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Abstract

A model of new-product diffusion is proposed in which a site-percolation dynamics represents

socially-driven diffusion of knowledge about the product’s characteristics in a population of po-

tential buyers. A consumer buys the new product if her valuation of it is not below the price of the

product announced by the firm in a given period. Our model attributes the empirical finding of a

delayed “take-off” of a new product to a drift of the percolation dynamics from a non-percolating

regime to a percolating regime. This drift is caused by learning-effects lowering the price of the

product, or by network-effects increasing its valuation by consumers, with an increasing number

of buyers.
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1 Introduction

Innovation is a central and crucial aspect of the functioning of capitalistic economies (see

Schumpeter (1911, 1942)). In particular, there exists a rich literature analyzing the incen-

tives for industrial innovation, starting with Arrow (1962). In the present paper, however,

we take as given that a new product has emerged and concentrate on the time-profile of its

spread in a population of consumers.

The analysis of the process of adoption of a new product (in the following termed new-

product diffusion) constitutes an important research area in both marketing science and

economics. From a practitioner’s perspective, relevant questions are, for instance, how to

forecast whether the new product will “take-off” (see Garber et al. (2004)), or, once it

did, the level of its future sales depending on the use of elements of the marketing mix (see

e.g. Bass et al. (2000); see also Chandrasekaran and Tellis (2005) for a general overview).

From a more theoretical perspective, one is interested, for instance, in why consumers

develop preferences for new products (see Witt (2001)), or whether such process tend to be

“path-dependent” or “ergodic” (see David (1985)).

Three main approaches to quantitative modeling of the time-profile of new-product

diffusion can be distinguished. First, there are phenomenological models of new-product

diffusion. This literature starts with Bass (1969). His model has seen numerous refinements

over the years (for an overview, see Mahajan et al. (1990, 1995)), and can reproduce the

evolution of sales over a wide range of the product life cycle employing appropriate para-

meter fits. Second, micro-models of new-product diffusion focusing on rational individual

decision-making were proposed (see, for instance, David and Olson (1986, 1992)). These

models typically ascribe to consumers a high degree of sophistication, in particular they

correctly foresee the future evolution of the market. The dynamics of diffusion is driven

by the interplay of expectations and maximization. Third, there appeared stochastic mi-

cromodels of new-product diffusion which focus on collective effects, often with a myopic

model of decision making. These models are variants of the spatial stochastic process called

percolation1 (see e.g. Allen (1982), Mort (1991), David and Foray (1994), Solomon et al.

(2000), Goldenberg et al. (2000), Silverberg and Verspagen (2002)).

Our present model is percolation-based. It is motivated by the empirical phenomenon

that in the early stages of new-product diffusion low levels of sales often persist over a

prolonged period of time before a “take-off” occurs (for a detailed discussion of this phe-

1For an introduction to percolation and its applications see Stauffer and Aharony (1994). An advanced

mathematical treatment of percolation can be found in the monograph by Grimmett (1999).
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nomenon see Golder and Tellis (1997) and Geroski (2003)). Serving as a prototypical

example of this phenomenon, Figure 1 (top) depicts the cumulative number of adopters

of a novel agricultural technique in Iowa in the first half of the last century. The data

in Figure 1 (top) is adapted from Ryan and Gross (1943). More examples of long-tailed

diffusion curves along with a discussion of the phenomenon of a delayed “take-off” of new

products can be found in Mort (1991) and Golder and Tellis (1997).

We find that our model provides a possible analytical explanation for delayed take-off

in new-product diffusion. It does so with a myopic individual decision-making model, i.e.

avoiding a self-fulfilling-prophecy mechanism relying on rational expectations. Up to our

knowledge, it is the first model capable of explaining delayed take-off as a purely collective

coordination phenomenon.2 The structure of the paper is as follows: Section 2 specifies

the basic model. Section 3 introduces macroscopic feedbacks and shows by Monte Carlo

simulations that the latter can lead to a diffusion-dynamics exhibiting a delayed take-off.

The paper concludes with a brief discussion of some additional aspects of our model.

2 The basic model

We model the process of diffusion of a new product3 (the emergence of which is assumed

rather than explained in our model) among a large population of consumers. Time is

discrete. In any period t, a consumer may buy either one unit of the product or none, with

at most one unit bought over the entire time horizon. The individual decision model of

a consumer consists of three steps: firstly, learning the product’s characteristics, secondly,

forming an individual (subjective) valuation of it, and thirdly, comparing one’s individual

valuation with the price set by the producer.

An essential ingredient of our model is a “spatial” dynamics facilitating individual as-

sessment of the product’s value by each potential buyer. Underlying this dynamics is a

social network – exogenous in the present model4 – which we take to be a two-dimensional

2Delayed take-off of new products has been explained in the model of David and Olson (1986, 1992) in

the context of rational expectations.

3We believe that our diffusion model can be applied to the more general issue of diffusion of innovations.

However, that more general context would require a more specific analysis of the question of why and how

innovations get adopted (see, for instance, Nelson et al. (2004)). In the present paper in the context of a

new product, we confine ourselves to specifying an abstract framework using the notion valuation which is

popular in abstract decision models in economics.

4An interesting question is how such networks emerge in social systems. This question is beyond the

scope of our present investigation, but see, for instance, the paper of Schnegg (2006) for an investigation

of this question in a related context.
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square lattice. It can be represented by a graph, with Z
2 as the set of nodes and a link

between any two a, b ∈ Z
2 if and only if ||a − b|| = 1, with || · || denoting the Euclidean

distance. In our finite model, the set of consumers is represented by a finite square-shaped

subset Λ ⊂ Z
2. Two consumers who are directly linked are called nearest neighbors. Each

consumer – except those at the boundary of Λ – has thus four nearest neighbors.

Our particular choice of the network model is presumably not a realistic one. Alas, we

are not aware of empirical studies investigating topologies of interactions in our particular

context, while results of studies investigating sociological network topologies related with

other types of human interactions do not appear to be a-priori transferable (see Schnegg

(2006)). Yet the principle mechanism by which a “take-off dynamics” is generated in

our model does not depend on the specific topology of the underlying network (with an

exceptional case to be discussed in the last section of this paper).

In each period, the nearest neighbors of those consumers who bought the product in

the immediately preceding period acquaint themselves with the product.5,6 Based on that

experience they form their individual valuations of the product7 reflected in the reservation

price θa (i.e. the highest price at which consumer a would buy). That assumption implies

that it is only via experiencing the product via one’s immediate social environment that a

consumer forms the valuation of it. In that sense, the innovation is “socially transmitted”.

We assume in our model that the transfer of “experience of the product” from one

consumer to another is “neutral” in the sense that the valuation formed by consumer a does

not depend on the valuation of that buyer who triggered the formation of a’s valuation.

Thus we specify that θa is a realization of the random variable Θa with the family (Θa)a∈Λ

independently identically distributed. To directly relate our basic model to the standard

percolation model, each random variable is equi-distributed on [0, 1].

Finally, the consumer’s decision to buy the new product is the following: consumer a

buys the product if her individual valuation θa exceeds or equals the price p.

We employ a simple specification of the supply side as consisting of a “non-maximizing”

monopolist using mark-up pricing i.e. the price p is given by the formula

p = (1 + m)c (1)

5In the first period, the dynamics is initialized by the introduction of a fixed number of early buyers

located randomly in the population. The origin of such “early birds” is exogenous to our model.

6We assume that buyers enable all their nearest neighbors to experience the product corresponding to

the case of pure site-percolation, i.e. bonds are always “open”.

7We assume that the formation of the individual valuation θa is made only once thus it is not reassessed

if in a later period another nearest neighbor of consumer a buys the product.
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with c denoting the unit production costs and m a positive number, the time-constant mark-

up. (See Blinder (1991) and Hall et al. (1997) for empirical evidence that firms indeed use

mark-up pricing.) In accordance with the specification of the range of individual valuations

let us assume that p ∈ [0, 1].

The dynamics of the model specified so far is well-known from the literature on perco-

lation models. In the following we briefly describe some basic properties of these models.

In the simplest case of an (atemporal) site-percolation model with some underlying graph

structure, each site of the graph is randomly assigned a value from {0, 1}, with probability

P for a realization of the value 1. The assignment of each value is stochastically indepen-

dent of the values assigned to other sites. Percolation is said to occur if there appears at

least one infinite unbounded cluster8 of sites with value 1. It turns out that there is a

threshold-value for the probability P , denoted by Pc, such that such an infinite cluster of

“active” sites occurs with probability 1 for P > Pc and with probability 0 for P < Pc (see

Stauffer and Aharony (1995)). For the particular graph structure specified in the paper

(two-dimensional square lattice) we have approximately Pc = 0.592743.

To apply Monte-Carlo techniques for the analysis of percolation models, dynamic processes

were proposed enabling to decide whether or not percolation occurs in a given model based

on the behavior of the associated process. For such processes the percolation threshold Pc

corresponds to that value of the probability P above which diffusion spreads over the entire

graph with a significant probability, and below which it “dies out” unless for extremely rare

instances. The dynamics of our model specified above corresponds to the Leath-algorithm

of percolation (Leath (1976)).

Let us now return to our particular model context. The probability for a consumer to buy

the product, given she comes to form her valuation (the latter condition is referred to as C),

is the probability that her valuation θa falls into the interval [p, 1]. Thus Prob(a buys|C) =

1 − p. According to what was said above, there is in our model a threshold value for the

price p such that for p > pc the diffusion of the product will “die out” but will spread

over the population for p < pc. Thus we have pc = 1 − Pc, the numerical value being

approximately 1−Pc = 0.407. A generic time profile of the adoption dynamics of the basic

model is illustrated in Figure 2: percolation occurs for p = 0.39, but does not occur for

p = 0.52. Figure 3 (top) depicts the final share of buyers as a function of the price. A

drastic decrease of that share occurs at pc = 0.407.

Note that while the functional form of the time-profile of sales in our model depends

on the particular network structure, the occurrence of spread over the entire population of

8A cluster is a set of connected “occupied” sites.
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consumers depends only on whether the prevailing price p is above or below pc.

In the next section we will extend our basic model by macroscopic feedbacks which

can affect the price or the valuation (or both). It turns out that this feature can produce

a “drift” of the percolation dynamics from a “non-percolating regime” to a “percolating

regime”, thereby facilitating a dynamics corresponding to a delayed “take-off”.

3 New-product diffusion with macroscopic feedbacks

In the following we introduce macroscopic feedbacks affecting the supply side or the demand

side (or both). In the extended model the price and the individual valuation may be time-

dependent such that the general decision rule reads: consumer a buys in t with t ≥ ta

if

θa,t ≥ pt and θa,t < pτ for all τ : ta ≤ τ < t

with ta denoting the time period in which consumer a learns the product’s characteristics

and forms an initial valuation.

We first turn to feedback affecting the supply side assuming that unit production costs

decrease with the cumulative quantity of units already produced. The decrease of unit

production costs is empirically well established and explained by learning within the firm.

Decreasing unit production costs are associated with the “learning curve” (see e.g. Yelle

(1979)) and with the related notion of “economies of scale” (see e.g. Scherer and Ross

(1990)). In our model, the “learning curve” is represented by a functional relationship

ct = f(Nt−1

N
) with Nt−1 denoting the number of consumers who bought the product up

to period t − 1 and N denoting the total number of consumers. The function f should

satisfy f(x) > 0, f ′(x) < 0 and f ′′(x) > 0 for the non-negative real numbers to comply with

empirical data. Thus, from Eq. 1 follows

pt = (1 + m)f(
Nt−1

N
). (2)

We specify feedback affecting the demand side by assuming that for each consumer a

the initial valuation θa is increased by an amount proportional to Nt−1. This effect reflects

the notion of “network externalities” increasing the utility of a product with the number of

other adopters (David (1985), Katz and Shapiro (1992)). Taking this effect into account,

we have a time-dependent individual valuation

θa,t = θa + µ
Nt−1

N
, (3)

with some constant µ which we assume to be independent of a. Note that it is not required

that θa,t ∈ [0, 1], see Eq. 4.
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Depending on the nature of the product considered, either one of the feedback effects

might vanish. For instance, computer software presumably exhibits only the second kind

of feedback effect, while household electronics exhibit only the first.

Note that the two types of macroscopic feedback effects are mathematically equivalent

in the sense that with increasing Nt−1 the existing gaps between the price of the product and

individual valuations of consumers who have not yet bought the product tend to vanish.

For that reason, many qualitative results to not depend upon which type of feedback is

considered.

The probability of buying thus increases over time. Indeed, for a consumer who forms

her evaluation in period t (condition C), the probability to buy in period t we get

Prob(a buys in t|C) =



















1 − pt + µ
Nt−1

N
if 0 ≤ 1 − pt + µ

Nt−1

N
≤ 1

0 if 1 − pt + µ
Nt−1

N
< 0

1 if 1 − pt + µ
Nt−1

N
> 1.

(4)

Moreover, in each period the decision of a consumer who formed her evaluation in some

earlier period and has not yet bought might be revised. As a result, in our model with

feedbacks there exists a range of initial prices (in the parameter setting depicted in Figure

3 (bottom) between approximately 0.41 and 0.53) for which the product “takes off” even-

tually, despite it would not take-off in the basic model of Section 2. For this range of initial

prices, the per-period sales curve exhibits two specific phases. First, a very low sales level

persists corresponding to the system being in the non-percolating regime. The dynamics

may exhibit a temporary decrease of per-period sales resulting from local diffusion seeds

which “die out” before reaching the percolating regime. Second, a “take-off” phase occur-

ring when diffusion seeds which “survived” long enough enter the percolating regime of the

dynamics.

The general principle underlying our model is that the diffusion dynamics may “drift”

from the non-percolating regime to the percolating regime. This drift occurs because the

probability of buying increases over time with the cumulative number of buyers. In the

remainder of this section, we present a few instances of such “drift” which were obtained

by Monte Carlo simulations. For simplicity, we maintain the assumption that the initial

individual valuation θa is equi-distributed on [0, 1].9 Figure 1 (bottom) depicts a diffusion

curve resulting from our model with macroscopic feedback affecting only the demand side

for a setting with one initial buyer in period t = 1, a 400× 400 lattice, a time-independent

9With this distribution being, for instance, a truncated normal distribution on [0, 1] all qualitative results

were reestablished.
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price p = 0.433 and the parameter µ equal to 0.4. The data is averaged over 500 simulation

runs. The reader may think of this averaged curve as modeling new-product diffusion in

a population located in many towns with network externalities affecting the population

within a single town only. A comparison of Figure 1 (top) and (bottom) illustrates that our

model can explain long flat tails empirically observed in the early stages of new-product

diffusion.

Figure 4 depicts the evolution of per-period sales (left-hand side) and cumulative sales

(right-hand side) resulting from a specification with one initial buyer in period t = 1

on a 400 × 400 lattice. Macroscopic feedback affects the demand side only; the time-

independent price is set to p = 0.435 (top) and p = 0.421 (bottom) and the constant µ

describing the influence of network externalities equals 0.4. For both prices, the curves are

obtained by averaging over 500 simulation runs. Note that the threshold product price

being approximately 0.407, for both the new product would not spread over the population

in the basic model without macroscopic feedbacks. However, because individual valuations

increase with the number of buyers Nt, some simulation runs persist up to the point where

the additional term in Eq. 3 closes the gap between the average evaluation and the price,

so that spread of the product occurs. The length of the long left tail increases with p and

decreases with µ ceteris paribus. A comparison of Figure 4 (top) with Figure 4 (bottom)

exemplifies the first part of this statement. Furthermore, the decrease of per period sales

in the first phase as visible in Figure 4 (top, left-hand side) increases with increasing price.

Figure 5 depicts three curves corresponding to per-period sales, cumulative sales and

the evolution of the product price resulting from a single simulation run in a setting with

macroscopic feedbacks affecting the supply side only. We specify the time-dependent price

pt (see Eq. 2) as

p(nt−1) = p0 − qnt−1 + αn2

t−1, (5)

with the fraction of buyers nt−1 = Nt−1

N
, the initial price p0 ∈ [0, 1] and q > 0 and α > 0

constant parameters. Figure 5 corresponds to the parameter values q = 0.5, and p0 = 0.52

and α = 0.295. The initial number of buyers equals 3000 and lattice size is 1501 × 1501.

Initial price p0 is set to 0.52.

As Figure 5 demonstrates, the characteristic take-off dynamics displayed by the averaged

curves of Figure 4 can be obtained from a single simulation run. This fact is significant,

because in the case of macroscopic feedbacks affecting the price, sales numbers averaged

over multiple simulation runs are difficult to justify as they would involve different price

sequences.
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4 Discussion

We conclude with two comments. First, the paper does not propose that the square lattice

is a realistic representation of real-world interaction topologies involved in new-product

diffusion. But while the functional form of the time-profile of sales in our model might

depend on the particular underlying topology, the effect of delayed “take-off” itself does

not: it relies solely on the existence of a percolation threshold pc separating a percolating

regime from a non-percolating regime of the dynamics. It is the passage of the dynamics

from the former to the latter that facilitates the “take-off” phenomenon.

However, for a certain type of graph structures – called scale-free networks – the per-

colation threshold tends to zero with a growing number of sites (see Cohen et al. (2000)).

Thus, delayed “take-off” would not occur in our model with a scale-free network represent-

ing the topology of local interactions. It is tempting to empirically test this implication of

our model, once comparative studies on interaction/communication topologies related with

different product categories or technologies are available.

Second, in our model individual valuations of the new product made by consumers

are not subject to local social influence (which is considered, for instance, in the papers by

Goldenberg at al. (2000)) and Solomon et al. (2000)). Rather, we consider only macroscopic

feedbacks (externalities). Again, this is not because we believe that local interaction effects

are not present - interesting phenomena do appear from such local interdependencies in

valuation (see, for instance, Erez et al. (2006)). However in the present model we aim at

explaining the occurrence of delayed take-off as simply as possible.
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Figure 1: Cumulative frequency of adopters for the diffusion of hybrid corn seed in two

Iowa farming communities adapted from [26] (top); cumulative number of buyers in our

model with the parameter values p = 0.433 and µ = 0.4 (bottom).
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Figure 2: Per-period number of buyers (left-hand side) and cumulative frequencies of buyers

over time (right-hand side) in the basic model of Section 2; percolation occurs for a price

p=0.39 (top) but does not occur for p=0.52 (bottom); initial number of buyers equals 3000.
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Figure 3: Total (final) share of buyers as a function of price in the basic model of Section

2 (top); total (final) share of buyers as a function of initial price in the model with supply-

side-feedbacks (bottom), see Figure 5 for the corresponding time-profiles. Delayed take-off

occurs for initial prices in the range enclosed by the two dashed lines, that is for initial

prices between 0.407 and 0.531.
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Figure 4: Per-period number of buyers (left-hand side) and cumulative number of buyers

(right-hand side) in our model with parameter values p = 0.435 and µ = 0.4 (top) and

p = 0.421 and µ = 0.4 (bottom).
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Figure 5: Per-period number of buyers (top), cumulative number of buyers (middle) and

the evolution of price (bottom) in our model with macroscopic feedback affecting supply

side only; initial price is p0 = 0.52.
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