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Abstract

In this paper we analyze sequencing situations under incomplete
information where agents have interdependent costs. We …rst argue
why Vickrey-Clarke-Groves (or VCG) mechanism fails to implement a
simple sequencing problem in dominant strategies. Given this impossi-
bility, we try to implement simple sequencing problems in ex-post equi-
librium. We show that a simple sequencing problem is implementable
if and only if the mechanism is a ‘generalized VCG mechanism’. We
then show that for implementable n agent simple sequencing problems,
with polynomial cost function of order (n ¡ 2) or less, one can achieve
…rst best implementability. Moreover, for the class of simple sequenc-
ing problems with “su¢ciently well behaved” cost function, this is the
only class of …rst best implementable simple sequencing problems.
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gestions. The authors would also like to thank Debashish Goswami and Arunava Sen for
their helpful comments. Financial assistance from the German Research Foundation is
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1 Introduction

In this paper we study sequencing situation under incomplete information
where agents have interdependent costs. In particular, we consider the prob-
lem of a planner who has to provide a facility to a …nite group of agents.
Each agent has one job to process using this facility. It takes di¤erent time
periods for di¤erent agents to process their jobs. The facility can be used
by only one agent at a time. Therefore, the planner will have to order the
agents in a queue. Waiting in the queue is costly for each agent. The plan-
ner’s objective is to select an e¢cient queue to minimize the aggregate cost.
Consider the situation where the planner knows how many agents require
the facility but she does not know the job processing time of the agents.
Moreover, if it is costly for the planner either to monitor the agents’ action
or to verify the true job processing time, then there is an incentive problem.
Agents, if asked, will announce their job processing time strategically. Given
the incentive problem we ask the following question: Can the planner design
a mechanism such that it is in the interest of the agents to reveal their true
processing time? We refer to such a problem as simple sequencing problem
with interdependent costs. We call this problem ‘simple’ because the form of
the cost function is assumed to be known and identical for all agents. Thus,
for a simple sequencing problem, we have mechanism design problem of a
social planner under interdependent cost where the signals (or processing
time of agents) are one dimensional.

Sequencing situations with interdependent cost can arise in many real
life scenario. A central agent providing access to telephone, for local as well
as long distance calls, to a set of individuals (in some locality) would be one
example.1 Another example would be a college (or any institute) that has

1A good evidence that can be sited in this context is one of Noa Jahan Begum who
lives in the town of Bora, 20 miles from Bangladesh’s capital Dhaka. She bought a
cellular phone (by taking a loan from Gramin Bank) and began o¤ering it for a fee to
neighbours and other villagers who need to make calls. Sometimes there are 20 or 30 or
more, sometimes even 50 or 60 people waiting to make calls (see remarks by William E.
Kennard, Chairman, Federal Communications Commission to WIRELESS 98, Atlanta,
Ga. February 23, 1998).
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only one computer. If a set of individuals (students and teachers) want to
use this computer to process their own data set then the college authorities
will have to provide access to this computer sequentially. Providing access of
one runway facility to aeroplanes, for landing and takeo¤, is another example
of sequencing. In these sequencing situations, costs are interdependent since
the cost of an agent depends not only on her own processing time but also
on the processing time of all agents who precedes her in the queue.

Sequencing problems in the absence of interdependent cost was analyzed,
among others, by Suijs (1996) and Mitra (2001). In these papers the stan-
dard Vickrey-Clarke-Groves (or VCG) mechanisms (due to Vickrey (1961),
Clarke (1971) and Groves (1973)) are the only class of mechanisms that
lead to truthful revelation of private information in dominant strategies and
e¢ciency of decision. In these problems, the cost parameter is private infor-
mation to the agents and the job processing time, of each agent, is common
knowledge. For a simple sequencing problem with interdependent costs, the
standard VCG mechanisms fails to solve the incentive problem since the
job processing time is private information. Hence, our …rst objective is to
identify the class of mechanisms that implement a simple sequencing prob-
lem in ex-post equilibrium. By implementability in ex-post equilibrium we
mean that one can …nd mechanisms that are e¢cient in terms of decision
and ex-post incentive compatible. A mechanism is ex-post incentive com-
patible if truth-telling is a best response of an agent whenever others’ are
truthful. We identify the complete class of mechanisms that implements
a simple sequencing problem in ex-post equilibrium. Our main and …nal
objective is to identify the sub-class of …rst best implementable simple se-
quencing problems. A simple sequencing problem is …rst best implementable
if there exists a mechanism that implements it in ex-post equilibrium with
a transfer scheme that adds up to zero in all states. Our analysis is ‘similar’
to the analysis on …rst best implementability with VCG mechanisms under
di¤erent private values set up (see Green and La¤ont (1979), La¤ont and
Maskin (1982), Hurwicz and Walker (1990) and Walker (1980)).

We start our analysis on implementability of a simple sequencing prob-
lem by arguing why VCG mechanism fails to implement a simple sequencing
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problem in dominant strategies using arguments from Radner and Williams
(1988). Given this impossibility, we try to implement simple sequencing
problems in ex-post equilibrium. We show that a simple sequencing prob-
lem with interdependent costs is implementable if and only if the mechanism
is a ‘generalized VCG mechanism’ as de…ned by Bergemann and Välimäki
(2000). For a simple sequencing problem, a generalized VCG mechanism is
such that each agent receives, as transfer, the sum of her own “maximum
possible incremental loss” and that of all agents who precedes her in the
queue, up to a constant. We then explore the possibility of …rst best im-
plementability. We show that for implementable n agent simple sequencing
problems, with polynomial cost function of order (n ¡ 2) or less, one can
achieve …rst best implementability. Moreover, for the class of simple se-
quencing problems with “su¢ciently well behaved” cost function (that is,
cost function with power series representation), this is the only class of …rst
best implementable simple sequencing problems.

The paper is organized in the following way. We conclude this section
by relating our work to the existing literature. We then formalize simple
sequencing problems in section two. In section three we provide results on
implementability of simple sequencing problems. In section four we address
the issue of …rst best implementability. We conclude our analysis in section
…ve. Most of the proofs are relegated in the appendix.

1.1 Related Literature

Mechanism design problems with interdependent valuation has been an-
alyzed extensively in the context of auctions (see Ausubel (1999), Das-
gupta and Maskin (2000), Jéhiel and Moldovanu (2001) and Perry and
Reny (1998)). Trading problems with interdependent values was analyzed
by Fieseler, Kittsteiner and Moldovanu (2001) and by Gresik (1991). In a
general mechanism design setting, Bergemann and Välimäki (2000) address
the issue of common (or interdependent) value by restricting signals to be
one dimensional. Radner and Williams (1988) showed the existence problem
of ‘dominant mechanisms’ when there exists a possibility of informational
externality. By dominant mechanisms they mean mechanisms that satisfy
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dominant strategy incentive compatibility and e¢ciency of decision.
In the literature on mechanism design problem under interdependent

valuations, …nding mechanisms that implements a decision problem in ex-
post equilibrium is not new. In the context of auctions with interdependent
valuations and with one dimensional signals, the mechanisms provided in
Ausubel (1999), Dasgupta and Maskin (2000), Jéhiel and Moldovanu (2001)
and Perry and Reny (1998) are all ex-post incentive compatible. Ausubel
(1999), by assuming valuation functions are know to the agents and to the
auctioneer, de…ne a ‘generalized Vickrey auction’ for multiple identical ob-
jects and show that truth-telling is an ex-post equilibrium. Ausubel’s ‘gen-
eralized Vickrey auction’ is a generalization of the ‘modi…ed second price
auction’ of Maskin (1992). Dasgupta and Maskin (2000), by assuming that
valuation functions are know to the agents but not to the auctioneer, achieve
ex-post incentive compatibility via an indirect mechanism where agents use
bids that depends on the valuations of other agents. Dasgupta and Maskin
(2000) allow for objects to be non-identical. In the same informational
structure but with identical objects, Perry and Reny (1998) achieve ex-
post incentive compatibility in a two round bidding procedure. Jéhiel and
Moldovanu (2001) show that, with multi-dimensional signals, ex-post incen-
tive compatible direct mechanism do not exist in general. In the case of
one-dimensional signals, they provide a direct mechanism that achieves ex-
post incentive compatibility. In the trading context Fieseler, Kittsteiner and
Moldovanu (2001) provide a ‘generalized Groves mechanism’ which satis…es
ex-post incentive compatibility. The most related paper to our analysis
on implementability in ex-post equilibrium is the one by Bergemann and
Välimäki (2000). They consider a mechanism design setting where agents
can acquire costly information, by receiving a noisy signal about the true
state, before participating in the mechanism. What is important for our
paper is their characterization results on implementability in ex-post equi-
librium. Thus, our analysis on implementability of a simple sequencing
problem in ex-post equilibrium can be considered as an application of the
general characterization results of Bergemann and Välimäki (2000).

The main contribution of our paper is the characterization result on
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…rst best implementability of a simple sequencing problem in ex-post equi-
librium. Analysis in this direction, in an interdependent value set up, is
relatively scarce. In the context of auctions with interdependent values,
budget balancedness is automatically satis…ed as the seller is the residual
claimant. In the partnership context, Fieseler, Kittsteiner and Moldovanu
(2001) argue that, with their ‘generalized Groves mechanism’, it is possible
to apply expected externality payments (à la Arrow (1979) and d’Aspremont
Gérard-Varet (1979)) to achieve (ex-post) budget balancedness. They point
out that, for the expected externality mechanism, truth-telling is a Bayesian
but not an ex-post equilibrium. In this paper, we look for mechanisms that
satisfy e¢ciency of decision, ex-post budget balancedness and ex-post in-
centive compatibility.

2 Simple Sequencing Problems

Let N ´ f1; 2; : : : ; ng be the set of agents in need of the facility provided
by the planner. Each agent j 2 N takes sj 2 (0; ¹s] µ R++ units of time
to process her own job. Since the facility can be used by only one agent
at a time, the planner will have to provide the facility to the agents in a
queue. By means of a permutation ¾ = (¾1; : : : ; ¾n) on N, one can describe
the position of each agent in the queue. Let § be the set of all possible
permutations of N. Therefore, a queue ¾ is a mapping from the set of
agents N to §. Let Pj(¾) = fp 2 N¡ fjg j ¾p < ¾jg be the predecessor set
of j in ¾ and Sj(¾) = fq 2 N¡fjg j ¾j < ¾qg be the successor set of j in ¾.
Let F (Sj) measure the cost of agent j 2 N if her job processing is complete
at time point Sj 2 R++. Therefore, the cost of an agent is a mapping
F : R++ ! R+. We assume that F is continuous and strictly increasing
in Sj. Given a processing time vector s = (s1; : : : ; sn) and a queue ¾, the
cost of agent j 2 N is F (Sj(¾; s)), where Sj(¾; s) =

P
p2Pj(¾) sp + sj . The

utility of agent j, in state s = (s1; : : : ; sn) and in the queue ¾ is Uj(¾; tj ; s) =
vj ¡ F (Sj(¾; s)) + tj where vj is the gross bene…t, derived by agent j, from
the facility and tj is the transfer that she receives.

A queue ¾¤ 2 §, given s, is e¢cient if ¾¤ 2 argmin¾2§
P
j2N F (Sj(¾; s)).
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For a state s = (s1; : : : ; sn), a queue ¾¤ is e¢cient if and only if (1) for all
pairs of agents fj; ig such that sj < si, ¾¤j < ¾¤i and (2) for all pairs of agents
fj; ig such that sj = si, either ¾¤j < ¾¤i or ¾¤j > ¾¤i . For example, consider
the case where n = 3 and a state s = (s1; s2; s3) such that s3 < s1 = s2. For
the state s = (s1; s2; s3), the queue ¾ = (¾1 = 2; ¾2 = 3; ¾3 = 1) and the
queue ~¾ = (~¾1 = 3; ~¾2 = 2; ~¾3 = 1) are both e¢cient. Therefore, we have an
e¢ciency correspondence. An e¢cient rule is a single valued selection from
the e¢ciency correspondence. One can always select an e¢cient rule from
the e¢ciency correspondence by selecting an appropriate tie breaking rule.
In this paper we will consider the following tie breaking rule: if si = sj then
¾¤i < ¾¤j if i < j.

It is natural to assume that agents have private information about their
own job processing time.2 If the processing time vector s = (s1; : : : ; sn) is
private information, the planner’s problem is to design a mechanism that
will elicit this information truthfully. In this paper, we restrict our attention
to direct mechanisms where each agent reports her own processing time (or
type) and based on this report, the planner decides on the queue and the
transfer vector for the set of agents. Formally, a direct mechanism M is
a pair h¾; ti, where ¾ : (0; s]n ! § and t ´ (t1; : : : ; tn) : (0; s]n ! Rn.
We represent a simple sequencing problem with interdependent cost by ¡ =
hN; F; (0; s]i, where N is the number of agents, F is the common cost func-

2A person in need for the computer (telephone) has private information about how
much time she will take to process her data (to make the call). The airport authority
has little knowledge about how long an aeroplane will occupy its runway. If the planner
wants to provide the facility in an e¢cient way then she will have to know the processing
time of the agents before starting to provide the facility. This means that the planner will
have to rely on the agents’ announced processing time. It may be costly for the planner
to monitor the actions of the agents. Moreover, it may be costly to verify whether the
agent is truthful or not. For example, the college authorities (the central agent providing
the telephone facility) may …nd it di¢cult to punish a teacher (an in‡uential individual
of the locality) for misreporting. Similarly, the airport authorities may …nd it di¢cult
to punish an airline for misreporting because the airlines company might have paid a
substantial amount for the maintenance of the facilities at the runway. Therefore, with
either monitoring cost or veri…cation cost there is an incentive problem as agents have an
incentive to report strategically.
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tion and (0; s] is the interval of job processing time. Under M = h¾; ti, given
an announcement ŝ = (ŝ1; : : : ; ŝn) 2 (0; ¹s]n in state s = (s1; : : : ; sn) 2 (0; ¹s]n,
the utility of agent j is given by Uj(¾(ŝ); tj(ŝ); s) = vj¡F (Sj(¾(ŝ); s))+tj(ŝ).
Note that the e¢cient queue is determined by the planner based on the an-
nounced processing cost of all agents and the cost that each agent incurs
depends on the actual cost of her own predecessors in the queue as well as her
own processing cost. We conclude this section by de…ning implementable in
ex-post equilibrium and …rst best implementability of a simple sequencing
problem.

DEFINITION 2.1 A simple sequencing problem with interdependent cost
¡ = hN; F; (0; s]i, is implementable in ex-post equilibrium, if there exists an
e¢cient queue ¾¤ : (0; s]n ! § and a mechanism M = h¾¤; ti such that, for
all j 2 N, for all (sj ; s0j) 2 (0; s]2 and for all true processing time vectors
s¡j 2 (0; ¹s]n¡1, Uj(¾¤(s); tj(s); s) ¸ Uj(¾¤(s0j ; s¡j); tj(s0j ; s¡j); s).

DEFINITION 2.2 A simple sequencing problem ¡ is said to be …rst best
implementable (in ex-post equilibrium) if there exists a mechanism M =
h¾¤; ti that implements it in ex-post equilibrium with a budget balancing
transfer.

3 Implementability in Ex-post Equilibrium

We start this section by providing the reason for the failure of VCG mecha-
nisms to achieve e¢ciency of decision and dominant strategy incentive com-
patibility. A VCG mechanism means that each agent pays the cost of all
other agents in the queue, up to a constant. A VCG mechanism leads to
e¢ciency of decision as well as dominant strategy incentive compatibility
only if it satis…es the ‘independence property’ (see ‘Independence Property
III’ in Radner and Williams (1988)). In a simple sequencing problem this
‘independence property’ would mean the following: consider two true states
s = (sj ; s¡j) and s0 = (s0j ; s¡j) that di¤er by the processing time (or type)
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of only one agent j 2 N.3 Moreover, let the queue position of agent j
remain unchanged in the two states, that is let ¾¤j (s) = ¾¤j (s

0). ‘Indepen-
dence property’ requires that in such a situation the aggregate cost of all
but agent j must remain unchanged in both the states. Observe that if
agent j is not served last, that is if ¾¤j (s) = ¾¤j (s0) 6= n, then Sj(¾¤(s)) =
Sj(¾¤(s0)) 6= Á. For all agents q 2 Sj(¾¤(s)) = Sj(¾¤(s0)), the cost in
states s and s0 are not the same, that is F (Sq(¾¤(s); s)) 6= F (Sq(¾¤(s0); s0)),
since j 2 Pq(¾¤(s)) = Pq(¾¤(s0)) and sj 6= s0j . If ¾¤j (s) = ¾¤j (s0) = n then
F (Si(¾¤(s); s)) = F (Si(¾¤(s0); s0)) since Sj(¾¤(s)) = Sj(¾¤(s0)) = Á. Hence
‘independence property’ does not hold unless agent j has the last queue
position. Thus, the VCG mechanism fails to meet the desired objectives.
Given this impossibility, we try to implement a simple sequencing problem
in ex-post equilibrium.

We …rst de…ne ‘set convexity’ of a simple sequencing problem which
is a necessary condition for implementability in ex-post equilibrium (see
Bergemann and Välimäki (2000)). Consider a simple sequencing problem
¡. Fix the true processing time of all but agent j at s¡j 2 (0; ¹s]n¡1. Given
s¡j, consider the set Ŝkj = fsj 2 (0; ¹s] j ¾¤(sj; s¡j) = ¾ = (¾j = k; ¾¡j)g.
Therefore, the set Ŝkj is the set of types for agent j that gives her the kth
queue position. It is important to note that given s¡j , e¢ciency of decision
implies that for all types of agent j, that keeps her queue position unchanged,
the queue position of the remaining set of agents also remains unchanged.
This is due to the common cost function of each agent. Therefore, sets
fŜkj gnk=1 forms a partition of (0; ¹s] for agent j. The collection fŜkj gnk=1

satis…es set convexity if for all queue positions k 2 f1; : : : ; ng, sj 2 Ŝkj and
s0j 2 Ŝkj ) ¸sj+(1¡¸)s0j 2 Ŝkj for all ¸ 2 [0; 1]. Thus, set convexity requires
that given the types of all but agent j, the set of types of agent j, that keeps
her e¢cient queue position unchanged, must be convex. Moreover, this
must be true for all queue positions of agent j and for all agents j 2 N.
It is quite easy to verify that all simple sequencing problems satisfy set

3Here s¡j is of the form (s1; : : : ; sj¡1; sj+1; : : : ; sn) and hence s = (sj ; s¡j) =
(s1; : : : ; sj¡1; sj ; sj+1; : : : ; sn), s0 = (s0j ; s¡j) = (s1; : : : ; sj¡1; s0j ; sj+1; : : : ; sn) and sj 6= s0j .
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convexity.4 Set convexity is not enough to implement a simple sequencing
problem. The following proposition provides the other necessary condition
for implementability of a simple sequencing problem. Before stating the
Proposition, we de…ne the …rst order incremental loss of amount h at x as
¢(h)F (x) = F (x + h) ¡ F (x).

PROPOSITION 3.1 A simple sequencing problem ¡ is implementable in
ex-post equilibrium only if the cost function F is weakly concave.

The proof of this Proposition is provided in the Appendix. The require-
ment of weak concavity of the cost function is due to the nature of the
incentive constraint in a simple sequencing problem. To meet the incentive
constraint, the planner will have to compensate an agent j for her aggregate
incremental loss in the queue ¾. The aggregate incremental loss of agent j
in the queue ¾ is the di¤erence between her actual cost in ¾ and her own
job processing time, (that is ¢(

P
p2Pj(¾) sp)F (sj) = F (Sj(¾; s)) ¡ F (sj)).

Since for implementability it is necessary that this aggregate incremental
loss must be non-increasing, we need weak concavity of the cost function.

We restrict our attention to the class of simple sequencing problems for
which the cost function is weakly concave and derive our implementability
result. To do that we de…ne the generalized VCG mechanisms, following
Bergemann and Välimäki (2000). Let C¡j(¾¤(s); s0) =

P
i6=j F (Si(¾¤(s); s0))

be the aggregate cost of all but agent j in state s0 and in the queue ¾¤(s).
For a simple sequencing problem ¡, a mechanism M = h¾¤; ti is said to be
a generalized VCG mechanism if, for all j 2 N and for all announcement
vectors ŝ¡j 2 (0; ¹s]n¡1, the following two conditions are satis…ed:
(i) For announcements (ŝj ; ŝ0j) 2 (0; ¹s]£(0; ¹s] such that ¾¤j (ŝ) = ¾¤j (ŝ0j; ŝ¡j),
tj(ŝ0j; ŝ¡j) = tj(ŝ).
(ii) For announcements (ŝj; ŝ0j) 2 (0; ¹s] £ (0; ¹s] with ¾¤j (ŝ) = ¾¤j (ŝ0j; ŝ¡j) ¡ 1,

tj(ŝ0j ; ŝ¡j) ¡ tj(ŝ) = C¡j(¾¤(ŝ); ~sj ; ŝ¡j) ¡ C¡j(¾¤(ŝ0j ; ŝ¡j); ~sj ; ŝ¡j) (3.1)
4Consider the true type of all but agent 1 to be s¡1 such that s2 < s3 < : : : < sn.

Given s¡1, from the e¢cient rule it follows that Ŝ11 = (0; s2], Ŝk1 = (sk; sk+1] for all
k 2 f2; : : : n¡1g and Ŝn1 = (sn; ¹s]. Now one can easily verify that given s¡1, the collection
fŜk1gnk=1 satis…es set convexity since each Ŝk1 is an interval. This argument can be easily
be generalized to verify that a simple sequencing problem satis…es set convexity.
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where (~sj ; ŝ¡j) is the state for which both ¾¤(ŝ) and ¾¤j (ŝ0j ; ŝ¡j) are e¢cient,
that is

P
i2N F (Si(¾¤(ŝ); ~sj ; ŝ¡j)) =

P
i2N F (Si(¾¤(ŝ0j; ŝ¡j); ~sj; ŝ¡j)). Using

conditions (i) and (ii), we derive the form of the class of generalized VCG
mechanisms in the next Proposition.

PROPOSITION 3.2 For a simple sequencing problem ¡, a mechanism
M = h¾¤; ti is a generalized VCG mechanism if and only if for all an-
nounced processing time vectors ŝ 2 (0; s]n and for all j 2 N,

tj(ŝ) =

8
><
>:

P
p2Pj(¾¤(s))

Vp(ŝ) + hj(ŝ¡j) if ¾¤j (ŝ) 6= 1

hj(ŝ¡j) if ¾¤j (ŝ) = 1
(3.2)

where Vp(ŝ) = ¢(ŝp)F (Sp(¾¤(ŝ); ŝ)).

The proof of Proposition 3.2 is provided in the Appendix. The impor-
tance of the class of generalized VCG mechanism in implementing a simple
sequencing problem is captured in the next Proposition.

PROPOSITION 3.3 All simple sequencing problems with weakly con-
cave cost functions are implementable in ex-post equilibrium. Moreover, a
simple sequencing problem ¡ is implementable in ex-post equilibrium if and
only if the mechanism is a generalized VCG mechanism.

Observe that to prove Proposition 3.3, it is enough to prove the second
statement in the Proposition, using weak concavity of the cost function.
We provide the proof of Proposition 3.3 in the Appendix. Here we try to
provide the reason behind implementability property of the generalized VCG
mechanism. Let j(p) be the immediate predecessor of agent j in the queue
¾, that is j(p) = fi 2 Pj(¾) j ¾i = ¾j ¡ 1g. We de…ne the incremental loss
of agent j, in state s and in queue ¾, as

Vj(¾; s) =

8
>><
>>:

¢(sj(p))F

0
@ P
q2Pj(p)(¾)

sq + sj

1
A if ¾j(s) 6= 1

0 otherwise

Thus, the incremental loss of agent j is the additional cost that j incurs due
to the presence of her immediate predecessor j(p) in the queue ¾. Consider
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a state s and an e¢cient queue ¾¤(s). For the state s, the incremental loss
of agent j is Vj(¾¤(s); s) = ¢(sj(p))F (

P
q2Pj(p)(¾¤(s)) sq+sj) if ¾¤j (s) = k 6= 1

and sj(p) · sj and Vj(¾¤(s); s) = 0 otherwise. Consider all types s0j 2 Ŝkj of
agent j and de…ne her maximum possible incremental loss as V¤j (¾¤(s); s) =
maxs0j2Ŝkj Vj(¾

¤(s0j ; s¡j); s0j; s¡j). Due to weak concavity of the cost function
F , it follows that

V¤j (¾¤(s); s) =

(
Vj(p)(s) if ¾¤j (s) 6= 1
0 otherwise

Therefore, the maximum possible incremental loss of an agent j 2 N, in
queue position ¾¤j (s) = k 6= 1, is the …rst order di¤erence of amount sj(p)
at time point Sj(p)(¾(s); s) and it is 0 if ¾¤j (s) = 1. Why is the maximum
possible incremental loss important? Consider a state s 2 (0; ¹s]n, an e¢cient
queue ¾¤(s) and an agent j with processing time sj. Assume that all agents
have reported truthfully. Simplifying the aggregate incremental loss of agent
j we get ¢(

P
p2Pj(¾¤(s)) sp)F (sj) =

P
p2Pj(¾¤(s)) ¢(sp)F (Sp(¾¤(s); s) + sj).5

Using weak concavity of F we get
P
p2Pj(¾¤(s)) ¢(sp)F (Sp(¾¤(s); s) + sj) ·

P
p2Pj(¾¤(s)) ¢(sp)F (Sp(¾¤(s); s)) =

P
p2Pj(¾¤(s)) Vp(s). The last inequality

states that in state s, the aggregate incremental loss of an agent j, in an
e¢cient queue ¾¤(s), is no more than the sum of maximum possible incre-
mental loss of her own and that of all her predecessors in the queue. The
transfer of an agent j in a generalized VCG mechanism is the maximum
possible incremental loss of agent j and that of all her predecessors in the
queue, up to a constant. Thus, the generalized VCG transfer is enough
to compensate an agent j for her aggregate incremental loss in the queue.
However, one can verify that truth-telling is not a dominant strategy. This
point will be more explicit from the following example.

EXAMPLE 3.1 Consider the simple sequencing problem with the cost
function FL(x) = x, that is consider ¡ = hN; FL; (0; ¹s]i. Since the cost

5Observe that we can always write ¢(b + c)F (a) = F (a + b + c) ¡ F (a) = F (a + b +
c) ¡ F (a + b) + F (a + b) ¡ F (a) = ¢(c)F (a + b) + ¢(b)F (a). By applying this relation
repeatedly in the appropriate order we get the required simpli…cation.
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function FL is linear, ¢(x)FL(y) = x for all x and y. Therefore, the transfer
given by condition (3.2) is

tj(ŝ) =

8
><
>:

P
p2Pj(¾¤(ŝ))

ŝp + hj(ŝ¡j) if ¾¤j (ŝ) 6= 1

hj(ŝ¡j) otherwise

for all ŝ = (ŝ1; : : : ; ŝn) 2 (0; ¹s]n. Consider a state s = (s1; : : : ; sn) such that
s1 < s2 < : : : < sn. Let the announced processing vector of all but agent 1 be
ŝ¡1 = (ŝ2; : : : ; ŝn) such that ŝ2 < s1 and ŝi = si for all i 2 N¡f1; 2g. Thus,
in the set N¡fjg, all but agent 2 are truthful. The utility of agent 1, if she
announces truthfully, is U1(¾¤(s1; ŝ2; s¡1¡2); t1(s1; ŝ2; s¡1¡2); s) = v1¡(s1+
s2)+ ŝ2+h1(ŝ2; s¡1¡2) (since for agent 1, ¾¤1(s1; ŝ2; s¡1¡2) = 2 and for agent
2, ¾¤2(s1; ŝ2; s¡1¡2) = 1). What is crucial here is that the e¢cient queue is
calculated on the basis of the announcement (s1; ŝ2; s¡1¡2) and the cost of
agent 1, in the e¢cient queue, depends on her own processing time s1 and the
actual processing time s2 (and not announced processing time ŝ2) of agent 2.
Now suppose that agent 1 announces ŝ1(< ŝ2) instead of her true processing
time s1. Then her utility is U1(¾¤(ŝ1; ŝ2; s¡1¡2); t1(ŝ1; ŝ2; s¡1¡2); s) = v1 ¡
s1 +h1(ŝ2; s¡1¡2) since ¾¤1(ŝ1; ŝ2; s¡1¡2) = 1. Observe that the bene…t from
misreporting is s2 ¡ ŝ2 > 0. Thus, truth-telling is not a dominant strategy
for agent 1.

REMARK 3.1 Linearity of the cost function is not crucial for the impos-
sibility argument in Example 3.1. Consider a simple sequencing problem
¡ = hN; F; (0; ¹s]i with a strictly increasing and weakly concave cost func-
tion F and consider the same construction as in Example 3.1. What we
require for this impossibility argument to work is that there exists a selec-
tion 0 < ŝ2 < s1 < s2 < ¹s such that ¢(s2)F (s1) > ¢(ŝ2)F (ŝ2). Since
the cost function is strictly increasing, by selecting su¢ciently small posi-
tive numbers ŝ2 and s1, satisfying ŝ2 < s1, and by selecting a su¢ciently
large positive number s2(< ¹s), one can always obtain the required inequality.
Moreover, for all implementable simple sequencing problems with jNj ¸ 2,
the impossibility argument is valid.
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4 First Best Implementability

Consider any generalized VCG mechanism for an implementable simple se-
quencing problem. Observe that for each state s 2 (0; ¹s]n, if we add up
the generalized VCG transfer (3.2) for all agents and set it to zero, we get
V(s)+

P
i2N hi(s¡i) = 0 where V(s) =

P
j2N(n¡¾¤j (s))Vj(s) is the weighted

aggregate maximum possible incremental loss in state s. The implication
of the budget balancedness condition (that is V(s) +

P
i2N hi(s¡i) = 0)

can be summarized by the Cubical Array Lemma which is due to Walker
(1980). Before stating the Lemma we provide some more notations. Con-
sider two pro…les s = (s1; : : : ; sn) and s0 = (s01; : : : ; s0n). For P µ N, de-
…ne a type sj(P ) = sj if j 62 P and sj(P ) = s0j if j 2 P . Therefore,
s(P ) = (s1(P ); : : : ; sn(P )) for all P µ N.

LEMMA 4.1 A simple sequencing problem ¡ is …rst best implementable
only if for all fs; s0g 2 (0; ¹s]n £ (0; ¹s]n,

P
PµN(¡1)jP jV(s(P )) = 0.6

Walker (1980) proved Lemma 4.1 for VCG mechanisms where it is necessary
that the total surplus, in each state, is (n¡1) type separable. Like the total
surplus of a VCG mechanism, the weighted aggregate maximum possible
incremental loss for a generalized VCG mechanism, in the context of simple
sequencing problems, depends on the type of all agents and hence the Lemma
applies for simple sequencing problems as well. Lemma 4.1 will be used in
proving our main Theorem. Before stating our main Theorem, we provide
two relevant de…nitions. The second de…nition will be used in our main
Theorem.

DEFINITION 4.3 A function f is said to be well behaved if it is in…nitely
di¤erentiable in it’s open domain.

6For any set X, let jXj denote the cardinality of X. Observe that for two agents, budget
balancedness implies that for all fs = (s1; s2); s0 = (s01; s02)g, V(s)¡V(s01; s2)¡V(s1; s02)+
V(s0) = 0. Similarly, for three agents, it implies that for all fs = (s1; s2; s3); s0 =
(s01; s02; s03)g, V(s)¡V(s01; s2; s3)¡V(s1; s02; s3)¡V(s1; s2; s03)+V(s01; s02; s3)+V(s01; s2; s03)+
V(s1; s02; s03)¡V(s0) = 0. This Lemma is a generalization of this condition for n agents.
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DEFINITION 4.4 A function f is said to be su¢ciently well behaved
if it has a power series representation in it’s entire open domain, that is
there exists y0 in it’s open domain such that the function f has the form
f(y) =

P1
l=0 cl(y ¡ y0)l.

A su¢ciently well behaved function is well behaved but the converse
is not true. In our main Theorem, we provide a necessary condition by
restricting the cost function to be su¢ciently well behaved.

THEOREM 4.1 A simple sequencing problem is …rst best implementable
if the cost function F is a polynomial of order (n ¡ 2) or less. Moreover,
a simple sequencing problem with su¢ciently well behaved cost function is
…rst best implementable only if F is a polynomial of order (n ¡ 2) or less.

The proof of Theorem 4.1 is provided in the Appendix. Here we …rst state
and prove another Lemma that will also be used in proving Theorem 4.1 and
then provide the idea of the proof of Theorem 4.1. We de…ne the second
order cross-partial di¤erence at x of amounts (a1; a2) as ¢(a1)¢(a2)F (x) =
¢(a1)[F (x + a2) ¡ F (x)] = F (x + a1 + a2) ¡ F (x + a2) ¡ F (x + a1) ¡
F (x). Similarly, we de…ne third order cross-partial di¤erence at x of amounts
(a1; a2; a3) as ¢(a1)¢(a2)¢(a3)F (x) = ¢(a1)¢(a2)[¢(a3)F (x)] and so on.
In general the mth order cross-partial di¤erence at x of amount (a1; : : : ; am)
is given by ¦mi=1¢(ai)F (x). Observe that for a linear function F 1(x) =
b0 + b1x, the second order cross partial di¤erence of amounts (a1; a2) at y
is zero, that is ¢(a1)¢(a2)F 1(y) = 0. Similarly, for a polynomial function
F 2 of order two (that is for F 2(x) = b0 + b1x + b2x2), it is easy to verify
that ¢(a1)¢(a2)¢(a3)F 2(y) = 0. The next Lemma is a generalization of
this idea.

LEMMA 4.2 If F is a polynomial function of order m(= 0; 1; : : :), then
for any set of numbers fa1; : : : ; am+1; xg, ¦m+1

r=1 ¢(ar)F (x) = 0.

PROOF: For a polynomial function of order m or less, any cross-partial
di¤erence of order m + 1 is zero. Hence the result.
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Idea of the proof of Theorem 4.1: To prove the …rst part of the Theorem, we
construct a generalized VCG mechanism for a simple sequencing problem ¡
with a polynomial cost function F of order (n¡2) and show that it is budget
balancing. Let M¤ = h¾¤; t¤i be the generalized VCG mechanism such that
for all j 2 N and for all s¡j 2 (0; s]n¡1, h¤j(s¡j) = ¡P

i6=j gij(s¡j) where

gij(s¡j) =
¾¤i (s¡j)X

r=1

(
(¡1)¾¤i (s¡j)¡r(¾¤i (s¡j) ¡ r)!(n ¡ ¾¤i (s¡j) ¡ 1)!

(n ¡ r ¡ 1)!

)
zir(s¡j)

(4.3)

zir(s¡j) =
X

Pi;r¡1(¾¤(s¡j))½Pi(¾¤(s¡j))
¢(si)F

0
@ X

q2Pi;r¡1(¾¤(s¡j))
sq + si

1
A (4.4)

Pi;®(¾¤(s¡j)) is a subset of Pi(¾¤(s¡j)) of size ® and ¾¤(s¡j) is the e¢-
cient queue in the absence of agent j.7 Using Lemma 4.2 we prove that
P
j2N¡fig gij(s¡j) = (n ¡ ¾¤i (s))¢(si)F ¤(Si(¾¤(s); si)). Using this result

we get V(s) +
P
j2N h¤j(s¡j) = 0. This proves that the generalized VCG

mechanism M¤ is budget balancing.8

For the other part of the Theorem, we …rst construct two states s =
(s1 = x; s2 = 2x; : : : ; sn = nx) 2 (0; ¹s]n and s0 = (s01 = nx; s02 = x; : : : ; s0 =
(n¡1)x) 2 (0; ¹s]n and apply Lemma 4.1. This gives the following condition:

¢n¡1(x)F (w1(n)x) = ¢n¡1(x)F (w2(n)x) + ¢n¡1(x)F (w3(n)x) (4.5)

where ¢m(x)F (y) = ¢(x) : : :¢(x)| {z }
m

F (y) =
Pm
m̂=0(¡1)m¡m̂

¡m
m̂

¢
F (y + m̂x)

is the mth order partial di¤erence of amount x at time point y, w1(n) =
(n¡1)n

2 , w2(n) = (n¡1)(n+2)
2 and w3(n) = n(n+1)

2 . Condition (4.5) is a general
necessary condition for …rst best implementability of a simple sequencing
problem. From condition (4.5) we get the result using the fact that the cost
function is su¢ciently well behaved.

7Let ~§ be the set of all possible permutations of the set f1; : : : ; n¡1g and consider the
mapping ¾ : (0; s]n¡1 ! ~§. Thus, for all j 2 N and for all s¡j 2 (0; s]n¡1, the e¢cient
queue in the absence of agent j is ¾¤(s¡j) 2 argmin¾2~§

P
q2N¡fjg F (Sq(¾; sq)).

8From now on we refer to M¤ = h¾¤; t¤i as the …rst best mechanism.
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We try to argue why polynomial cost of order (n¡2) is important for …rst
best implementability of a simple sequencing problem. Consider two true
states s = (s1; s2 = a; : : : ; sn = a) 2 (0; ¹s]n and ŝ = (s1; ŝ2 = b; : : : ; ŝn =
b) 2 (0; ¹s]n where b < s1 < a. Note that in state s, ¾¤1(s) = 1 and the cost of
agent 1 is F (s1) and in state ŝ, ¾¤1(ŝ) = n and her cost is F ((n ¡ 1)b + s1).
Starting from the state s, consider a state s(P ) where actual processing time
of any P (µ N ¡ f1g) agents changes from a to b. While moving from state
s to state s(P ), the queue position of agent 1 changes from ¾¤1(s) = 1 to
¾¤1(s(P )) = jP j +1 and hence her cost changes from F (s1) to F (jP jb + s1).9

This increase in agent 1’s cost is due to the negative externality imposed
by agents of the set P on agent 1. Since we can select a group of size jP j
from the set N ¡ f1g in

¡n¡1
jP j

¢
ways,

¡n¡1
jP j

¢
F (jP jb + s1) is the total cost

that can result for agent 1 if we consider negative externality, imposed on
her, by all possible groups from the set N ¡ f1g of size jP j. Therefore,
P
PµN¡f1g(¡1)jP j

¡n¡1
jP j

¢
F (jP jb + s1) is the weighted aggregate negative group

externality, that can be imposed on agent 1 by all possible groups of di¤erent
sizes (from the set N ¡ f1g), while moving from state s to ŝ. Here the
weights are 1 if the group size is even and are ¡1 if the group size is odd.
If the cost function is a polynomial of order (n ¡ 2) then this weighted
negative group externality is zero, that is

P
PµN¡f1g(¡1)jP j

¡n¡1
jP j

¢
F (jP jb +

s1) = ¢n¡1(b)F (s1) = ¦i6=1¢(ŝi)F (s1) = 0.10 Observe that this group
externality condition guarantees that the general necessary condition (given
by condition (4.5)) is satis…ed. Using Lemma 4.2, it is easy to verify that,
in general, for all j 2 N and for all pairs of states s0 = (s0j; s0¡j) and ŝ0 =
(s0j ; ŝ0¡j), such that ¾¤j (s0) = 1 and ¾¤j (ŝ0) = n, we get ¦i6=j¢(ŝ0i)F (s0j) =
0 if the cost function is a polynomial order (n ¡ 2). This condition was
used to show that the mechanism M¤ is indeed budget balancing. Thus, a
polynomial of order (n ¡ 2) guarantees that the weighted aggregate negative
group externality that can be imposed on any agent j, by all other agents and
with all possible groups, while moving from a state where agent j is …rst in

9Note that s(P ) = s if P = Á and s(P ) = ŝ if P = N¡ f1g.
10Note that these weights (that is 1 if group size is even and ¡1 if the group size is odd)

is due to Lemma 4.1 which is a necessary condition for …rst best implementability.
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the queue to a state where she is last in the queue, must add up to zero. It is
this group externality condition that guarantees …rst best implementability
of a simple sequencing problem (in ex-post equilibrium) and hence justi…es
the need for a polynomial cost of order (n ¡ 2).

REMARK 4.2 Without restricting the class of cost functions to be su¢-
ciently well behaved one can prove, using condition (4.5), that any imple-
mentable simple sequencing problem with two agents is not …rst best imple-
mentable. Simplifying condition (4.5) for n = 2 we get F (4x) ¡ F (2x) =
F (2x) ¡ F (x) for all x 2 ¡

0; ¹s
2
¤
. This condition holds only if F is a con-

stant function and hence we have a violation of the fact that F is strictly
increasing.

From Remark 4.2 it follows that none of the simple sequencing problems
with two agents are …rst best implementable. With three agents, all simple
sequencing problems with linear cost function are …rst best implementable.
For four agents, consider the class of simple sequencing problems ¡¤ = hN =
f1; 2; 3; 4g; F ¤; (0; s]i where F ¤(x) = a1x + a2x2 for all x 2 (0; ns] and only
one of the following two conditions holds: (1) a1 > 0 and a2 = 0 and (2)
a1 > 0, a2 < 0, s < 1 and a1 ¸ ¡2na2s. It is easy to verify that this class
is …rst best implementable. One can similarly obtain the class of …rst best
implementable simple sequencing problems with more than four agents.

We conclude this section by providing one example where we consider
the class of all linear cost simple sequencing problems. For a linear cost
function F l, the …rst order di¤erence at some point x of amount y, that is
¢(y)F l(x), depends only on y and not on x. This property of the linear
cost makes the transfer scheme very transparent. It is easy to see that this
property does not hold for any non-linear cost function.

EXAMPLE 4.2 Consider ¡l = hN; F l; (0; ¹s]i where jNj ¸ 3, F l(x) =
a1x for all x > 0 and a1 > 0. Consider the …rst best mechanism M¤ =
h¾¤; t¤i and a state s = (s1; : : : ; sn) 2 (0; ¹s]n. Observe that from (4.4)
we get zlir(s¡j) = a1

¡¾¤i (s¡j)¡1
r¡1

¢
si since ¢(si)F

³P
q2Pi;r¡1(¾¤(s¡j)) sq + si

´
=

a1si due to linearity. By substituting zlir(s¡j) in expression (4.3) and then
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simplifying it we get glij(s¡j) = a1
³
n¡¾¤i (s¡j)¡1

n¡2
´

si.11 Given h¤j(s¡j) =

¡P
i6=j glij(s¡j), we get h¤j(s¡j) = ¡a1

P
i6=j

³
n¡¾¤i (s¡j)¡1

n¡2
´

si. Observe that
from the e¢ciency criterion it follows that ¾¤i (s¡j) = ¾¤i (s) if i 2 Pj(¾¤(s))
and ¾¤i (s¡j) = ¾¤i (s) ¡ 1 if i 2 Sj(¾¤(s)). Using this observation we get,

t¤j (s) = a1

8
<
:

X

p2Pj(¾¤(s))

Ã
¾¤p(s) ¡ 1

n ¡ 2

!
sp ¡

X

q2Sj(¾¤(s))

Ã
n ¡ ¾¤q(s)

n ¡ 2

!
sq

9
=
; (4.6)

Thus, the transfer of an agent j is the weighted sum of the processing cost
of all other agents. The weights are positive for all agents who belong to the
predecessor set of agent j and the weights are negative for all agents who
belong to the successor set of j. It is quite easy to verify using (4.6) that
P
j2N t¤j(s) = 0 for all s 2 (0; ¹s]n.

5 Conclusion

In this paper we have analyzed the merit of ex-post equilibrium in imple-
menting and …rst best implementing simple sequencing problems with inter-
dependent costs. We showed that the class of generalized VCG mechanism
(due to Bergemann and Välimäki (2000)) are the unique class of mecha-
nisms that implements simple sequencing problem in ex-post equilibrium.
A mechanism is a generalized VCG mechanism if each agent is paid the
maximum possible incremental loss of her own and that of all agents who

11By substituting zlir(s¡j) in expression (4.3) we get

glij(s¡j) = a1 1
( n¡2

¾¤
i
(s¡j)¡1)

¾¤
i (s¡j)P
r=1

(¡1)¾¤
i (s¡j)¡r

¡
n¡2
r¡1

¢
si

or glij(s¡j) = a1
(¡1)¾

¤
i (s¡j)¡1

( n¡2
¾¤

i
(s¡j)¡1)

¾¤
i (s¡j)P
r=1

(¡1)r¡1
¡n¡2
r¡1

¢
si

or glij(s¡j) = a1
(¡1)¾

¤
i (s¡j)¡1

( n¡2
¾¤

i (s¡j)¡1)

¾¤
i (s¡j)¡1P
k=0

(¡1)k
¡
n¡2
k

¢
si

or glij(s¡j) = a1
(¡1)2(¾

¤
i (s¡j)¡1)

( n¡2
¾¤

i
(s¡j)¡1)

¡
n¡3

¾¤
i (s¡j)¡1

¢
si

or glij(s¡j) = a1
³
n¡¾¤

i (s¡j)¡1
n¡2

´
si. The penultimate step follows from the mathematical

identity
mP
k=0

(¡1)k
¡
n̂
k

¢
= (¡1)m

¡
n̂¡1
m

¢
. One can easily prove this identity by applying

induction on m.
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precedes her in the queue, up to constant. Maximum possible incremental
loss of an agent is the incremental loss that she incurs due to the presence of
her immediate predecessor in the queue. We proved that a simple sequenc-
ing problem is …rst best implementable if the cost function is a polynomial
of order (n ¡ 2) or less. Moreover, for the class of simple sequencing prob-
lems with su¢ciently well behaved cost function, this is the only …rst best
implementable class. A polynomial cost of order (n ¡ 2) guarantees that
the weighted aggregate negative group externality that can be imposed on
any agent j, with a given processing time, by all other agents and with all
possible groups, while moving from a state where j is …rst in the queue to a
state where she is last, must add up to zero. This group externality condi-
tion guarantees …rst best implementability of a simple sequencing problem.
How will the results change in a more general sequencing set up is still an
open question.
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6 APPENDIX

PROOF OF PROPOSITION 3.1:We …rst consider two states that dif-
fer only by the type of agent j 2 N. We then apply the implementability
conditions to get the result. We consider any …ve numbers (a; sj ; si; s0j; b)
all belonging to (0; s] such that a < sj < si < s0j < b. Using these numbers
we construct the states s = (sj ; s¡j) and s0 = (s0j ; s¡j), where sp = a for all
p 2 P 0 µ N¡fj; ig and sq = b for all q 2 S0 = N¡P 0¡fj; ig. From the con-
struction and from the e¢ciency criterion, it follows that ¾¤j (s) = jP 0j+1 <
¾¤i (s) = jP 0j + 2 and ¾¤j (s0) = jP 0j +2 > ¾¤i (s0) = jP 0j +1. Therefore, we are
considering two states s = (sj; s¡j) and s0 = (s0j; s¡j) such that agent i is
the immediate successor of agent j in state s and is the immediate predeces-
sor of agent j in state s0. Applying the implementability condition in states
s = (sj; s¡j) and s0 = (s0j ; s¡j), for agent j, we get Uj(¾¤(s); tj(s); s) ¸
Uj(¾¤(s0); tj(s0); s) and Uj(¾¤(s0); tj(s0); s0) ¸ Uj(¾¤(s); tj(s); s0). Simpli-
fying these two conditions we get that the di¤erence tj(s0j; s¡j) ¡ tj(s)
must lie in the closed interval [¢(si)F (ajP 0j+s0j);¢(si)F (ajP 0j+sj)] where
ajP 0j =

P
p2Pj(¾¤(s)) sp. Therefore, it is necessary that ¢(si)F (ajP 0j + s0j) ·

¢(si)F (ajP 0j + sj). The last inequality implies weak concavity of F since
sj < s0j .

PROOF OF PROPOSITION 3.2: To prove the necessity part of the
Proposition we derive the explicit form of the transfer satisfying conditions
(i) and (ii). Consider two states ¹s = (sj; ŝ¡j) and ¹s0 = (s0j ; ŝ¡j) such that
¾¤j (¹s) = ¾¤j (¹s0) ¡ 1 and sj 6= s0j. From e¢ciency it follows that there exists
an agent p such that sj · ŝp · s0j . From e¢ciency it also follows that
at ~sj = ŝp,

P
i2N F (Si(¾¤(¹s); ~sj ; ŝ¡j)) =

P
i2N F (Si(¾¤(¹s0); ~sj ; ŝ¡j)). Using

these observations and simplifying (3.1) we get

tj(¹s0) ¡ tj(¹s) = ¢(ŝp)F (Sp(¾¤(¹s); ¹s))(= Vp(¹s)) (6.7)

Using condition (i) we write tj(ŝ) = hj(ŝ¡j) for ¾¤j (ŝ) = 1. Solving (6.7)
recursively, by using tj(ŝ) = hj(ŝ¡j) for ¾¤j (ŝ) = 1, we get the transfer given
by condition (3.2). The su¢ciency part of the Proposition is obvious.
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PROOF OF PROPOSITION 3.3: We start by proving the necessity of
the Proposition. Consider a simple sequencing problem ¡ = hN; F; (0; s]i.
Let M = h¾¤; ti be the mechanism that implements ¡. We assume (with-
out loss of generality) that the implementable transfer is of the follow-
ing form: tj(s) =

P
p2Pj(¾¤(s)) ¢(sp)F (Sp(¾¤(s); sp)) + hj(s). To prove

the necessity part of the Proposition, we prove that for all j 2 N and
for all true s¡j 2 (0; s]n¡1, hj(sj ; s¡j) = hj(s0j; s¡j) for all sj and s0j in
(0; s]. Consider …rst the case where sj and s0j are such that ¾¤(sj ; s¡j) =
¾¤(s0j; s¡j). From the implementability requirement for agent j 2 N in
states s = (sj ; s¡j) and s0 = (s0j; s¡j) it follows that Uj(¾¤(s); tj(s); sj) ¸
Uj(¾¤(s0); tj(s0); sj) and Uj(¾¤(s0); tj(s0); s0j) ¸ Uj(¾¤(s); tj(s); s0j). Simpli-
fying, the two inequalities using ¾¤(sj; s¡j) = ¾¤(s0j ; s¡j), Pj(¾¤(sj; s¡j)) =
Pj(¾¤(s0j ; s¡j)) and using the general transfer tj(:), speci…ed above, we get
0 · hj(sj; s¡j) ¡ hj(s0j; s¡j) · 0. Therefore, if sj and s0j are such that
¾¤(sj; s¡j) = ¾¤(s0j ; s¡j), then hj(sj; s¡j) = hj(s0j ; s¡j). Now we con-
sider the case where sj and s0j are such that ¾¤(sj ; s¡j) 6= ¾¤(s0j; s¡j),
j¾¤j (sj ; s¡j)¡¾¤j (s0j; s¡j)j = 1 and hence jPj(¾¤(sj ; s¡j))¡Pj(¾¤(s0j ; s¡j))j =
1. We have two possible sub-cases-(i) Pj(¾¤(s0j ; s¡j)) ¡ Pj(¾¤(sj; s¡j)) =
fq0g where sj · sq0 · s0j (with at least one strict inequality) and (ii)
Pj(¾¤(sj ; s¡j)) ¡ Pj(¾¤(s0j; s¡j)) = fp0g where s0j · sp0 · sj (with at least
one strict inequality). We …rst consider sub-case (i). Applying the imple-
mentability requirement for agent j 2 N and simplifying it, using the condi-
tions in sub-case (i), we get hj(s0j; s¡j) ¡ hj(sj; s¡j) 2 [A(s0j); A(sj)] where
A(x) = ¢(sq0)F (

P
p2Pj(¾¤(sj ;s¡j)) sp+x)¡¢(sq0)F (

P
p2Pj(¾¤(sj ;s¡j)) sp+sq0).

Note that A(x) is non-increasing in x 2 [sj; s0j ] due to weak concavity of F .
Moreover, A(s0j) · 0, A(sj) ¸ 0 and A(sq0) = 0. For all ¹sj 2 [sj; sq0),
hj(¹sj ; s¡j) = hj(sj ; s¡j) since ¾¤(sj ; s¡j) = ¾¤(¹sj ; s¡j). Similarly, for all
~sj 2 (sq0 ; s0j ], hj(~sj; s¡j) = hj(s0j; s¡j) since ¾¤(s0j; s¡j) = ¾¤(~sj; s¡j). At
ŝj = sq0 , depending on the tie breaking rule, either ¾¤(sj; s¡j) = ¾¤(ŝj; s¡j)
or ¾¤(s0j ; s¡j) = ¾¤(ŝj; s¡j). In either case, hj(s0j; s¡j) ¡ hj(sj; s¡j) =
A(sq0) = 0. Therefore, hj(s0j ; s¡j) = hj(sj; s¡j). We now consider sub-case
(ii). Like sub-case (i) we get hj(s0j; s¡j) ¡ hj(sj; s¡j) 2 [B(s0j); B(sj)] where
B(x) = ¢(sp0)F (

P
p2Pj(¾¤(s0j ;s¡j)) sp+sp0)¡¢(sp0)F (

P
p2Pj(¾¤(s0j ;s¡j)) sp+x).
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Note that B(x) is non-decreasing in x 2 [s0j; sj ] due to weak concavity of
F . Moreover, B(s0j) · 0, B(sj) ¸ 0 and B(sp0) = 0. Thus, like sub-case
(i) we get hj(s0j ; s¡j) ¡ hj(sj; s¡j) = B(sp0) = 0 and hence, hj(s0j ; s¡j) =
hj(sj ; s¡j). For _sj and _s0j such that j¾¤j ( _sj ; s¡j) ¡ ¾¤j ( _s0j; s¡j)j = k 2
f2; : : : ; n ¡ 1g we apply the argument j¾¤j (sj ; s¡j) ¡ ¾¤j (s0j; s¡j)j = 1 in-
ductively to get the result.

We now prove the su¢ciency part of the Proposition. Let s¡j be the true
processing time of all agents except j. We de…ne the bene…t of agent j 2 N,
when she reports s0j , given her true type sj as B(s0j; sj) which is given by
B(s0j; sj) = Uj(¾¤(s0); tj(s0); s) ¡ Uj(¾¤(s); tj(s); s). Here s = (sj; s¡j) and
s0 = (s0j ; s¡j). To prove the Proposition we will prove that for all s0j 2 (0; s]
and for all sj 2 (0; s], B(s0j ; sj) · 0. There are two possible sub-cases: (a)
Pj(¾¤(s0)) ½ Pj(¾¤(s)) and (b) Pj(¾¤(s)) µ Pj(¾¤(s0)). For sub-case (a),
¾¤j (s) > ¾¤j (s0) and B(s0j; sj) = ¢

³P
q2 ¹Pj sq

´
F

³P
p2Pj(¾¤(s0)) sp + sj

´
¡

P
q2 ¹Pj ¢(sq)F

³P
r2Pq(¾¤(s)) sr + sq

´
.12 By repeatedly applying the rela-

tion ¢(h1 + h2)F (x) = ¢(h1)F (x + h2) + ¢(h2)F (x) on the …rst term of
B(s0j; sj) and simplifying it we get ¢

³P
q2 ¹Pj sq

´
F

³P
p2Pj(¾¤(s0)) sp + sj

´
=

P
q2 ¹Pj ¢(sq)F

³P
r2Pq(¾¤(s)) sr + sj

´
. Thus, agent j’s bene…t is B(s0j; sj) =

P
q2 ¹Pj ¢(sq)

h
F

³P
r2Pq(¾¤(s)) sr + sj

´
¡ F

³P
r2Pq(¾¤(s)) sr + sq

´i
. Clearly,

B(s0j; sj) · 0 since sq · sj for all q 2 ¹Pj and F is weakly concave.
For sub-case (b), ¾¤j (s) · ¾¤j (s

0) and the bene…t of agent j from mis-
reporting is given by B(s0j ; sj) =

P
q2P̂j ¢(sq)F

³P
r2Pq(¾¤(s0)) sr + sq

´
¡

¢
³P
q2P̂j sq

´
F

³P
p2Pj(¾¤(s)) sp + sj

´
.13 By repeatedly applying the rela-

tion ¢(h1 + h2)F (x) = ¢(h1)F (x + h2) + ¢(h2)F (x) on the …rst term of
B(s0j; sj) and simplifying it we get ¢

³P
q2P̂j sq

´
F

³P
p2Pj(¾¤(s)) sp + sj

´
=

P
q2P̂j ¢(sq)F

³P
r2Pq(¾¤(s0)) sr + sj

´
. Thus, the bene…t of agent j 2 N, by

deviating from her true processing time sj to s0j is given by B(s0j ; sj) =
P
q2P̂j ¢(sq)

h
F

³P
r2Pq(¾¤(s)) sr + sq

´
¡ F

³P
r2Pq(¾¤(s)) sr + sj

´i
. Clearly,

B(s0j; sj) · 0 since sj · sq for all q 2 P̂j and F is weakly concave.

12Here ¹Pj = Pj(¾¤(s))¡ Pj(¾¤(s0)).
13Here P̂j = Pj(¾¤(s0))¡ Pj(¾¤(s)).
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PROOF OF THEOREM 4.1: We …rst prove the …rst part of the Theo-
rem. To do that we construct a particular VCG mechanism for a simple
sequencing problem with polynomial cost function of order (n ¡ 2) and
show that the transfers add up to zero for all possible processing time
vectors. For an implementable simple sequencing problem with a polyno-
mial cost of order (n ¡ 2) or less, consider the implementable mechanism
M¤ = h¾¤; t¤i where for all j 2 N and for all s¡j, h¤j(s¡j) = ¡P

i6=j gij(s¡j),

where gij(s¡j) =
P¾¤i (s¡j)
r=1 (¡1)¾¤i (s¡j)¡r

n
(¾¤i (s¡j)¡r)!(n¡¾¤i (s¡j)¡1)!

(n¡r¡1)!
o

zir(s¡j),
zir(s¡j) =

P
Pi;r¡1(¾¤(s¡j))½Pi(¾¤(s¡j)) ¢(si)F (

P
q2Pi;r¡1(¾¤(s¡j)) sq + si) and

Pi;®(¾¤(s¡j)) is an ®-element subset of Pi(¾¤(s¡j)). We …rst prove that
P
j2N¡fig gij(s¡j) = (n ¡ ¾¤i (s))¢(si)F (Si(¾¤(s); s)) for all ¾¤i (s) 6= n.

Since
P
j2N¡fig gij(s¡j) =

P
j 6=i

j 62Pi(¾¤(s¡j ))
gij(s¡j) +

P
j2Pi(¾¤(s¡j)) gij(s¡j),

we simplify each of these two sums in separate steps. We …rst consider
the sum

P
j 6=i

j 62Pi(¾¤(s¡j ))
gij(s¡j). Observe that from the e¢cient rule we get

¾¤i (s¡j) = ¾¤i (s), for all agents j 62 fPi(¾¤(s)) [ figg. Also observe that each
set Pi;r¡1(¾¤(s)) occurs (n¡¾¤i (s)) times in the sum

P
j 6=i

j 62Pi(¾¤(s¡j ))
gij(s¡j).

Using these two observations, we get

X

j 6=i
j 62Pi(¾¤(s¡j))

gij(s¡j) =
¾¤i (s)X

r=1
(¡1)¾

¤
i (s)¡r

µ(¾¤i (s) ¡ r)!(n ¡ ¾¤i (s))!
(n ¡ r ¡ 1)!

¶
L(r; s)

(6.8)
where L(r; s) =

P
Pi;r¡1(¾¤(s))µPi(¾¤(s)) ¢(si)F

³P
q2Pi;r¡1(¾¤(s)) sq + si

´
and

Pi;®(¾¤(s)) is an ®-element subset of Pi(¾¤(s)). We now consider the other
sum

P
j2Pi(¾¤(s¡j)) gij(s¡j). Observe …rst that from e¢ciency condition we

get ¾¤i (s¡j) = ¾¤i (s) ¡ 1 for all j 2 Pi(¾¤(s)). Secondly, observe that each
set Pi;r¡1(¾¤(s)) appears (¾¤i (s) ¡ r) times in

P
j2Pi(¾¤(s¡j)) gij(s¡j). Using

these two observations we get

X

j2Pi(¾¤(s¡j))
gij(s¡j) =

¾¤i (s)¡1X

r=1
(¡1)¾

¤
i (s)¡r¡1

µ
(¾¤i (s) ¡ r)!(n ¡ ¾¤i (s))!

(n ¡ r ¡ 1)!

¶
L(r; s)

(6.9)
By adding the sums given by conditions (6.8) and (6.9) and then simplifying
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it, using (¡1)¾¤i (s)¡r + (¡1)¾¤i (s)¡r¡1 = 0, we get

X

j2N¡fig
gij(s¡j) = (n ¡ ¾¤i (s))¢(si)F

0
@ X

j2Pi(¾¤(s))
sj + si

1
A (6.10)

Therefore, from condition (6.10) it follows that the sum
P
j2N¡fig gij(s¡j) =

(n ¡ ¾¤i (s))¢(si)F (Si(¾¤(s); s)) for all i 2 N such that ¾¤i (s) 6= n. Now we
consider

P
j2N¡fig gij(s¡j) for agent i with ¾¤i (s) = n and show that it is

equal to zero. For any j 6= i we get ¾¤i (s¡j) = n ¡ 1 since ¾¤i (s) = n.
Moreover, for any such j 6= i, gij(s¡j) =

Pn¡1
r=1 (¡1)n¡1¡rzir(s¡j). Since the

term zir(s¡j) =
P
Pi;r¡1(¾¤(s¡j))½Pi(¾¤(s¡j)) ¢(si)F

³P
q2Pir(¾¤(s¡j)) sq + si

´
,

we get gij(s¡j) = ¦l 6=j¢(sl)F (si). This step means that the term gij(s¡j) is
equal to the (n ¡ 1)th order cross-partial di¤erence of amount fslgl 6=j at si.
Since F is a polynomial of order (n¡2), from Lemma 4.2 we get gij(s¡j) = 0.
Therefore, for an agent i such that ¾¤i (s) = n,

P
j2N¡fig gij(s¡j) = 0. Thus,

we get
P
j2N¡fig gij(s¡j) = (n ¡ ¾¤i (s))¢(si)F (Si(¾¤(s); s)) for all i 2 N.

Finally, we consider the sum
P
j2N hj(s¡j) and show that it is equal to

¡V(s). Since
P
j2N hj(s¡j) = ¡P

i2N¡fjg gij(s¡j), we get
P
j2N

hj(s¡j) = ¡ P
j2N

P
i2N¡fjg

gij(s¡j) = ¡ P
i2N

P
j2N¡fig

gij(s¡j)

or
P
j2N

hj(s¡j) = ¡ P
i2N

(n ¡ ¾¤i (s))¢(si)F (Si(¾¤(s); s))

or
P
j2N hj(s¡j) = ¡V(s).

The last step guarantees budget balancedness of the transfer in M¤ for any
state s 2 (0; ¹s]n.

We now prove the second part of the Theorem. The …rst step will be
to construct a pair of states and then apply Lemma 4.1 to get a general
necessary condition. The …nal step will be to apply the fact that the cost
function is su¢ciently well behaved and derive the result using this general
necessary condition. Consider an implementable simple sequencing problem
¡ with su¢ciently well behaved cost function.
STEP 1: Consider two states s and s0, both belonging to (0; s]n, such that
s = (s1 = x; s2 = 2x; : : : ; sn = nx) and s0 = (s01 = nx; s02 = x; : : : ; s0 = (n ¡
1)x). For this pair fs; s0g, we consider the sum

P
PµN(¡1)jP jV(s(P )). The

24



construction of the pair fs; s0g is such that
P
PµN(¡1)jP jV(s(P )) is indepen-

dent of all the virtual marginal surplus terms with weights (n¡¾¤j (s(P ))) 2
f2; 3; : : : ; n¡1g. Hence,

P
PµN(¡1)jP jV(s(P )) includes all virtual marginal

surplus terms with weights (n ¡ ¾¤j (s(P ))) = 1 for all P µ N. By col-
lecting all these terms and simplifying it we get

P
PµN(¡1)jP jV(s(P )) =

Pn¡2
k=0(¡1)k

¡n¡2
k

¢f¢(nx ¡ x)F (®(k)x ¡ x) ¡ ¢(nx)F (®(k)x)g where ®(k) =
(n¡1)(n+2)

2 ¡ k. Simplifying this condition using the relation ¢(®x)F (¯x) =
¢((® ¡ 1)x)F ((¯ + 1)x) + ¢(x)F (¯x) recursively and then by substituting
P
PµN(¡1)jP jV(s(P )) = 0 from Lemma 4.1, we get condition (4.5), that is

¢n¡1(x)F (w1(n)x) = ¢n¡1(x)F (w2(n)x) + ¢n¡1(x)F (w3(n)x) (6.11)

where w1(n) = (n¡1)n
2 , w2(n) = (n¡1)(n+2)

2 and w3(n) = n(n+1)
2 . Condition

(6.11) is a general necessary condition for …rst best implementability of any
implementable simple sequencing problem.
STEP 2: Using the restriction that the cost function F is su¢ciently well
behaved, we …rst try to simplify a term of the form ¢n¡1(x)F (wx). The rea-
son for doing this is that all terms in the general necessary condition (6.11)
are of this form. Observe that ¢n¡1(x)F (wx) =

Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢
F ((w +

k¡1)x) where F ((w+k¡1)x) =
P1
l=0 cl((w+k¡1)x¡y0)l =

Pn¡2
l=0 cl((w+

k ¡1)x¡y0)l+
P1
l=n¡2 cl((w+k¡1)x¡y0)l. Therefore, we have re-written

¢n¡1(x)F (wx) as the sum two polynomials. The …rst one is a polynomial
of order (n ¡ 2), that is

Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢ nPn¡2
l=0 cl((w + k ¡ 1)x ¡ y0)l

o

and the second sum is a polynomial with all higher order terms, that is
Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢ nP1
l=n¡1 cl((w + k ¡ 1)x ¡ y0)l

o
. We …rst consider the

sum
Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢ nPn¡2
l=0 cl((w + k ¡ 1)x ¡ y0)l

o
and show that it is

equal to zero. By substituting d(wx) = wx ¡ y0 and by writing ((w +
k ¡ 1)x ¡ y0)l as (d(wx) + (k ¡ 1)x)l and then taking it’s Binomial expan-
sion in the sum, we get

Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢ nPn¡2
l=0 cl((w + k ¡ 1)x ¡ y0)l

o
=

Pn¡2
l=0 cl

Pl
m=0

¡ l
m

¢
(d(wx))l¡mxm±(m) where the term ±(m) is of the form

±(m) =
Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢
(k ¡ 1)m. From Euler’s identity we know that

±(m) = 0 for all integers m 2 f1; : : : ; n¡2g.14 Therefore, the …rst polynomial

14Euler’s identity:
tP
q=0

(¡1)q
¡
t
q

¢
qr = 0 for all 0 · r < t.
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of order (n¡2), that is
Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢ nPn¡2
l=0 cl((w + k ¡ 1)x ¡ y0)l

o
=

0 for any set of real numbers fc0; : : : ; cn¡2g. Thus, ¢n¡1(x)F (wx) is equal
to the other polynomial with all higher order terms, that is ¢n¡1(x)F (wx) =
Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢ nP1
l=n¡1 cl((w + k ¡ 1)x ¡ y0)l

o
. By writing ®(w;m) =

Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢
(w + k ¡ 1)m after taking the Binomial expansion of the

term ((w + k ¡ 1)x ¡ y0)l in the sum and then simplifying it we get the fol-
lowing expression:

Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢ nP1
l=n¡1 cl((w + k ¡ 1)x ¡ y0)l

o
=

P1
l=n¡1 cl

Pl
m=0

¡ l
m

¢
(¡y0)l¡m®(w;m)xm. We now try to evaluate the value

of ®(w; m). By taking the Binomial expansion of (w + (k ¡ 1))m we get
®(w;m) =

Pm
m0=0

¡m
m0

¢
wm¡m0±(m0). From Euler’s identity we know that

±(m0) = 0 for all m0 · n¡2. Hence, ®(w; m) =
Pm
m0=n¡1

¡m
m0

¢
wm¡m0±(m0).

Now we calculate the value of the term ±(m0) =
Pn
k=1(¡1)k¡1

¡n¡1
k¡1

¢
(k¡1)m0

for m0 ¸ n ¡ 1. Expanding (k ¡ 1)m0, using Stirling number of the second
kind and then simplifying it, we get ±(m0) = (¡1)n¡1(n ¡ 1)!S(m0; n ¡
1).15 Hence, we have obtained ®(w;m) = (¡1)n¡1(n ¡ 1)!G(w;m) where
G(w;m) =

Pm
m0=n¡1

¡m
m0

¢
wm¡m0S(m0; n ¡ 1). Therefore,

¢n¡1(x)F (wx) = (¡1)n¡1(n ¡ 1)!
1X

l=n¡1
cl

lX

m=n¡1

Ã
l
m

!
(¡y0)l¡mG(w; m)xm

(6.12)
By substituting condition (6.12) in condition (6.11) and simplifying it, using
(¡1)n¡1(n ¡ 1)! 6= 0, we get

P1
l=n¡1 cl

Pl
m=n¡1

¡ l
m

¢
(¡y0)l¡m¯(m)xm = 0,

where the term ¯(m) is given by ¯(m) = G(w2;m)+G(w3;m)¡G(w1;m) =
15A Stirling number of the second kind S(m0; q), is de…ned as the coe¢cient of [x]q =

x(x¡ 1) : : : (x¡ q + 1) in the expansion of xm0 , that is, xm0 =
m0P
q=0
S(m0; q)[x]q for every

real number x and, more importantly, for every natural number m0. Stirling number of
the second kind are such that S(m0; 1) = S(m0;m0) = 1. Moreover, these numbers are
unimodal i.e. they satisfy one of the following formulae:

1. 1 = S(m0; 1) < S(m0; 2) < : : : < S(m0;M(m0)) > S(m0;M(m0) ¡ 1) > : : : >
S(m0;m0) = 1 or

2. 1 = S(m0; 1) < S(m0; 2) < : : : < S(m0;M(m0) ¡ 1) = S(m0;M(m0)) > : : : >
S(m0;m0) = 1

and M(m0 +1) =M(m0) or M(m0 +1) =M(m0) + 1 where M(m0) = maxfq j S(m0; q)
is maximum; 1 · q · m0g. For a better understanding see Tomescu (1985).
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Pm
m0=n¡1

¡m
m0

¢
(wm¡m0

2 +wm¡m0
3 ¡wm¡m0

1 )S(m0; n¡1). Note that ¯(m) > 0
since 0 < w1 < w2 < w3, m ¡ m0 ¸ 0 for all m0 = n ¡ 1; : : : ; m and since
S(m0; n¡1) ¸ 1 for all integers m0 ¸ n¡1. Therefore, using these results we
get

P1
l=n¡1 cl

Pl
m=n¡1

¡ l
m

¢
(¡y0)l¡m¯(m)xm =

P1
r=n¡1 Arxr = 0 where each

coe¢cient Ar =
P1
l=r cl

¡l
r
¢
(¡y0)l¡r¯(r). The equation

P1
r=n¡1 Arxr = 0

implies that Ar = 0 for all r = n ¡ 1; n; : : : ;1. Therefore, using ¯(r) > 0,
we get Br(= Ar

¯(r)) =
P1
l=r cl

¡l
r
¢
(¡y0)l¡r = 0 for all r = n¡1; n; : : : ; 1. Using

the identity
¡l
r
¢
+

¡ l
r+1

¢
=

¡l+1
r+1

¢
and simplifying Dr = Br + (¡y0)Br+1(= 0)

we get Dr =
P1
l=r cl

¡ l+1
r+1

¢
(¡y0)l¡r = 0 for all r = n ¡ 1; n; : : : ; 1. Since

¡l+1
r+1

¢
= l+1
r+1

¡l
r
¢
, r + 1 6= 0 and Br = 0, we get

P1
l=r lcl

¡l
r
¢
(¡y0)l¡r = 0 for

all r = n¡ 1; n; : : : ;1. Similarly, by considering D0
r = Dr + (¡y0)Dr+1 = 0

and using
P1
l=r lcl

¡l
r
¢
(¡y0)l¡r = 0 and Br = 0 for all r = n¡1; n; : : : ; 1, we

get
P1
l=r l2cl

¡l
r
¢
(¡y0)l¡r = 0 for all r = n ¡ 1; n; : : : ; 1. By continuing this

way recursively, we get, for any p = 0; 1; : : : ;1,
P1
l=r lpcl

¡l
r
¢
(¡y0)l¡r = 0

for all r = n ¡ 1; n; : : : ; 1. Thus, given any p = 0; 1; : : : ; 1, we also get

1X

l=r
(l ¡ h)pcl

Ã
l
r

!
(¡y0)l¡r = 0 (6.13)

for all r = n ¡ 1; n; : : : ;1 and for any h. Using Stirling number of the …rst
kind, consider Er =

P1
l=r cl

¡ l
r
¢ nPl¡r

p=0 s(l ¡ r; p)(l ¡ r)p
o

(¡y0)l¡r, for all
r = n¡1; n; : : : ; 1.16 From condition (6.13) it follows that Er = 0 for all r,
since Er can be written as Er =

Pl¡r
p=0 s(l¡r; p)

nP1
l=r cl

¡l
r
¢
(l ¡ r)p(¡y0)l¡r

o

and the second sum is zero. Simplifying the sum in the original expression
of Er we get Er = 1

r!
P1
l=r l!cl(¡y0)l¡r = 0 for all r = n ¡ 1; n; : : : ;1 since

by applying the properties of Stirling number of the …rst kind we know that
Pl¡r
p=0 s(l ¡ r; p)(l ¡ r)p = (l ¡ r)!. Thus, we get Tr =

P1
l=r l!cl(¡y0)l¡r = 0

for all r = n ¡ 1; n; : : : ; 1. Observe that Tr = r!cr + (¡y0)Tr+1 = r!cr
since Tr+1 = 0. Moreover, since Tr = 0 and r! > 0, we get cr = 0 for all
r = n¡1; n; : : : ; 1. Hence, the general necessary condition (6.11) holds, for
a cost function F of the form F (y) =

P1
l=0 cl(y ¡ y0)l, for any selection of

fc0; : : : ; cn¡2g and only if cl = 0 for all l = n ¡ 1; n; : : : ;1.
16A Stirling number of the …rst kind, s(m; q), is the coe¢cient of xq in the expansion of

[x]m = x(x¡ 1) : : : (x¡m+ 1), that is [x]m =
mP
q=1
s(m; p)xq (See Tomescu (1985)).
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