as well as

conditions sufficient for their validity, after the formulation of the main result,

Theorem 2.1 below.

Let us introduce the classes of random variables that are involved in our

refinement of Theorem 1.1. For each t = 1, 2, ..., T and k = 1, 2, ..., let Λt(k)

denote the set of random variables λ ∈ L0(Ft) representable in the form

(2.4) λ(ω) = f(ω, xt(ω)),

where f(ω, b) is a real-valued function of ω ∈ Ω and b ∈ Rd satisfying the

following conditions:

(f.1) the function f(ω, b) is Ft−1 × B(Rd)-measurable;

(f.2) there exist strictly positive Ft−1-measurable random variables c1(ω),

..., ck(ω) such that

(2.5) f(ω, b) ∈ {c1(ω)} ∪ ... ∪ {ck(ω)} for each b ∈ B and ω ∈ Ω.

It can be shown (see Proposition 7.4) that a random variable λ of the form

(2.4) coincides a.s. with a random variable λ′ ∈ Λt(k) if and only if the

conditional distribution of λ given Ft−1 is concentrated a.s. on a finite set in

(0,∞) containing not more than k elements.

For a random variable λ ∈ Λt(k), we write λ ∈ Λ∞
t (k) (t = 1, 2, ..., T ) if

λ is bounded. For t = 0, we define Λ∞
0 (k) as the class consisting of strictly

positive constants. We denote by Λ∞(k) the class of random variables λ(ω)
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with Eλ = 1 that can be represented as λ = λ0λ1...λT , where λt ∈ Λ∞
t (k) for

each t = 0, 1, ..., T .

The main results are contained in the following theorem.

Theorem 2.1. Let condition (NA) hold. Then there is a strictly positive

random variable λ ∈ L∞(Ω,F ,P) such that Eλ = 1,

(2.6) Eλ|xt| <∞, t = 0, ..., T,

and

(2.7) hE(λxt|Ft−1) ≤ 0 (a.s.), h ∈ Ct−1, t = 1, 2, ..., T.

If, additionally,

(2.8) E(|xt||Ft−1) <∞ (a.s.), t = 1, 2, ..., T,

then there exists λ ∈ Λ∞(d+ 1) satisfying (2.6) and (2.7). If the conditional

distribution P t
ω(·) is atomless for each t = 0, 1, ..., T−1 and almost all ω ∈ Ω,

then one can replace in the foregoing assertion d+ 1 by 2.

Conversely, if there is a random variable λ > 0 with properties (2.7) and

(2.9) E(λ|xt||Ft−1) <∞ (a.s.), t = 1, ..., T,

then condition (NA) holds.

Remark 2.1. Put

(2.10) Ht := {h(·) ∈ L0(Ft, R
d) : h(ω) ∈ Ht(ω) (a.s.)}

and observe that condition (2.7) is equivalent to the following one

(2.11) hE(λxt|Ft−1) ≤ 0 (a.s.), h ∈ Ht−1, t = 1, 2, ..., T.

Indeed, (2.11) implies (2.7) since the sets Ht are larger than the origi-

nal constraint sets Ct (functions h in Ct satisfy the additional restriction

h(ω) ∈ Mt(ω) a.s.). The converse implication holds because, for any h ∈
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Ht, there exists a real-valued Ft-measurable function ρ(ω) > 0 such that

ρ(ω)h(ω) ∈ Mt(ω) (a.s.), and, consequently, ρh ∈ Ct. This assertion follows

from condition (M); the proof can easily be conducted by using a measurable

selection argument, see Theorem AI.2 in Appendix I. Thus we can replace

(2.7) by (2.11) in the formulation of Theorem 2.1. This observation means

that the main role in the characterization of the no arbitrage property is

played by the constraints specified by the sets Ht(ω) (rather than Mt(ω)), as

long as the sets Mt(ω) satisfy condition (M). An intuition for this fact is as

follows: under assumption (M), property (NA) depends only on the structure

of admissible portfolios ht ”in a neighborhood of zero”, which is determined

by Ht(ω).

Remark 2.2. Let λ > 0 be a random variable with Eλ = 1 satisfy-

ing (2.6). Fix a version of the conditional expectation E(λxt|Ft−1). Then

inequalities (2.7), or equivalent inequalities (2.11), hold if and only if

(2.12) max
a∈Ht−1(ω)

aE(λxt|Ft−1) = 0 (a.s.).

The ”if” assertion is straightforward; ”only if” obtains by using measurable

selection (see Appendix I, Theorem AI.2). Property (2.12) means that the

random vector E(λxt|Ft−1) belongs almost surely to the polar of the cone

Ht−1(ω). If Ht−1(ω) = Rd for all ω, then (2.12) reduces to (1.2). If Ht−1(ω) =

Rd
+ for all ω, then (2.12) is equivalent to E(λxt|Ft−1) ≤ 0 (a.s.). Thus,

if xt is defined by (1.3), and (2.6) holds, the last inequality says that the

process st, t = 0, ..., T , is a supermartingale with respect to the measure

Pλ(dω) = λ(ω)P(dω) (cf. Jouini and Kallal 1995 and Schürger 1996). Note

that Eλ|st| <∞ by virtue of (2.6) and (1.3).

Remark 2.3. Under the assumptions (1.3) and (2.6), property (2.7)

can be interpreted as follows. If we change the original measure P by

Pλ(dω) := λ(ω)P(dω), we obtain that, under the equivalent measure Pλ,

the wealth process wt (see (1.4)) is a generalized supermartingale for any

admissible trading strategy (h0, ..., hT−1). The term ”generalized” points to
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the fact that the random variables wt are not necessarily integrable with

respect to Pλ, although the conditional expectations of wt given Ft−1 are

well-defined and finite (which follows from (2.6)). To guarantee the integra-

bility of the random variables wt defined by (1.4) it is sufficient to assume

that the vectors ht are bounded and Eλ|w0| < ∞. For extensions of the

above supermartingale property to models of a more general type (involving

transaction costs) see Kabanov and Stricker (2001a), Evstigneev and Taksar

(2000), and Schachermayer (2001).

Remark 2.4. Define

(2.13) Xt = {w(·) ∈ L0(Ω,Ft,P) : w(ω) = h(ω)xt(ω) (a.s.), h(·) ∈ Ht−1}

(t = 1, 2, ..., T ) and consider the following condition:

(NAt) Xt ∩ L0
+ = {0}.

This condition may be regarded as a local (at time t) version of the no

arbitrage hypothesis (NA). Note, however, that Xt is defined in terms of the

cones Ht−1, rather than the constraint sets Ct−1 involved in (NA). But, if

we replace Ht−1 by Ct−1 in (2.13), this will lead to a condition equivalent to

(NAt), because, for any h ∈ Ht−1, there is ρ > 0, ρ ∈ L0(Ft−1) satisfying

ρh ∈ Ct−1 (see Remark 2.1). Further, observe that (NA) implies (NAt) for

each t = 1, 2, ..., T . To show this for some given t = t0 it is sufficient to

consider strategies (ht) for which ht = 0, t 6= t0 − 1. On the other hand,

in the course of the proof of Theorem 2.1 (see Section 6), we will show that

(NA) implies the existence of a random variable λ with properties (2.6) and

(2.7) by using not the hypothesis (NA) itself, but only its consequence –

condition (NAt), t = 1, ..., T . According to the last assertion of Theorem 2.1,

the existence of such a random variable is sufficient for (NA). Consequently,

the validity of (NA) is equivalent to the validity of (NAt) for all t = 1, ..., T .

Remark 2.5. Fix some t = 0, ..., T − 1. We will prove in Section 7

that condition (X.1) (resp. (X.2)) holds for all ω ∈ Ω, except for an Ft-

measurable set of measure zero, if and only if condition (X .1) (resp. (X .2))
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below is satisfied.

(X .1) The cone Xt+1 is closed in L0(Ω,Ft+1,P) under convergence in

measure (or, equivalently, under convergence almost surely).

(X .2) The set Xt+1 − L0
+(Ω,Ft+1,P) is convex.

Although properties (X .1) and (X .2) do not use in their formulations condi-

tional distributions, it is generally more convenient to deal with the original

versions of the assumptions – (X.1) and (X.2) – rather than with their ”un-

conditional” versions (X .1) and (X .2). The reason for this is the fact that

the set Xt(ω) involved in the former two conditions is finite-dimensional:

it is contained in a finite-dimensional subspace Vt(ω) of L0(B,B, P t
ω) – the

image of Rd under the linear mapping transforming a vector a ∈ Rd into

the function va(b) = ab (P t
ω-a.e.). By the definition of Xt(ω), the mapping

a 7→ va(·) transforms Ht(ω) into Xt(ω), and, since Ht(ω) is closed for each

ω, we immediately obtain two important cases where we can guarantee the

closedness of Xt(ω) and hence the validity of (X.1):

(P) The cone Ht(ω) is polyhedral, i.e., it is a conic convex hull of a finite

set of vectors in Rd.

(V) The dimension dimVt(ω) of the linear space Vt(ω) ⊆ L0(B,B, P t
ω) is

equal to d.

Note that the finite set involved in (P) might depend on ω, and the number

of elements in it might be different for different ω.

Remark 2.6. Clearly, condition (V) can be restated as follows: If a is

a non-zero element of Rd, then va(·) is a non-zero element of L0(B,B, P t
ω).

Under (V), the mapping a 7→ va(·) is a linear homeomorphism of Rd onto

Vt(ω), and so the closedness of the set Ht(ω) implies the closedness of its

image, Xt(ω). One can formulate an equivalent version of (V) that does not

involve conditional distributions. It can be shown (see Proposition 7.3) that

(V) holds for all ω, except for an Ft-measurable set of measure zero, if and

only if the following requirement is fulfilled:

(V) If g ∈ L0(Ω,Ft,P) and P{gxt+1 = 0} = 1, then P{g = 0} = 1.
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It can easily be proved that (V) is satisfied, in particular, if E|xt+1|2 < ∞
and the conditional covariance matrix

(2.14) E{[xi
t+1 − E(xi

t+1|Ft)][x
j
t+1 − E(xj

t+1|Ft)]|Ft}, i, j = 1, ..., d,

of the vector xt+1 = (x1
t+1, ..., x

d
t+1) (t = 0, ..., T − 1) is non-degenerate with

probability one. The same assertion is true, if, instead of (2.14), we consider

the conditional covariance matrix of γt+1xt+1, where γt+1 > 0 is a random

variable in L0(Ω,Ft+1,P) such that E|γt+1xt+1|2 <∞. Further, suppose the

random vectors xt, t = 0, ..., T , are defined through st by (1.3), and E|st|2 <
∞ (or, equivalently, E|xt|2 <∞) for all t. Consider the conditional covariance

matrix (µij
t ) of the vector st+1 = (s1

t+1, ..., s
d
t+1) given Ft. Clearly the matrix

(µij
t ) coincides with (2.14) with probability one. Thus, if the determinant

det(µij
t ) of the matrix (µij

t ) is non-zero almost surely, then conditions (V),

(V), and, consequently, (X.1) hold. If det(µij
t ) 6= 0 (a.s.), Mt(ω) = Rd for

all ω, and Ht(ω) is of the form (1.5), where G is a closed convex cone in Rd,

assertion (i) of Theorem 2.1 follows from a result of Pham and Touzi (1999),

Theorem 4.2. A version of this result is obtained by Carassus, Pham and

Touzi (2001), Theorem 3.2. It should be emphasized that the requirement of

non-degeneracy of (µij
t ), as well as requirements (V) and (V), are not needed

if the cone Ht(ω) is polyhedral (see condition (P) above).

Remark 2.7. One can consider an extension of the model at hand in

which the portfolio constraints at time t depend on the sign of the wealth

process wt. More precisely, suppose there are two constraint sets C(j)
t , j =

1, 2, defined in terms of M
(j)
t (ω) and H

(j)
t (ω), j = 1, 2, exactly as the sets Ct.

Assume that the constraint ht ∈ Ct is replaced by the following ones: ht ∈ C(1)
t

if wt > 0; ht ∈ C(2)
t if wt < 0; ht = 0 if wt = 0 (cf. Karatzas and Kou 1996).

It can be shown that such a model can be reduced to the one studied in

this work with Mt(ω) = M
(1)
t (ω) ∪M (2)

t (ω) and Ht(ω) = H
(1)
t (ω) ∪H(2)

t (ω).

This reduction has been carried out – in a somewhat different setting – by

Carassus, Pham and Touzi (2001). An analogous reduction can be performed
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by using the same considerations in the framework adopted in this paper. Our

results imply the versions of FTAP obtained in Carassus, Pham and Touzi

(2001) and permit to replace the counterpart of condition (V) imposed in the

paper cited by weaker assumptions similar to (X.1) or (X .1).

3 Local and conditional no arbitrage

Fix some t = 1, 2, ..., T . Propositions 3.1 and 3.2 below are auxiliary results

that will be applied to the sets Xt and Xt−1(ω) defined in terms of the cone

Ht−1(ω) (see (2.13) and (2.3)). For the proofs of these propositions, however,

we do not need the assumption that Ht−1(ω) is a cone. It is sufficient to

assume only that Ht−1(ω) is a non-empty Ft−1-measurable random set. We

write B := Rd, B = B(Rd), Pω = P t−1
ω , Eω = Et−1

ω (Eω is the integral with

respect to Pω) and denote by FP
t−1 the completion of Ft−1 with respect to P.

Proposition 3.1. Let f(ω, b), ω ∈ Ω, b ∈ B, be an Ft−1×B-measurable

real-valued function. Then the set

Ωf := {ω ∈ Ω : f(ω, ·) ∈ Xt−1(ω)}

is measurable with respect toFP
t−1. The following two conditions are equiva-

lent:

(F.1) The random variable f(ω, xt(ω)) belongs to the class Xt;

(F.2) P(Ωf ) = 1.

Proof. Consider the set ∆f of (ω, a) ∈ Ω × Rd for which a ∈ Ht−1(ω)

and Eω|f(ω, b) − ab| = 0. We have ∆f ∈ Ft−1 × B(Rd) and Ωf =prΩ∆f .

Consequently (see Theorem AI.2), Ωf ∈ FP
t−1.

(F.1)⇒(F.2). According to (F.1) and (2.13), there exists an Ft−1-measurable

function h(ω) such that h(ω) ∈ Ht−1(ω) (a.s.) and f(ω, xt(ω)) = h(ω)xt(ω)

(a.s.). The last equality implies 0 = E|f(ω, xt(ω))−h(ω)xt(ω)| = EEω|f(ω, b)−
h(ω)b|. Consequently, P(Ω′) = 1, where Ω′ := {ω : Eω|f(ω, b) − h(ω)b| =
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0} ∈ Ft−1. Further, the set Ω′′ := {ω : h(ω) ∈ Ht−1(ω)} belongs to Ft−1 and

has full measure. Thus P(Ωf ) = 1 because Ω′ ∩ Ω′′ ⊆ Ωf .

(F.2)⇒(F.1). By applying Theorem AI.2 to the set ∆f ∈ Ft−1 × B(Rd),

we construct a measurable mapping h : (Ω,Ft−1) → (Rd,B(Rd)) such that

h(ω) ∈ Ht−1(ω) and Eω|f(ω, b)−h(ω)b| = 0 for all ω in a set Ω̃ ∈ Ft−1 having

the same measure P as Ωf =prΩ∆f . Since P(Ωf ) = 1, we have P(Ω̃) = 1.

Then h(ω) ∈ Ht−1(ω) (a.s.) and Eω|f(ω, b) − h(ω)b| = 0 (a.s.). Therefore

E|f(ω, xt(ω))− h(ω)xt(ω)| = EEω|f(ω, b)− h(ω)b| = 0, and so f(ω, xt(ω)) =

h(ω)xt(ω) (a.s.), which shows that the random variable f(ω, xt(ω)) belongs

to the class Xt. �

Proposition 3.2. The set Ω∗ of those ω ∈ Ω for which

(3.1) Xt−1(ω) ∩ L0
+(B,B, Pω) = {0}

is measurable with respect to the completion FP
t−1 of the σ-algebra Ft−1.

Let 0 ∈ Ht−1(ω) for all ω. Then condition (NAt) holds if and only if

P(Ω∗) = 1.

Property (3.1) is a ”conditional” version of (NAt): it is stated in terms

of the conditional probabilities Pω = P t−1
ω .

Proof of Proposition 3.2. The complement Ω∗ := Ω\Ω∗ of Ω∗ can be

represented as the projection on Ω of the set ∆∗ of those (ω, a) ∈ Ω×Rd for

which a ∈ Ht−1(ω), Pω{b : ab ≥ 0} = 1 and Pω{b : ab > 0} > 0. We have

∆∗ ∈ Ft−1×B(Rd), and so, by virtue of Theorem AI.2, Ω∗ and Ω∗ belong to

FP
t−1.

”Only if”. Let (NAt) hold. Suppose P(Ω∗) < 1 and hence P(Ω∗) > 0.

By using Theorem AI.2, we construct a measurable mapping h : (Ω,Ft−1) →
(B,B) such that (ω, h(ω)) ∈ ∆∗ for all ω ∈ Ω′, where Ω′ ∈ Ft−1, Ω′ ⊆ Ω∗ and

P(Ω′) = P(Ω∗). By redefining h(ω) as 0 outside Ω′, we get h(ω) ∈ Ht−1(ω)

for all ω, and Pω{b : h(ω)b ≥ 0} = 1 and Pω{b : h(ω)b > 0} > 0 for ω ∈ Ω′.

Put y(ω) = h(ω)xt(ω). Then y ∈ Xt, and y(ω) = 0 for ω ∈ Ω\Ω′. Further,

P{ω ∈ Ω′ : h(ω)xt(ω) ≥ 0} = EχΩ′Pω{b : h(ω)b ≥ 0} = P(Ω′)
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and so y(ω) = h(ω)xt(ω) ≥ 0 (a.s.). Finally, since P(Ω′) = P(Ω∗) > 0, we

obtain

P{ω ∈ Ω′ : y(ω) > 0} = EχΩ′Pω{b : h(ω)b > 0} > 0,

which contradicts (NAt).

”If”. Suppose (NAt) does not hold, i.e., there exists a function h(·) in

Ht−1 such that h(ω)xt(ω) ≥ 0 (a.s.) and P{ω ∈ Ω : h(ω)xt(ω) > 0} > 0.

Then EPω{b : h(ω)b ≥ 0} = P{ω : h(ω)xt(ω) ≥ 0} = 1, and so Pω{b :

h(ω)b ≥ 0} = 1 for P-almost all ω ∈ Ω. Analogously, EPω{b : h(ω)b > 0} =

P{ω : h(ω)xt(ω) > 0} > 0, which implies that, with positive probability P,

we have Pω{b : h(ω)b > 0} > 0. Consequently, Xt−1(ω)∩L0
+(B,B, Pω) 6= {0}

with positive probability, and so P(Ω∗) < 1. �

4 A separation theorem in L1.

In this section, (B,B, P ) is any probability space.

Theorem 4.1. Let W be a closed cone contained in a d-dimensional

linear subspace L of L1 = L1(B,B, P ). Let the set W −L1
+ be convex. Then

the following conditions are equivalent.

(W.1) W ∩ L1
+ = {0}.

(W.2) There exist numbers 0 < c1 ≤ ... ≤ cd+1 ≤ 1 and a measurable

function µ(b) taking values in the set {c1, ..., cd+1} such that Eµw ≤ 0 for

all w ∈ W .

If the measure P is atomless, we can replace d+ 1 by 2 in (W.2).

The validity of assertion (W.2) means that we can separate W and L1
+ by

a linear functional l(x) of x ∈ L1 such that l(x) = Eµx, where the function

µ takes on not more than d+ 1 values ci ∈ (0, 1].

Proof of Theorem 4.1. The implication (W.2)⇒(W.1) is straightforward.

Let us prove that (W.1) implies (W.2). Define Z := W − L1
+. Clearly

Z ∩ L1
+ = {0}. Let us show that Z is L1-closed. Suppose zk = wk − uk → z
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in L1, where wk ∈ W and uk ∈ L1
+. Then the sequence wk is bounded in

the norm || · || of the space L1. Indeed, if this is not so, then, by passing

to a subsequence, we obtain γk := ||wk|| → ∞. This yields w′k − u′k → 0,

where w′k := wkγ
−1
k and u′k := ukγ

−1
k . Since W is a cone, we have w′k ∈ W

and since W is contained in a finite-dimensional space, we can select from

the bounded sequence w′k a subsequence w′ki
converging to some w ∈ L1 in

|| · ||. Then w ∈ W because W is closed and ||w|| = 1 because ||w′ki
|| = 1. As

w′ki
−u′ki

→ 0, we find that u′ki
→ u ∈ L1

+ and u = w. Thus 0 6= w ∈ W ∩L1
+,

which is a contradiction. Consequently, the sequence wk is bounded. By

passing to subsequences, we obtain wk → w ∈ W and uk → u ∈ L1
+ (again,

we use here the fact that W is a closed set contained in a finite-dimensional

subspace of L1). This proves that z = w − u ∈ W − L1
+, which establishes

the closedness of Z.

Denote by V the L1-closure of the convex hull coW of W . The set V

is contained in the same finite-dimensional space L as W . Observe that

coW ⊆ Z since Z is convex, and so V ⊆ Z because Z is closed. Consequently,

V ∩ L1
+ = {0}.

Define Σ := {y ∈ L1 : y ≥ 0, Ey = 1}, where Ey =
∫
y(b)P (db). Let

us show that the L1-distance ρ(V,Σ) between V and Σ is strictly positive.

First observe that ρ(V,Σ) ≤ ρ(0, 1), where 0 and 1 are constant functions

regarded as elements L1, and so ρ(V,Σ) ≤ 1. Further, note that if E|w| > 2,

then ρ(w,Σ) ≥ 1. Indeed, if y ∈ Σ, then ρ(w, y) = E|w−y| ≥ E|w|−E|y| >
2−1 = 1. Consequently, ρ(V,Σ) = ρ(V (2),Σ), where V (2) is the intersection

of V with the ball B(2) := {y ∈ L1 : E|y| ≤ 2} of radius 2. The set V (2) is

compact because it is a closed subset of L1 contained in a finite-dimensional

subspace. Since V ∩L1
+ = {0}, the intersection of V (2) and the closed set Σ

is empty. Consequently, ρ(V (2),Σ) > 0, and so ρ(V,Σ) > 0.

Define κ = ρ(V,Σ)/2 and put Vκ := V + B(κ) of V . We have Vκ ∩Σ = ∅.
Since the interior of Vκ is non-empty, we can separate the convex sets Vκ and

Σ by a non-zero continuous linear functional l(y) on L1: l (y) ≤ l (y′), y ∈ Vκ,
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y′ ∈ Σ. Since l 6= 0 and B (κ) ⊆ Vκ, we have δ := sup {l (y) : y ∈ Vκ} > 0.

Thus

(4.1) l (y) ≤ δ ≤ l (y′) , y ∈ Vκ, y
′ ∈ Σ.

Every continuous linear functional l on L1 can be represented in the form

l (y) = Eα0y, where α0 (b) is a bounded measurable function. The second

inequality in (4.1) yields α0 (b) ≥ δ (> 0) P -almost everywhere (a.e.), while

the first implies α0 (b) ≤ δ/κ (a.e.), because B (κ) ⊆ Vκ. By setting α (b) =

κδ−1α0 (b), we get κ ≤ α (b) ≤ 1 (a.e.). From (4.1), we can see that Eαy ≤ κ

for each y ∈ W ⊆ Vκ, which implies Eαy ≤ 0, y ∈ W , because W is a cone.

We may assume that the inequalities κ ≤ α (b) ≤ 1 hold for all b (this can

be obtained by modifying the function α on a set of measure zero).

Consider a basis x1, ..., xd in the d-dimensional linear space L containing

W . Denote by x the vector function x = (x1, ..., xd) and by G the set of

those vectors g = (g1, ..., gd) ∈ Rd for which gx := g1x1 + ... + gdxd ∈ W .

Then W = {gx : g ∈ G}. We have constructed a bounded function α such

that α(b) ≥ κ > 0 and gEαx = Eαgx ≤ 0 for all g ∈ G. Since xi ∈ L1,

i = 1, 2, ..., d, the vector function x = (x1, ..., xd) belongs to L1(B,B, P, Rd).

Consequently, we can apply Proposition AII.1 (see Appendix II), according

to which there exists a function β(b) taking not more than d + 1 different

values κ ≤ r1 ≤ ... ≤ rd+1 such that Eβx = Eαx. Define µ(b) = β(b)/rd+1.

The function µ(b) takes values in the set {c1, ..., cd+1}, where ci = ri/rd+1,

and we have 0 < c1 ≤ ... ≤ cd+1 = 1. Finally,

Eµgx = gEµx = gEβx/rd+1 = gEαx/rd+1 ≤ 0, g ∈ G,

which implies Eµw ≤ 0, w ∈ W , because W = {gx : g ∈ G}. According

to Proposition AII.1, if P is atomless, we can replace d + 1 by 2 in the last

argument. �
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5 Two-stage model

In this section, we fix t ∈ {1, 2, ..., T} and consider only two moments of

time: t − 1 and t (two-stage model). In accordance with hypotheses (X.1)

and (X.2), we assume that Xt−1(ω) is closed under convergence Pω-a.e. and

Xt−1(ω) − L0
+(B,B, Pω) is convex for all ω ∈ Ωt−1, where Ωt−1 ∈ Ft−1 and

P(Ωt−1) = 1. Additionally, we postulate that E(|xt||Ft−1) < ∞ (a.s.). This

implies Et−1
ω |b| <∞ for P-almost all ω ∈ Ω. Therefore we may suppose that

Et−1
ω |b| < ∞ for all ω ∈ Ωt−1 (the set Ωt−1 can be replaced by a smaller

Ft−1-measurable set of full measure). As before, we write Pω := P t−1
ω and

Eω := Et−1
ω .

Theorem 5.1. Let condition (NAt) hold. Then for each strictly positive

bounded random variable γ there exists a random variable λ ∈ Λ∞
t (d + 1)

such that Eλ[|xt|+ |xt−1|] <∞ and

hE(λγxt|Ft−1) ≤ 0 (a.s.), h ∈ Ht−1.

If Pω is atomless for almost all ω, then λ can be selected in the class Λ∞
t (2).

Proof. Let Ft−1 ∨ σ(xt) denote the σ-algebra generated by Ft−1 and xt.

Consider the random variable γ̂ = E[γ|Ft−1 ∨ σ(xt)] > 0. We can represent

it as γ̂(ω) = g(ω, xt(ω)) (a.s.), where g(ω, b) (b ∈ B = Rd) is a bounded

strictly positive Ft−1×B-measurable function [B = B(Rd)]. For each ω ∈ Ω,

denote by Wt−1(ω) the set consisting of functions w(b) on B of the form

w(b) = g(ω, b)v(b), where v(·) ∈ Xt−1(ω). Since g(ω, b) is bounded and any

function v(·) inXt−1(ω) is of the form ab (a ∈ Ht−1(ω)), condition Eω|b| <∞,

ω ∈ Ωt−1, implies Wt−1(ω) ⊆ L1(B,B, Pω), ω ∈ Ωt−1.

By virtue of Proposition 3.2, it follows from (NAt) that the intersection

of Xt−1(ω) and L0
+(B,B, Pω) is {0} for all ω ∈ Ω′, where Ω′ ∈ Ft−1 and

P(Ω′) = 1. Since g(ω, b) > 0, we have Wt−1(ω)∩ L0
+(B,B, Pω) = {0} for

all ω ∈ Ω′. We may assume without loss of generality that Ωt−1 ⊆ Ω′ (we

can always replace Ωt−1 by Ωt−1 ∩ Ω′). For ω ∈ Ωt−1, the cone Xt−1(ω) is
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closed under convergence Pω-a.e., and the cone Xt−1(ω) − L0
+(B,B, Pω) is

convex. From this, and since g(ω, b) > 0, we obtain that the set Wt−1(ω) is

closed under convergence Pω-a.e. and the set Wt−1(ω)− L1
+(B,B, Pω) – the

intersection of L1(B,B, Pω) and Wt−1(ω)−L0
+(B,B, Pω) – is convex for each

ω ∈ Ωt−1. Furthermore, Wt−1(ω) is contained in the d-dimensional linear

subspace of L1(B,B, Pω) spanned on the functions g(ω, b)bj, j = 1, 2, ..., d,

where b = (b1, ..., bd). Thus, we can apply Theorem 4.1, from which it follows

that, for each ω ∈ Ωt−1, there exists a Borel function µ(b), b ∈ B, with at

most k = d + 1 values 0 < c1 ≤ ... ≤ ck ≤ 1 (k = 2 when Pω is atomless)

satisfying

(5.1) Eωµ(b)g(ω, b)ab ≤ 0, a ∈ Ht−1(ω).

Note that if Pω is atomless for almost all ω, it can be assumed that this is so

for all ω ∈ Ωt−1.

Let {h(m)
t−1(·)}∞m=1 be a sequence of Ft−1-measurable vector functions and

Ω′′ ∈ Ft−1 a set such that P(Ω′′) = 1 and, for all ω ∈ Ω′′, the sequence of

points {h(m)
t−1(ω)} is dense Ht−1(ω) (see Theorem AI.2). Again, without loss

of generality, we may assume that Ωt−1 ⊆ Ω′′. Consider the Borel function

ψ(r, b) of r ∈ I := [0, 1] and b ∈ B described in Theorem AI.3 and define the

set ∆ consisting of (ω, r, c1, ..., ck) such that ω ∈ Ω, r ∈ I, 0 < c1 ≤ ... ≤
ck ≤ 1,

(5.2) Eωψ(r, b)g(ω, b)h
(m)
t−1(ω)b ≤ 0, m = 1, 2, ...,

(5.3) Pω{b : min
i=1,...,k

|ψ(r, b)− ci| = 0} = 1.

The last condition means that ψ(r, ·) coincides Pω-a.e. with a function taking

its values in {c1, ..., ck}. We can see from (5.2) and (5.3) that ∆ ∈ Ft−1 ×
B(Rk+1). We claim that Ωt−1 is contained in the projection of ∆ on Ω.

Indeed, if ω ∈ Ωt−1, then, as we have shown above, there exists a Borel
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function µ(·) = µω(·) on B taking on k values 0 < c1 ≤ ... ≤ ck ≤ 1 (ci = cωi )

and satisfying (5.1). By using the property of the function ψ described in

Theorem AI.3, we conclude that there exists r = rω ∈ I such that ψ(r, b) =

µ(b) for Pω-almost all b. For r = rω, condition (5.2) follows from (5.1) and

requirement (5.3) from the fact that the values of µ(b) are in {c1, ..., ck}. We

now can apply the measurable selection theorem (see Theorem AI.2), and

construct an Ft−1-measurable mapping ω 7→ ξ(ω) = (r(ω), c1(ω), ..., ck(ω))

such that (ω, ξ(ω)) ∈ ∆ for all ω in an Ft−1-measurable set Ω̂ ⊆ Ωt−1 with

P(Ω̂) = 1.

For ω ∈ Ω̂, define φ(ω, b) = ψ(r(ω), b) if ψ(r(ω), b) ∈ {c1(ω), ..., ck(ω)}
and put φ(ω, b) = ck(ω) otherwise. Set φ(ω, b) = 1 for all b ∈ B,ω ∈ Ω\Ω̂,

and redefine ci(ω) by setting ci(ω) = 1 for all i = 1, ..., k and ω ∈ Ω\Ω̂. Then

φ(ω, b) ∈ {c1(ω), ..., ck(ω)} for all ω and b. For ω ∈ Ω̂, we have φ(ω, b) =

ψ(r(ω), b) Pω-a.e. (see (5.3)) and

(5.4) Eωφ(ω, b)g(ω, b)h
(m)
t−1(ω)b ≤ 0, m = 1, 2, ...,

(see (5.2)), which yields

(5.5) Eωφ(ω, b)g(ω, b)ab ≤ 0, a ∈ Ht−1(ω), ω ∈ Ω̂.

Define

(5.6) θ(ω) = 1 + Eω{φ(ω, b)[|b|+ |xt−1(ω)|]}, f(ω, b) = φ(ω, b)/θ(ω)

and λ(ω) = f(ω, xt(ω)). Then f(ω, b) ∈ {c1(ω)/θ(ω), ..., ck(ω)/θ(ω)} for each

ω and b. Consequently, f meets requirements (f.1) and (f.2) in Section 2, and

so λ ∈ Λt(k). Further, we have λ ≤ 1 and

Eλ(|xt|+ |xt−1|) = EEω{
φ(ω, b)

θ(ω)
[|b|+ |xt−1(ω)|]} ≤ 1.

Finally, we can replace φ by f in (5.5), which yields

hE(λγxt|Ft−1) = hE(λγ̂xt|Ft−1) = Eωf(ω, b)g(ω, b)h(ω)b ≤ 0 (a.s.)

for any h ∈ Ht−1. �
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6 Proof of the main theorem

Proof of Theorem 2.1. Let us start with proving the second assertion of the

theorem. As we have shown in Remark 2.4, (NA) implies (NAt) for each

t = 1, 2, ..., T . Put k = d+ 1 or k = 2, if P t
ω is atomless for all t and almost

all ω. By virtue of (NAt) and Theorem 5.1, the following assertion is valid:

(*) For each t = 1, ..., T and each strictly positive bounded random vari-

able γ, there exists a random variable λ ∈ Λ∞
t (k) such that Eλ[|xt|+ |xt−1|] <

∞ and hE(λγxt|Ft−1) ≤ 0 (a.s.), h ∈ Ht−1.

We will prove by way of induction with respect to m (from m = T to

m = 1) the following assertion:

(Am) There exists a function λ of the form λ = λmλm+1...λT , where

λt ∈ Λ∞
t (k), such that Eλ|xt| <∞ (t = m− 1, ..., T ) and

(6.1) hE(λxt|Ft−1) ≤ 0, h ∈ Ht−1, t = m, ..., T.

For m = T , this assertion follows from (*) with γ = 1. For m = 1, this

assertion yields the desired result (by choosing a constant λ0 > 0, we can

obtain Eλ = 1). Suppose (Am) holds for some 1 < m ≤ T . Let us prove

(Am−1).

Consider a function λ with properties described in (Am) and put γ =

E(λ|Fm−1). By virtue of (*), there exists a random variable λm−1 ∈ Λ∞
m−1(k)

such that Eλm−1[|xm−1| + |xm−2|] < ∞ and hE[λm−1γxm−1|Fm−2] ≤ 0, h ∈
Hm−2. From the first of these two inequalities, we obtain

Eλm−1λ[|xm−1|+ |xm−2|] = Eλm−1E(λ|Fm−1)[|xm−1|+ |xm−2|] =

(6.2) Eλm−1γ[|xm−1|+ |xm−2|] ≤ ||γ||∞ Eλm−1[|xm−1|+ |xm−2|] <∞,

and from the second we get

hE[λm−1λxm−1|Fm−2] = hE[λm−1E(λ|Fm−1)xm−1|Fm−2] =
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(6.3) hE[λm−1γxm−1|Fm−2] ≤ 0, h ∈ Hm−2.

By virtue of (6.1), we have

hE[λm−1λxt|Ft−1] = λm−1hE[λxt|Ft−1] ≤ 0, h ∈ Ht−1,

for each t ≥ m. It remains to observe that the function λm−1λ = λm−1λm...λT

satisfies Eλm−1λ|xt| <∞ for all t = m−2, ..., T in view of (6.2) and by virtue

of the induction hypothesis and the boundedness of λm−1. The function

λm−1λ possesses all the properties needed for (Am−1).

Thus we have established the second assertion of the theorem; let us de-

duce from it the first one. Let π > 0 be a bounded random variable such that

Eπ = 1 and Eπ|xt| <∞ for all t. Consider the analogous model in which the

probability P is replaced by the equivalent probability P̃(dω) = π(ω)P(dω),

but the other data (xt, Mt and Ht) are the same. In this model, condition

(NA) holds since P̃ and P have the same sets of measure zero, and, addition-

ally, (2.8) is fulfilled. Furthermore, the modified model satisfies requirements

(X.1) and (X.2) because the conditional distributions P̃ t
ω(db) and P t

ω(db) for

the measures P̃ and P are equivalent for almost all ω. Therefore, by virtue

of the part of the proof we have just completed, there exists a bounded

strictly positive random variable λ̃ such that Ẽλ̃|xt| < ∞ for all t = 0, ..., T

and hẼ(λ̃xt|Ft−1) ≤ 0 (a.s.) for all h ∈ Ct−1 and t = 1, 2, ..., T . We have

Ẽ(λ̃xt|Ft−1) = E(πλ̃xt|Ft−1)/E(π|Ft−1) and Ẽλ̃|xt| = Eπλ̃|xt|, from which

it follows that the bounded strictly positive random variable λ := πλ̃/Eπλ̃
possesses all the properties listed in the first assertion of Theorem 2.1.

To prove the last assertion of the theorem let us show by induction that

Rm ∩ L0
+ = {0} for m = 0, 1, ..., T , where R0 = {0} and Rm (m ≥ 1)

is defined by (1.1). For m = 0, the statement holds trivially. Assuming

that it holds for some 0 ≤ m < T , let us prove it for m + 1. Suppose the

contrary: there exists ξ ∈ Rm+1 ∩ L0
+ with Eξ > 0. Then λ

∑m
t=1 ht−1xt+

hmλxm+1 = λξ for some h0 ∈ C0, ..., hm ∈ Cm. Let us show that the random
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variable ζ :=
∑m

t=1 ht−1xt is nonnegative (a.s.) and Eζ > 0. Suppose that

either P{ζ < 0} > 0 or ζ = 0 (a.s.). Define Γ = {ω : ζ(ω) < 0} (∈ Fm)

in the former case and Γ = Ω in the latter. Then the random variable

θ := χΓhmλxm+1 satisfies θ = χΓλξ − χΓλζ, from which it follows that θ ≥ 0

(a.s.) and Eθ > 0. On the other hand, E(θ|Fm) = hmχΓE(λxm+1|Fm) ≤ 0

by virtue of (2.9) and (2.7). This is a contradiction. Thus ζ ≥ 0 (a.s.) and

Eζ > 0, which, in turn, contradicts the induction hypothesis. �

Remark 6.1. We note that, in general, condition (2.8) involved in The-

orem 2.1 cannot be dropped. Suppose Ht = Mt = Rd. For the expres-

sion hE(λxT |FT−1) ≤ 0 in (2.7) to be well-defined for all h, we must have

E(λ|xT ||FT−1) < ∞ (a.s.). If λ = λ0...λT , where λt ∈ Λt(k), we obtain

E(λT |xT ||FT−1) <∞ (a.s.). Consequently,

f∗(ω)E(|xT ||FT−1) ≤ E(f(ω, xT )|xT ||FT−1) = E(λT |xT ||FT−1) <∞ (a.s.),

where f∗(ω) = mini(ci(ω)) > 0 (see (2.5)). From this we conclude that

E(|xT ||FT−1) <∞.

7 Equivalent versions of the main assump-

tions

The purpose of this section is to establish the equivalence of ”conditional”

and ”unconditional” forms of the main assumptions introduced in Section 2.

We fix some t = 1, 2, ..., T and examine the sets Xt and Xt−1(ω) defined in

terms of Ht−1(ω) by (2.13) and (2.3). Throughout the section, we assume

that Ht−1(ω) is an Ft−1-measurable random set closed and non-empty for

each ω ∈ Ω. When needed, it is additionally assumed that Ht−1(ω) is a

cone. As before, we use the notation B := Rd, B = B(Rd), Pω = P t−1
ω

and Eω = Et−1
ω . We define ρ(ω, y, y′) = Eω{|y − y′|(1 + |y − y′|)−1}, where

y, y′ ∈ L0(B,B, Pω). The functional ρ(ω, y, y′) is a metric in L0(B,B, Pω)
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inducing the topology of convergence in measure.

We begin with two auxiliary results, Lemmas 7.1 and 7.2 below, that

will be used in this section. Fix some Ft−1-measurable vector function h∗(ω)

satisfying h∗(ω) ∈ Ht−1(ω) for almost all ω (such a function exists by virtue

of Theorem AI.2). For each N = 1, 2, ..., define HN
t−1(ω) = {a ∈ Ht−1(ω) :

|a−h∗(ω)| ≤ N}. Consider the class HN
t−1 of Ft−1-measurable functions h(·)

for which h(ω) ∈ HN
t−1(ω) (a.s.). Put XN

t = {h(ω)xt(ω) : h(·) ∈ HN
t−1}.

Let {hN
k (ω)}∞k=1 be a sequence of functions hN

k ∈ HN
t−1 and ΩH an Ft−1-

measurable subset of Ω such that P(ΩH) = 1, h∗(ω) ∈ Ht−1(ω) for ω ∈ ΩH ,

and, for each N = 1, 2, ... and each ω ∈ ΩH , the points hN
1 (ω), hN

2 (ω), ... form

a dense subset of HN
t−1(ω) (see Theorem AI.2). Consider the continuous map-

ping a 7→ va(·) of Rd into L0(B,B, Pω) defined by va(b) = ab (Pω-a.e.). The

mapping a 7→ va(·) transforms the compact set HN
t−1(ω) into a compact set

in L0(B,B, Pω), that we will denote by XN
t−1(ω), and the sequence {hN

k (ω)}
dense in HN

t−1(ω) into the sequence vN
k (ω, b) := hN

k (ω)b dense in XN
t−1(ω).

Put ρN
k (ω, y(·)) = ρ(ω, y(·), vN

k (ω, ·)).
Lemma 7.1. Let ω ∈ ΩH . Then a function y(·) ∈ L0(B,B, Pω) does not

belong to the set Xt−1(ω) if and only if we have infk ρ
N
k (ω, y(·)) > 0 for each

N ∈ {1, 2, ...}.
Proof. The assertion of the lemma follows from the following facts: (a)

Xt−1(ω) = ∪NX
N
t−1(ω); (b) XN

t−1(ω) is compact; (c) for ω ∈ ΩH , the se-

quence vN
k (ω, ·), k = 1, 2, ..., is dense in XN

t−1(ω), and so ρ(ω, y(·), XN
t−1(ω)) =

infk ρ
N
k (ω, y(·)). �

Let ψj(b) (j = 1, 2, ...) be a sequence of bounded Borel functions on B

satisfying the following condition:

(ψ) For each ω, the sequence {ψj(·)} is dense in L0(B,B, Pω).

(To construct {ψj(·)}, consider a countable dense subset in the nonnegative

cone in space of continuous functions on [0, 1] and a Borelian isomorphism
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between B and [0, 1].) Define Zt−1(ω) := Xt−1(ω)− L0
+(B,B, Pω) and

ρN
k,j(ω, y(·)) = ρ(ω, y(·), vN

k (ω, ·)− ψj(·)).

Lemma 7.2. Let ω ∈ ΩH . Then a function y(·) ∈ L0(B,B, Pω) does not

belong to Zt−1(ω) if and only if infk,j ρ
N
k,j(ω, y(·)) > 0 for each N ∈ {1, 2, ...}.

Proof. We have Zt−1(ω) = ∪NZ
N
t−1(ω), where ZN

t−1(ω) := XN
t−1(ω) −

L0
+(B,B, Pω). Since XN

t−1(ω) is compact, ZN
t−1(ω) is closed. Thus y(·) /∈

Zt−1(ω) if and only if ρ(ω, y(·), ZN
t−1(ω)) > 0 for each N ∈ {1, 2, ...}. On the

other hand, ρ(ω, y(·), ZN
t−1(ω)) = infk,j ρ

N
k,j(ω, y(·)) because {vN

k (ω, ·)−ψj(·)}
is dense in ZN

t−1(ω). �

The proposition below establishes the equivalence of assumptions (X.1)

and (X .1).

Proposition 7.1. The set

Ω := {ω ∈ Ω : Xt−1(ω) is closed in L0(B,B, Pω)}

is measurable with respect to FP
t−1. The following conditions are equivalent:

(i) Xt is closed in L0(Ω,Ft,P);

(ii) P(Ω) = 1.

Proof. For each sequence a = (a1, a2, ...), aj ∈ Rd, and each b ∈ B = Rd,

define Y∗(a, b) := lim inf{ajb} and Y ∗(a, b) := lim sup{ajb}. Put Y (a, b) =

Y ∗(a, b) if −∞ < Y∗(a, b) = Y ∗(a, b) < +∞ and Y (a, b) = 0 otherwise. Con-

sider the set H(ω) of those sequences a = (a1, a2, ...) for which aj ∈ Ht−1(ω),

j ∈ {1, 2, ..., }. A function y(·) ∈ L0(B,B, Pω) belongs to the closure of

the set Xt−1(ω) with respect to convergence in measure Pω (or, equiva-

lently, with respect to convergence Pω-a.e.) if and only if there is a se-

quence a = (a1, a2, ...) ∈ H(ω) such that Y (a, b) = y(b) Pω-a.e. and

Pω{b : −∞ < Y∗(a, b) = Y ∗(a, b) < +∞} = 1.

Denote by Ω the complement of Ω, i.e., the set of those ω ∈ Ω for which

Xt−1(ω) is not closed in L0(B,B, Pω) with respect to Pω-a.e. convergence.

Define R : = Rd × Rd × ... and Ω0 =Ω∩ΩH . By virtue of Lemma 7.1, Ω0 is
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the projection on Ω of the set ∆0 in Ω ×R consisting of pairs (ω, a) which

satisfy

(7.1) ω ∈ ΩH , a ∈ H(ω), Pω{b : −∞ < Y∗(a, b) = Y ∗(a, b) < +∞} = 1,

(7.2) inf
k
ρN

k (ω, Y (a, ·)) > 0 for each N ∈ {1, 2, ...}.

We can see that ∆0 ∈ Ft−1 × B(R), and so, by virtue of Theorem AI.2, the

projection Ω0 =prΩ∆0 is FP
t−1-measurable. Consequently, Ω∈ FP

t−1 because

Ω0 =Ω∩ΩH , ΩH ∈ Ft−1 and P(ΩH) = 1.

(i)⇒(ii). Suppose P(Ω) < 1. Then P(Ω) > 0 and P(Ω0) > 0 because

Ω0 =Ω∩ΩH and P(ΩH) = 1. By virtue of Theorem AI.2, there exists a set

Ω̂ ∈ Ft−1, Ω̂ ⊆ Ω0, and a measurable mapping h(ω) = (h1(ω), h2(ω), ...)

of (Ω,Ft−1) into (R,B(R)) such that P(Ω̂) = P(Ω0) (> 0) and (ω,h(ω)) ∈
∆0 for each ω ∈ Ω̂. Redefine h(ω) as (h1

1(ω), h1
1(ω), ...) outside Ω̂. Then,

for all ω ∈ Ω, the sequence of functions yj(ω, b) := hj(ω)b converges to

y(ω, b) := Y (h(ω), b) Pω-a.e. (see (7.1)). Put wj(ω) = hj(ω)xt(ω) and

w(ω) = Y (h(ω), xt(ω)). We have

E
|wj(ω)− w(ω)|

1 + |wj(ω)− w(ω)|
= EEω

|hj(ω)b− Y (h(ω), b)|
1 + |hj(ω)b− Y (h(ω), b)|

→ 0,

and so wj(ω) → w(ω) in measure. For each j, we have wj(·) ∈ Xt be-

cause hj(ω) ∈ Ht−1(ω) (a.s.). On the other hand, the function w(ω) =

Y (h(ω), xt(ω)) does not belong to Xt. Indeed, the function f(ω, b) := Y (h(ω), b)

is Ft−1 × B-measurable and f(ω, ·) /∈ Xt−1(ω) for all ω in the set Ω0 ∈ Ft−1

having positive measure P (see (7.2)). According to Proposition 3.1, this

means that w(·) /∈ Xt. Thus Xt is not closed with respect to convergence in

measure.

(ii)⇒(i). Suppose P (Ω) = 1. Consider a sequence wj(ω) of functions

in Xt converging to a function w(·) ∈ L0(Ω,Ft,P) for P-almost all ω. We

wish to show that w ∈ Xt. Since wj(·) ∈ Xt, we have wj(ω) = hj(ω)xt(ω)
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(a.s.), where hj(ω), j = 1, 2, ..., are Ft−1-measurable functions satisfying

hj(ω) ∈ Ht−1(ω) for all j and all ω in a set Ω′ ∈ Ft−1 with P(Ω′) = 1.

Put fj(ω, b) = hj(ω)b and denote by f(ω, b) the function which is equal to

lim fj(ω, b) when the sequence {fj(ω, b)} converges and which is equal to

zero otherwise. The function f(ω, b) is Ft−1 × B-measurable, and w(ω) =

f(ω, xt(ω)) (a.s.). Further, we have

Eρ(ω, fj(ω, ·), f(ω, ·)) = EEω
|fj(ω, b)− f(ω, b)|

1 + |fj(ω, b)− f(ω, b)|
= E

|wj − w|
1 + |wj − w|

→ 0.

By passing to a subsequence, we obtain that, for all ω in a set Ω̃ ∈ Ft−1 with

P(Ω̃) = 1, ρ(ω, fj(ω, ·), f(ω, ·)) → 0, and so fj(ω, ·) → f(ω, ·) in measure Pω

for all ω ∈ Ω̃. We may assume without loss of generality that Ω̃ is contained

in Ω′ and Ω. Now, if ω ∈ Ω̃, then Xt−1(ω) is closed, fj(ω, ·) ∈ Xt−1(ω) and

fj(ω, ·) → f(ω, ·). Consequently, f(ω, ·) ∈ Xt−1(ω) for all ω in an Ft−1-

measurable set of full measure. By virtue of Proposition 3.1, the function

w(ω), coinciding with f(ω, xt(ω)) (a.s.), belongs to the class Xt. �

In the next proposition, we assume that Ht−1(ω) is a cone. The result

below implies that assumptions (X.2) and (X .2) are equivalent.

Proposition 7.2. The set

Ωc := {ω ∈ Ω : Xt−1(ω)− L0
+(B,B, Pω) is a convex subset of L0(B,B, Pω)}

is measurable with respect to FP
t−1. The following conditions are equivalent:

(c.1) Xt − L0
+(Ω,Ft,P) is a convex subset of L0(Ω,Ft,P);

(c.2) P(Ωc) = 1.

Proof. Since Ht−1(ω) is a cone, the set Zt−1(ω) is not convex if and only

if there exist a and a′ such that

(7.3) a, a′ ∈ Ht−1(ω), va(·) + va′(·) /∈ Zt−1(ω).

Consider the set ∆ consisting of those (ω, a, a′) for which ω ∈ ΩH and re-

lations (7.3) hold. Then prΩ∆ coincides with the intersection of ΩH and
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Ω\Ωc. We have ΩH ∈ Ft−1 and P(ΩH) = 1; consequently, to prove the FP
t−1-

measurability of Ωc it is sufficient to verify that prΩ∆ ∈ FP
t−1. By virtue of

Lemma 7.2, we have va(·)+va′(·) /∈ Zt−1(ω) if and only if infk,j ρ
N
k,j(ω, va(·)+

va′(·)) > 0 for each N ∈ {1, 2, ...}. By using this and the definition of ∆, we

conclude that ∆ ∈ Ft−1 × B × B, and so prΩ∆ ∈ FP
t−1 by virtue of Theorem

AI.2.

(c.1)⇒(c.2). Suppose P(Ωc) < 1. Then P(prΩ∆) > 0. By applying

Theorem AI.2 to the set ∆ defined above, we construct a set Ω∆ ∈ Ft−1

and an Ft−1-measurable mapping ω 7→ (h(ω), h′(ω)) such that Ω∆ ⊆prΩ∆,

P(Ω∆) = P(prΩ∆) > 0, and, for each ω ∈ Ω∆ we have h(ω), h′(ω) ∈ Ht−1(ω)

and v(ω, ·) + v′(ω, ·) /∈ Zt−1(ω), where v(ω, b) = h(ω)b and v′(ω, b) = h′(ω)b.

Let us redefine h, h′ as 0 outside Ω∆. Then the random variables w(ω) :=

v(ω, xt(ω)) and w′(ω) := v′(ω, xt(ω)) belong to the cone Xt, however, the

sum w + w′ does not belong to Xt − L0
+(Ω,Ft,P). Indeed, suppose the

contrary: h(ω)xt(ω)+ h′(ω)xt(ω) ≤ h′′(ω)xt(ω) (a.s.), where h′′ ∈ Ht−1. The

last inequality implies Pω{b : h(ω)b + h′(ω)b ≤ h′′(ω)b} = 1 for P-almost all

ω. Consequently, v(ω, ·) + v′(ω, ·) ∈ Zt−1(ω) for P-almost all ω, which is a

contradiction.

(c.2)⇒(c.1). It suffices to show that, for any h, h′ ∈ Ht−1, there is h′′ ∈
Ht−1 satisfying hxt+ h′xt ≤ h′′xt (a.s.). Let Ω̌ ∈ Ft−1 be a set such that

P(Ω̌) = 1 and h(ω), h′(ω) ∈ Ht−1(ω) for ω ∈ Ω̌. Since P(Ωc) = 1, we may

assume without loss of generality that Ω̌ ⊆ Ωc. By the definition of Ωc,

for each ω ∈ Ωc, there exists a vector a ∈ Ht−1(ω) possessing the following

property:

(7.4) Pω{b : h(ω)b+ h′(ω)b ≤ ab} = 1.

By applying Theorem AI.2 to the set ∆̌ of (ω, a) satisfying ω ∈ Ω̌, a ∈
Ht−1(ω) and (7.4), we construct a function h′′(·) ∈ Ht−1 for which Pω{b :

h(ω)b+ h′(ω)b ≤ h′′(ω)b} = 1 (a.s.). This yields hxt+ h′xt ≤ h′′xt (a.s.). �

Proposition 7.3. Condition (V) holds for all ω, except for an Ft-
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measurable set of measure zero, if and only if requirement (V) is fulfilled.

Proof. Denote by ei the vector in Rd whose coordinates are equal to zero,

except for the ith coordinate which is equal to one. The mapping a 7→ va(b)

transforms the basis {e1, ..., ed} of Rd into the set {vi(b) = bi, i = 1, 2, ..., d}
of elements of L0(B,B, Pω) that is a basis of Vt(ω). Consequently, the set ΩV

of those ω ∈ Ω for which dimVt(ω) < d can be represented as pr Ω∆V , where

(7.5) ∆V := {(ω, r1, ..., rd) ∈ Ω× (Rd\{0}) : Eω|r1b1 + ...+ rdbd| = 0}.

By virtue of Theorem AI.2, ΩV =prΩ∆V ∈ FP
t−1. Therefore condition (V)

holds for all ω, except for an Ft-measurable set of measure zero, if and only

if P(ΩV ) = 0.

Assume P(ΩV ) > 0. Then, by virtue of Theorem AI.2, there is an Ft−1-

measurable mapping g(ω) = (g1(ω), ..., gd(ω)) and a set Ωg ∈ Ft−1 such that

P(Ωg) > 0 and (ω, g(ω)) ∈ ∆V for ω ∈ Ωg. By redefining g(ω) as 0 outside

Ωg, we obtain P{g 6= 0} > 0 and

(7.6) E|gxt+1| = EEω|g1(ω)b1 + ...+ gd(ω)bd| = 0,

which contradicts (V).

Suppose (V) does not hold: there exists g ∈ L0(Ω,Ft,P) such that gxt+1 =

0 (a.s.) and P{g 6= 0} > 0. Then, by virtue of (7.5) and (7.6), {ω : g(ω) 6=
0} ⊆prΩ∆V = ΩV , and so P(ΩV ) > 0. �

We now provide equivalent definitions of the class Λt(k). The proposi-

tion below gives necessary and sufficient conditions for a class of equivalent

random variables measurable with respect to the σ-algebra Ft−1 ∨ σ(xt) to

contain a representative belonging to Λt(k).

Proposition 7.4. Let λ be a random variable measurable with respect to

Ft−1 ∨ σ(xt). Then the following assertions are equivalent:

(λ.1) There is a random variable λ′ ∈ Λt(k) such that λ = λ′ (a.s.).

(λ.2) The conditional distribution of λ(ω) given Ft−1 is concentrated (for

P-almost all ω) on some finite set in (0,+∞) containing not more than k

elements.
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(λ.3) There exist strictly positive Ft−1-measurable random variables c1(ω), ...,

ck(ω) such that

(7.7) P{ω : λ(ω) ∈ {c1(ω)} ∪ ... ∪ {ck(ω)}} = 1.

Proof. Let Πω(dr) denote the conditional distribution of λ(ω) given Ft−1.

(λ.1)⇒(λ.2). The conditional distributions of λ and λ′ coincide a.s.,

and so we may suppose without loss of generality that λ(ω) = λ′(ω) for all

ω. Assume that requirements (2.4), (f.1) and (f.2) are satisfied and denote

C(ω) := {c1(ω)} ∪ ... ∪ {ck(ω)}. Then we have

EΠω(C(ω)) = P{λ(ω) ∈ C(ω)} = P{f(ω, xt(ω)) ∈ C(ω)} =

(7.8) EΠω{f(ω, b) ∈ C(ω)} = 1.

Consequently, Πω(C(ω)) = 1 (a.s.).

(λ.2)⇒(λ.3). Consider the set ∆λ of (ω, r1, ..., rk) such that ω ∈ Ω,

r1, ..., rk ∈ (0,+∞), and Πω({r1} ∪ ... ∪ {rk}) = 1. We have ∆λ ∈ Ft−1 ×
B(Rk), and so, by virtue of Theorem AI.2, prΩ∆λ ∈ FP

t−1, P(prΩ∆λ) = 1,

and there exist Ft−1-measurable c1(ω), ..., ck(ω) > 0 for which Πω(C(ω)) = 1

(a.s.), where C(ω) = {c1(ω)}∪...∪{ck(ω)}. Consequently, P{λ(ω) ∈ C(ω)} =

EΠω(C(ω)) = 1, which proves (λ.3).

(λ.3)⇒(λ.1). Since λ is Ft−1 ∨ σ(xt)-measurable, we have λ(ω) =

f(ω, xt(ω)) for some Ft−1 × B-measurable f(ω, b). Then the third and the

second equalities in (7.8) hold, from which we obtain, in view of (7.7), that

Πω{f(ω, b) ∈ C(ω)} = 1 (a.s.). Define f ′(ω, b) = f(ω, b) if f(ω, b) ∈ C(ω)

and f ′(ω, b) = c1(ω) otherwise. Put λ′(ω) = f ′(ω, xt(ω)). Then λ′ = λ (a.s.)

and λ′ ∈ Λt(k). �
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Appendix I. Standard spaces, conditional distributions and

measurable choice

A measurable space (B,B) is called standard if it is isomorphic to a Borel

subset of a complete separable metric space with Borel measurable structure.

Let (Ω,F ,P) be a probability space and (B,B) a standard measurable space.

Theorem AI.1. For each σ-algebra G ⊆ F and each measurable mapping

x : (Ω,F) → (B,B), there exists a function Pω(A) of ω ∈ Ω and A ∈ B
satisfying the following conditions:

(c.1) for each ω ∈ Ω, Pω(A) is a probability measure on B;

(c.2) for each A ∈ B, Pω(A) is a G-measurable function of ω;

(c.3) for each non-negative G × B-measurable function f(ω, b), we have

(AI.1) E[f(ω, x(ω))|G] = Eωf(ω, ·) [:=

∫
Pω(db)f(ω, b) ] (a.s.).

Note that if formula (AI.1) is valid for all nonnegative G ×B-measurable

functions f(ω, b), it extends to all G × B-measurable functions f(ω, b) for

which, with probability 1, at least one of the random variables E{max[0,

f(ω, x(ω))]|G} and E{min[0, f(ω, x(ω))]|G} is finite. If conditions (c.1)–(c.3)

hold, then the probability measure Pω(A) depending on ω is called the con-

ditional distribution of the random element x(ω) given the σ-algebra G. The

conditional distribution is defined uniquely up to P-equivalence. For a proof

of Theorem AI.1 see, e.g., Arkin and Evstigneev (1987), Appendix II.

Let (Ω,F) be a measurable space. For each probability measure P on F ,

we denote by FP the completion of F with respect to P, i.e., the σ-algebra

of those sets Γ ⊆ Ω for which there exist Γ1,Γ2 ∈ F such that Γ1 ⊆ Γ ⊆ Γ2

and P(Γ1) = P(Γ2). The measure P extends uniquely from F to FP.

In Theorem AI.2 below, (B,B) is a standard space, (Ω,F) an arbitrary

measurable space and P a probability on F . For a set ∆ ⊆ Ω×B, we write

∆(ω) = {b ∈ B : (ω, b) ∈ ∆}.
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Theorem AI.2. For each set ∆ ∈ F × B, the projection prΩ∆ is

FP-measurable. There exists a set Ω′ ∈ F and a measurable mapping ξ :

(Ω,F) → (B,B) such that Ω′ ⊆prΩ∆, P(Ω′) = P(prΩ∆) and (ω, ξ(ω)) ∈ ∆

for all ω ∈ Ω′. Moreover, there exists a countable family of measurable map-

pings ξi : (Ω,F) → (B,B) ( i = 1, 2, ...) such that, for all ω ∈ Ω′, the

sequence {ξi(ω)}∞i=1 is dense in ∆(ω).

If Ω′ is a subset of Ω and ξ : Ω → B is a mapping satisfying ξ(ω) ∈ ∆(ω)

for ω ∈ Ω′, then we say that ξ is a selector of the multivalued mapping

ω 7→ ∆(ω) on the set Ω′. By virtue of Theorem AI.2, for each ∆ ∈ F × B,

there exists an F -measurable mapping ξ(ω) that is a selector of ω 7→ ∆(ω)

on some F -measurable subset Ω′ of prΩ∆ having the same measure as prΩ∆.

A proof of Theorem AI.2 is given, e.g., in Arkin and Evstigneev (1987),

Appendix I.

Theorem AI.3. For any standard space (B,B), there exists a real-

valued function ψ(r, b) of r ∈ [0, 1] and b ∈ B measurable with respect to

B([0, 1]) × B and possessing the following property. For each finite measure

P on B and for each B-measurable real-valued function f(b), there exists

r ∈ [0, 1] such that ψ(r, b) = f(b) for P -almost all b ∈ B.

This result establishes the existence of a ”universal” jointly measurable

function ψ(r, b) on [0, 1] × B parametrizing all equivalence classes of mea-

surable functions on B with respect to all finite measures: any such class

contains a representative of the form ψ(r, ·), where r is some number in [0, 1]

(compare with Natanson 1961, Chapter 15, Section 3, Theorem 4).

Proof of Theorem AI.3. Any standard space is isomorphic either to a

finite or countable set with the σ-algebra of all its subsets, or to the segment

I := [0, 1] equipped with the Borel measurable structure (see, e.g., Dynkin

and Yushkevich 1979, Appendix I). If B = {bj}i∈J is finite or countable,

we can define ψ(r, bj) = γj(r), where γ(r) = (γj(r))j∈J is a mapping of I

into Πj∈JR
1 defining a Borelian isomorphism of the two spaces. Suppose

B is uncountable. Then we may assume without loss of generality that
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(B,B) = (I,B(I)). Let (C, C) be the space of continuous functions on I

and C the Borel σ-algebra on C generated by the uniform metric. Consider

the standard space C := C × C × ... endowed with the product measurable

structure and, for each c = (c1, c2, ...) ∈ C, define φ∗(c, b) = lim inf ci(b),

φ∗(c, b) = lim sup ci(b) (b ∈ B = I) and

φ(c, b) =

{
φ∗(c, b), if φ∗(c, b) = φ∗(c, b) ∈ (−∞,+∞),

0, otherwise.

For each i, the function φi(c, b) := ci(b) is jointly measurable in c = (c1, c2, ...)

and b (since ci(b) is continuous in ci ∈ C and continuous in b ∈ B), and so

φ(c, b) is jointly measurable. Let P be a finite measure on B = B(I) and f(b)

a function measurable with respect to B. Consider a sequence of continuous

functions c = (ci) and a Borel set B0 with P (B0) = 0 such that ci(b) → f(b)

for all b ∈ B1 := B\B0. Then f(b) = φ(c, b) for b ∈ B1. To complete the

proof it remains to define ψ(r, b) as φ(δ(r), b), where δ : r → C is a Borelian

isomorphism. �
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Appendix II. A corollary to Carathéodory’s and Lyapounov’s

theorems

This appendix contains a result, Proposition AII.1 below, that is obtained

by combining the Carathéodory theorem in convex analysis (see, e.g., Rock-

afellar 1970, Chapter IV) and the Lyapounov theorem on the convexity of

the range of an atomless vector measure (e.g., Ioffe and Tihomirov 1979,

Chapter 8). For similar results see Artstein (1980) and references therein.

Proposition AII.1. Let (B,B, P ) be a probability space and let x(b)

be a vector function in L1(B,B, P, Rd) ( d ≥ 1). Then, for each bounded

measurable function α : B → [r∗,∞) ( r∗ ∈ R1), there exists a measurable

function β : B → [r∗,∞), taking on not more than d+ 1 values, such that

Eαx = Eβx.

If the measure P is atomless, then one can select β so that, for each b,

β(b) ∈ {r∗, r∗} where r∗ :=ess supα (hence β takes on at most two values).

The proof of the above proposition relies upon the following lemma.

Lemma AII.1. Let J be a finite or countable set, wj, j ∈ J, a family

of vectors in Rd, and γj, j ∈ J, a family of real numbers satisfying γj ≥ 0,∑
γj <∞, and

∑
γj|wj| <∞. Then there exist numbers δj ≥ 0, j ∈ J, such

that not more than d of them are not equal to zero and∑
j∈J

δjwj =
∑
j∈J

γjwj.

Proof. We may assume without loss of generality that γj > 0 for all j and∑
γj = 1. Observe that the vector w :=

∑
γjwj is a convex combination

of a finite number of wj. This is clear if d = 1. Suppose this assertion is

established for d− 1 and let us prove it for d. Assume the contrary: w /∈ W ,

where W is the convex hull of wj, j ∈ J . By the separation theorem for

convex sets in Rd, there exist a linear functional l such that l(w) ≥ l(wj) for
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all j. We have

0 = l(w −
∑

γjwj) =
∑

γjl(w − wj), l(w − wj) ≥ 0,

which yields l(w − wj) = 0 for all j. Consequently, all the points wj are

contained in the hyperplane {v : l(v) = l(w)} of dimension d− 1, and so w ∈
W by virtue of the induction hypothesis. This contradicts the assumption.

It now remains to refer to the Carathéodory theorem (see, e.g., Rockafellar

1970, Chapter IV, Corollary 17.1.2), from which it follows that if w is a non-

negative linear combination of a finite number of vectors wj ∈ Rd, then w is

a non-negative linear combination of at most d of the vectors wj. �

Proof of Proposition AII.1. The assertion concerning the atomless case is

a direct consequence (and in fact an equivalent form) of the Lyapounov the-

orem; it is proved, e.g., in Ioffe and Tihomirov (1979), Section 8.2, Theorems

1 and 2.

When dealing with the general case, we will assume r∗ = 0: this does not

lead to a loss in generality. Consider disjoint measurable sets B0 ⊆ B and

Bi ⊆ B, i ∈ I ⊆ {1, 2, ...}, such that Bi, i ∈ I, are atoms of the measure

P , B0 does not contain atoms of P , and B = ∪j∈JBj, where J = I ∪ {0}.
We will assume that at least one atom exists (I 6= ∅), while the set B0

might be empty. By using the result concerning the atomless case, we obtain

EαxχB0 = ErχΓx for some measurable set Γ ⊆ B0 and some number r ≥
0. Let ri ≥ 0, i ∈ I, be numbers and xi ∈ Rd, i ∈ I, vectors such that

α(b) = ri and x(b) = xi for almost all b ∈ Bi, i ∈ I. Put r0 = r/P (B0), and

x0 = EχΓx (if P (B0) = 0, we define r0 as 0). Then

Eαx = ErχΓx+
∑
i∈I

EαxχBi
= r0x0P (B0) +

∑
i∈I

rixiP (Bi) =
∑
i∈J

rjxjP (Bj).

Since Eα|x| < ∞, we have
∑

i∈J rj|xj|P (Bj) < ∞, and since α is bounded,

we have
∑

j∈J rjP (Bj) < ∞. By applying Lemma AII.1 with γj = rjP (Bj)

and wj = xj, we find numbers δj ≥ 0, j ∈ J, such that not more than d of δj
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are not equal to zero and

Eαx =
∑
i∈J

rjxjP (Bj) =
∑
j∈J

γjwj =
∑
j∈J

δjwj.

We define

β(b) =

{
δi/P (Bi), if b ∈ Bi, i ∈ I,
δ0χΓ(b), if b ∈ B0.

The function β(b) takes on not more than d + 1 values (either 0, or δ0, or

δi/P (Bi), i ∈ I), and we have

Eαx =
∑
j∈J

δjwj = δ0x0 +
∑
i∈I

δixi =

Eδ0χΓx+
∑
i∈I

δi
P (Bi)

xiP (Bi) = Eβx.

�
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