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Abstract. The replicator equation model for the evolution of individual
behaviors in a single-species with a multi-dimensional continuous trait space
is developed as a dynamics on the set of probability measures. Stability of
monomorphisms in this model using the weak topology is compared to more
traditional methods of adaptive dynamics. For quadratic fitness functions
and initial normal trait distributions, it is shown that the multi-dimensional
CSS (Continuously Stable Strategy) of adaptive dynamics is often relevant
for predicting stability of the measure-theoretic model but may be too strong
in general. For general fitness functions and trait distributions, the CSS
is related to dominance solvability which can be used to characterize local
stability for a large class of trait distributions that have no gaps in their
supports whereas the stronger NIS (Neighborhood Invader Strategy) concept
is needed if the supports are arbitrary.

Keywords: Adaptive dynamics, CSS, NIS, replicator equation, local su-
periority, strategy dominance, measure dynamics, weak topology

Running Head: Replicator Equation on Multi-Dimensional Continuous
Trait Space
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1 Introduction

Dynamical systems on the set of probability measures over a continuous trait

space have been developed as one means to predict the evolution and stability

of distributions of individual behaviors in a biological species (Bomze, 1990,

1991; Oechssler and Riedel, 2001, 2002). These systems generalize the well-

known replicator equation approach of dynamic evolutionary game theory

(Hofbauer and Sigmund, 1998; Cressman, 2003) when the trait space is finite

(i.e. when there are a finite number of pure strategies) and individuals in-

teract in random pairwise encounters that determine their payoffs (i.e. their

fitness or reproductive success). A primary objective of these theoretical

models is the characterization, in terms of static payoff/fitness comparisons,

of static conditions (and distributions that satisfy the conditions) that imply

dynamic stability. Such conditions then allow practitioners of evolutionary

game theory to describe the outcome of the evolutionary process without a

detailed analysis of the underlying dynamical system.

For instance, when there are n pure strategies (so trait space is finite) and

there are random pairwise encounters that contribute additively to fitness,

the static equilibrium concept of an evolutionarily stable strategy defined by

Maynard Smith (1982) (i.e. a strategy for which, whenever all individuals

use this strategy, the population cannot be invaded by a rare mutant under

the influence of natural selection) has been a huge success since the resul-

tant heuristic static conditions have a clear biological basis. We will refer to

this case as the matrix game model (Meszena et al., 2001) and the equilib-

rium concept as a matrix-ESS (Vincent and Cressman, 2000; Cressman and
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Hofbauer, 2005) since payoffs are given through an n× n payoff matrix.1

For continuous trait spaces, an alternative means to predict the evolu-

tionary outcome is the adaptive dynamics method that has generated an

enormous literature (see Abrams (2001) and the references therein) since

the phrase was introduced by Hofbauer and Sigmund (1990). This method

is especially useful when the resident biological species is monomorphic (i.e.

when all individuals in the population are using the same strategy) and there

is a one-dimensional continuous trait space. Here, adaptive dynamics pre-

dicts stability of a monomorphic equilibrium if, for all other monomorphisms

that are small perturbations of this equilibrium, trait substitution through

nearby mutations is only successful when this substitution moves the popu-

lation closer to the equilibrium. Mathematically, the adaptive dynamics of

mutation and trait substitution is modelled here by the canonical equation

(Marrow et al., 1996), a one-dimensional dynamical system (see Section 4

below) whose stable equilibria are characterized by the static convergence

stable conditions of Christiansen (1991) (also called the m−stability concept
in Taylor (1989)). Combined with a further condition (often called the ESS or

uninvadability condition) that guards against the monomorphism being suc-

cessfully invaded by an evolving dimorphism through a process now referred

to as evolutionary branching (Doebeli and Dieckmann, 2000), we obtain the

solution concept of continuously stable strategy (CSS) introduced by Eshel

(1983).

From our perspective, adaptive dynamics and its canonical equation are

approximate descriptions of how the mean of the distribution of individual

1The matrix-ESS terminology will help avoid confusion with the term ESS as it has
been used in the literature with continuous trait spaces.
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behaviors evolves and do not adequately model the spread of the distribution.

In this paper, we use the replicator equation with a continuous trait space to

model the evolution of the probability distribution (i.e. probability measure)

of individual behaviors. The CSS and/or convergence stability conditions are

then heuristic tools that at best can suggest when the distribution will evolve

to a monomorphism (i.e. to a Dirac delta distribution in measure theoretic

terminology). In fact, Cressman and Hofbauer (2005) have shown the rele-

vance of the CSS concept (and the closely related concept of a neighborhood

invader strategy (NIS) of Apaloo (1997)) for stability of monomorphisms in

the measure dynamics of a one-dimensional continuous trait space. Specif-

ically, a non CSS monomorphism is unstable in the measure dynamic and,

conversely, a CSS is dynamically stable if the initial distribution of individual

behaviors is close to the CSS and satisfies an additional technical requirement

concerning the strategies present in the population (i.e. the support of this

distribution).2 Of particular interest in proving these results is the technique

of iterated elimination of strictly dominated strategies that is borrowed from

classical game theory and also used in the stability analysis of evolutionary

game theory applied to matrix games (e.g. Samuelson and Zhang, 1992) but

seems not to have been used previously in the adaptive dynamics literature.

The main purpose of this paper is then to examine whether static ex-

tensions of the one-dimensional adaptive dynamics concepts continue their

relevance for the measure dynamic model when the trait space is multi-

dimensional. We begin in Section 2 by briefly developing the replicator

2See Section 5 for further details of this technical requirement that successful mutant
monomorphisms in the adaptive dynamics approach are available for trait substitution.
Without this requirement, the stronger NIS conditions are needed to guarantee dynamic
stability.
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equation on a continuous trait space and introducing essential notation used

throughout the paper concerning this measure dynamics and the underlying

fitness functions. Sections 3 and 4 provide valuable insight by fully analyz-

ing the replicator equation in the special case of quadratic fitness functions

and normal distributions (Section 3) and then relating these results to po-

tential static extensions of the CSS concept to multi-dimensional adaptive

dynamics in Section 4 (see Theorems 4 and 5 there). Section 5 considers

the general case of arbitrary fitness functions and probability distributions

in the multi-dimensional setting. Unfortunately, our results here do not give

as thorough a static characterization of stability for the replicator equation

as that available through the one-dimensional analysis of Cressman and Hof-

bauer (2005). Although we are able to obtain necessary conditions related

to adaptive dynamics for stability of monomorphisms in large classes of mea-

sure dynamic models as well as sufficient conditions for others, an exhaustive

classification is beyond the reach of our current techniques. The final section

discusses these shortcomings as it summarizes the positive aspects of our

classification.

2 The Replicator Dynamics on the Space of
Probability Measures

The probability measure dynamics is the extension of the replicator equation

originally defined for matrix games with a finite trait space (Taylor and

Jonker, 1978). In general, individuals are assumed to play a strategy s in a

fixed trait space S and the population state is given by a probability measure
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P on a measurable space (S,B). If A ∈ B, P (B) is interpreted as the
proportion of individuals in the population who are using strategies in the

set A.

For our model of a multi-dimensional continuous trait space, S will be a

Borel subset of Rn and B will be the Borel subsets of S (i.e. the σ−algebra
of the Borel sets of Rn intersected with S and so P is a Borel measure).3 Let

∆(S) denote the set of probability measures with respect to (S,B). Since P
is a Borel measure, there is a unique (relatively) closed subset of S, called

the support of P , such that the measure of its complement is 0 but every

open set that intersects it has positive measure (Royden, 1988).

The measure dynamics on ∆(S) (see (1) below) is given in terms of the

fitness (or expected payoff) π(s, P ) = π(δs, P ) of an individual using strategy

s when the population is in state P . Here, for a given s ∈ S, δs denotes

the Dirac delta measure that assigns unit mass to {s}. We will assume

throughout that the fitness π(s, P ) is given through a continuous real-valued

payoff function π : S × S −→ by π(s, P ) =
R
S
π(s, y)P (dy). In particular,

matrix games that assume random pairwise interactions and a finite trait

space S may be put in this form.4 The mean payoff to a random individual

in the population with state P is then π(P,P ) ≡
Z
S

π(δs, P )P (ds).

We assume the replicator equation (1) describes how the population state

3In fact, S will typically have further topological properties such as being convex and
open (or closed with nonempty interior). The Borel subsets of Rn form the smallest
σ−algebra containing the open subsets of Rn .

4In fact, Bomze and Pötscher (1989) argue that the existence of such a π(s, y) for an
arbitrary trait space S means the evolutionary game can be interpreted as being based on
pairwise interactions. It is only the form of π(s, P ) that is important to us, not whether
players are competing pairwise.
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evolves (i.e. its solutions define trajectories Pt in ∆(S)).

dP

dt
(A) =

Z
A

(π(δs, P )− π(P, P ))P (ds) (1)

Heuristically, this dynamic increases the probability of those sets of strate-

gies B that have a higher expected payoff than the mean payoff to a ran-

dom individual in the population. It has been shown (Oechssler and Riedel,

2001) that there is a unique solution that satisfies this dynamics for all pos-

itive t given any initial probability measure P0 with compact support when

π(s, y) is continuous.5 Here A is a Borel subset of S and dP
dt
at time t

is defined to be limh→0
Pt+h−Pt

h
with respect to the variational norm (i.e.

limh→0 supB∈B kdPdt (A)− Pt+h−Pt
h

(A)k = 0 where k · k is the variational norm
as in Oechssler and Riedel (2001)). Furthermore, the support of Pt is the

same as P0 for all t ≥ 0. A population state P ∗ is an equilibrium of (1) if

and only if π(δs, P ∗)− π(P ∗, P ∗) = 0 for all s ∈ supp(P ∗).
Our primary aim in this paper is the investigation of the convergence and

stability properties (especially related to monomorphic equilibrium popula-

tion states δs) of the measure dynamics (1). Heuristically, dynamic stability

of P ∗ refers to the question whether Pt stays close and/or evolves to P ∗ if

the initial P0 is chosen appropriately in ∆(S). From Oechssler and Riedel

(2002), it is clear that the answers to the stability question depend critically

on the concept of closeness of probability measures (i.e. on the topology used

for the space of Borel probability measures), when the trait space is not a

finite subset of Rn.
5If π(s, y) is not continuous or P0 does not have compact support, one must be careful

that the desired integrals are defined. The latter concern is discussed further for the
normal distributions of Section 3.
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We feel the weak topology captures best the essence of evolutionary con-

vergence in our biological systems.6 This topology will mostly be applied to

neighborhoods of monomorphic P ∗. In general, for a probability measure P ∗

with finite support {x1, . . . , xm}, we can take ε−neighborhoods in the weak
topology to be of the form

{Q ∈ ∆(S) : |Q(Bε(xi))− P ∗({xi})| < ε ∀i = 1, . . . ,m}

where Bε(x) is the open ball of radius ε centered at x. In particular, two

monomorphisms δx1 and δx2 are within ε of each other if and only if the

Euclidean distance between these points is less than ε. In the following all

topological notions in∆(S) are taken for this weak topology, unless otherwise

stated.

2.1 The Fitness Function π(s, y)

For the multi-dimensional continuous trait space, we assume S is the closure

of an open connected subset of Rn that contains the origin in its interior.

In fact, we often assume S is star-shaped with respect to the origin (i.e., if

x ∈ S, then so does the line segment joining 0 to x). We are particularly

interested in the stability of the monomorphism δ0. To this end, consider the

Taylor expansion of π(x, z) about (0, 0) ∈ R2n

π(x, z) = π(0, 0)+∇1π·x+∇2π·z+1
2

£
x · ¡∇211π¢x+ 2x · ¡∇212π¢ z + z · ¡∇222π¢ z¤+h.o.t.

where, for i ∈ {1, 2}, ∇iπ is the gradient vector of π at the origin in the

ith variable (e.g. (∇1π)k = (∂π(x, z)/∂xk)
¯̄̄
(x,z)=(0,0)

)) and ∇2ijπ is the n× n

6We frequently use a “modified” weak topology as in Eshel and Sansone (2003). Here
a basis for the open neighbourhoods of δ0 are sets of probability measures that are within
ε1 in the weak topology and whose support is contained in Bε2(0).
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matrix with entries the appropriate second order partials.

Each monomorphism is a rest point of (1). Their stability in the (modi-

fied) weak topology requires the monomorphism be a NE of the payoff func-

tion restricted to the game with nearby strategies (e.g. 0 is such a NE if

π(x, 0) ≤ π(0, 0) for all x sufficiently close to 0). Since 0 is an interior point,

this implies the gradient ∇1π is the zero vector and x · (∇211π)x ≤ 0 for

all x ∈ Rn. In fact, we will assume the symmetric Hessian matrix ∇211π is
negative definite throughout to avoid technical issues. That is, we assume

0 is a strict NE of the restricted game.7 Since ∇211π is symmetric, we can
diagonalize it by an orthogonal transformation and then all diagonal entries

−dk are negative. Furthermore, a change of variables (that replaces xk with
√
dkxk and takes the payoffs with respect to these new variables) allows us

to assume ∇211π = −2I where I is the n×n identity matrix. Without loss of

generality, the fitness function can then be written in these new coordinates

as

π(x, z) = π(0, 0) +∇2π · z − x · x+ x ·Bz + h.o.t. (2)

(i.e. ∇211π = −2I and ∇212π = B).

In terms of the Taylor expansion, the replicator equation (1) can then be

rewritten as

dP

dt
(A) =

Z
S

Z
S

Z
A

(π(x, z)− π(y, z))P (dx)P (dy)P (dz) (3)

7The condition π(x, 0) < π(0, 0) is related to the concepts of uninvadability and evo-
lutionarily stable strategy (ESS) as used in adaptive dynamics (Marrow et al., 1996; Vin-
cent et al., 1996). We especially avoid this latter terminology since the ESS description is
overused in the literature and may have different interpretations for different readers. On
the other hand, strict NE seems to have a universally accepted meaning.
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where the integrand is given by

π(x, z)− π(y, z) = (y − x) · [x+ y −Bz + h.o.t.] . (4)

In particular, the constant and linear terms in the fitness function are irrel-

evant for the dynamic analysis.

3 The Replicator Equation with Normal Dis-
tributions and Quadratic Fitness Functions

In this section, we analyze the replicator equation when the higher order

terms are ignored in (4) and the initial probability measure P0 is the (multi-

variate) normal distribution N(m,C) with mean vector m ∈ Rn and covari-

ance matrix C ∈ Rn×n. From Section 2.1, we may assume fitness has the

form of the quadratic function

π(x, z) = −x · x+ x ·Bz (5)

for x, y ∈ S = Rn and B an n× n matrix.

We proceed as follows. The first step is to show that the class of normal

distributions is forward invariant under the replicator equation. Therefore,

the infinite-dimensional measure dynamics is reduced to a finite-dimensional

system of n+n2 ordinary differential equations for the mean and covariance

matrix. These facts are stated in Theorem 1 below where it is also apparent

that the dynamics of the covariance matrix does not depend on the mean

vector. The next step is to obtain the explicit solution (Theorem 2) for the

evolution of the covariance matrix. Substitution of this solution into the

dynamics for the mean results in a system of linear differential equations
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with time varying coefficients. The stability analysis of this system for the

equilibrium δ0 (i.e. for the limit of the normal distributions N(0, C) as C

approaches the zero matrix) is summarized in Theorem 3 in terms of the

matrix B.

Theorem 1 The class of normal distributions is forward invariant under

the replicator dynamics (1). Assume that the initial distribution is normal,

P0 = N(m,C) for a mean vector m ∈ Rn and a covariance matrix C ∈
Rn×n. Then the solution of the replicator dynamics starting at P0 is given

by Pt = N(m(t), C(t)), where the mean and the covariance matrix solve the

initial value problem

m0(t) = C(t) (B − 2I)m(t) (6)

C 0(t) = −2C(t)C(t) . (7)

with m(0) = m and C(0) = C.

Proof. The proof of invariance for n = 1 is in Oechssler and Riedel

(2001). The corresponding argument for the multidimensional case is given

in the Appendix as well as the proof of (6) and (7).

To gain some intuition for the proof of (6), we assume here that all Pt

are normally distributed with mean m(t) and diagonal covariance matrix

with entries Vi(t). Note that π(x, Pt) = −x · x + x · Bm(t) and π(Pt, Pt) =

−m(t) · m(t) − V (t) · 1 + x · Bm(t), where 1 denotes the summing vector
(1, 1, . . . , 1). Then the differential equation for the ith component of the
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mean is (omitting the time variable t)

m0
i =

Z
n

xi (π (x, P )− π (P,P ))P (dx)

=

Z
n

Ã
−x3i + xi

Ã
nX

k=1

(xi −mi)Bikmk)

!!
P (dx)

+
X
j 6=i

Z
n

− xi

Ã
x2j +

Ã
nX

k=1

(xj −mj)Bjkmk)

!!
P (dx)−mi (−m ·m− V · 1) .

The third moment of a normal random variable is
Z
x3iP (dx) = m3

i +3miVi.

The covariance of xi and xi − mi is equal to the variance Vi. As we have

assumed that the components are uncorrelated,
Z
xi (xj −mj)P (dx) = 0 for

i 6= j. Substitution of these results into the last equation for m0
i yields

m0
i = −2miVi + Vi

nX
k=1

Bikmk.

That is, in vector notation, we have (6). ¥

Since the dynamical system (7) for the covariance matrix does not depend

on the mean vector, we may study this system of differential equations on its

own. The following theorem gives the explicit solution which can be easily

verified.

Theorem 2 For any initial positive semidefinite matrix C(0), the solution

of (7) is given by

C(t) = C(0)(I + 2C(0)t)−1. (8)
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Note that (8) is well defined for all t ≥ 0. Alternatively, one can write
the solution in the following way.

C(t) = OTD(t)O

where O is an orthogonal matrix such that OC(0)OT = D for some diagonal

matrix D (and OT denotes the transpose of O) and D(t) is the diagonal

matrix with entries

Dii(t) =
Dii

1 + 2tDii
. (9)

In particular, the covariance matrix C(t) converges to the zero matrix,

and C(t) = 1
2t
I + O( 1

t2
) as t → ∞ whenever the initial condition C(0) is

positive definite.

Theorem 3 (Stability of δ0) Consider the replicator equation (1) restricted

to the class of normal distributions with quadratic fitness functions as in (5).

1. If every eigenvalue of the matrix B−2I has negative real part, then δ0

is globally asymptotically stable with respect to the set of initial normal distri-

butions P0 of the form N(m,C) with positive definite symmetric covariance

matrix C.

2. If some eigenvalue of B−2I has positive real part, then δ0 is unstable.

In particular, for all positive definite C there are m arbitrarily close to 0 such

that along the solution with initial P0 = N(m,C) one has km(t)k → ∞ as

t→∞.

Proof. By inserting the solution (8) into (6), the mean evolves according

to the time-dependent linear differential equation

dm

dt
= C(0)(I + 2C(0)t)−1(B − 2I)m(t) (10)
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After changing the time scale (2t+1 = eτ) this differential equation becomes

asymptotically autonomous

dm

dτ
= (B − 2I)m(τ) +R(τ)m(τ) (11)

with exponentially decreasing remainder term R(τ) = (C(0) − I)(I + (eτ −
1)C(0))−1. Therefore the eigenvalues of B − 2I determine the asymptotic
behavior of m(t), see e.g. Coddington and Levinson (1955, Ch. 3, Problem

35). ¥

4 Multi-Dimensional Adaptive Dynamics and
the Canonical Equation

As stated in the Introduction, a main purpose of this paper is to exam-

ine the relevance (for the dynamic stability of the replicator equation with

multi-dimensional continuous strategy space) of static extensions of the one-

dimensional stability conditions developed by adaptive dynamics (e.g. the

CSS and NIS concepts). The comparisons developed in this section continue

to be based on a quadratic payoff function π(x, y).

The canonical equation (12) from adaptive dynamics for the evolution of

a (monomorphic) population with mean m through mutation and trait sub-

stitution was developed by Dieckmann and Law (1996). Following Meszena

et al. (2001) (see also Leimar, 2005), this takes the form (in our notation)

m0(t) =
1

2
u(m)N(m)C(m)∇1π(x,m)|x=m. (12)

Here u(m) and N(m) are positive real-valued functions giving the mutation

rate and the equilibrium population size respectively at mean m. These

15



can be ignored in analyzing the limiting behavior of the canonical equation

since they do not affect the evolutionary trajectory but only the speed of

evolution along this trajectory (and so 1
2
u(m)N(m) will be deleted from now

on). More importantly, the covariance matrix C(m) (which now characterizes

the expected mutational effects in different directions fromm and does affect

its evolution) is assumed to depend only on m. In the earlier formulation

of adaptive dynamics by Hofbauer and Sigmund (1990) the symmetric and

positive definite matrix C(m) comes from a Riemannian metric on the trait

space.

To compare (12) to the replicator dynamics, assume m = 0 is a strict NE

in the interior of the trait space as in Section 2.1. Then ∇1π(x, 0)|x=0 = 0
and so m = 0 is an interior equilibrium of (12). With the same change of

variables that led to (2) in Section 2.1, the canonical equation becomes

m0(t) = C(m(t)) (B − 2I)m(t). (13)

m = 0 is called convergence stable (with respect to C(m)) if it is asymptoti-

cally stable under (13).

A quick glance at (6) shows the canonical equation is quite closely related

to the evolution of the mean for normal distributions under (1) with quadratic

fitness functions. When C(m(t)) = c(t)I for some positive function c(t) > 0,

the two dynamical systems have the same trajectories for the mean although

the mean evolves much slower under the replicator equation through the

change in time scale (given by 2t + 1 = eτ)) as the covariance approaches

the zero matrix. In general, the only difference mathematically is that (13)

is an autonomous system of differential equations whereas (6) is not. As

we will see, this difference has important consequences for multi-dimensional

16



trait space on how convergence stability is related to dynamic stability of (6)

where the covariance matrix C(t) is given explicitly in Theorem 2.

For a one-dimensional trait space, convergence stability is independent of

the choice of C(m). That is, m = 0 is asymptotically stable with respect to

the canonical equation (13) for one choice of positive variance as a function

of m if and only if it is for any other choice. In fact, a one-dimensional

strict NE that is convergence stable is called a Continuously Stable Strategy

(CSS), a concept introduced by Eshel (1983). Furthermore, m = 0 is a CSS

if and only if δ0 is asymptotically stable under (6).8 Unfortunately, this

correspondence does not extend beyond one-dimension as illustrated by the

following example.

Example 1. Consider the two-dimensional trait spaceR2 with quadratic

fitness function (5) and

B =

µ
0 b
c 0

¶
where b, c are both positive. By Theorem 3, δ0 is globally asymptotically

stable under (1) for the class of normal distributions if and only if the eigen-

values of B − 2I, λ1,2 = −2±
√
bc, are both negative, i.e., bc < 4.

Example 1a. Suppose C(m) is the constant symmetric matrix

C =

µ
1 α
α 1

¶
for all m where α is a fixed parameter satisfying |α| < 1 so that C is positive

8The condition for asymptotic stability in both dynamics is that the only entry b−2 of
the matrix B− 2I is negative (i.e. b < 2). Here we ignore the degenerate case with b = 2.
Similarly, the above definition of CSS ignores the possibility that a non strict NE can be
a CSS, a situation we also view as degenerate.
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definite. Then m = 0 is globally asymptotically stable under (13) if and only

if every eigenvalue of C(B − 2I) has negative real part.
With b = 1/4 and c = 4, the eigenvalues of B − 2I are −1,−3 and so

δ0 is globally asymptotically stable for the replicator dynamics restricted to

the normal distributions if |α| < 1. On the other hand, the sum of the

eigenvalues of C(B − 2I) is the trace −4 + 17α/4 ofµ −2 + 4α 1/4− α
−2α+ 4 α/4− 2

¶
.

Thus, some eigenvalue has positive real part if 16/17 < α < 1 and so m = 0

is not stable for the canonical equation (13) with constant covariance matrix

parameterized by these α.

The mathematical reason for this stability difference between the replica-

tor equation and the canonical equation (see Theorem 5 below) is that B−2I
is not negative definite for b = 1/4 and c = 4 since |b + c| is greater than
the trace of 2I −B. Furthermore, even if B − 2I were negative definite, the
asymmetry of B implies there is a continuous choice C(m) depending on m

for which m = 0 is unstable.

Example 1b. For an explicit example of this latter phenomenon, take

b = 1 and c = 1/2 (so B − 2I is negative definite) with

C(m) =

µ
α2 αβ
αβ β2

¶
.
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where
µ

α
β

¶
≡
µ −14 42
−39 16

¶µ
m1

m2

¶
. Substitution into (13) yields

µ
m0
1

m0
2

¶
=

µ
α2 αβ
αβ β2

¶µ −2 1
1/2 −2

¶µ −14 42
−39 16

¶−1µ
α
β

¶
=

1

202

µ
α2 αβ
αβ β2

¶µ
1 10
−10 1

¶µ
α
β

¶
=

α2 + β2

202

µ
α
β

¶
.

Thus, µ
α0

β0

¶
=

α2 + β2

202

µ −14 42
−39 16

¶µ
α
β

¶
and so m = 0 is unstable for (13) since the trace of this last 2 × 2 matrix
is positive.9 On the other hand, δ0 is globally asymptotically stable for the

replicator dynamics restricted to the normal distributions.

The two choices of explicit parameters in Examples 1a and 1b above illus-

trate two methods to extend the one-dimensional CSS conditions to multi-

dimensions. The more common approach (Meszena et al, 2001) is to consider

m∗ ∈ Rn a multi-dimensional CSS if it is a strict NE that is convergence sta-

ble with respect to any choice of constant positive definite symmetric covari-

ance matrix C. Translating m∗ to the origin, this is equivalent to asserting

C(B − 2I) has every eigenvalue with negative real part for all choices of C.
Hines (1980b) and Cressman and Hines (1984) (see also Leimar (2005)) show

this is true if and only if B − 2I is negative definite, which in the above
example is the condition |b + c| < 4. The negative definiteness of B − 2I

9C(m) is only positive semidefinite. Positive terms can be added to the diagonal of
C(m) to make it positive definite. If these terms are of the form o(α2 + β2) (i.e. they go
to zero faster than α2 + β2), they will not affect the instability of m = 0 under (13).
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is also equivalent to (multi-dimensional) m−stability introduced by Lessard
(1990).

In another approach, m∗ ∈ Rn is called a multi-dimensional CSS if it is

a strict NE that is convergence stable with respect to all choices of positive

definite symmetric covariance matrices C(m) that depend continuously on

m. In fact, Leimar (2005) considers an even more restictive notion of CSS

by allowing all continuously varying C(m) that are positive definite but not

necessarily symmetric, a condition Leimar called absolute convergence sta-

bility (see also the concept of a Darwinian demon in Leimar (2001)). He

then showed this condition is equivalent to B − 2I being symmetric and
negative definite, a similar result as that illustrated in Example 1b. The

essential properties for this specific example are that A ≡
µ −14 42
−39 16

¶
has

an eigenvalue of positive real part and that AT (B − 2I) is positive definite.
We will follow the first perspective and define a strict NE m∗ ∈ Rn to be

a multi-dimensional CSS if it is convergence stable with respect to any choice

of constant positive definite symmetric covariance matrix C. There are sev-

eral reasons for this. Not only is mutational covariance near a monomorphic

equilibrium assumed to be constant in most treatments of adaptive dynamics

(Vincent et al., 1993; Metz et al., 1996; Meszena et al., 2001), it is also a stan-

dard assumption in earlier treatments of evolution of strategy distributions

from game-theoretic models where payoff functions are often assumed bilin-

ear as in π(x, y) = x ·By (Hines, 1980b).10 For us, another important reason
10See however Hines (1980a) where it is shown that non constant variances arise quite

naturally and can play an important role in the stability analysis. Effects of evolving
(co)variances are important in models of quantitative genetics as well (e.g. Bürger, 2000)
where the mean strategy dynamics is similar to the canonical equation, although here
variances are again sometimes assumed constant (Abrams, 2001).
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is that this definition of CSS is the most relevant condition for dynamic sta-

bility of the general replicator equation (1) analyzed in the following section

(see Theorem 15 there).

The above example and/or the proof of Theorem 3 show that dynamic

stability depends critically on the evolution of the covariance matrix C(m(t))

and/or C(t). However, if B − 2I is symmetric, all concepts are equivalent.
That is, we have the following.

Theorem 4 (Symmetric B) Suppose B is symmetric. The following three

statements are equivalent.11

1. δ0 is asymptotically stable under (1) for the class of normal distributions.

2. m = 0 is a CSS.

3. m = 0 is a strict NE and strongly convergence stable.

On the other hand, if B is not symmetric, none of the statements are

equivalent by Examples 1a and 1b. We then have the following theorem.

Theorem 5 Suppose B is not symmetric and m = 0 is a strict NE. Then

1. δ0 is asymptotically stable under (1) for the class of normal distributions

if and only if every eigenvalue of B − 2I has negative real part.
2. m = 0 is a CSS if and only if B − 2I is negative definite.
3. m = 0 is not strongly convergence stable.

Remark. By Theorem 5, the three statements in Theorem 4 are related by

3 implies 2 implies 1 for general B but not conversely. In fact the CSS condi-

tion implies more about the dynamic stability of δ0 whether B is symmetric
11These equivalences ignore degenerate possibilities. For example, we ignore situations

where relevant eigenvalues have zero real part.
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or not. Specifically, if m = 0 is a CSS, then δ0 continues to be asymptoti-

cally stable when (1) is restricted to initial normal distributions of the form

N(m,C) where the covariance matrix C is only positive semidefinite andm is

in the range of C. Moreover, the multi-dimensional CSS concept emerges by

applying this restricted notion of asymptotic stability to all positive semidef-

inite covariance matrices with one-dimensional range (i.e. a line through the

origin). By Theorem 3 restricted to each such line, we have an indepen-

dent proof of the result (Meszena et al., 2001) (see also Lessard, 1990) that

the multi-dimensional CSS concept is equivalent to the one-dimensional CSS

conditions for each line through the origin.

5 Stability of Monomorphisms under the Repli-
cator Equation

The explicit analysis of the replicator dynamics in Section 3 relies heavily

on the assumptions the payoff function π(x, y) is quadratic and the initial

population is normally distributed with mean m. Such normal distributions

are one way to model aggregate individual mutations for a monomorphic

population at m. An underlying assumption of the replicator equation (1)

is that each individual reproduces offspring with its same trait and at a rate

equal to its fitness. If this reproduction of clones is subject to small shocks

from m that are independent of each other, the Central Limit Theorem can

be used to conclude the initial traits will be normally distributed after such

a shock. So here mutation is treated indirectly by considering variations of

initial conditions.

In the remainder of the paper, we consider other initial distributions (that
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can also be given a mutational interpretation) and arbitrary payoff functions.

We will be most interested in the stability of monomorphisms δm∗ for initial

distributions whose support is close to m∗ to reflect the adaptive dynam-

ics assumption that trait substitution involves only nearby mutations. This

means we cannot simply use the weak topology on ∆(Rn) (or on ∆(S) for

that matter) since P may be close to δm∗ in the weak topology and still

have support all of Rn (e.g. a normal distribution with mean 0 and small

variance is close to δ0 in the weak topology). Here we generalize the one-

dimensional topology used by Eshel and Sansone (2003) to multi-dimensions

(see also Cressman, 2005) and say P is close to P ∗ if P is close to P ∗ in

the weak topology and the support of P is close to that of P ∗. Applied to

a monomorphism P ∗ = δm∗, this modified weak topology (called the maximal

shift topology by Eshel and Sansone (2003) when the trait space is one di-

mensional) simplifies since neighborhoods of δm∗ become those distributions

with support close to m∗. Its main advantage is that the Taylor expansion

of the payoff function about the monomorphism can be used (specifically, up

to quadratic terms) as a good approximation. To a large extent, this avoids

problems that arise with the weak topology where one must also account

for possibly large payoff effects of (admittedly rare) interactions involving an

individual whose strategy is far from that of the monomorphic population.

The replicator dynamics (1) in a continuous trait space shares the same

property of its analogue for a finite number of traits that traits are neither

created nor completely destroyed during the course of evolution. For (1),

this is equivalent to asserting suppPt = suppP0 for all t ≥ 0. In particular,
δm∗ cannot be asymptotically stable in the (modified) weak topology since
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any neighborhood of δm∗ contains initial P0 whose support does not contain

m. Therefore, we will analyze (asymptotic) stability of δm∗ with respect to

initial P0 with m∗ ∈ supp(P0) according to the following definition that gives
analogues of standard concepts from the theory of dynamical systems.

Definition 6 Let Q be a set of probability distributions, whose support con-

tains that of P ∗, that is invariant under (1). P ∗ is stable (under (1) in the

modified weak topology with respect to Q) if, for every modified weak neigh-

borhood U of P ∗ there is another modified weak neighborhood O of P ∗ such

that Pt ∈ U for all P0 ∈ O∩Q. P ∗ is locally attracting if, for some modified
weak neighborhood U of P ∗, Pt converges to P ∗ in the weak topology for ev-

ery P0 ∈ U ∩Q. P ∗ is locally asymptotically stable if it is stable and locally
attracting.

In fact, every monomorphism P ∗ = δm∗ is automatically stable in the

modified weak topology since P is close to δm∗ if and only if its support is

close tom∗.12 That is, δm∗ is locally attracting in the modified weak topology

if and only if δm∗ is locally asymptotically stable. From now on, (asymptotic)

stability of δm∗ will refer to either of these two properties. Of course, this

stability then depends critically on the choice of Q. For instance, in the

trivial case that δm∗ is the only distribution in Q with support close to {m∗},
δm∗ is automatically locally asymptotically stable by default.

Sections 5.1 and 5.2 examine the stability properties of Definition 6 for

two choices of Q that are more important. In either case, it is assumed that

Q contains measures whose support is the closure of an open neighborhood

12This statement is no longer true for stability of a non monomorphic distribution P ∗

(for dimorphisms, see Cressman (2005)).
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of m∗ = 0 that is arbitrarily close in the Euclidean topology. Then the

stability concept in Definition 6 requires at a minimum that m∗ be a NE

locally (i.e. π(m∗,m∗) ≥ π(x,m∗) for all x near m∗, see e.g. Alós-Ferrer and

Ania, 2001). To avoid technical complications, we again assume throughout

Section 5 that m is in fact a local strict NE as determined by the second

order Taylor expansion of π. Furthermore, we assume that the trait space

has been parameterized in such a way that m∗ = 0 is in the interior of S and

the Taylor expansion of π(x, y) up to quadratic terms is given by (5). To

repeat, we make the following assumption.

Assumption. m∗ = 0 is a local strict NE (i.e. π(x, 0) < π(0, 0) for all x

sufficiently close (but not equal) to 0) and the Taylor expansion of π(x, y)

about (0, 0) is π(x, y) = −x · x+ x ·By up to second order terms.

5.1 Dynamic Stability, Local Superiority and NIS

In this section, we seek the strongest type of stability possible by taking

Q = Q0 := {P ∈ ∆(S) : 0 ∈ suppP}. Consider the trajectory in ∆(S) for

initial P0 with support {0, x} and x ∈ S. The replicator equation (1) for

such P0 is

dP

dt
({0}) = P ({0}) (π(δ0, P )− π(P,P ))

= P ({0})P ({x}) [(π(0, 0)− π(x, 0))P ({0}) + (π(0, x)− π(x, x))P ({x})]
(14)

= P ({0})P ({x}) [x · xP ({0}) + (x · x− x ·Bx)P ({x})] + h.o.t

If x ·x−x ·Bx < 0 for some x 6= 0, then dP
dt
({0}) < 0 if x is sufficiently close

to 0 and P ({x}) is sufficiently close to 1. Since 0 is in the interior of S, we
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may assume x ∈ S. Thus, Pt does not converge to δ0 in the modified weak

topology and so δ0 is not asymptotically stable.

That is, asymptotic stability of δ0 implies B − I is negative definite.13

This negative definite condition is similar to the CSS condition of adaptive

dynamics (see Theorem 5 of Section 4). In fact, it is more closely related to

the static condition called a neighborhood invader strategy (NIS) (McKelvey

and Apaloo, 1995; Apaloo, 1997).14 The trait 0 is NIS if it has higher payoff

against all nearby monomorphic populations δx than the expected payoff of

x. That is, 0 is NIS if

π(0, x) > π(x, x) (15)

for all other x ∈ Rn in a neighborhood of 0. From the Taylor expansion of a

general payoff function π(x, y) about (0, 0), this becomes

∇2π·x+1
2
x·¡∇222π¢x > ∇1π·x+∇2π·x+1

2

£
x · ¡∇211π¢x+ 2x · ¡∇212π¢x+ x · ¡∇222¢x¤+h.o.t..

Since 0 is in the interior of S, ∇1π · x = 0 and so the NIS condition is that

x · ¡∇211π¢x+ 2x · ¡∇212π¢x < 0.

By reparameterizing our trait space so that π is given by (2) (i.e. ∇211 =
−2I and ∇212 = B), the local strict NE 0 is NIS if and only if B − I

is negative definite. Furthermore, from (15) combined with the fact that

13Throughout Section 5, we again ignore degenerate possibilities. Thus, here we assume
B − I is not negative semidefinite. There is a partial converse as well; namely, if B − I is
negative definite (i.e. x · x− x ·Bx > 0 for all x), then δ0 is locally asymptotically stable
with respect to the set Q of all dimorphic P with support containing 0.
14An NIS is also known as a good invader (Kisdi and Meszéna, 1995) and as satisfying

(multi-dimensional) m∗−stability (Lessard, 1990). For a one-dimensional trait space, Es-
hel and Sansone (2003) proved the NIS condition is necessary for asymptotic stability of
δ0.
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π(0, 0) > π(x, 0) for all other x ∈ Rn in a neighborhood of 0, B − I is

negative definite if and only if 0 strictly dominates all other nearby x in

the two-strategy game based on the trait space {0, x}. This game-theoretic
characterization that

π(0, z) > π(x, z)

for all z ∈ {0, x} is important for comparison to the analogous characteriza-
tion of the CSS condition in Section 5.2 (see equation (16) there).

Another game-theoretic characterization with stability consequences is

given in terms of the following definition introduced by Cressman (2005)

for continuous strategy spaces. Local superiority is closely connected to the

concept of evolutionarily robust (Oechssler and Riedel, 2002) (also called

locally superior with respect to the weak topology by Cressman and Hofbauer

(2005)) whereby π(P ∗, P ) > π(P,P ) for all P sufficiently close to P ∗ in

the weak topology. Local superiority of a monomorphism according to the

following definition is then taken with respect to the modified weak topology.

Definition 7 The monomorphism P ∗ = δm∗ is locally superior if, for all

other P with support sufficiently close to m∗, π(P ∗, P ) > π(P, P ).15

The following result summarizes the above discussion.

15Cressman (2005), who analyzed this concept for any P ∗ with finite support, used the
phrase “neighborhood superior” in place of locally superior to avoid the ambiguity whether
local referred to the modified weak topology or to the (Hausdorff) distance between sup-
ports. For monomorphic P ∗, the two interpretations of local are identical.
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Theorem 8 The following four statements are equivalent under our above

Assumption for Section 5.

1. δ0 is locally superior.

2. 0 is an NIS.

3. 0 strictly dominates all other nearby strategies x in the two-strategy

game based on the trait space {0, x}.
4. B − I is negative definite.

The only non obvious implication in the above Proposition is that the first

statement is implied by any one of the other three statements. This proof

is Theorem 1 in Cressman (2005). An NIS need not be locally superior if

quadratic terms in the Taylor expansion do not determine the NIS conditions.

Oechssler and Riedel (2002) provide the counterexample π(x, y) = (x−y)4−
2x4 with a one-dimensional trait space (see also Eshel and Sansone (2003)).

Intuitively, a locally superior P ∗ should be locally attracting since P ∗ has

a higher than average payoff at every nearby population state P .16 Unfor-

tunately, we are only able to prove the following partial result for general

payoff functions.

Theorem 9 If δ0 is locally superior and P0 has compact support sufficiently

close to 0 and containing 0, then δ0 is an ω−limit point of Pt.17

16For a finite trait space S, this intuition is equivalent to the notion of an evolutionarily
stable strategy (i.e. a matrix-ESS) by Maynard Smith (1982). Furthermore, it is well-
known a matrix-ESS is locally asymptotically stable for the replicator equation on a finite
trait space.
17δ0 is locally attracting with respect to Q0 if and only if δ0 is the unique ω−limit point

of Pt for all such P0 ∈ Q0.
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Proof. The mapping σ : (x, P )→ π(x, P )−π(P,P ) is jointly continuous
in x (Euclidean topology) and P (weak topology). As δ0 is locally superior,

we have σ(0, P ) > 0 for all P 6= δ0 whose support is within an ε0 ball of

0. If δ0 is not a limit point in the weak topology of an initial P0 with such

support, then there is an open neighborhood of δ0 that includes no Pt for all

t sufficiently large. The set of all P outside this neighborhood with support

within the ε0 ball is compact in the weak topology. By continuity in P , we

have σ(0, P ) ≥ κ > 0 for all such P and some κ. By continuity in x, we can

find some ε1 > 0 such that we have minσ(x, P ) ≥ κ
2
> 0 for all |x| ≤ ε1. But

this implies
P 0(t)(U)
P (t)(U)

≥ κ

2
,

for the ball U = {x ∈ S : |x| ≤ ε1}. Then P (t)(U) ↑ ∞, which is a contra-
diction. ¥

In the special case of symmetric payoff functions (i.e. π(x, y) = π(y, x)),

we have the following result, similar to Theorem 4 in Cressman and Hofbauer

(2005).

Theorem 10 Suppose π(x, y) is a symmetric payoff function (in particular,

B is symmetric).18 Then δ0 is locally asymptotically stable with respect to

the set Q0 of all measures with 0 in their support if and only if δ0 is locally

superior.

Proof. From Oechssler and Riedel (2002), we have the following two

facts. Symmetry implies the mean fitness π(P,P ) is a strict local Lyapunov

18We may assume π(x, y) has the form π(x, y) = −x · x+ x ·By− y · y+ h.o.t. since the
terms π(0, 0) +∇2π · y and −y · y (cf. (2)) are irrelevant for the replicator equation.
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function and local superiority of δ0 implies π(P,P ) has a strict local max-

imum at δ0. Furthermore, local superiority plus Lyapunov stability with

respect to the weak topology implies local asymptotic stability (Cressman

and Hofbauer, 2005, Theorem 2).19 This completes the proof that δ0 is lo-

cally asymptotically stable if δ0 is locally superior. The converse follows from

the stability analysis of (14) and Theorem 8. ¥

Remark. Attempts to extend Theorem 10 to general π(x, y) have an in-

teresting history. Oechssler and Riedel (2002) conjecture that Theorem 10

remains true for the weak topology when π is not symmetric (see their con-

cept of evolutionarily robust). Eshel and Sansone (2003) provide a proof of

Theorem 10 for general π(x, y) if the trait space is one dimensional (although

we have been unable to follow all the details of this proof). If Q is taken as

the set of all measures with P ({0}) > 0, Theorem 10 was proven by Bomze

(1990) for π(x, y) = φ(x), by Oechssler and Riedel (2002) for symmetric

π(x, y) and by Cressman (2005) for general π(x, y).

5.2 Dynamic Stability, Dominance Solvability and CSS

Section 5.1 illustrates the importance of the static NIS concept for stability

of the replicator dynamics (1). We now turn to the relevance of the CSS

concept. From the adaptive dynamics perspective, the dynamics (14) models

trait substitution from x to 0 in one step, whereas the canonical equation is

19Oechssler and Riedel (2002) and Cressman and Hofbauer (2005) both consider stability
with respect to the weak topology. However, the results we require from these references
continue to hold for the modified weak topology. It is essential that the Lyapunov stabil-
ity through π(P, P ) is with respect to the weak topology in order to use Cressman and
Hofbauer (2005) since, as mentioned earlier, every monomorphism is (Lyapunov) stable
with respect to the modified weak topology.
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built on the premise that mutation and trait substitution is a gradual process

whereby x evolves to 0 in a sequence of many steps.

For a one-dimensional trait space, the canonical equation requires all

traits between 0 and x be available for substitution and so we now assume

the support of P0 contains this interval. The heuristic condition (Eshel, 1983)

for a strict NE at 0 to be a CSS amounts to replacing inequality (15) with

π(y, x) > π(x, x) (16)

whenever y is close to x and between 0 and x. The Taylor expansion of

π(x, y) about (0, 0) now yields a local strict NE satisfies (16) if and only if

b < 2 where b is the only entry of the 1× 1 matrix B in (5).

Cressman and Hofbauer (2005) were able to use an iterated strategy dom-

ination argument to show that, for any |b| < 2, δ0 will be locally asymptot-
ically stable with respect to the modified weak topology when initial P0 are

restricted to distributions whose support is a (sufficiently small) interval S

containing 0.20 Specifically, they showed the game with the continuum of

traits in S is strictly dominance solvable (see Definition 11 below) to the

trait 0. By this process, each trait x ∈ S that is strictly dominated by an-

other trait y ∈ S is eliminated and then each remaining trait that is strictly

dominated (in the reduced game with the resultant trait space) by another

remaining trait is eliminated, etc. If every trait except 0 is eventually elim-

inated by this countable process, standard techniques extended from finite

20Combining this with Section 5.1 for b < 1 (i.e. for B − I negative definite), we have
that δ0 is asymptotically stable with respect to the modified weak topology when initial P0
are restricted to distributions whose support contains an open interval about 0 if and only
if 0 is CSS. Unless π is symmetric, this equivalence uses the result of Eshel and Sansone
(2003) mentioned in the Remark at the end of Section 5.1.
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trait space (Samuelson and Zhang, 1992) shows δ0 is locally asymptotically

stable with respect to the replicator equation under this iterated elimination

of strictly dominated strategies (Cressman and Hofbauer, 2005) (see also

Heifetz et al. (2003) and the proof of Theorem 12 below).

In this section, we extend this argument to a multi-dimensional setting,

starting with the concept of dominance solvability similar to that introduced

by Moulin (1984).

Definition 11 The game with compact trait space S is strictly dominance

solvable to x∗ ∈ S if there is a countable nested sequence of closed subsets

Si in S with Si+1 ⊂ Si and S0 = S satisfying

i) for every i ≥ 0 and every x ∈ Si \ Si+1, there exists a y ∈ Si such that

π(y, z) > π(x, z) for all z ∈ Si

ii)
T∞

i=0 Si = {x∗}.

Theorem 12 If the game with compact trait space S ⊂ Rn is strictly dom-

inance solvable to x∗ ∈ S, then Pt converges to δx∗ in the weak topology for

each initial distribution P0 with full support S.

Proof. It is sufficient to show by induction on i that limt→∞ Pt(S\Si) = 0
for all i ≥ 1. Given x0 ∈ S \ S1, there exists a y0 ∈ S such that π(y0, z) >

π(x0, z) for all z ∈ S. By continuity of π, there are open neighborhoods

U(x0) and U(y0) of x0 and y0 respectively so that

π(y, z)− π(x, z) ≥ K > 0

for all x ∈ U(x0), y ∈ U(y0) and z ∈ S. Since supp(Pt) = S, both Pt(U(x0))

and Pt(U(y0)) are positive. From (1), an application of the quotient rule

32



yields

d

dt

µ
Pt(U(y0))

Pt(U(x0))

¶
=

1

Pt(U(x0))2

Z
S

 Z
U(x0)

Z
U(y0)

(π(y, z)− π(x, z))Pt(dx)Pt(dy)

Pt(dz)

≥ K
Pt(U(y0))

Pt(U(x0))

Thus limt→∞
Pt(U(y0))
Pt(U(x0))

=∞ and, in particular, Pt(U(x0)) converges to 0. Since

S \ S1 is compact, it is covered by finitely many U(x0) and so limt→∞ Pt(S \
S1) = 0.

Now assume limt→∞ Pt(S \ Si) = 0. As above, for every x0 ∈ Si \ Si+1,
there exists a y0 ∈ Si such that π(y0, z) > π(x0, z) for all z ∈ Si. By

continuity of π, there are open neighborhoods U(x0) and U(y0) of x0 and y0

respectively so that

π(y, z)− π(x, z) ≥ K > 0

for all x ∈ U(x0), y ∈ U(y0) and z ∈ Si. Let k ≡ max{|π(y, z) − π(x, z)| :
x, y, z ∈ S}. Then

d

dt

µ
Pt(U(y0))

Pt(U(x0))

¶
=

1

Pt(U(x0))2

Z
S\Si

 Z
U(x0)

Z
U(y0)

(π(y, z)− π(x, z))Pt(dx)Pt(dy)

Pt(dz)

+
1

Pt(U(x0))2

Z
Si

 Z
U(x0)

Z
U(y0)

(π(y, z)− π(x, z))Pt(dx)Pt(dy)

Pt(dz)

≥ [−kPt(S \ Si) +KPt(Si)]
Pt(U(y0))

Pt(U(x0))

> 0

for t sufficiently large since limt→∞ Pt(S\Si) = 0 and limt→∞ Pt(Si) = 1. The

proof continues as above to yield limt→∞ Pt(Si\Si+1) = 0 and so limt→∞ Pt(S\
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Si+1) = 0 = limt→∞ Pt(S \ Si) + limt→∞ Pt(Si \ Si+1) = 0 for all i ≥ 1.

Therefore, limt→∞ Pt(S \ Si) = 0 and so Pt converges weakly to δ0. ¥

The most straightforward application of this theory to our multi-dimen-

sional setting is through the following theorem when B is symmetric (and

the trait space is parameterized so that the payoff function has the form (5)

up to quadratic terms). A set S ⊂ Rn is called star-shaped about 0 if it

contains the line segment from 0 to x for every x ∈ S. Hence for n = 1, S

is an interval containing 0. Let Q∗ be the set of all probability measures in

∆(S) whose support is star-shaped about 0.

Theorem 13 Suppose B is symmetric. The games restricted to all compact

trait spaces S ⊂ Rn that are star-shaped about 0 and sufficiently close to 0

are strictly dominance solvable if and only if kBk < 2.21 Furthermore, if

kBk < 2, then δ0 is locally asymptotically stable for the replicator equation

(1) with respect to Q∗.

Proof. Suppose that kBk > 2. By the symmetry of B, there exists a

(non-zero) eigenvector x0 such that its corresponding eigenvalue is ±kBk.
Consider the star-shaped compact trait spaces S ⊂ Rn of the form {cx0 :
|c| ≤ ε} for some ε > 0. That is, S is the line segment through the origin

joining −εx0 to εx0. We claim no x ∈ S can be eliminated through strict

domination by another y ∈ S if ε is sufficiently small. To see this, we

parameterize our trait space so that it is a subset of R (i.e. parameterized

21Here kBk is the operator norm of B (i.e. kBk ≡ supkxk=1 kBxk where kxk is the
Euclidean length of x). We ignore the degenerate possibility kBk = 2. Strict dominance
solvability for all games with trait space S sufficiently close to x∗ is closely related to the
concept of locally strictly dominance solvable defined by Moulin (1984).
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by a scalar x) with x0 = 1. We then have Bx0 = bx0 where |b| > 2. From

(4), we have

π(x, z)− π(y, z) = (y − x) [x+ y − bz + h.o.t.]

where the higher order terms are at least of degree two in the variables x, y, z.

Since |x| ≤ ε, |y| ≤ ε and |b| > 2, when ε is sufficiently small the expression

x+ y − bz + h.o.t. is positive for all x, y ∈ S by either choosing z as −ε or ε
appropriately and negative for all x, y ∈ S by choosing the alternate z. That

is, for all x, y ∈ S, there is a z ∈ S with π(x, z)− π(y, z) ≥ 0 and so x ∈ S

cannot be strictly dominated by any y ∈ S.

Now suppose kBk < 2. Let d ≡ maxz∈S kzk. Suppose x0 ∈ S and kx0k is
close to d. From (4) with y0 = (1− ε)x0 ∈ S,

π(y0, z)− π(x0, z) = ε
£
(2− ε)kx0k2 − x0 ·Bz + h.o.t.

¤
>

ε

2

£
2kx0k2 − kx0kkBzk

¤
>

ε

4

kx0k2
2

[2− kBk] > 0.

for all z ∈ S. That is, y0 strictly dominates x0. By continuity of π, y0 strictly

dominates x for all x near x0. Define A(α, β) with 0 ≤ α < β < d as those

elements of S in the annulus {y ∈ S : d−β ≤ kyk ≤ d−α}. Each A (α, β) is
compact and nonempty by the definition of d and the fact S is star-shaped.

Thus, for some δ > 0, each x ∈ A(0, δ) is strictly dominated and so we can

take S1 = {y ∈ S : kyk ≤ d− δ}. We now iterate this argument and obtain
our sequence Si of nested sets as the intersection of S with a disk centered

at 0 whose radius tends to 0 as i→∞.
We next show δ0 is asymptotically stable if kBk < 2. By the argument

used in the preceding paragraph, we can apply Theorem 12 and conclude
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that Pt converges to δ0 in the weak topology whenever P0 has star-shaped

support sufficiently close to 0. That is, δ0 is locally attracting with respect

to Q∗. ¥

Notice that 0 is a CSS if kBk < 2 since we then have

x · (B − 2I)x < kBkkxk2 − 2kxk2 < 0

for nonzero x (i.e. B − 2I is negative definite). The condition kBk < 2 also
has an interesting connection to the Cournot tatonnement process of Moulin

(1984). To see this clearly, let us ignore the non quadratic terms in (5).

For our single-species model, the Cournot process is the sequence of best

replies yi+1 ≡ argmax{π(x, yi) : x ∈ Rn} which is given by yi+1 =
1
2
Byi.

This discrete-time tatonnement process converges to 0 if and only if the

eigenvalues of 1
2
B all have modulus less than 1. For symmetric B, this is

equivalent to kBk < 2.
When kBk < 2 but B is not symmetric, the proof of Theorem 13 still

shows that the games restricted to all trait spaces S ⊂ Rn that are star-

shaped about 0 and sufficiently close to 0 are strictly dominance solvable if

kBk < 2 (and so δ0 is still locally asymptotically stable with respect to Q∗).
However, there are other choices of B with kBk > 2 for which the associated
games are strictly dominance solvable (see Section 5.3). The reason for this is

that we do not need to use Euclidean distance as in the above proof (which led

to the nested sequence of trait spaces being disks). The essential inequality

there was that, for non zero y0,

y0 ·Bz < 2y0 · y0 (17)
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for all z in the disk {z|z ·z ≤ y0 ·y0}. These regions can be replaced by others
that are compact and star-shaped. For instance, if D is a positive definite

symmetric matrix, we will have strict dominance solvability if y0 ·Bz < 2y0 ·y0
for all z in the disk z ∈ {z|z ·Dz ≤ y0 ·Dy0}. Since (17) is linear in z, we

can restrict to the boundary {z|z ·Dz = y0 ·Dy0}.
The following lemma is used in the proof of Theorem 15 below that gen-

eralizes Theorem 13 to non symmetric B.

Lemma 14 If D is a positive definite symmetric matrix, the maximum of

y0 · Bz subject to {z|z · Dz = y0 · Dy0} is
√
y0 ·Dy0

p
BTy0 ·D−1BTy0 and

this occurs at z0 =
√
y0·Dy0√

BT y0·D−1BT y0
D−1BTy0 if BTy0 6= 0.

Proof. If BTy0 = 0, there is nothing to prove so assume BTy0 6= 0.

The result may be shown by using Lagrange multipliers or by the following

algebraic method. Let
√
D be the positive definite square root of D. Then

y0 ·Bz = y0 ·B
√
D
−1√

Dz

=
√
D
−1
BTy0 ·

√
Dz

≤
q√

D
−1
BTy0 ·

√
D
−1
BTy0

q√
Dz ·

√
Dz

=
p
BTy0 ·D−1BTy0

√
z ·Dz

=
p
BTy0 ·D−1BTy0

p
y0 ·Dy0.

It is straightforward to verify z0 satisfies the requirements. ¥
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Theorem 15 Suppose there exists a positive definite symmetric matrix D

such that, for all y 6= 0,

(y ·Dy)
¡
BTy ·D−1BTy

¢
< 4 (y · y)2 . (18)

The games restricted to all compact trait spaces S ⊂ Rn that are star-shaped

about 0 and sufficiently close to 0 are strictly dominance solvable and δ0 is

locally asymptotically stable with respect to Q∗ for the replicator equation (1).

If δ0 is locally asymptotically stable in this sense, then 0 is CSS.

Proof. By Lemma 14, a straightforward generalization of the relevant

parts of the proof of Theorem 13 yields the first result. Now suppose 0 is not

CSS. Then B − 2I is not negative definite and so there is a non zero x such
that x · (B − 2I)x > 0. Take S as the one-dimensional bounded interval in

the direction x that includes 0 in its interior. Note that S is star-shaped. By

Cressman and Hofbauer (2005), δ0 is not locally asymptotically stable in the

modified weak topology with respect to Q∗. ¥

Remark. If D is chosen as a (positive) multiple of the identity matrix in

Theorem 15, then (18) is equivalent to kBTyk < 2kyk. Since kBk = kBTk,
Theorem 15 shows that the statement of Theorem 13 is valid when kBk < 2
and B is non symmetric.

Conversely, if B is symmetric with kBk > 2, then BTy = λy for some

y and |λ| > 2. Since (y ·Dy) (y ·D−1y) ≥ (y · y)2 for all positive definite
symmetric matrices D, we have (y ·Dy)

¡
BTy ·D−1BTy

¢
> 4 (y · y)2 and so

Theorem 15 does not expand the set of payoff functions with B symmetric

for which we have a proof that δ0 is locally asymptotically stable.
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5.3 Two-Dimensional Trait Space

Using Theorems 13 and 15 on dominance solvability, we are able to determine

a large class of 2× 2 matrices B for which δ0 is asymptotically stable for the

replicator equation (1) in the modified weak topology with respect to Q∗.

For this, we use the fact that every 2× 2 matrix is orthogonally similar to a
matrix of the form

B =

·
a b
c a

¸
. (19)

That is, there is a rotation O such that OTBO has this form. Note that such

a transformation does not affect the form of the fitness function (2) nor the

symmetry of B.

Theorem 16 If B is given by (19), then the games restricted to all compact

trait spaces S ⊂ R2 that are star-shaped about 0 and sufficiently close to 0

are strictly dominance solvable if

|b|+ |c| < 2(2− |a|). (20)

In this case, δ0 is locally asymptotically stable with respect to Q∗ for the

replicator equation (1).

Proof . Suppose |b|+|c| < 2(2−|a|). Take the matrixD =

· |a|+ |c| 0
0 |a|+ |b|

¸
in (18).22 The left-hand side of (18) is then"

(ay1 + cy2)
2

|a|+ |c| +
(by1 + ay2)

2

|a|+ |b|

# £
(|a|+ |c|) (y1)2 + (|a|+ |b|) (y2)2

¤
22If |a|+ |c| = 0, then B =

·
0 b
0 0

¸
. Take D =

·
ε 0
0 |b|

¸
for ε > 0. If |b| < 4, there

is an ε > 0 such that (18) holds.
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which is less than or equal to"
(|ay1|+ |cy2|)2
|a|+ |c| +

(|by1|+ |ay2|)2
|a|+ |b|

# £
(|a|+ |c|) (y1)2 + (|a|+ |b|) (y2)2

¤
.

By considering the cases where |y1| ≤ |y2| and |y1| ≥ |y2| separately, it is
straightforward to show that this last expression is increasing in |c| for fixed
y1, y2 and |b|. Thus we can replace |c| by 2(2 − |a|) − |b|. Furthermore, for
fixed |b| and y2 = ky1 for k > 0, the right-hand side of (18) minus this last

expression has an absolute maximum when k = 1. For k = 1, the value is

zero and so the games are strictly dominance solvable by Theorem 15. ¥

If B is symmetric, (20) becomes |a| + |b| < 2 which is the condition of

Theorem 13 since kBk = |a| + |b| < 2. On the other hand, by Theorem 16,

there are non symmetric B’s for which δ0 is locally asymptotically stable but

kBk > 2. For instance, δ0 is locally asymptotically stable for B =

·
0 b
0 0

¸
if |b| < 4 but k

·
0 b
0 0

¸
k = |b|. Finally, it is straightforward to confirm

that condition (20) implies the eigenvalues a±√bc of B satisfy
¯̄̄
a±√bc

¯̄̄
<

2. Thus the best reply Cournot tatonnement process (Moulin, 1984) again

converges to zero although it is no longer true that kxt+1k < kxtk.

Summary. Take π(x, z) = −x · x+ x ·Bz and B =

·
a b
c a

¸
.

For B symmetric, 0 is

i) NIS if and only if a < 1 and |b| < |1− a|
ii) CSS if and only if a < 2 and |b| < |2− a|
iii) dominance solvable if and only if |a|+ |b| < 2.
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For B non symmetric, 0 is

i) NIS if and only if a < 1 and |b+ c| < 2|1− a|
ii) CSS if and only if a < 2 and |b+ c| < 2|2− a|
iii) dominance solvable if |b|+ |c| < 2(2− |a|).

Condition (20) is equivalent to strict dominance solvability when B is non

symmetric and bc ≥ 0 (i.e. b and c have the same sign). To see this, Theorem
13 applied to the one-dimensional trait space S = {t(1, 1) : |t| ≤ 1} yields the
necessary condition |2a+b+c| < 4 for strict dominance solvability and to the
one-dimensional trait space S = {t(1,−1) : |t| ≤ 1} yields |2a− b − c| < 4.

Thus, |2a|+|b+c| < 4. On the other hand, kBk = √1 + b2 forB =
·
1 b
−b 1

¸
and so the game is strictly dominance solvable if |b| < √3 even though
|2a|+ |b|+ |c| may be arbitrarily close to 2 + 2√3 > 4.
In fact, the exact condition for strict dominance solvability to 0 is un-

known for non symmetric B. It is also an open question whether the CSS

condition is sufficient for asymptotic stability of δ0 with respect to Q∗.

6 Discussion

As stated in the Introduction, we feel the adaptive dynamics model to predict

stability of monomorphisms by emphasizing the evolution of the population

mean strategy misses the effects of the spread of the distribution of individ-

ual behaviors. The replicator equation on a continuous trait space is our

preferred method to include these effects. The basic issue we consider is

then whether the static CSS and NIS concepts for monomorphic stability of

one-dimensional adaptive dynamics predict stability of the replicator equa-
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tion when generalized to multi-dimensions. An initial obstacle to analyzing

this issue is that universally accepted static extensions are not agreed upon

in the adaptive dynamics approach since stability of the canonical equation

now depends on the relative rates mutations occur in different directions (in

technical terms, on the mutations’ covariance matrix).

One assumption is that the covariance matrix will evolve very slowly (if

at all) and so can be taken as essentially constant (Vincent et al., 1993),

a method that has also been used effectively much earlier in the matrix

game model (Hines, 1980a). With arbitrary (but fixed) covariance, monomor-

phic stability with respect to both the canonical equation and to the poten-

tial evolution of dimorphisms leads to the CSS conditions in each direction

through the monomorphism (Meszena et al., 2001). We take this as our

multi-dimensional CSS concept. On the other hand, if the relative rates of

mutation are not constant but can change at different points along the evo-

lutionary path to have their most extreme effect (Leimar, 2001, 2005), much

stronger stability conditions than being a CSS in each direction are needed

in the adaptive dynamics approach (see Section 4).

In light of the above discussion, the analytic results of Section 3 are

quite surprising. By Theorem 3 there, when individual behaviors are ini-

tially normally distributed and fitnesses are approximated by their second

order Taylor expansions about a monomorphism, then even the weaker CSS

conditions are too strong (see Theorem 5 there for the precise statement)

to characterize stability since the distribution’s covariance evolves slowly to

having equal effect in all directions. Although this result raises legitimate

concerns about current adaptive dynamics approaches for multi-dimensional
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trait space, the presence of strategies at the tails of the normal distribution

does not match the usual assumption that mutations only occur near the

monomorphic equilibrium.

For this reason, Section 5 concentrates on behavioral distributions with

compact support contained in a small neighborhood of a monomorphism

m∗.23 In this setting and with no more restrictions on the support of the

initial distribution, we show in Section 5.1 that the multi-dimensional NIS is

the most relevant concept for stability of δm∗ under the replicator equation

(Theorems 8, 9 and 10), generalizing results of Eshel and Sansone (2003) and

Cressman (2005). When distributions are restricted to those whose supports

are compact intervals in each direction from m∗, we show in Section 5.2 the

relevance of the CSS conditions by clarifying the relationship between CSS

and strategy dominance in the multi-dimensional model. As explained there,

stability of the measure dynamics via strategy domination corresponds to

stability of the Cournot tatonnement process with a continuum of strategies

(Moulin, 1984), a discrete-time dynamic whereby rational decision makers

choose the optimal strategy in the next time period given current population

behavior. This connection continues the long tradition of classical game-

theoretic methods providing valuable insight into the eventual outcome of

behavioral evolution under the replicator equation (and vice versa).

Finally, Section 5.3 summarizes how our results apply to two-dimensional

trait spaces, an important special case that highlights the added difficul-

ties that arise when trait space has an extra degree of freedom compared

to the analysis of Cressman and Hofbauer (2005) where trait space is one-

23For technical reasons, this support must also include m∗.
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dimensional.

Appendix

Proof of Theorem 1. The proof that the class of normal distributions

is invariant under replicator dynamics is in Oechssler and Riedel (2001) for

n = 1. A similar method works for many dimensions and it establishes the

system of ordinary differential equation (6) and (7) at the same time. In the

following, we provide a different proof by using moment generating functions.

As this method has potential use in other contexts as well, we start with a

general exposition here.

Take a probability measure P with mean m and covariance matrix C and

a vector λ ∈ Rn. Define the Laplace transform

L (λ;P ) =

Z
exp

¡−λTx¢P (dx) ,
and its logarithm

M (λ;P ) = logL (λ;P ) .

L can be extended to finite signed measures in a straightforward way. It

is well known (and follows immediately through differentiation under the

integral) that
∂

∂λi
M (λ;P )|λ=0 = −mi

and
∂2

∂λi∂λj
M (λ;P )|λ=0 = Cij .

Thus, M generates the mean through the gradient and the covariance ma-

trix through its Hessian. Therefore, we can obtain differential equations
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for the mean and the covariance matrix by differentiating the moment gen-

erating function M . Normal distributions N(m,C) are characterized by

M(λ,N(m,C)) = −λTm+ 1
2
λTCλ.

Let P (t) be a trajectory of replicator dynamics in the following. It is

useful to associate with the measures P (t) the probability measures Pλ(t) as

given by

Pλ(t)(Γ) =
1

L (λ;P (t))

Z
Γ

exp(−λTx)P (t)(dx) .
Note that

d

dt
M (λ;P (t)) =

L (λ;P 0(t))
L (λ;P (t))

.

By definition of replicator dynamics

d

dt
M (λ;P (t)) =

1

L (λ;P (t))

Z
exp(−λTx) [π (x, P (t))− π (P (t), P (t))]P (t)(dx)

=
1

L (λ;P (t))

Z
exp(−λTx)π (x, P (t))P (t)(dx)− π (P (t), P (t))

= π (Pλ(t), P (t))− π (P (t), P (t)) .

From this, we get the following relations for the mean and the covariance

matrix:

m0
i(t) = −

∂

∂λi
π (Pλ(t), P (t))

¯̄
λ=0

C 0
ij(t) =

∂2

∂λi∂λj
π (Pλ(t), P (t))

¯̄
λ=0

We will now apply these relationships to the case of normal distributions.

As is well known (and can be seen via completing a square), if P = N(m,C),

then Pλ = N(m−Cλ,C). Thus, for the quadratic payoff function π(x, y) =

x ·Ax+ x ·By,

π (Pλ, P ) = (m− Cλ)T A (m− Cλ) +
nX

i,j=1

AijCij + (m− Cλ)T Bm.
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Since this is quadratic in λ, the set of normal distributions is invariant, and

by comparing with d
dt
M (λ;P (t)) = −λm0(t)+ 1

2
λTC 0(t)λ, we get the desired

differential equations

m0(t) = C(t)(2A+B)m(t) (21)

C 0(t) = 2C(t)AC(t) (22)

which reduces in the special case A = −I to (6) and (7). ¥
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