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Abstract

It is shown how one can effectively use microdata in modelling the change over time
in an aggregate (e.g. mean consumption expenditure) of a large and heterogeneous
population. The starting point of our aggregation analysis is a specification of ex-
planatory variables on the micro-level. Typically, some of these explanatory variables
are observable and others are unobservable. Based on certain hypotheses on the evo-
lution over time of the joint distributions across the population of these explanatory
variables we derive a decomposition of the change in the aggregate which allows a
partial analysis: to isolate and to quantify the effect of a change in the observable
explanatory variables. This analysis does not require an explicit treatment of the
unobservable variables.
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1 Introduction

It is our goal to model the change over time in an aggregate of a large and heterogeneous

population. Examples of such aggregates are the mean consumption expenditure across a

population of households or the mean labor demand of a production sector. More precisely,

we are looking for explanatory variables for the change Ct − Ct−1 or the relative change

(Ct − Ct−1)/Ct−1, where Ct denotes the aggregate in period t.

A microeconomist will argue that decisions are taken by the micro-units and therefore

the starting point must be a specification of a complete set of explanatory variables for the

relevant response variable on the micro-level. The choice of such explanatory variables is

based either on experimental economics or on microeconomic theory, i.e. on a model of be-

havior. In neoclassical microeconomics behavior is modelled by an intertemporal (utility)

maximization problem under uncertainty. Then the parameters which define this maxi-

mization problem constitute the explanatory variables. An explicit example in the case of

consumption expenditure is presented in the appendix. This leads to a micro-relation which

can be represented in the form

cht = c(xh
t ), h ∈ Ht, (1.1)

where cht and xh
t denote the response and the vector of explanatory variables, respectively,

of the micro-unit h of the underlying population Ht in period t. In this notation the set

of explanatory variables determines uniquely the response. The functional relationship c

therefore does not depend on h and t, since the complete set of explanatory variables con-

tains everything that is relevant for the decision. Thus xh
t contains typically unobservable

variables such as individual preferences. In empirical work some of the unobservable vari-

ables are often summarized by a random term. Note that xh
t in period t might also include

components which refer to periods t− 1, t− 2, . . . .

Given a micro-relation (1.1) the mean response Ct = 1
#Ht

∑
h∈Ht

cht can be written as

Ct =

∫
c(x) distr(x |Ht), (1.2)

where distr(x |Ht) denotes the joint distribution of the explanatory variables xh
t across the

population Ht. Consequently, distr(x |Ht) takes the role of an explanatory ”variable” at

the aggregate level. Obviously, (1.2) does not provide a feasible basis for applied analysis.

The aim of aggregation theory is to simplify (1.2) and to find certain characteristics χt =

(χt1, χt2, . . . ) of distr(x |Ht) as well as a function F such that

Ct =

∫
c(x) distr(x |Ht) ≡ F (χt) for every period t (1.3)
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Whether or not such a simplification is possible for a moderate number of characteristics

and a simple function F depends on the functional form of the micro-relation c and/or

the way the distributions distr(x |Ht) evolve over time (see, e.g., Nataf (1948), Gorman

(1953), Malinvaud (1993), Stoker (1993) and Blundell and Stoker (2002)). For example, if

c were linear then F ≡ c and χt is equal to the mean Xt of xh
t across the population Ht.

Typically, however, the micro-relation c(·) is not linear an all micro-specific explanatory

variables. Even the simple Linear Expenditure System (Stone (1954)) in demand analysis

is not linear in all explanatory variables. Simple aggregation with χt = Xt is also possible

if c has a complex nonlinear structure. Indeed, if, for example, the joint distribution of the

centered variables x̃h
t = xh

t −Xt is time-invariant, i.e. distr(x̃ |Ht) is independent of t, say

equal to a distribution µ, then again χt = Xt but F (X) =
∫
c(x̃ + X)µ(dx̃). In this case

the functional form of F may be completely different from that of c.

More generally, let Tχ(x) denote an invertible transformation of x which is defined

in terms of parameters χ, where χ are certain characteristics of the distribution of the

explanatory variables x. For example, if χ = X then TX(x) := x − X (centered variable)

or TX = x/X (scaled variable). If χ = (X,Σ), where Σ is the non-singular covariance

matrix of the distribution of x, then TX,Σ(x) = Σ−1/2(x−X) (standardized variable). If the

distribution of the transformed explanatory variables x̃h
t = Tχt(x

h
t ) across the population

Ht is time-invariant, say equal to a distribution µ, then aggregation is possible with

F (χ) =

∫
c(T−1

χ (x̃))µ(dx̃) (1.4)

Since, in general, a functional form of the micro-relation c is not inherited by the aggregate

relation F , it is not useful to start with a specific functional form of c. Our approach is

based on the idea of standardizing variables leading to an aggregate relation similar to (1.4).

Details are given in sections 2- 4. However, the major steps of our analysis can easily be

explained in the simple hypothetical case of time-invariance of the distributions of centered

variables. Then (1.4) becomes

F (X) =

∫
c(x̃+X)µ(dx̃) (1.5)

In many applications it is justified to assume that aggregate explanatory variables Xti

change slowly over time in the sense that either (
Xti−Xt−1,i

Xt−1,i
)2 or (Xti−Xt−1,i)

2 are negligible.

Let the first n variables be of the first type and the remaining m variables of the second

type. A first order approximation of the function F at X = Xt−1 then yields

Ct − Ct−1

Ct−1

=
n∑

i=1

βi
t−1(

Xti −Xt−1,i

Xt−1,i

) +
n+m∑

j=n+1

βj
t−1(Xti −Xt−1,i)

+ terms of second order in (
Xti −Xt−1,i

Xt−1,i

)2 and (Xti −Xt−1,i)
2 (1.6)
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where

βi
t−1 =

Xt−1,i

Ct−1

∫
∂ic(x)distr(x|Ht−1),

βj
t−1 =

1

Ct−1

∫
∂jc(x)distr(x|Ht−1)

and ∂k denotes the partial derivative with respect to the k-th variable. Here we use the fact

that (1.5) implies ∂kF (Xt−1) =
∫
∂kc(x)distr(x|Ht−1).

If all explanatory variables on the micro-level were (!) observable and if the distribution

distr(x|Ht−1) were non-degenerate and spread (i.e. the population is large and heteroge-

neous in all explanatory variables), then individual information on {cht−1, x
h
t−1}h∈Ht−1 , i.e.

micro-data in period t − 1, would give us knowledge about the micro-relation c, since by

(1.1) cht−1 = c(xh
t−1), h ∈ Ht−1. Consequently, in this hypothetical case the partial deriva-

tives ∂kF (Xt−1), and hence the coefficients βt−1 in (1.6) can be related to micro-data in

period t− 1.

Unfortunately, however, not all explanatory variables on the micro-level are observable!

At this point it is important to make a distinction between observable and unobservable

explanatory variables on the micro-level. We denote by yh
t the vector of observable and

micro-specific variables, assuming that the population is heterogeneous in y in the sense

that the distribution of yh
t across the population Ht is non-degenerate. The remaining

explanatory variables are either non observable, denoted by the vector vh
t , or observable,

yet not micro-specific, denoted by the vector pt. With this notation Xt ≡ (Yt, Vt, pt) and

therefore we obtain Ct = F (Xt) = F (Yt, Vt, pt).

The important point now is that those coefficients βt−1 in (1.6) which correspond to

the observable and micro-specific explanatory variables can still be related to micro-data in

period t − 1. Indeed, consider for example the first partial derivative ∂1F (Xt−1). Assume

that yh
t−1 and vh

t−1 do not correlate across the population Ht−1 (this assumption is weakened

in the paper) then one obtains

∂1F (Xt−1) =

∫
∂1c̄t−1(y, pt−1)distr(y|Ht−1)

where c̄t−1(y, pt−1) :=
∫
c(y, v, pt−1)distr(v|Ht−1(y)) is the regression function of cht−1 given

y which can be estimated from individual observations in period t − 1. Consequently, the

partial derivative and hence the coefficient β1
t−1 can be determined from suitable micro-data

in period t−1. This can be done separately for each period without specifying the structure

of unobservables.

This observation plays a key role in our analysis. By generalizing the above simple

example we demonstrate that there are explicit ways to incorporate data on the individual

level into building and analyzing aggregate models.
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The practical importance of this point is best seen when first considering the standard

time series approach used in applied work to analyze aggregate models. In this context

model building is done from a point of view quite different from the above approach that

is based on aggregation. The time series {Ct} is considered as a realization of a stochastic

process and emphasis lies on constructing a valid time series model which links {Ct} to an

observable multivariate time series {Zt}. If relative changes of Ct are of primary interest,

such models take the form

logCt − logCt−1 = ∆ logCt =
∑

j

θjZtj + εt (1.7)

Specification of model components Ztj usually relies on microeconomic reasoning. Typically,

means of micro-variables xh
t are taken as explanatory variables on the aggregate level, and

some of Ztj then correspond to components of logXt − logXt−1 or Xt −Xt−1. Often also

higher lags Xt−1−Xt−2, . . . or lags of the mean response ∆ logCt−1, . . . will be incorporated

into the Zt. Frequently, the error term εt will be modelled as white noise, but sometimes

also a more complex MA-structure is assumed.

Quite obviously at this point there is a formal similarity between (1.6) and (1.7), since

relative differences as (Ct − Ct−1)/Ct−1 are usually well approximated by differences in

logarithms as logCt − logCt−1.

On the other hand, in many situations aggregate models (1.7) will also include terms

which are not related to any explanatory variable at the micro-level. The reason is that

establishing a valid model (1.7) necessarily involves a stochastic analysis of properties of

the underlying time series. Additional variable, for example error correction terms, may

have to be introduced in order to achieve a proper modelling of the stochastic behavior

(for a comprehensive survey of modern time series theory see, for example, Greene (2003)

). In the context of consumption analysis important work in this direction is, for example,

Davidson et al (1978) and Deaton (1992)).

Time series analysis is a powerful tool but it also has some limitations. Model building

is usually not easy and has to rely on a number of specific assumptions. It is well known

that in many cases quite different looking models can lead to very similar fits. In principle

misspecification of a single component θjZtj or of the error term may result in inconsistent

parameter estimates and invalid economic conclusions. Further problems arise when fitting

a highly parametrized model (1.7) to comparably short economic times series by using

least squares, maximum likelihood, etc. Due to the possibility of overfitting and finite

sample effects, considerable care may be necessary when interpreting model fits or estimated

parameters.

In this paper we do not intend to replace time series modelling but to introduce an
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additional tool which allows to isolate the effects of some important observable variables,

and which may help to achieve a still greater accuracy of macroeconomic modelling by

incorporating the rich information which is contained in micro-data.

Our approach concentrates on the micro specific observable variables yh
t . Since xh

t =

(yh
t , v

h
t , pt) the general relation (1.1) becomes

Ct =

∫
c(y, v, pt)distr(y, v |Ht)

Thus any change in Ct is caused by a change in distr(y, v |Ht) and/or pt. Our approach

now relies on an explicit modelling of the evolution of the distribution which generalizes

our simple example given above. As before, we assume that time changes are not arbitrary,

but occur in a ”structurally stable” way. This concept is explained in detail in Sections 2

and 3. It is also motivated there that it will often be possible to parametrize changes of the

distribution of yh
t in terms of changes of the corresponding mean values mt and covariance

matrices Σt over the population. We will show that structural stability allows to find a

local solution of the aggregation problem without specifying a functional form of the micro-

relation. By applying a first order approximation generalizing (1.6) it is then derived in

Section 4 that the following decomposition holds:

∆ logCt ≈
Ct − Ct−1

Ct−1

= βT
t−1(mt −mt−1) + trace(Γt−1(Σ

1/2
t Σ

−1/2
t−1 − I)) +

∑
j

θjZ
∗
tj + error

(1.8)

The effect of changes in the distribution of the observable and micro specific variables yh
t

is captured by the first two terms on the right hand side of (1.8), where βt−1 and Γt−1

are possibly time varying vectors and matrices of coefficients, respectively. The third term∑
j θjZ

∗
tj quantifies the influence of other explanatory variables corresponding to vh

t and pt.

A more specific form of this remainder term is given in the proposition of Section 4.

The crucial point now is that our theory relates the coefficients βt−1 and Γt−1 to individ-

ual data. They can be determined from derivatives of suitable regression functions which

can be estimated from micro observations. A precise definition of the coefficients is given in

the Proposition. In principle various kinds of micro data can be used (cross-section, panel

or experimental data) provided that the data contain the appropriate variables and that

the underlying samples are representative for the population in every time period.

Of course, such micro data also allow to compute means mt and covariance matrices

Σt. Therefore, the complete terms βT
t−1(mt − mt−1) + trace(Γt−1(Σ

1/2
t Σ

−1/2
t−1 − I)) can be

estimated from the micro data without invoking any time series fitting. This approach has

several attractive features.
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• A partial analysis is possible, and the effects of changes in the observable micro-

specific variables can be isolated without specifying the structure of the remaining

terms
∑

j θjZ
∗
tj or of the error. This is not possible in a pure time series model, where

a consistent estimation of parameters always requires the specification of a complete

model.

• Using individual data, calculation of βT
t−1(mt − mt−1) + trace(Γt−1(Σ

1/2
t Σ

−1/2
t−1 − I))

does not use any information about the structure of the time series {∆ logCt}. Since

no model fitting takes place, this may provide more precise information about the

explanatory power of the observable micro-specific explanatory variables.

• In our model the coefficients βt and Γt are behavioral parameters characterizing the

population in period t. Therefore, there is no a priori reason that they will be time

invariant. Estimation from micro-data separately for each period will automatically

adapt to possible time changes in these coefficients.

This approach is illustrated in Section 5 for the case of consumption expenditure. Using

cross-section data from the UK-Family Expenditure Survey, we perform a partial analysis

as described above by relying on current income and assets as the observable micro-specific

variables. It turns out that these variables explain an essential part of the observed changes

in mean consumption.

Of course, a complete model requires to specify the remainder terms
∑

j θjZ
∗
tj as well as

the stochastic error structure. However, different from (1.7), it is only necessary to model

the stochastic structure of the residual series

∆ logCt − βT
t−1(mt −mt−1)− trace(Γt−1(Σ

1/2
t Σ

−1/2
t−1 − I))

and a lower number of components will have to be fitted from the time series. Note that

for prediction purposes the resulting series βT
t−1(mt − mt−1) + trace(Γt−1(Σ

1/2
t Σ

−1/2
t−1 − I))

may also be analyzed from a time series point of view in order to forecast future values.

We will not consider these points in detail, since our paper concentrates on the role of the

observable micro-specific variables.

The paper is organized as follows. Our setup is described in Section 2, while in Section

3 we develop the concept of structural stability of distributions. The main theoretical result

is presented in Section 4. Section 5 contains an empirical study which applies our theory

to modelling consumption expenditure. In the appendix we give an explicit example of a

micro relation as used in the paper.
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2 Definitions and Notation

The starting point of aggregation analysis is a specification of a complete set of explanatory

variables on the micro-level for a certain explicandum (response variable), for example,

consumption expenditure of a household or labor demand of a production unit. The choice

of the explanatory variables is based either on experimental economics or on microeconomic

theory, that is to say, on a model of behavior. In neoclassical microeconomics behavior

is modelled by an intertemporal (utility) maximization problem under uncertainty. Then

the parameters which define this maximization problem are the explanatory variables (see

Appendix for an explicit example).

Typically, some of the explanatory variables are observable and others are unobservable.

For a micro-unit h in period t we denote by yh
t the vector of observable and micro-specific

variables (e.g., labor income or wealth). The remaining variables are either unobservable,

denoted by the vector vh
t (e.g., expected future labor income), or observable, yet not micro-

specific, denoted by the vector pt (e.g., current prices or interest rates).

Note that the vector of explanatory variables yh
t , v

h
t , pt in period t might contain com-

ponents which refer to periods t− 1, t− 2, . . . , e.g., past labor income.

We assume that the vector of explanatory variables contains everything that is relevant

for the decision. Then, the explicandum (response variable), denoted by cht , is uniquelly

determined by the explanatory variables (yh
t , v

h
t , pt), that is to say

cht = c(yh
t , v

h
t , pt). (2.1)

We do not need any knowledge about the functional form of this relationship c. We shall

assume, however, that c is continuously differentiable in all variables.

The population of micro-units in period t is denoted by Ht. Then, the mean response
1

#Ht

∑
h∈Ht

cht of the population Ht is given by

Ct =

∫
c(y, v, pt) distr(y, v |Ht) (2.2)

where distr(y, v |Ht) denotes the joint distribution of the micro-specific explanatory vari-

ables (yh
t , v

h
t ) across the population Ht. Analogously, distr(y |Ht) denotes the observable

distribution of yh
t across Ht.

In addition to the explanatory variables (y, v, p) in the micro-relation (1) we consider

certain observable micro-specific attributes (socio-economic variables, e.g., household size or

age of household head). Let a = (a1, a2, . . . ) denote a finite profile of such attributes. We
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allow for a finite set A of profiles. Let distr(y, a |Ht) denote the observable joint distribution

of (yh
t , a

h
t ) across the population Ht.

By Ht(y, a) we denote the subpopulation of all micro-units in Ht with yh
t = y and

ah
t = a. Then, if Ht(y, a) 6= ∅, distr(v |Ht(y, a)) denotes the distribution of vh

t across the

subpopulation Ht(y, a). Finally, we define the regression function c̄t(·, ·, pt)

c̄t(y, a, pt) :=

∫
c(y, v, pt) distr(v |Ht(y, a)). (2.3)

With this definition, the mean response can be written as

Ct =

∫
c̄t(y, a, pt) distr(y, a |Ht). (2.4)

For a finite population Ht the regression function is only defined for those variables (y, a)

with Ht(y, a) 6= ∅, i.e., with (y, a) in the support of the distribution distr(y, a |Ht), which

is a finite set. The mathematical analysis is greatly simplified if one assumes that the

regression function ct(y, a, pt) is a smooth function in y. This requires1 that the population

Ht is “infinitely large” and heterogeneous in the observable explanatory variable y in the

sense that the distribution distr(y |Ht(a)) is concentrated on an open domain in IRn. To be

simple and specific one might assume that the support of distr(y |Ht(a)) is equal to IRn.

Remark: Why stratification by attribute profiles? The reason for introducing observable

attributes in addition to the explanatory variables in (2.1) is to justify the assumption

(hope) that, by stratifying on y and a, the subpopulation Ht(y, a) becomes ”homogeneous”

in the unobservable explanatory variable v, either in the strong sense that vh
t = vt(y, a) for

all h ∈ Ht(y, a) or, more generally, that the distributions distr(v |Ht(y, a)) are ”structurally

stable” (see Assumption 1). Furthermore, one might expect that the presence of a strong

correlation between vh
t and (yh

t , a
h
t ) across Ht reduces the time-dependence of mean

Ht(y,a)
vh

t , at

least for some components of v. Note that time-invariance of mean
Ht(y,a)

vh
t,i does not imply

time-invariance of mean
Ht

vh
t,i. It implies however that the change on the aggregate level is

caused by the change in the distribution distr(y, a |Ht). We emphasize that time-invariance

of mean
Ht(y,a)

vh
t,i has an important consequence: the unobservable explanatory variable vi does

1If one insists on a formal mathematical definition, one considers a ”continuum of economic agents”,
i.e., a measure space (Ω,F , P ) of micro-units (e.g., [0, 1] with Lebesgue measure). The population in
period t is then defined by the measurable mappings Yt, Vt, and At of Ω into IRn × IRm × A, where
Yt(ω) = (yω

t,1, . . . , y
ω
t,n), Vt(ω) = (vω

t,1, . . . , v
ω
t,m), and At(ω) = aω

t .

The above distributions distr(y |Ht) and distr(y, v |Ht) are then defined as the image distribution
of P with respect to the mapping Yt and the mapping (Yt, Vt), respectively. The above distribution
distr(v |Ht(y, a)) is defined as the conditional distribution of Vt given the mappings Yt and At.
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not have to be modelled explicitly since - as we shall show - its influence on the change

over time in Ct is fully captured by the ”cross-section effect” of the Proposition. Therefore,

under time-invariance, one can avoid the delicate problem of postulating an ”observable

proxy” for an unobservable variable.

3 Structural Stability

With the notation of the last section one obtains for the mean response

Ct =

∫ [∫
c(y, v, pt) distr(v |Ht(y, a))

]
distr(y, a |Ht).

Thus, given the micro-relation (1), the change over time in Ct is caused by the change over

time in the distributions distr(y, a |Ht) and distr(v |Ht(y, a)) as well as the vector pt of

non-micro-specific explanatory variables.

3.1 The change over time in distr(y, a |Ht)

We emphasize that the distribution distr(y, a |Ht) is observable and therefore any assump-

tion on the way how these distributions change over time can be falsified.

We shall first consider the change over time in the distribution distr(y |Ht) of the ob-

servable micro-specific explanatory variables y.

Let mt denote the vector of means of yh
t across the population Ht, mt,i := mean

h∈Ht

yh
t,i, and

Σt the covariance matrix of yh
t across Ht, Σt :=

(
cov
h∈Ht

(yh
t,i, y

h
t,j)

)
i,j

. We assume that the

population Ht is sufficiently heterogeneous in yh
t in the sense that the covariance matrix is

non-singular.

The standardized distribution of yh
t across Ht is defined as the distribution of ỹh

t :=

Σ
− 1

2
t (yh

t −mt) across Ht.

Thus, mean
Ht

ỹh
t = 0 and cov

Ht

(ỹh
t , ỹ

h
t ) = I, the unit matrix.

Hypothesis 1: Structural Stability of distr(y |Ht)

The standardized distribution of yh
t across Ht changes sufficiently slowly over time in the

sense that the standardized distributions can be considered as time-invariant for two periods

s and t that are close to each other.
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Obviously, Hypothesis 1 is trivially satisfied if distr(y |Ht) are multivariate normal dis-

tributions. We remark that Hypothesis 1 does not model the dynamics of distr(y |Ht).

Time-invariance of the standardized distributions implies that distr(y |Ht) in period t is

determined by mt,Σt, and distr(y |Hs) in period s, since, as one easily verifies,∫
f(y) distr(y |Ht) =

∫
f

(
Σ

1
2
t Σ

− 1
2

s (y −ms) +mt

)
distr(y |Hs) (3.1)

for any integrable function f(y).

Remark: In our application to consumption expenditure in Section 5 we consider two ob-

servable micro-specific explanatory variables; ηh
t,1 income from labor and ηh

t,2 income from as-

sets (property). It is well-known that the observed income distributions of actual economies

evolve over time in a surprisingly “structurally stable” way. Income and wealth distribu-

tions have been studied extensively in the literature, starting with Pareto (1897). For recent

references see Atkinson and Bourguignon (2000). The empirical studies support well Hy-

pothesis 1 for yt,1 := log ηh
t,1 and yh

t,2 := log ηh
t,2. In this case, the parameter σ2

t (variance of

log ηh
t ) can be interpreted as a measure of income dispersion (inequality). For a symmetric

log-income distribution the parameter mt is equal to the logarithm of median income.

In the literature (e.g., Malinvaud (1993)) one considers sometimes a stronger concept

of “structural stability”; the time-invariance of the relative income distribution, which is

defined as distr(ηh
t /η̄t |Ht), where η̄t denotes mean income across Ht. In this case the

dispersion σt is constant. For time-invariant σt one easily shows that time-invariance of

the standardized log-income distribution is equivalent to time-invariance of the relative

income distribution. We remark, that the concept of “mean-scaled” income distribution

as formulated by Lewbel (1990) and (1992) is closely related to the time-invariance of the

standardized log income distribution.

For statistical estimates of standardized log income distributions based on FES-data we

refer to Hildenbrand and Kneip (1999) and Hildenbrand, Kneip and Utikal (1998).

Next we consider the observable attribute-profile distribution across the subpopulation

Ht(y), that is to say, distr(a |Ht(y)). The shape of these distributions, as well as their

dependence on y and t, crucially depend on the nature of the attributes, for example,

household size or age of household head. Typically, distr(a |Ht(y)) depends on the vector

y of the observable micro-specific variables and is not time-invariant (for an example, see

Hildenbrand and Kneip (1999)). Obviously, it is problematic to model the change over time

in the joint distribution distr(y, a |Ht), consistent with Hypothesis 1, without being specific

about the nature of the observable micro-specific variable y and the observable attribute

profile a. Since in this theoretical part of our analysis we want to avoid considering particular
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examples, we consider the case where the attribute profile distribution changes much slower

than the distribution of the micro-specific explanatory variables y.

This motivates the following

Hypothesis 2:

For two periods s and t that are close to each other, the attribute-profile distribution

distr(a |Ht(y
t)) across the subpopulation Ht(y

t) can be considered as equal to the attribute

profile distribution distr(a |Hs(y
s)) across the subpopulation Hs(y

s) if yt and ys are in the

“same position” in the standardized y-distribution of period t and s, respectively, i.e.,

Σ
− 1

2
t (yt −mt) = Σ

− 1
2

s (ys −ms).

One easily shows that Hypotheses 1 and 2 imply∫
f(y, a) distr(y, a |Ht) =

∫
f

(
Σ

1
2
t Σ

− 1
2

s (y −ms) +mt, a
)

distr(y, a |Hs) (3.2)

for any integrable function f(y, a). It is this consequence of Hypotheses 1 and 2 which is

used in the proof of our Proposition.

3.2 The change over time in distr(v |Ht(y, a))

In contrast to Subsection 3.1, the distribution distr(v |Ht(y, a)), whose change over time

has to be modelled, is now unobservable. Thus, any assumption on the change over time in

these distributions is speculative (purely theoretical).

The change over time in the regression function

c̄t(y, a, pt) =

∫
c(y, v, pt) distr(v |Ht(y, a))

is caused by the change in distr(v |Ht(y, a)) and pt. A trivial way to simplify the time

dependence of c̄t would be to assume that the subpopopulation Ht(y, a) is homogeneous in

the unobservable explanatory variable vh
t , i.e., vh

t = vt(y, a) for every h ∈ Ht(y, a). Then

one obtains

c̄t(y, a, pt) = c(y, vt(y, a), pt).

If one views the subpopulation Ht(y, a) as heterogeneous in the unobservable micro-

specific explanatory variable vh
t , for example, in the sense that the covariance matrix of

vh
t across Ht(y, a) is non-singular, then one might assume - analogously to Hypothesis 1 of

Structural Stability - that the standardized distributions of vh
t across Ht(y, a) are locally

12



time-invariant. However, to simplify the analysis (mainly the notation) we shall assume a

stronger form of Structural Stability. Instead of the standardized distribution we consider

the centered distribution which is defined as the distribution of vh
t − vt(y, a) across the

subpopulation Ht(y, a) where vt(y, a) denotes the mean of vh
t across Ht(y, a).

Assumption 1: Structural Stability of distr(v |Ht(y, a))

The centered distribution of vh
t across Ht(y, a) changes sufficiently slowly over time in the

sense that these distributions can be considered as time-invariant for two periods s and t

that are close to each other.

Finally, we need in the proof of our Proposition an assumption which specifies how the

mean of the unobservable variable vh
t,i across the subpopulation Ht(y, a) depends on y and

t. This, obviously, depends on the nature of the unobservable micro-specific explanatory

variable vi.

The most favorable case for our analysis would prevail if one could view the mean

vt,i(y, a) as time-invariant (or sufficiently slowly changing). Recall that time-invariance of

vt,i(y, a) does not imply time-invariance of meanHt v
h
t,i (i.e., on the aggregate level). An

example might be a structural parameter of the utility function by assuming that for a

micro-unit h this parameter is determined by y and a.

On the other hand, one might consider the case where vh
t,i and yh

t do not correlate across

the subpopulation Ht(a). This case trivially prevails if one assumes that the subpopulation

Ht(a) is homogeneous in vh
t (an assumption which is usually made in demand analysis).

Then vt,i(y, a) does not depend on y and is equal to meanHt(a) v
h
t,i =: vt,i(a), which we allow

to change over time (otherwise we are back in the above case). The cause of this change

is exogeneous in our model. The growth rate (not the level!) of future labor income as

anticipated in period t might be an example.

The above discussion motivates the following

Assumption 2: Additive Factorization

The mean of vh
t across Ht(y, a) can be factorized by

mean
Ht(y,a)

vh
t =: vt(y, a) = ϕ(y, a) + ψ(t, a)

where the function ϕ is continuously differentiable in y.

Remark: Depending on the nature of the unobservable explanatory variable it might be

13



more natural to consider a multiplicative (or even more complex) factorization. To be

simple and specific we have chosen the additive form. It will become clear in the proof

of our Proposition how the arguments have to be modified in the case of an alternative

factorization.

4 The change in mean response Ct

Let us first recall some definitions that are needed in formulating our main result. As in

the previous sections, let ms and Σs denote the mean and the covariance matrix, respec-

tively, of the vector yh
s of the observable and micro-specific explanatory variables across

the population Hs. Define vs(y, a) as the mean of the unobservable explanatory variables

vh
s across the subpopulation Hs(y, a), vs(a) := meanHs(a) v

h
s =

∫
vs(y, a) distr(y |Hs(a)) and

vt,s(a) :=
∫
vt(y, a) distr(y |Hs(a)).

Proposition: Let the micro-relation (2.1) and the regression function (2.3) be continuously

differentiable in the explanatory variables y, v, and p. Then Hypotheses 1 and 2 and Assump-

tions 1 and 2 imply that for two periods s and t that are close to each other the relative

change in the mean response Ct can be decomposed in the following form

Ct − Cs

Cs

= βT
s (mt −ms) + trace

[
Γs(Σ

1
2
t Σ

− 1
2

s − I)
]

+

∫ [
(δa

s )
T (vt,s(a)− vs(a))

]
distr(a |Hs)

+ θT
s (pt − ps)

+ terms of second order in ||mt −ms||2,
||Σ

1
2
t Σ

− 1
2

s − I||2, ||vt,s(a)− vs(a)||2, and ||pt − ps||2

where the vector βs and matrix Γs of coefficients are defined by

βs :=
1

Cs

∫
∂y c̄s(y, a, ps) distr(y, a |Hs)

and

Γs :=
1

Cs

∫
(y −ms)[∂y c̄s(y, a, ps)]

T distr(y, a |Hs).

Remark: The effect on the mean response Ct of the change in the distribution of the

observable and micro-specific variables yh
t is captured by the term

βT
s (mt −ms) + trace

[
Γs(Σ

1
2
t Σ

− 1
2

s − I)
]
.
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The vector βs and the matrix Γs of coefficients are directly related to data on the micro-level

in period s. Consequently, they do not depend on the postulated micro-relation. By defi-

nition these coefficients are mean derivatives of observable regression functions. Therefore

they can be estimated separately from cross-section data in every period. Empirical results

will be given in Section 5.

We emphasize that βs and Γs are dependent on the chosen set of attribute profiles A.

Indeed, if one conditions on attribute profiles a ∈ A one obtains

βAs =
1

Ct

∫ [∫
∂y c̄s(y, a, ps) distr(a |Hs(y))

]
distr(y |Hs).

If one does not condition at all on attribute profiles, A = ∅, then one obtains

β∅s =
1

Ct

∫
∂y c̃s(y, ps) distr(y |Hs)

where c̃s(y, ps) =
∫
c(y, v, ps)distr(v |Hs(y)) =

∫
c̄s(y, a, ps)distr(a |Hs(y)).

Hence

β∅s =
1

Ct

∫ [
∂y

∫
c̄s(y, a, ps)distr(a |Hs(y))

]
distr(y |Hs).

Consequently, if distr(a |Hs(y)) depends on y, which typically is the case, then βAs 6= β∅s .

The remaining terms in the Proposition which capture the effect of the change in the

unobservable and micro-specific variables vi naturally also depend on the chosen set A of

attribute profiles. As explained above, the aim of conditioning on a ∈ A is to make either

these terms negligible or, at least, independent of the change in the distribution of observable

explanatory variable y. For example, if one has good reasons to postulate (believe) that

for a certain unobservable explanatory variable, say vh
t,i, the mean across the subpopulation

Ht(y, a) is time-invariant, then the i-th component of the vectors vt,s(a) and vs(a) are equal.

Consequently, the corresponding term δa
s,i(vt,s,i(a)−vs,i(a)) in the Proposition is zero. Often

the unobservable parameters of the utility function are treated this way. For other examples,

see the Appendix. Alternatively, one might assume that the mean vs,i(y, a) does not depend

on y. (The growth rate of anticipated future labor income might be an example). In this

case the corresponding term in the Proposition is not zero, yet it is not effected by the

change in the distribution of the observable and micro-specific variables yh
s . Consequently,

if for a given set A of attribute profiles vs,i(y, a) either is time-invariant or does not depend

on y, then the effect on the mean response Ct of a change in the distribution of observable

and micro-specific variables can be fully isolated and quantified. Whether such a partial

(incomplete) analysis of the relative change in Ct explains an essential part of the observable

change in Ct is, of course, an empirical question, which is studied in the case of consumption

expenditure in Section 5, where we also argue that terms of second order can be neglected.
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Proof. By definition

Ct :=

∫
c(y, v, pt) distr(y, v |Ht)

=

∫
c̄t(y, a, pt) distr(y, a |Ht) (4.1)

with

c̄t(y, a, pt) :=

∫
c(y, v, pt) distr(v |Ht(y, a))

=

∫
c(y, ṽ + vt(y, a), pt) distr(ṽ |Ht(y, a))

(recall ṽh
t := vh

t − vt(y, a) denotes the centered variable)

=

∫
c(y, ṽ + vt(y, a), pt) distr(ṽ |Hs(y, a))

by Assumption 1 if the periods s and t are close to each other. To shorten the notation, let

ga
s (y, v, p) :=

∫
c(y, ṽ + v, p) distr(ṽ |Hs(y, a)).

Then one obtains

c̄t(y, a, pt) = ga
s (y, vt(y, a), pt). (4.2)

Note that ga
s (y, vs(y, a), ps) = c̄s(y, a, ps).

Now Assumption 2 comes into play, i.e., vt(y, a) = ϕ(y, a) + ψ(t, a).

Let

vt(a) := mean
Ht(a)

vh
t =

∫
vt(y, a) distr(y |Ht(a)) and

vt,s(a) :=

∫
vt(y, a) distr(y |Hs(a)).

With this definition one obtains

ψ(t, a)− ψ(s, a) = vt,s(a)− vs(a),

and hence,

vt(y, a) = vt,s(a) + ϕ(y, a)− vs(a) + ψ(s, a).

Then (4.2) leads to

c̄t(y, a, pt) = fa
s (y, vt,s(a), pt) (4.3)

where fa
s (y, v, p) := ga

s (y, v + ϕ(y, a)− vs(a) + ψ(s, a), p).
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Note that fa
s (y, vs(a), ps) = c̄s(y, a, ps). Substituting (4.3) in (4.1) one obtains

Ct =

∫
fa

s (y, vt,s(a), pt) distr(y, a |Ht)

=

∫
fa

s (Σ
1
2
t Σ

− 1
2

s (y −ms) +mt, vt,s(a), pt) distr(y, a |Hs)

by Hypotheses 1 and 2.

Consequently, Ct − Cs =∫ [
fa

s (Σ
1
2
t Σ

− 1
2

s (y −ms) +mt, vt,s(a), pt)− fa
s (y, vs(a), ps)

]
distr(y, a |Hs).

A first order Taylor expansion of fa
s (y, v, p) at (y, vs(a), ps) then yields

Ct − Cs =

∫
[∂yf

a
s (y, vs(a), ps)]

T ((Σ
1
2
t Σ

− 1
2

s − I)(y −ms) + (mt −ms)) distr(y, a |Hs)

+

∫
[∂vf

a
s (y, vs(a), ps)]

T (vt,s(a)− vs(a)) distr(y, a |Hs)

+

∫
[∂pf

a
s (y, vs(a), ps)]

T (pt − ps) distr(y, a |Hs)

+ terms of second order in ||mt −ms||2,
||Σ

1
2
t Σ

− 1
2

s − I||2, ||vt,s(a)− vs(a)||2, and ||pt − ps||2.

Since fa
s (y, vs(a), ps) = c̄s(y, a, ps) the vector βs of coefficients in the Proposition is

defined by

βs :=
1

Cs

∫
∂y c̄s(y, a, ps) distr(y, a |Hs).

Since ∫
[∂y c̄s(y, a, ps)]

T ((Σ
1
2
t Σ

− 1
2

s − I)(y −ms)) distr(y, a |Hs)

= trace

[∫
(y −ms)[∂y c̄s(y, a, ps)]

T distr(y, a |Ht)(Σ
1
2
t Σ

− 1
2

s − I)
]

the matrix Γs of coefficients in the Proposition is defined by

Γs =
1

Cs

∫
(y −ms)[∂y c̄s(y, a, ps)]

T distr(y, a |Hs).

5 Empirical Results

For analyzing our aggregate model of Section 4 we use data from the U.K. Family Ex-

penditure Survey (FES). Each year a total of approximately 7000 households record their
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expenditures on a large variety of consumption items. Also included in the survey are dif-

ferent forms of income and household attributes. For a precise definition of the variables,

sampling units, sampling designs, interviewing and field work, confidentiality, reliability

etc. we refer to the respective yearly FES manuals as well as the Family Survey Handbook

of Kemsley et al (1980). We include into the analysis data made available to us for all

years between 1968 and 1993 except for the year 1978, where our income variable could not

be constructed due to problems in the databasis. Households from Northern Ireland were

eliminated for all years.

In the present study we use information on household income and consumption as well

as on demographic and socioeconomic variables such as age and occupational status of the

household head, household size, etc., included in the yearly surveys. In economic literature

most studies focus on consumption of nondurable goods. Following this tradition we will

consider nondurable consumption which is defined as total consumption expenditure on

all goods and services minus housing costs and durable goods. Following HBAI standards,

household incomes are obtained by extracting relevant items from the elementary database1.

We distinguish between current disposable non-property as well as asset income of each

household. Our definition of asset income corresponds to the aggregate ”investment income”

used in the FES. It includes all sources of income which are due to private investments

or property. An approximation of household assets is obtained by using the quotient of

property income and the corresponding average yearly interest rate. It must be emphasized

that, for example, the value of an owner occupied house is not included in this definition

of assets. Consumption, assets and income in real prices are determined by dividing by the

price index of the respective month in which the household was included in the survey.2

We will concentrate on the effect of changes in the joint distribution of current in-

come and wealth on aggregate consumption. A major complication is the fact that there

is a considerable percentage of households in the sample with property income equal to

zero. In average over all years this ”null group” consists of approximately 40 percent of

all households2. Our analysis is performed separately for this group and the remaining

”non-null” group of household with positive wealth.3

2The task of elaborating the database and specifying consistent variables has mainly been accomplished
by Jürgen Arns. His careful work is gratefully acknowledged.

3Also included in the ”null group” are households with an extremely small property income of less
than 0.02 pounds per week in prices of 1968. There also exists a very small number of households with
negative values of either property income or disposable non-property income. These households have been
eliminated from the samples. In order to diminish the potential influence of outliers, all households with
consumption larger than eight times median consumption were also excluded. In total this procedure leads
to an elimination of between 0.1% and 0.3% of all households in the different samples.
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For the null group the standardized log income distribution turns out to be very stable

over time. This corresponds to previous results for the entire population as shown in

Hildenbrand, Kneip and Utikal (1998). For the non-null group one has to study the joint

distribution of income and assets. Interestingly the correlation between these variables is

extremely small for all years. The average value of the coefficient of correlation is −0.09.

Let yt,1 and yt,2 denote log-income and log-assets in year t, and let m
(1)
t,1 , σ

(1)
t,1 and m

(1)
t,2 , σ

(1)
t,2

denote the corresponding means and standard deviations for the non-null group. The joint

distribution of (
yt,1−m

(1)
t,1

σ
(1)
t,1

,
yt,2−m

(1)
t,2

σ
(1)
t,2

) changes very slowly over time. This is illustrated in

Figures 5.1 and 5.2 which show contour plots of the resulting bivariate densities for the

years 1987 and 1989. The structure of the density lines also indicate that the two variables

are ”almost” independent.

We apply our theoretical approach separately for the null and the non-null group to

analyze the dependence of the respective consumptions C
(0)
t and C

(1)
t on income and assets.

We only consider one year predictions with s = t− 1. Since yearly changes in the data are

of a order of magnitude of less than seven percent, the differences between
C

(j)
t −C

(j)
t−1

C
(j)
t−1

and

∆ logC
(j)
t = logC

(j)
t − logC

(j)
t−1 are negligible for j = 0, 1

For the null group there are no assets and our Proposition thus simplifies to

∆ logC
(0)
t = β

(0)
t−1,1(m

(0)
t,1 −m

(0)
t−1,1) + γ

(0)
t−1,1

σ
(0)
t,1 − σ

(0)
t−1,1

σ
(0)
t−1

+ remainder term (5.1)
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Fig. 5.1: density contours for 1987 Fig. 5.2: density contours for 1989

Here m
(0)
t,1 , σ

(0)
t,1 are mean and standard deviation of log income for the null group. As

mentioned above, there is only a very small correlation between income and assets for the
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non-null group. When assuming that already the joint distribution of (
yt,1−m

(1)
t,1

σ
(1)
t,1

,
yt,2−m

(1)
t,2

σ
(1)
t,2

)

is approximately time-invariant the terms in our expansion depending on differences of the

covariance matrices simplify in the sense that only changes of the respective variances have

to be taken into account. We then obtain

∆ logC
(1)
t =β

(1)
t−1,1(m

(1)
t,1 −m

(1)
t−1,1) + β

(1)
t−1,2(m

(1)
t,2 −m

(2)
t−1,2)

+ γ
(1)
t−1,1

σ
(1)
t,1 − σ

(1)
t−1,1

σ
(1)
t−1,1

+ γ
(1)
t−1,2

σ
(1)
t,2 − σ

(1)
t−1,2

σ
(1)
t−1,2

+ remainder term (5.2)

In (5.1) and (5.2) the influence of the additional explanatory variables v and p is sum-

marized by writing ”remainder term”. Note that our general theory does not provide any

information on the stochastic structure of this term. In particular, it is not reasonable to

assume that these remainder terms can be treated as i.i.d. error terms.

As already mentioned above our aim in this section is a partial analysis. We want

to capture the effect of changes in the joint distribution of current income and wealth on

aggregate consumption. However, this goal requires to specify a valid way to determine the

parameters βt and γt.

Following usual macroeconomic analysis parameter estimation has to be based on time

series models for {∆ logC
(j)
t ,m

(j)
t , . . . }. However, from this point of view ”models” (5.1)

and (5.2) are incomplete and do not allow any consistent parameter estimation. In order

to establish a valid time series model it will be necessary to specify the additional variables

hidden in the ”remainder term” and to study their stochastic behavior. Further assumptions

will have to be made concerning the possible variation of the parameters βt and γt, which in

our general approach are allowed to change from period to period. Of course, at any stage

of such a process of model building one encounters the inherent danger of misspecifications.

Incorrect models may lead to false conclusions.

Our approach offers a way to estimate the parameters without a time series modelling

of β
(1)
t . As has been explained in the theoretical part the values of βt, and γt are to be

obtained from suitable derivatives of regression functions. Separately for each year t they

can be estimated from the cross-section data on individual income and assets provided

by the FES. Figures 5.3 and 5.4 show the resulting estimates β̂
(0)
t,1 , β̂

(1)
t,1 , β̂

(1)
t,2 , γ̂

(0)
t,1 , γ̂

(1)
t,1 and

γ̂
(1)
t,2 for nondurable consumption of the null as well as the non-null group. Details of the

estimation procedure are described in Subsection 5.1.
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Fig. 5.3: Estimated values of β
(0)
t,1 (”•”), Fig. 5.4: Estimated values of β

(1)
t,1 (”•”),

and γ
(0)
t,1 (”N”) γ

(1)
t,1 (”N”), β

(1)
t,2 (”�”) and γ

(1)
t,2 (”�”)

When considering disposable income the average values of β̂
(0)
t,1 , β̂

(1)
t,1 , γ̂

(0)
t,1 , and γ̂

(1)
t,1 are

0.59, 0.53, 0.22, and 0.22. Changes of assets seem to possess a comparably much smaller

influence on consumption. The average values of β̂
(1)
t,2 and γ̂

(1)
t,2 are 0.035 and 0.068. Since,

however, our data only allows a rather rough approximation of household assets some care

is necessary when interpreting these results.

One recognizes that the estimates β̂
(0)
t,1 as well as β̂

(1)
t,1 possess a slightly falling trend.

In view of our theory this is quite easily interpretable. First we note that the time series

{m(j)
t,1} determined from our data have a pronounced increasing trend. At the same time

it is easily seen from its definition in Proposition 4 that β̂
(j)
t,1 can be interpreted as a mean

income elasticity of consumption across the respective population in period t. A falling

trend of β̂
(j)
t,1 therefore seems to indicate that the mean income elasticity becomes smaller

when the general level of income, as quantified by the mean m
(j)
t,1 of log income, increases.

This is certainly not implausible.

We now consider the question which proportion of consumption is explained by changes

in the current income distribution. We will consider the approximations ∆̂ logCt

(0)
and

∆̂ logCt

(1)
of ∆ logC

(0)
t and ∆ logC

(1)
t obtained by the different components of models (5.1)

and (5.2). For j = 0, 1 we use two measures to quantify the remaining differences, the

average absolute error (AE) and the relative residual sum of squares (RRSS):

AE = 100 · 1

T

∑
t

|∆ logC
(j)
t − ̂

∆ logC
(j)
t |, RRSS =

∑
t |∆ logC

(j)
t − ̂

∆ logC
(j)
t |2∑

t |∆ logC
(j)
t |2
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RRSS measures the sum of squared residuals relative to the original squared differences

|∆ logC
(j)
t |2. In a standard parametric regression model we have RRSS = 1 − R2. Obvi-

ously, the better a model the smaller the values of AE and RRSS. In order to obtain a

detailed picture the two and the four terms on the right hand side of (5.1) and (5.2), respec-

tively are added one by one. Hence, the second row of Table 5.1 refers to the approximation

∆̂ logCt

(j)
obtained when using only the first term β̂

(j)
t−1,1(m

(j)
t,1 −m

(j)
t−1,1) only. The last row

corresponds to the complete model.

In addition, the final predictions ∆̂ logCt

(j)
from the complete models (5.1) and (5.2)

were used to approximate changes ∆ logCt of aggregate consumption for the total popula-

tion of all households. We therefore use the approximation

∆ logCt ≈ π
(0)
t−1

C
(0)
t−1

Ct−1

∆̂ logCt

(0)
+ π

(1)
t−1

C
(1)
t−1

Ct−1

∆̂ logCt

(1)
, (5.3)

where π
(0)
t−1 and π

(1)
t−1 are the respective proportions of households in the null and non-null

group in period t− 1.

null group non-null total

AE RRSS AE RRSS AE RRSS

∆ logCt 2.24 2.52 2.22

β̂t−1,1(mt,1 −mt−1,1) 1.90 0.711 1.34 0.325

β̂t−1,1(mt,1 −mt−1,1) + β̂t−1,2(mt,2 −mt−1,2) 1.34 0.300

β̂t−1,1(mt,1 −mt−1,1) + β̂t−1,2(mt,2 −mt−1,2) 1.58 0.584 1.52 0.427

+γ̂t−1,1
σ

(1)
t,1−σ

(1)
t−1,1

σ
(1)
t−1,1

β̂t−1,1(mt,1 −mt−1,1) + β̂t−1,2(mt,2 −mt−1,2) 1.50 0.378 1.38 0.392

+γ̂t−1,1
σt,1−σt−1,1

σt−1,1
+ γ̂t−1,2

σt,2−σt−1,2

σt−1,2

Table 5.1

The following figure shows the yearly errors obtained when predicting nondurable con-

sumption for the whole population by (5.3).
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Fig. 5.4: ∆ log Ct (”◦”) and final approximation error (”•”)

We want to note that similar results are obtained when considering total consumption

of all goods and services instead of only nondurable consumption. In this case AE and

RRSS for the final model are 1.60 and 0.333.

Table 5.1 shows that based on (5.1) and (5.2) changes in income and assets explain

a considerable part of the variation of ∆ logC
(j)
t , j = 0, 1. This is a remarkable result

which may help to settle the long-lasting discussion in consumption theory whether or not

aggregate income possess an influence on aggregate consumption. The point is that when

interpreting the table it must be taken into account that there exists a crucial difference

to usual model fits obtained from standard time series methods. Recall that our approach

does not rely on fitting (5.1) or (5.2) to the observed time series {∆ logC
(j)
t }. Indeed,

parameter estimates β̂t and γ̂t are computed from cross-section data and calculation of

∆̂ logCt

(j)
does not incorporate any information about the structure of {∆ logC

(j)
t }. From

a statistical, data-analytic point of view there is thus no mechanism which enforces a small

approximation error. The possible values of RRSS are theoretically unbounded.

When considering the table in more detail one recognizes an ambivalent role of the term

γ̂t−1,1
σ

(1)
t,1−σ

(1)
t−1,1

σ
(1)
t−1,1

, which quantifies the influence of the changing income dispersion on con-

sumption expenditure. When adding this variance term, the approximation error decreases

for the null group and increases for the non-null group. There is a possible economic in-
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terpretation for this effect. A potentially important explanatory variable not considered in

(5.1) and (5.2) is the uncertainty of anticipated future income. In the Appendix a theoretical

argument is given which relates the general level of uncertainty in period t to

Vt = var(log yh
t − log yh

t−1)

which is the variance of the differences log yh
t − log yh

t−1 across the population. An increas-

ing/decreasing value of Vt then indicates an increasing/decreasing general level of uncer-

tainty. One may note that commonly used measures of uncertainty, as for example the

unemployment rate, are related to this variable. More unemployment will usually result in

higher values of Vt.

Let us now consider the role of σ2
t − σ2

t−1 . It is immediately seen from Figure 5.1 that

all estimated γt are positive and therefore the direct effect of an increasing variance of the

income distribution stimulates consumption. However, one easily verifies that

σ2
t − σ2

t−1 = Vt + 2 cov
H

(log yh
t − log yh

t−1, logy
h
t−1)

Although the covariance term may act as a nuisance, large values of σ2
t − σ2

t−1 may thus

tend to go along with large values of Vt and high income uncertainty. The negative effect

of higher uncertainty on consumption may well explain the empirical results of Table 5.1.

Due to the existence of savings it seems to be reasonable to assume that households in

the non-null group generally have a more ”forward-looking” behavior and thus are more

sensitive to uncertainty than households in the null group.

Of course, these arguments also give additional weight to the fact that (5.1) and (5.2)

are incomplete. A theoretically sound consumption model will have to include the ef-

fects of changing interest and inflation rates as well as aggregate proxis for expectation

and uncertainty of future income. Such proxis for expectations of future income may,

for example, include lagged values of mean log income. All parameters quantifying the

influence of such additional variables have to be estimated from the residual time series

{∆ logC
(j)
t − ∆̂ logCt

(j)
}. Establishing a valid time series model incorporating all relevant

variables obviously requires a considerable amount of additional work which is not in the

scope of the present paper.

5.1 Cross-section estimation of coefficients

Assume that for each period s there are data (chs , y
h
s1, y

h
s2, a

h
s ), h = 1, . . . , ns about current

consumption, log income, log assets, and household attributes from an independent sample

of ns households. Since the value of ps in period s does not depend on h, definition of
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βs = (βs1, βs2) implies that with y = (y1, y2)

βs =
1

Cs

∫
∂ycs(y1, y2, a, ps)distr(y1, y2, a|Hs) =

1

Cs

∫
∂y c̄s(y1, y2, a)distr(y1, y2, a|Hs)

where c̄s(·) ≡ cs(·, ps) is the regression function of chs on (yh
s , a

h
s ). Estimates ĉs and ∂y ĉs

of c̄s and its derivative with respect to y can thus be obtained by suitable parametric or

nonparametric regression methods. Indeed, from a statistical point of view the problem

of estimating βs falls into the domain of average derivative estimation (see, for example,

considered Härdle and Stoker (1989) or Stoker (1991) ).

We use a generalized version of a ”direct” average derivative estimator. In order to

guard against misspecifications in the relation between c and y estimation relies on a semi-

parametric model of the form

chs = c̄s(y
h
s1, y

h
s2, a

h
sj) + εhs = f1(y

h
s1) + f2(y

h
s2) +

∑
j

ϑja
h
sj + εhs

The household attributes ah
sj used are age, age2 and indicator variables referring to house-

hold size, employment status, occupation, month in which the household was recorded, and

region. For approximating the unknown functions fj, j = 1, 2, we rely on a quadratic spline

function with a prespecified number k of knots ij0, ij1, . . . , ijk. The knot locations are chosen

in such a way that in each interval [ij,l−1, ijl] there are approximately the same number of

observations yh
s1 or yh

s2, respectively. The spline parameters as well as the ϑj are then es-

timated by least squares, and with ∂y1 ĉs(y
h
s1, y

h
s2, a

h
sj) = f̂ ′1(y

h
s1), ∂y2 ĉs(y

h
s1, y

h
s2, a

h
sj) = f̂ ′2(y

h
s2)

an estimate of βs is then determined by

β̂s1 =

∑ns

h=1 f̂
′
1(y

h
s1)∑ns

h=1 c
h
s

, β̂s2 =

∑ns

h=1 f̂
′
2(y

h
s2)∑ns

h=1 c
h
s

By similar arguments reasonable estimates of the coefficient matrix Γs are obtained by

Γ̂s,ij =

∑ns

h=1(y
h
si − m̂si)f̂

′
j(y

h
sj)∑ns

h=1 c
h
s

where m̂s denotes the sample average of yh
s . The results presented in Section 5.1 turn out

to be stable when choosing a number of knots between k = 6 and k = 25.
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Appendix: Expected intertemporal utility maximiza-

tion: The consumption function of a forward looking

household

Given two non-negative stochastic processes (ητ )τ=0,...,T and (ρτ )τ=0,...,T on a probability

space (Ω,F , P ) with (non-random) starting points η0(ω) = y0 and ρ0(ω) = r0 and a (utility)

function in T + 2 real variables.

Let (cτ )τ=0,...,T denote a non-negative stochastic process such that cτ is Fτ -measurable,

where Fτ = σ(yτ , yτ−1, ..., ρτ , ρτ−1, ...) ⊂ F .

For given starting points y0, r0 and W0 ≥ −L consider the following maximization

problem:

max

∫
u(c0, c1(ω), . . . , cT (ω),WT+1(ω))P (dω)

subject to the sequence (τ = 0, . . . , T ) of budget constraints

Wτ+1 = (1 + ρτ )(Wτ + ητ − cτ ) ≥ −L, P − a.e.

A solution (c∗τ ) and hence, in particular, its first component c∗0 is determined by y0,W0, r0,

(ρτ , ητ )τ=1,...,T , u, and L, i.e.,

c∗0 ≡ c∗0[y0,W0, r0, (ρτ , ητ )τ=1,...,T , u, L]. (A.1)

If one is interested in an explicit solution, then, of course, one has to make specific assump-

tions on the stochastic process (ητ , ρτ ) and, in particular, on the utility function.

Now, we consider a household h in period t with current real income yh
t , real financial

wealth W h
t ≥ −Lh

t and an intertemporal utility function uh
t in T h

t + 2 variables.

In making the decision cht on current real consumption expenditure the household looks

into the future τ = t + 1, ..., t + T h
t . Let ηh

τ (t) and ρh
τ (t) denote the uncertain real in-

come and uncertain real interest rate, respectively, in the future period τ as anticipated

in period t. The stochastic process (ηh
τ (t))τ describes the subjective beliefs about future

income of household h. If consumption behavior on the household level is modelled by the

above maximization problem then real current consumption expenditure cht is determined

by yh
t ,W

h
t , rt, (η

h
τ (t), ρh

τ (t))τ=t+1,...,t+T h
t
, uh

t , and Lh
t :

cht ≡ cht [y
h
t ,W

h
t , rt, (η

h
τ (t), (ρh

τ (t))τ=t+1,...,t+T h
t
, uh

t , L
h
t ]. (A.2)

It will be appropriate to make a change of variable. Consider the stochastic growth rate of

anticipated income which is defined by

zh
τ (t) := log ηh

τ (t)− log ηh
τ−1, τ > t
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where ηh
τ (t) := yh

t . Since

zh
τ (t) = log

(
1 +

∆ηh
τ (t)

ηh
τ−1(t)

)
≈ ∆ηh

τ (t)

ηh
τ−1(t)

,

100 ·zh
τ (t) can be interpreted as the uncertain percentage change in anticipated income. The

stochastic process (ηh
τ (t))τ is determined by yh

t and the stochastic process (zh
τ (t))τ . Hence

current consumption expenditure cht is determined by yh
t ,W

h
t , rt, (z

h
τ (t), ρh

τ (t))τ=t+1,...,t+T h
t
, uh

t ,

and Lh
t :

cht [y
h
t ,W

h
t , rt, (z

h
τ (t), ρh

τ (t))τ=t+1,...,t+T h
t
, uh

t , L
h
t ]. (A.3)

Classification of the explanatory variables: the explanatory variables yh
t (income),

W h
t (wealth) and rt (interest rate) are observable. All other explanatory variables in (A.3)

are viewed as unobservable.

As we showed in the Remark to the Proposition in Section 4, a particular favorable case

for our decomposition of the change in mean consumption expenditure Ct prevails if the

mean of an unobservable explanatory variable vh
t across the subpopulation Ht(y,W, a) is

time-invariant. As we showed, such an explanatory variable has no effect on the change in

mean consumption expenditure Ct. Note that time-invariance of meanHt(y,W,a) v
h
t does not

imply time-invariance of meanHt v
h
t , since distr(y,W, a|Ht) is changing over time. If one

can expect that an explanatory variable vh
t is determined by income y, wealth W and the

attribute profile a, i.e., vh
t = v(y,W, a) for all households in Ht(y,W, a) in every period t,

then, trivially, one obtains the desired time-invariance. One might view the unobservable

variables Lh
t , T

h
t and uh

t in (A.3) to be of this type.

It is standard practice in aggregate consumption analysis to model the expectations

about future real interest rates by ρh
τ (t) ≡ rt, that is to say, one postulates that all house-

holds make their decisions under the assumption that future real interest rates are equal to

the current real interest rate. Thus, by assumption the unobservable expectational variable

ρh
τ (t) becomes observable.

It remains to discuss the modelling of the stochastic future growth rates zh
τ (t) as antic-

ipated in period t.

In the ”Rational Expectations” literature one starts from the assumption that past and

future income of a household is a realization of an autonomous stochastic process (ỹh
s ). The

probability distribution of (ηh
τ (t))τ=t+1,... (future real income as anticipated in period t) is

then defined as the conditional probability distribution of (ỹh
t+1, ỹ

h
t+2, . . . ) given Fh

t , i.e.,

given observations of ỹh
t , ỹh

t−1, . . . Thus, in particular Eηh
τ (t) = E(ỹh

τ |ỹh
t , ỹ

h
t−1, . . . ). This

view might be appropriate for the fiction of a “representative” household whose income in

period t is the mean income across the population Ht.
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Alternatively, one might consider directly the future stochastic growth rate zh
τ (t) as

anticipated in period t.

Assume, for example, that every household in Ht believes, that is to say, makes its

decision in period t under the assumption, that its future log-income log ηh
τ (t) is determined

by a random walk with drift µh
t . Then, zh

τ (t) = εhτ + µh
t where εhτ ∼ IIN(0, ν2

t,h). The

stochastic process (zh
τ (t)) is fully determined by the two parameters µh

t and ν2
t,h; Ezh

τ (t) =

µh
t , V (zh

τ (t)) = ν2
t,h and cov(zh

τ (t), zh
τ ′(t)) ≡ 0. Consequently, in (A.3) the unobservable

parameters (µh
t , ν

2
t,h) take the role of (zh

τ (t))τ . Obviously, in this case - in contrast to the

case of Lh
t , T

h
t or uh

t - it is hard to justify why meanHt(y,W,a) µ
h
t and meanHt(y,W,a) ν

2
t,h should

be time-invariant. Rather one might assume now that these means are independent of y

and W , yet changing over time. What then might cause the change in the mean of µh
t

and ν2
t,h across the subpopulation Ht(a)? Naturally one can never exclude a general change

in opinion about the future which can not be related to any of the explanatory variables

considered up to now. One can, however, argue that at least some part of a change in

meanHt(a) µ
h
t and meanHt(a) ν

2
t,h might be attributed to a change in meanHt(a) ∆ log yh

t and

varianceHt(a) ∆ log yh
t , respectively. For example, if µh

t = µa
t and ν2

t,h = ν2
t,a for all h ∈ Ht(a)

and if all households believe that their experienced growth rate ∆ log yh
t in period t is an

independently drawn sample from N(µa
t , ν

2
t,a), then the common expectational variables µa

t

and ν2
t,a must satisfy distr(∆ log yh

t |Ht) ∼ N(µa
t , ν

2
t,a).
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