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Abstract. In this paper, an alternative approach to pricing barrier options
is presented that relies on the use of the first hitting time density to the
barrier. The lateral Chapman-Kolmogorov relation is used as a major tool
in order to determine option prices. It turns out that this approach allows
for pricing barrier options with more general payoffs and with general con-
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1 Introduction

Barrier options have become one of the most popular financial instruments
in the area of optiond!] They were traded sporadically in 1967 on the US-
American over-the-counter (OTC) market and in 1991 also with the S&P
500-Index as underlying on the Chicago Board Options Exchange (CBOE).
Nowadays, barrier options are mainly established on the OTC market. Al-
though traditionally these options fall under the category of exotic options,
today they are no longer considered ,,exotic“. Barrier options belong to the
class of path-dependent options, i.e. not only the value of the underlying
(stock, stock index, interest rate, commodity, exchange rate, currency) at
maturity is important, but also the path that the underlying price has taken
up to this moment in time. The special feature of barrier options is that if the
price of the underlying hits the barrier specified in the option contract, then
something happens to the option. Therefore the barrier is a critical value for
the underlying price process. In the event that the price of the underlying
hits or breaks the barrier, either a plain-vanilla option begins to existﬂ (for
knock-in options) or a plain-vanilla option ceases to exist (for knock-out op-
tions). In the case that no plain-vanilla option exists at maturity, there is
the possibility to include so-called rebate payments in the option contract.
These lump-sum cash payments help to dampen the loss due to a suddenly
knocked out knock-out option. Therefore, barrier options are more flexible
than standard plain-vanilla options, because one can explicitly take into ac-
count the preferences of the investor when choosing the value of the barrier
and the value of the rebate.

Although barrier options have been traded since 1967, the first valuation
formula for a down-and-out call was presented in 1973 by Merton (1973).
Several years later, Rubinstein and Reiner (1991) published the fundamental
article presenting analytical formulas for all standard types of single-barrier
options. The complete formulas can also be found in the survey article by
Rich (1994) and in almost all standard books on option pricingf} In this
original approach, the discounted expected value of the option’s payoff is
computed by integrating with respect to the state variable, i.e. the underly-

LAccording to Thomas (1996), barrier options account for e.g. 10% of all currency
options trades (by volume) between banks and their clients.

2A plain-vanilla option is either a standard put or a standard call option.

3See Haug (1998), Hull (2003) and Nelken (1996).



ing asset price process. An alternative approach is mentioned in El Karoui
and Jeanblanc (1999) who thought of using the first hitting time density and
computing the discounted expected value of the option’s payoff by integrat-
ing with respect to time. This approach is more flexible since it allows to
compute (in some cases only numerically) the prices for general barrier op-
tions, e.g. one can think of barrier options with more exotic payoffs. Another
advantage of this approach is that it remains valid for all underlying stochas-
tic processes as long as they are continuous and Markovian. In this paper,
we develop this approach further and provide the still missing proof for the
valuation formula. In section 2, we present the lateral Chapman-Kolmogorov
relation which constitutes an important tool for the solution of the problem.
Then, in section 3, the general framework is described. In section 4, the
first passage time valuation approach is presented and the analytical solu-
tion for a down-and-in call follows in section 5. Section 6 concludes the paper.

2 The lateral Chapman-Kolmogorov relation

In this section, we develop the idea of the lateral Chapman-Kolmogorov
relation introduced by Carr (2002). We will closely follow the derivation in
his paper. First, we present the idea in full generality, i.e. we only assume
that the stochastic process X that we consider is Markovian. Then we restrict
ourselves to the example of a Brownian Motion with drift since this will be
of interest in the following sections. Let ¢(x,t;y,T) denote the transition
probability density function, where = and ¢ are the backward variables and
y and T are the forward variables. Furthermore, let f(z,¢; h,u) denote the
probability density function for the first passage time to h, x and t are again
the backward variables and h and u are the forward variables.

Suppose that z < h < y. Then we define the lateral Chapman-Kolmogorov
relation to be:

T
q(z,t;y,T) = /t [z, t;hyu)q(h,u;y, T)du. (1)

From a probabilistic point of view, this result is obvious.

Now suppose that X is a Brownian motion with drift ¢ and diffusion pa-
rameter o started at . The transition probability density function is given



1 _1(y—e—p(T-1))?

gz, t;y,T) = e 2 2Ty | 2
(z,t;y,T) 27 (T 1) (2)
The first passage time density function is given by:
h — 1 (h—atu(u—t)?
flz t;hyu) = < e 2 Sdu-ny | (3)

202 (u — t)3

We want to verify that the lateral Chapman-Kolmogorov relation holds for
a Brownian motion with drift. Without loss of generality, we choose t = 0.
Let:

T
/f(:v,O;hw)Q(h;wy,T)du
0

(y—h—pu(T—u))?

Th—z _10-epw? 1 —y ot
€ ool u.

0'27J.

= — 2
0 V2rolu? 20%(T — u)

Con81der the following change of variable from u to 7' =L -1 Ifr= % -1,
- - o _ . _ 1 _TIT
then L —=1 —1—77:, SO U = . Hence T'—u =T _1+T T (1 _1+r) = i=
and du = —Wd’r
Consequently:
2 2
o a(me(ER)) e (o)) 0
7 h—z e 2 o2T e 2 o277 T d
= T
2ra? J, (T)% (TT)% (14 7)2
1471 1471
10?1 (=2 .
h—xe 22T e 2 027  2uT(h—zty—h) _ p272 1 _1¢-0% _1@-n?
= 5 3 - e 22T e 2027 ——e 2 22T e 2 o277 dT1
2ro T3 T3 0o VT
h—x K2 2uT(h—aty—h)—p?12 [ 1 2
= =€ —A=%¢ 202T e AT e 27 dr, (5)
20T 0 oV 2rT
e 1 K2
where A = rfT and k£ = % \/% The integral / e AT e 2 dr is
g 0 2T

recognized as the Laplace transform (since A > 0) of the probability density
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function ¢(0,0; k, 7) for a standard Brownian motion without drift. To eval-
uate this Laplace transform in complete generality, we drop the requirement
that y > h, or equivalently that £ > 0. The probability density function
q(0,0; k, 7) satisfies Kolmogorov’s forward equation,

0 1 9?

EQ(0707 va) - 5@(](0707 ]{J,T), ke §R77- > 07 (6>

where 7 is now the forward time and k is the forward spatial variable. This
PDE must be solved subject to the initial condition

q(0,0;k,0) = 0(k), keR, (7)
and the boundary conditions

khI:El q(0,0;k,7) =0, 7>0. (8)

Multiplying the PDE by e~4" and integrating with respect to 7 from 0 to co
implies that the Laplace transform

L(k,A) = /000 e 74(0,0; k, 7)dr (9)

solves the ordinary differential equation (ODE)

1 0°
5 o 0 A) = AL(k, A) = 5(k) (10)

subject to the boundary conditions

lim L(k, A) =0. (11)

k—+o0

The pair of linearly independent solutions to the second order linear homo-
geneous ODE

102

5ok A) = Ah(k, A) = 0 (12)

are exponentials

h(k,A) = 1V 4 yem VAR,
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where ¢; and ¢y are constants to be determined. We set L£(k, A) = h(k, A)
onk>0andk <0:

Cnemk -+ Clge_mk s ifk<0
L(k,A) = (13)

621€mk + ngeimk s if k> 0.

Imposing the boundary conditions implies that c1o = c9; = 0:

Cnemk s if k<0
Lk, A) = (14)
622€_mk , if £ > 0.

Continuity at k£ = 0 implies ¢1; = c99 = ¢. To satisfy the ODE, we want to
choose ¢ so that the jump in the first derivative at & = 0 is —2. The final
solution is

X ifk<0
Lk, A) = (15)
2t Lifk>0
or more simply
L(k, A) e /2AM (16)
T V2A
. . he —A—ﬁ 2;J,T(hfz+y7h)7u2T2
Multiplying by \/ﬂax?Te Te 3027 )
h — X —A—ﬁ 2;4T(hfz+y7h)7y,2T2 6_m|k|
I = —26 2 e 202T . (17)
2no?T V2A
Recalling that A = (;L;SET)Q and k = % implies:
| P (18)

\V2mo?2T



Now impose the requirement that y > h:

1 _ h272hm+z2+y272hy+h272uTy+2uTz+,u,2T2+2hy72h272zy+2zh
] = B y— 202T
V21o?T
1 2?4y 2T (y—a)+u 272
= —e 202T
V2no?T
1 _ (y—z—pT)?

= me Tt (19)

Hence I = ¢(z,0;y,T) as was to be shown.

3 General Framework

Although most of the derivations are valid for general continuous Markov
processes, we assume for simplicity that the underlying risk-neutral stock
price process S; follows a geometric Brownian motion,

dS; = (r — q)Sidt + 0 S dW,,t € [0,T],S; = S > 0, (20)

where r > 0 and ¢ > 0 are assumed to be the constant interest rate and the
constant dividend rate, respectively. o denotes the constant volatility rate
and W, is a standard Brownian motion.

4 First passage time valuation approach to
barrier options

As an example, we will concentrate on the valuation of a down-and-in call,
DIC, written on S; with strike K, expiration date T and constant barrier

B.

With down-and-in options, the price of the underlying is initially above the
barrier, i.e. S > B. If the price hits or breaks the barrier before maturity,
the investor gets, depending on the specification, a plain-vanilla call or a



plain-vanilla put, respectively. If the price stays above the barrier during the
entire time to maturity, then at maturity the investor gets a rebate which
can also be zero and which is pre-specified in the option contract.

Pricing formulas for all other barrier option types can be derived similarly
or can be obtained by using the well-known in-out-parity:

up-and-in option=plain-vanilla option - up-and-out option
down-and-in option=plain-vanilla option - down-and-out option.

The proof follows immediately from the payoff profiles of the different options
and is therefore omitted.

Following El Karoui and Jeanblanc (1999), we denote by 7 the first passage
time (= first hitting time) of the underlying stock price process S; to the
barrier B. We assume S > B > 0, K > B > 0. If this process never hits the
barrier, 7 = oo. The probability density function f(t) for the first passage
time 7 of a Brownian motion with drift to a constant barrier can be found
e.g. in Cox and Miller (1965), Ingersoll (1987), Karatzas and Shreve (1991)
or Borodin and Salminen (2002). In our case:

ln(S/B)n In(S/B) + (r —q — 50°)t

P(r € dt) = ()it = = 2= pr

dt,  (21)

2
Yy

e

=

where nly|] = is the standard normal density function. Notice that

9

when r — g > ”—22, then the density function is defective, i.e. integrating 7

over 0 to oo leads to a value strictly less than 1. Hence r — g < "—22
The Black and Scholes (1973) time ¢ value of a plain-vanilla European call
option is given by:

C(S,t) = Se” T IN[d)]| — Ke " T=YN[dy], (22)
where
In(S/K)+ (r —q+ 30*)(T —t)

oVl —t
d2 = dl—O'\/T—t

d =




and where NJe] is the cumulative standard normal distribution function.

Let DICy, denote the initial value of a down-and-in call. If the first pas-
sage time occurs before time 7', i.e. 7 < T, then a down-and-in call becomes
a plain-vanilla call at that time:

r=te[0,T] = DIC, = C(B,1). (23)

If the underlying never hits the barrier until maturity, the down-and-in call
expires worthless:

7>T = DICy =0. (24)

Hence the time 0 value of a European down-and-in call is given by:

T
DIC, = / e ""DIC,P(r € dt)
0

— /T e "C(B,t)f(t)dt. (25)

Of course, it is possible to evaluate this last expression numerically since
both the value of a European call and the first passage time density are given
in closed form above. However, it is more instructive to solve the integral
analytically. The result is of course the same as if the original approach of
Rubinstein and Reiner (1991) were used:

DICy = Se~ " (B/S)*Ny] — Ke ™" (B/S)*2N[y — ov/T], (26)

[ea

In B2
where y = U(jl%) + A\oV/T and )\ = Z=9E7/2,

Notice that the alternative approach allows for the (numerical) valuation
of more general barrier options as long as the underlying price process is
continuous and Markovian. For example, we might use a different volatility
in the first passage time density and in the formula for the call option, i.e. we
could model a change in volatility occurring at the moment when the barrier
is hit.



Alternatively, a smile consistent deterministic volatility model might be used
in order to model the underlying (since observed call option prices are a di-
rect input in the valuation formula). If the first hitting time to a flat barrier
for CEV process were known we could use this approach in order to price
barrier options on the CEV process. Furthermore, instead of a European call
option, we might use any type of option payoff and thus obtain a (numeri-
cal) pricing formula for this exotic barrier option. And what about using an
analytical approximation for an American call option instead of the Euro-
pean call? However, these extensions to more exotic barrier options will be
considered in a subsequent paper.

5 Analytical solution for a DIC

In the preceding section, we claimed that the initial value of a European
down-and-in call is given by:

DICy = /0 L OB, 5) f(s)ds. (27)

Substituting the formulas for C'(B,s) and f(s) yields:

DIC, — /OT {e_m (Be_q(T_S)N [ln(B/K) + ((:\/—Tq;jﬁ)(j’ - s)}

5 1%)n {IH(S/B) +J(7\“/; 1= 39 )‘1 } ds.

To ease notation, let z = In(S/B), k = In(K/B) and p = r — ¢ — 307 and
rewrite:

ey [ o e

_ /OTe_Tsc(a) \/%n ﬁj’ﬂ ds (28)
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Now take the first derivative of ¢(o) with respect to o, i.e. compute the vega
of a European call:

Jo) = BeiT- S>N{ k+(u+02)(T—s)}_K€T(TS)N{—k: (T — >}

+
=

s
Ts o — S

X%( k;;;;is )>+B€q {—k+(U+T0_)iT—s)] —

= Ke_T(T_S)n{ k;/‘;(__s }JT— : (30)

i

based on the fact that

Be—4(T—5),, {_k + (:\;FTU_?ET ~ 5)} — Ker(T-9), {_kgt/l;fi_; 5)} 31)

See appendix 2 for the derivation of this equality.

By the fundamental theorem of calculus:
c(o) = ¢(0)+ / ¢ (v)dv
0

= max 0 Be~4(T—5) —Ke_T(T_S)}

r(T—s) —k+<T—q—%U2)(T—S)
/ Ke™t { T VT — sdv.(32)

Now, let us rewrite the entire integral expression using the above decom-
position:

11



T
DIC, = / e’”(max [O, Be4(T=s) _ Ke’r(T’S)]
0

o —k o 1.2 T —
—l—/ Ke”(Ts)n{ Tr—a—5v) S)} \/ﬂdv) < n{x—f—us} ds
0
T

v/ 1T — s

= / e max [0, Be 1T — e v n[wﬂw] s
0 0253

T o —k 1.2 T —

+/ ers/ Ker(Ts)n{ + (r — g — 30°)( 3)] VT — sdv
0 0
x

v/ 1 — s

T+ [us
d
Xm”{aﬁ} ’ (33)
- Il—i-IQ.

5.1 Computation of the integral I;

Remember that we assumed K > B for the option to be priced. In order to
compute the first of the two integrals,

T
I, = / e ¥ max [0, Be 4(T=s) _ Ke—r(T—s)] x {x + us
0

,/0283”[ 0'\/5

T
_ ~ + ps

= e "Tmax |0, B(s) — K < n{m }ds,
/0 [ (5) }\/0233 o\/s

where é(s) = Belr=9(T=5) denotes the forward value of the barrier at time s,
let us first have a closer look at the maximum operator max [0, Be~%T~%) — Ke="(T=9)].
This term is positive if Be=%T=%) — Ke="(T=%) > ( or equivalently B(s) > K,
otherwise it is equal to zero. Under the assumption that r —q > 0, it follows:

} ds (34)

12



Be 1T=5) _ e (T=9) 5 (0 & Be 1T—5) 5 e (T—9)

T o g -

<:>ln(§> >—(r—q)(T—s5)< —k+(r—qT > —q)s

& geq(TS) > e

k
ST ——>s T > s.
(r—q)

Thus, max [O,BG*Q(T*S) — Ke*T(T*S)} > 0 for all s < T*. Denote z =
k — (r —q)T. Notice, that T* < 0if z > 0 and (r — ¢q) > 0, i.e. T* ¢ [0,T].
As a consequence I; = 0 for this case. For further purposes, this case will be
called ,,case 1°.

If z < 0and r—q > 0, then along the same lines max [0, Be~4(T—s) _ Ke”"(T*S)} >
0 for all s < T*. However, in this case 0 < T* < T, ie. T* € [0,7]. This
case which we call ,,case 2¢ for further reference, requires the computation

of the integral I, but with T* as upper integration limit.

For r — ¢ < 0, it follows that:

Be 1T~ — Ke7"T=9) 5 0 & Be 1T7) > (1)

B B
= ?Q_Q(T_S) > e_T(T_S) = K > e_(T_Q)(T_S)
B
< In (?> >—(r—q)(T'—s)e —k+(r—qT > (r—q)s
T — <se T <s.

(r—q)
So, max [O,Be*q(T*S) —Ke*T(T*S)] > 0 for all 7" > s. It can also be
shown that for this parameter constellation 7% > T > 0 always holds, i.e.

T* ¢ [0,T], and hence I; = 0 always. This case will be referred to as ,,case 3“.

If r — ¢ =0, it follows that
Be 179 _ g9 5 0 B> K,
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which is always violated under the current parameter constellation K > B,
hence I, = 0 always. This is ,,case 4°.

To summarize, for later computations, we have to distinguish the four cases:
T°<0, T>T*>0,T*>T >0and r =gq.

But first, we compute the closed form solution for the integral I; for the
case in which I; > 0:

T
_ —o(T— o (T— + pus

I = " max [0, Be 1T~ — KT —Z_p |Z ds. (35

1 /Oe max [0, Be e ] 028371 o s. (35)

Using the above notation, the difference inside the maximum is strictly pos-
itive on the interval [0, 7%] for T* € [0,T]. Otherwise, this term equals zero.
Thus, we only have to consider:

T*
~ _ I o + us
I = rs(B q(T—s) K r(T—s) T T ds.
1 /0 e "*(Be e ) 025371 o5 s (36)

From the computations shown in appendix 3, we finally obtain that this
integral is equal to:

T*
~ -~ - o . _ + /J/S
I, = / e " (Be 1T=9) _ [ (T=9) * n[m ]ds
1 o ( ) /_0283 0_\/5

= Se ™' Ne)] — Ke "™'N [eg]
2(r—q) 2(r—q)
s\ g\
+B€7qT <§> N [63] — Ke*TT (E) N [64], (37)

where

n —(r—q+io2)T*
o = MRS

In(B/S)+(r—q+30?)T*
e3 = a\/’FQ , eq=¢e3—oVT*.

14



Hence, we have:

T
_ —o(T— o (T— + us
I, = / e " max [0, Be 1T~%) — Ke(T—9) < n{x }ds
1 0 [ i| /0_283 0.\/5
([, =Se TN le1] — Ke™ ™' N [ey]
_2(r—q)
+Be~ (%) % N [es]

_2(r
- —Ke™ T (ﬁ)

—q)
$)7 7 T N [e] ET > T >0 (38)

0 JifT " <O0or T >T >0o0rr =g,

where

n —(r—gq+Lio2)T*
6121(B/S)U(¢%+2 )T; 62=G1+0\/YT*

In(B/S)+(r—q+1o2)T*
e3 = 0m2 , eg=e3—oVT*.

5.2 Computation of the integral I,

Now we proceed to the computation of the second integral,

T kg 3T -] & [aps

I, = —rs K —r(T—s) 2 T — sd ds.

’ /o ’ /0 ’ ”[ T —s ’ U¢a2s3n[ a\/E] )
(39)

In order to evaluate the inner integral, consider the following change of vari-
able and let

v
tz;(T—s)%—s

o o
=SoVt—s=uvv1 —s=v= Vi—s=dv= dt.
VI — s VI — 824/t — s

Consequently:

T —k+ pu(t —s) x T + pus
[:KTT// 7 { ]dt { ]d. 40
? ‘ 0o Js 2@” o\t —s \/Wn RV s (40)

15



Apply Fubini’s theorem and use the fact that n(—y) = n(y) to obtain:

I, :/T o’ Ke” TT/Um {k—(r—q)TJr(r—q)S;(rt:q3t+(r—q)t+502

T T+ us
dsdt.
Xvazsi”n{ e 1 ’

This simplifies to

L = / /am [ <r—q><T—Z>—t<ia;q—ga2><t_s>]

T+ pus
Ve {of]ddt
2K —rT T
_ _/ Ludt (42)
2 0

such that we can consider I3 separately.
With a closer look, I3 is very similar to the integral I that we considered
in section 2. Thus, the solution can be obtained in the same way:

t oy <z+us>2 (k= (r=q)(T=t) —p(t—s))?

2025 20'2“75) dS 43
0V 2%0233 \/27r02 t—s) (43)

With & — (r —¢)T = z, (r — ¢) = b and using the analog change of variables

as in section 2, i.e. the change of variable from s to 7 = % —1.Ifr= é -1,
t_ _ ot _ t Zotr

then ¢ = 147,50 s = ;1. Consequently, t —s =t — 1~ =1 (1 — 1+_7') =15

and ds = —ﬁdr Therefore:

1 )  (soon(4)) a4
X o0 6_5 o2t (& 2 o2tr t
I; = d
° 27?02/0 (- )% (- )% ((1+T)2> ’

oo
2ut(z+bt—a)—p2t? 1 1220 1(G+bt)?

g e 202¢ — 202t€ 2 o2tr dT
3 1
2wo? 3 t2 /0 VT

T 2 out(atbt—a)—p®t2 [ 1 2
= e Te 202t e ez dr 44
b
0 oV 2nT
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o0
2 . _ 1 k2
where o = ;5 and Kk = =0 The integral / e T e 27 dT is recog-
0

T ooVt o\ 2wt
nized as the Laplace transform (since o > 0) of the probability density

function ¢(0,0; B, 7) for a standard Brownian motion without drift.

Using the solution for the Laplace transform obtained in section 2, we have
that:

€T w2 2p,t(z+bt7z)7u2t2 eV 20"5'
I; = e 2e 20%¢
2mo2t V2«
1 _ 2tpa—2tu(z+bt)+(z+b) 2+ +p22 x| ztbt
= e 2to2 e oVt| oVt . (45)

Vomo?t

In order to get rid of the absolute value, we distinguish the following cases
for different values of z and b.

5.2.1 Casel: T <0

With 2z > 0 and b > 0, implying —3 =T* < 0:

1 (ztaet-—wt)? _ 2ux
[. = e 2to2 e o2 46
’ V2mo?t (46)
_zuz 1 [z+x+(b—u)t}
= [ o2 n .
o2t o/t

5.2.2 Case2: T>T*>0

With 2 <0 and b > 0, implying 7" > —% = T* > 0, the integral I3 is more

tedious to compute. We have to distinguish the following two cases for z < 0:
(—z—bt)

(z+0bt)| o

o ]

yit 2+ 0t <0

G i 2 bt > 0.

o
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e 1 z+x+ (b—p)t
I3 = e =2 n
Vot o/t
e 1 z+x+ (b—p)t 1 —z+z—(b—p)t
— | e o2 n — n Lty
Vot o/t Vot oVt -
(47)
5.2.3 Case 3: T">T >0
With z > 0 and b < 0, implying —7 = T™ > T > 0, the integral I3 is also
tedious to compute. We have to distinguish the following two cases for z > 0:
(—z—bt) .
(z—i—bt)‘_ - Jif 240t <0
“ G if 24 bt > 0,
Actually, the case z + bt < 0 needs not to be considered any further since
z+0t <0< t>T">T. We have however:
2px 1 b - t
L = % n{z—ir:c—l—( u)}
o2t oVt
B (e—zgm 1 o [z%—x—k(b—u)t} 1 i [—z—i—x— (b—,u)t]) .
o2t oVt o2t o\t e>T7}
(48)
5.2.4 Case 4: r=¢q
Finally for the case b =0, i.e. r = q:
ko Tk+x— 307
L = =& n[ xz“} (49)
ot oVt
B 1 In (%) +In (%) — %UQt
= = n .
K /o2t oVt
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5.3 Computation of the option price

Now that we have computed the inner integrals for all possible cases, we can
proceed with the computation of the option price.

From the preceding sections, we know that the price of a down-and-in call is
the sum of two integrals taking on different values depending on whether T
is positive or negative and on whether » = ¢ or not. Of course, regardless of
the case we are considering the same valuation formula should be reached.

Again we start with the integral representation from section 4,

T
_ _o(T— —r(T— + ps
DIC, _ s 0.B q(T—s) K r(T—s) z oy d
0 / e~ max [0, Be e ] 028371 " s

o [ [ e [T e, e [

(50)
5.3.1 Case T" <0
For z > 0, we know from section 5.1 that for this case:
I /T —rs [0 B —q(T—s) K *T(TfS)} x T+ ps d 0 (51>
= e " max e — Ke n s=0.
1 o ) /_(7233 O_\/g
From section 5.2, especially subsection 5.2.1, we know that for this case:
IQ — / / Ke—r(T |: k"i_,u( ):| / sdv |:33+,u$:|d
vV/T — s Vo ov/s
ZK —rT
- Then / Iydt
2 0
o?Ke T (T e 1 [z +x+(b— u)t] ”
= — e
2 0 \/ a\ﬁ
2 —rT
_ 0’Ke e?f/ [z—i—x—i— (b—u)t] " (52)
2 Vo2t oVt
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It can be shown (see appendix 4) that:

_2(r—q) B% _ 1.2
Lo~ pe (E) = N In (SK) +(r—q+50°)T
B o T

e (E) ! N In (5_1() +(r—q—303)T

53
Hence the value at ¢ = 0 of a down-and-in call is:
D[C() - [1 -+ [2
(S —2Aroo) In <§—;) +(r—q+ %UQ)T
B oV T
_2(;;1)_,_1 In <B_2> + (T —q— lo-Q)T
_Ke T (5) N | ? . (54)
B oVT

As expected, this is identical to the formula of Rubinstein and Reiner (1991).

5.3.2 CaseT >T*>0

We know from section 5.1 that for this case:

T
_ —a(T— o (T— + us
I, = " 0, Be 1T=9) _ [ge(T=9) < z d
1 /0 e max[ , Be e } 028371 o5 s

= Se ' Nle)] — Ke ™' N [ey)]
2(r—a) 2r—a) 4
2

+Be T (%)_ " Nes] - Ke 7 (%)_ " Nled, (59)

where

n —(r—q+io2)T*
elzl(B/S)U(\/%+2 )T, 62261"‘0\/77*

In(B/S)+(r—q+30?)T*
e3 = a\/’FQ , eq=¢e3—oVT*.
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From section 5.2, especially subsection 5.2.2, we know that for this case:

N k+ (T )] {x—i—,us}
L = Ke 1= VT — sd ds
? / / ‘ [ vVl —s U\/ ov/s
2K€ rT/
= — Isdt
2 0
B o 2Ke—T Te e 1 [z+x+(b—,u)t}
2 0 Vot o/t
21 b— )t 1 — — (b—p)t
_< n["’”” *‘)}_ n{ 2re | “>])1{t<mdt
o2t oVt ot oVt -

_ 2Ke = —2ye z4+x 4 (b—p)t @t
_U2K 2;@/ \/_ { 2 +J:B\/i (b— J)t p
N / |
L N SO -

It can be shown (see appendix 5) that this expression is equal to:

-2y 1( )+ —q+ 03T
I = BeqT(%> I b SO A

oT
N
—Ke ™™ | = N
B T
B * B *
gy | BA5) — (r—a+ 507 L K TN | (%) —(r—q—30)T
oVT* oVT*

(57)
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Hence the value at ¢ = 0 of a down-and-in call is:

D[CO — Il+[2
Se ™' N [e;] — Ke ™' N [eq]

—Se ™' N [ey] + Ke ™'N [ey]

. g 72(2;1) . g 72(:;;q)+1
—Be ™1 (E) Nles] + Ke™" (§> N leq), (58)
where
n —(r—q+Lie)T*
6121 (B/S) U(\/%+2 )T , 62:€1+O'\/IT*

In(B/S)+(r—q+102)T*
e3 = i 2 , eq=e3—oVT*.

This simplifies because of cancellation of some terms to:

-~ In <B—2> +(r—q+io)T
o2
DIC, = Be ™ (E) N |2 -
B oVT
—KeT (E) | () + g i
B oVT

. (59)

As expected, this is identical to the formula of Rubinstein and Reiner (1991).
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53.3 CaseT*>T>0

We know from section 5.1 that for this case:

T
- —o(T— o (T— + ps
L= " max [0, Be™ 17 — KT —Z_p |Z ds=0. (60
1 /Oe max [0, Be e ] 025371 P s (60)

From section 5.2, especially subsection 5.2.3, we know that for this case:

[ e ] e
- ﬂ/ Ldt

2

- e

(o ]

_ _2K€ / = [2”12_“)’5} dt, (61)

since T* > T.

Vo [;H *

As in subsection 5.3.1, it can be shown (see appendix 4) that this expression
is equal to:

2(r—q 2
b= e (8) T [t
? o/T
e ()5 [ o
— e
oT

23



Hence the value at ¢ = 0 of a down-and-in call is:
DICy, = I+ 1,
(S —— In (%) +(r—q+ %(72)T
= Be ¥ | = N
oVT

B
2(r—q 2
(8 - In <§—K> +(r—q— 30T
_Ke N —= . (63)

As expected, this is identical to the formula of Rubinstein and Reiner (1991).

5.3.4 Caser=gq

For r = q, we know from section 5.1 that for this case:

T
- o o + us
I = ™ max [0, Be=dT=9) _ ge—rT=a] L | ¥ ds=0. (64
1 /Oe ax[, e e } —a2s3n o s (64)

From section 5.2, especially subsection 5.2.4, we know that for this case:

2K —rT T
L = e / Lt

2 0
— 1
_ o2Ke T /Tek 1 o {kz—l—m — Eazt} @t
2 0 Vo2t o/t

_ o2Ke T (E) /T 1 i ln(%)—l—ln(%)—%(ﬂt a. (65)
2 K) Jo Vot

o/t
Applying formula (3) of appendix 1, the following result is obtained:

B> 1.2 B2\ 1 2
I Be-ity ln(SK>+20T e g N ln(SK> 50°T ”
2= Be T ‘ vt |

B

24



Hence:

In(22) + Lo2T In(2) - o2
DICy = Be™ TN <SK> ’ ket (2 N <SK> ’ . (67)
oVT B oVT

This is exactly the Rubinstein and Reiner (1991) formula for r = gq.

6 Conclusion

In this paper, an alternative approach to the valuation of barrier options is
presented that relies on the first passage time to the barrier. This extends
the work of El Karoui and Jeanblanc (1999), where only an integral formula
is given. The lateral Chapman-Kolmogorov relation is used as an important
tool in order to prove that the integral formula indeed yields the original for-
mula given in Rubinstein and Reiner (1991). The advantage of this approach
is that it allows for the valuation of barrier options with general payoffs and
that it is valid for any continuous Markovian underlying stochastic process
if the first passage time density is known. The disadvantage is that it may
involve more difficult calculations than the original approach by Rubinstein
and Reiner (1991).
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8 Appendices

8.1 Appendix 1: Some useful formulas

Formula (1) (see e.g. Berger (1996)):

e 2Y

For general «, (3, v and for nfy] = 7

e *n {% + ﬁ\/E} = e ofteV P2, % + /B +27Vs| . (68)
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Formula (2) (see e.g. Berger (1996)):
2

For general «, 3, T and for nly] = e:/;!r and where NJe| is the cumulative

standard normal distribution function:

" [a T 681 L {N [—\ar — sgnlald T] L iy {—m\ + sgnfa] T] } |

n =
o Vsd L Vs |l VT VT
(69)
Formula (3) (see e.g. Berger (1996)):
21,2
For general «, 3, T and for n[y] = ¢ \/% and where NJe] is the cumulative

standard normal distribution function:

o 7)o o o) ] o)

Formula (4) (see e.g. Berger (1996)):
e_%yg

For general «, § and for nfy] = 7

n [% . Wg} — 2Py [% + ﬁ\/E] . (71)

8.2 Appendix 2: Trick for the vega of a European call
Remember that k = In(K/B). We have to show that

2
_ T _
Be—q(T—s)n k + (H’ +0 )( S) _ Be_Q(T_S)TL[dﬂ

o1 — s

[—k+ (T —s)
oVl —s

= KeT=9p

= Ke"T9)p[dy)

sy, |k ()T = s)
= KeT=s)y —oVT — s
oVT — s

= Ke"T9pld, — ov/T — 5. (72)




Consider now the following expression:

1n( Bn|d,] )
e " T=)Knldy, — o/T — s
= In(B) +In(nldi]) + (r = ¢)(T' = s) = In(K) — In(n[dy — o VT — s])

= W(B)~ 3& + (r — )T~ 5) ~ W(K) + 5(dh — VT —5)°
= W(B) — o+ (= )T — )~ n(K) + 5 — diovT s+ 50T —5)
— In(B)—(K) + (r — g+ %ﬂ)(T ) —dioVT =5 = 0. (73)

8.3 Appendix 3: Detailed computation of I

T*
fl = / e*?‘S(Be*q(Tfs) _ Kefr(Tfs)) z n {x%—us} s
0

Vo?s3 o\/s
T T
_ C(r— + ps _ z T+ us
— Be " (s _Z_p |2 — Ke " ds.
‘ /o ‘ 0'283 oy/s ‘ 0 0233n oy/s ’
(74)

Making use of formula (1) of appendix 1, we have:

T*
i, — et / sy L | TEVIE AT 05 )
o Jo V53 ov/s
T*
_ T T+ us
—Ke T ds. 75
‘ /0 \/025371{ U\/g] ’ (%)
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Making use of the formula (2) of appendix 1, we have:

o V3w oV'T*
—x + /12 +2(r — q)o2T* )

T*
e [y [FE g = 3T (ST [t (= a = 4ot
Ke N +( = N )
oV T* B oV T*

After simplification and the use of z = In(S/B), p = (r — ¢ — 30?) and
V124 2(r — q)o? = (r — ¢ + 10?), we finally obtain the result:

[, = Be Tl itz T (N [—i’f — 2 +2(r — q)o?T*

I = SeriT=*IN In (%) —(r—q+ %(ﬂ)T* Ke—rT=9) N In (%) —(r—q-— %02)T*
oVT* —
—2(r—q) .
L Bears) (BY 7 In(Z)+(r—gq+ 16T
S T

=2029) 49 B 12\
_Ker(T=9) (E 7y [hl(g) +(r—q—30°)T -

8.4 Appendix 4: Detailed computation of [, for cases

1 and 3
We start with the equation:
7rT T
L — 22/ 1 {z—l—va(b—,u)t}dt
0 a2t oVt
—rT T o
_ aKe -2 1 n {z—i—x—i— (b u)t] it (78)
0 Vi o\t
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Using formula (3) of appendix 1, we have

uo [ 2 + )L 171
L = %KG_TT6_202< sgn [(@ + 2)y {N {|x+z| +sgn [(:HZ)—} §U2T}
g

a ovT
be N | A L on [t )= | 02T — 1 V), 79
e 0] )

and using the fact that sgn [(x + z)ﬂ is positive for z > 0, we get:

L 2w r+z 1 _ —(x+2) 1
I, = Ke ™ Te %2 {N{ +—U2T] +e N [—+—02T] —1}.
? oVT 2 oVv'T 2

Applying N[~y] =1 - N[y] & N[-y] — 1= —N[y] & —N[-y] + 1 = N[y],
we obtain:

_pp —2ue —(z+2) 1 _ —(x+2) 1
L, = Ke'Te 5 {—N l(:”— — —aQT] +e (AN l— + —o?T| }.
2 ovT 2 ovT 2

Re-establishing the original notation:

2(r—q)
S\ " (/B ~In(3E)+(r—qT 1
I, = Ke ' [Z Z ) e raT B2 52T
P ( ) ((SK)e T 50

[—m(s—é‘)ﬂr—q)T_ 1 ) (52)

—o?’T
_2(r—q) B? . 1.2
L Be_qT(S) = N In <SK) +(r—q+50°)T

Then:

ovT 2

B oVT
— e R—
B oVT
— DIC,. (83)
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8.5 Appendix 5: Detailed computation of [, for case 2
We start with:

o g

Vo oVt
02K Y 1 [—z +z—(b— u)t] it

n
2 o Vo2t o/t

Re-establishing the original notation and using formula (3) of appendix 1,
we have:

+

(84)

T et + (r—a)T = 30°T
I, = Ke™
’ ovT
K
_B_Qe(r T N B_ (r—qT %02T +1
SK a\/T
o\ -2 n (£2) + (r— )T - 301"
— KeT (—) —N
B oVT*
B ey () —aT ]
SK oV T*
4 KefrT N hl (%) + (T B q)T ; 2T*
ovT*
In (£ — )T — Lo?T*
_Ee(T*Q)TN 1 (S) (,r q> + 1 ) (85)
K oVT*

31



Then we get:

r—q 2
Be—qT (§>2(02 ) N In (5—1() —+ (7“ —q + %02)T
B oVT

I, =

ovVT

_20r—q) B B 1 2]
+Be~ T (§> TN n(§) + =T + 30T
oVT*

_Ke—rT <§> _2(;;1)-‘,-1 N In (?—;) —+ (r — q)T _ %O’QT*
Z T

_Ka”(ﬁ)ng“N In () + (r—a— 3037
B

Lgeiry |(E) 2 =T =50 T e (I (§) = (0= 9T 4 50°T
ovT* oV T
(86)
n E r—
Using the definition of T% = 1([();#7 we finally obtain:
_2(r—q) B2 B 12
I, = Be <§> |2 (&) +(r—a+1o0T
B ovT
i e in () +0—a—3o°)T
—Ke N
B o\/T
_2(r—q) i}
+Be " (_) oy (%) +(r—q+30°)T
B oVT*
_2(r—q) .
—rT S +1 In (%) + (T q— ;0.2>T
K N
B oVT*
gy (B =o)L ()~ (g T
oVT* oV T*
(87)
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