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Abstract

We show in this paper that none of the existing static evolutionary
stability concepts (ESS, CSS, uninvadability, NIS) is sufficient to guar-
antee dynamic stability in the weak topology with respect to standard
evolutionary dynamics if the strategy space is continuous. We propose
a new concept, evolutionary robustness, which is stronger than the
previous concepts. Evolutionary robustness ensures dynamic stability
for replicator dynamics in doubly symmetric games.
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1 Introduction

Continuous models play an important role in all formal sciences although
the observed reality is measured in discrete quantities. In economics, prices
and quantities are usually modeled as continuous variables although both
lie on a finite grid in reality. In game theory, choices of timing, of quality,
of effort etc. are frequently assumed to belong to a real interval. Modeling
parameters as continuous variables is justified in most cases because first,
the continuous model provides a good approximation to reality and, second,
it opens the door for the powerful tools of analysis.

In evolutionary game theory, however, models in which strategies are
continuous variables are still the exception. Yet, if evolutionary game theory
is to be extended beyond the well understood field of games with a small
number of strategies, one must be able to deal with continuous models.
Important applications will include, for example, bargaining games, games
of timing, oligopoly games, public good games, the evolution of preferences
and the evolution of markets. The set of possible actions is usually quite a
large set and is, therefore, best modelled through a continuous approach.*

The first problem encountered in this area is the lack of a convincing
static stability concept. In the finite case, one uses the notion of Evolu-
tionarily Stable Strategy (ESS) as a stability concept. In games with a
finite number of pure strategies the ESS definition has gained strong sup-
port through the fact that ESS is a sufficient condition for dynamic stability
with respect to the replicator dynamics. Unfortunately, in games with a
continuum of pure strategies this fact ceases to be true. One of the con-
tributions of the present paper is to propose a static stability concept for
continuous evolutionary models, called Evolutionary Robustness (€R), and
to provide a dynamic foundation for this concept.

The basic idea of dynamic stability is that a population which is slightly
perturbed from the equilibrium should not be driven further away through

the evolutionary dynamics. The critical question is which perturbations are

!For some examples of applications with continuous strategy evolution see Bester and
Giith [2], Heifetz and Spiegel [9], Huck, Kirchsteiger, and Oechssler [11], Ok and Vega—
Redondo [14] or Oechssler and Riedel [13] and the references cited therein.



to be considered “close” to the original equilibrium. Thus, as pointed out
by Eshel [7] the whole issue crucially depends on the choice of topology for
the space of populations.?

In the finite case, the choice of topology is inconsequential since all sen-
sible measures of distance yield the same result: If ¢ is chosen small enough,
then a population P is close to population @ if and only if () can be written
as @ = (1 —e)P 4 eR for small £ > 0 and some population R. In the case
of a continuum of strategies this notion of distance seems unduly restrictive
(see also Eshel et al., [8] for this argument). Why should a monomorphic
population playing a strategy arbitrarily close to the equilibrium strategy
not be considered close to the equilibrium population? To give an example,
if the strategy of some animal is the length of its tail, are then two popu-
lations, one featuring a tail of length x and the other a length of = + &, far
apart even if ¢ is arbitrarily small? In economic applications this may be
even less convincing.

A further argument in favor of this view could be made as follows. Sup-
pose a population is optimal against a given environment but a small change
in the environment occurs such that the entire payoff function — and with it,
the optimal action — shifts somewhat. The new optimal strategy may now
be € away from the current population. For stability it seems reasonable to
require that the population does not drift away from the new optimum any
further.

Based upon these arguments, we choose the weak topology as the way
to measure how different two populations are. The weak topology captures
two aspects: it allows both for a large change of strategic play by a small
fraction of players as well as a small change of strategic play by a large
fraction of the population.

We show that all previously suggested static definitions — whether ESS,
Vickers and Cannings’ [20] uninvadability, Bomze’s [3] strong uninvadabil-
ity, Eshel and Motro’s [5] continuously stable strategy (CSS), or Apaloo’s [1]
neighborhood invader strategy (NIS) — fail to guarantee dynamic stability

2We always identify a population with the aggregate play of its members, i.e. with the
probability measure over the set of (pure) strategies.



(in the above sense) in the continuum case. If one accepts our notion of
distance, then one also has to accept the fact that all known static evolu-
tionary concepts are insufficient to guarantee even Lyapunov stability with
respect to the replicator dynamics.

The concept we introduce, Evolutionary Robustness or £R, is a natu-
ral generalization of ESS for the continuous model with the weak topology
— and in fact, in the finite case, the two notions coincide. A population is
called evolutionarily robust if it obtains a higher than average payoff against
all possible populations which are close in the sense of the weak topology.
Hence, the set of states to check is larger than required, e.g., by uninvadabil-
ity. To give an example. Suppose that the strategy set is the unit interval
and the homogeneous population which places all mass on zero is the equi-
librium candidate. For uninvadability, one must only check the populations
in which a large part of the population still plays zero whereas a small frac-
tion does something else. For &R, one must additionally check populations
in which every player uses a different strategy which is close to zero but not
equal to zero. This latter requirement is more in the spirit of the concepts
(CSS and NIS proposed in the biology literature. In fact, £R implies unin-
vadability as well as CSS and NIS and unifies, in this sense, the previously
suggested concepts.

Bomze [3] has established a weaker kind of dynamic stability for (strongly)
uninvadable populations. He shows that replicator dynamics converge weakly
to the uninvadable population if the set of admissible starting points for the
replicator dynamics is restricted to populations having small cross entropy
relative to the equilibrium population. For homogeneous equilibrium popu-
lations, this means that admissible initial populations must be close to the
equilibrium population in the variational topology, whereas dynamics con-
verge in the weak topology. The same approach is used in our own previous
work [13]. Although this is a very weak kind of stability, it has the advan-
tage of allowing to work with discontinuous payoff functions. In contrast, if
one adopts the weak topology, then payoff functions must be continuous.

Seymour [15] shows that replicator dynamics converge in the variational

topology to the equilibrium population if the payoff function has a discon-



tinuous upward jump at the equilibrium strategy. There must be a positive
gap between the equilibrium payoff and all other competing strategies in
order to ensure this strong type of stability.

A continuous model should only be used if it closely approximates the
discrete model as the number of strategies grows large. We show that this
is satisfied in our case. When the parameter space is discrete and strategies
lie on a finite grid, the corresponding discrete replicator dynamics converge
to the continuous replicator dynamics in the weak topology as grid size van-
ishes. In particular, this result shows that one can use numerical procedures
in order to study the behavior of the continuous model.

The paper is organized as follows. In the next section we introduce the
evolutionary dynamics. Section 3 describes the static evolutionary concepts
which have so far been proposed for the continuous model. In Section 4 we
then show by examples that the proposed concepts do not ensure dynamic
stability with respect to the weak topology. In Section 5 we suggest our new
concept of evolutionary robustness, show that this implies all previous con-
cepts, and establish dynamic stability for doubly symmetric games. Finally,
in Section 6 we show that the continuous model is indeed the limit of the

discrete model if the grid size of the strategy set vanishes.

2 Evolutionary dynamics

We consider symmetric two—player games with (Borel) strategy set S C R
and continuous payoff function f(x,y). A population is identified with the
aggregate play of its members and is described by a probability measure P
on the measure space (5, B), where I3 denotes the Borel o-algebra on 5. We
denote by A(S) the set of all populations (probability measures or mixed
strategies) on S, and by p(P, Q) the distance of two populations measured
with respect to the weak topology,

o(P.Q) ::inf{ £>0:Vs€S, Q((—o0,8 —¢]) —e < }

P ((~00,5]) < Q ((—00, s +]) 4

Thus, population ¢ is considered e—close to a Dirac measure with mass on

u, Oy, if the mass on both, (—oo,u — ¢) and (u + ,00), is at most «.
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Throughout the paper we assume that the average payoff of population
P against population () is bilinear in P and @), i.e.

B(P.Q) = / / £, 1)Q(dy) P(dz) 1)

Since f is continuous, the bilinear functional of expected payoffs, F(P,Q),
is continuous with respect to the weak topology.
We assume that evolutionary dynamics® are regular (P(S) = 0) and

payoff monotonic, i.e. that (set of) types with higher average fitness have

higher growth rates (P(A) := P(A)/P(A) denotes the growth rate of P(A)),

or formally

Definition 1 A regular dynamic is called payoff monotonic if for all A and

A'eB

P(A) > P(A)
if and only if

1 1
P(A) /AE (6, PYPD) > By | Bs, PP,

Let P* be an equilibrium point of the dynamics, that is P*(A) =0 for
all Borel subsets A of S. P* is called Lyapunov stable if for all £ > 0 there
exists & > 0 such that for all initial populations Q(0) with p (Q(0), P*) < &
we have p (Q(t), P*) < e for all t > 0. P* is called asymptotically stable if it
is Lyapunov stable and there exists £ > 0 such that for all initial populations
Q(0) with p(Q(0), P*) < e we have p(Q(t), P*) — 0.

A particular type of dynamics which we shall consider below as a special

case are the well known replicator dynamics (Taylor and Jonkers [17]). Let
o(x, P) = FE (b4, P)— E(P,P)

denote the differential fitness of pure strategy x when matched against popu-
lation P, i.e. the difference between the payoff of strategy x and the average

population payoff. The idea of the replicator dynamics is that the relative

3That evolutionary dynamics can be meaningfully defined in the continuous context is

shown in Bomze [3] and Oechssler and Riedel [13].



increment of the frequency of a set of strategies is given exactly by the av-
erage differential fitness of strategies in that set. Formally, the replicator

dynamics for the continuous case are defined as

Pt)(4) = /A o (#, P) P(t)(dx). (2)

Note that by taking A = {z} we get the usual formulation of the replicator

dynamics for the finite strategy case.

3 Static evolutionary concepts

The classical definition of an ESS (Maynard Smith [12]) requires that for all
mutant populations R there exists an  such that the original population P
does better against the mixed population (1 — )P + R than R does. In
this definition some invasion barrier exists for each R.

Vickers and Cannings [20] strengthened the definition by requiring that
there be a uniform invasion barrier for all mutant populations £. This
requirement, which was later termed uninvadability, is stronger than ESS if

we leave the realm of finite matrix games (see Vickers and Cannings [20]).

Definition 2 (uninvadability) A population P is called uninvadable if

there is a uniform invasion barrier, that is, an € > 0 such that

EP,(1—n)P +nQ) > E(Q,(1—n)P+nQ) (3)

holds for all Q # P and oll 0 < n < e.

Yet a stronger definition was introduced by Bomze [3]|. Strong uninvad-
ability requires a uniform invasion barrier for all populations @ close to P in
the variational norm. The latter definition coincides with uninvadability if
the equilibrium population state is homogeneous (see Lemma 1 of Oechssler
and Riedel, [13]).

In the above definitions a population is considered close to a homoge-
neous population P = ¢, if the mass on u remains at least 1 —e. Elsewhere,

we have shown [13] (see also Bomze [3]) that if this definition of “closeness”



is employed, uninvadability is a sufficient condition for dynamic stability.
However, as we have argued above the variational norm is unduly restrictive
and the weak topology should be used instead. This view was first advocated
by Eshel and Motro [5] who introduced the following definition.

Definition 3 (CSS) A stralegy u is a continuously stable strategy (CSS)
if (1) it is a ESS and (2) there exists an € > 0 such that for all v with
|v —u| < e there exists ann > 0 such that for all x with |v — x| <n

fv,z) > f(z,z) if and only if v —u| < |z — ul.

A slightly stronger version of CSS (2) was later termed m*—stability by
Taylor [18] and convergence stability by Christiansen [4]. As shown by Eshel
[6] if f is twice differentiable, a necessary condition for an ESS u to be a

CSS is that

f:z::c(u7 u) + fmy(u7 u) <0. (4)

Condition (4) is sufficient if the weak inequality is replaced by a strict one.

Finally, a similar concept was introduced by Apaloo [1].

Definition 4 (NIS) A strategy u is a neighborhood invader strategy (NIS)

if there exists an & > 0 such that for all x with |x —u| < ¢
fu,z) > f(z,z).

It can easily be checked that a necessary condition for v to be a NIS is
that

S (u,w) + 2 fy (u,u) <O0. (5)

Again, condition (5) is sufficient if the weak inequality is replaced by a strict

one.

Remark 1 In the following, we will sometimes also say that a homogeneous
population &, is CSS or NIS, meaning that the corresponding strategy u is
CSS (or NIS, respectively). The fact that CSS and NIS are only defined
for pure strategies, and that a natural extension to mized strategics is not

immediate, is certainly a drawback of those definitions.



In continuous models, there are two aspects of mutations. On the one
hand, an equilibrium population must do well against the mutation that a
small fraction of the population plays a different strategy. This is the aspect
which is emphasized by uninvadability. On the other hand, an equilibrium
population should also do well against the mutation by which the whole
population is shifted slightly. The latter is the point stressed by CSS and
NIS. The concept £R we propose below captures both aspects.

4 Why stronger conditions are needed

A static evolutionary stability concept makes sense only if it presents a short-
cut to a truly dynamic analysis. The following two examples will demon-
strate that none of the above static stability conditions are strong enough

to guarantee Lyapunov stability with respect to the replicator dynamics.

Example 1 Consider a game with strategy set S = R and payoff function
f(x,y) = —2? 4+ 4xy. The pair (0,0) is a strict Nash equilibrium, and hence
the homogeneous population dg is an ESS. Furthermore, it is uninvadable.

Howewver, it is not Lyapunov stable with respect to the replicator dynamics.

Proof. That (0,0) is a strict Nash equilibrium is obvious. Denoting by
1(Q) the mean value of @ and by V(Q) its variance, we see that &g is also
uninvadable since (6o, (1 — )p + Q) = 0 and

EQ (1= +2Q) = (1-2)B(Q,6) +2E(Q, Q)
= 450(Q)" - Q)" - V(Q).

Hence, (3) is always satisfied for £ < 1/4.

Strategy u = 0 is, however, not a CSS because

J22(0,0) + f2y(0,0) > 0.

Next, we apply the replicator dynamics. Suppose we start with an initial
population Q(0) which is normally distributed with mean p(0) > 0 and vari-
ance V(0) > 0. In the Appendix we show that all Q(¢) will also be normally



distributed with some mean pn(¢) and variance V' (¢). This makes it possible
to reduce the infinite-dimensional replicator dynamics to a two—dimensional
ordinary differential equation since normal distributions are characterized
through their mean and variance. The ODEs for the mean value pu(t) and

the variance V(¢) are

) = 2p)V (L)
V() = —2V%(1).

Starting from any initial population Q(0) with positive mean value, which
can be arbitrarily close to dg in the weak topology, it is easy to see that the
mean p(t) diverges to infinity. Hence, 6g is not Lyapunov stable. A formal

proof of this statement is given in the Appendix.

Example 2 Consider a game with strategy set S = R and payoff function
f(z,y) = —2% + 222, Despite 89 being an ESS, a CSS, and a NIS, it is not

Lyapunov stable with respect to any payoff monotone dynamic.

Proof. Since (0,0) is a strict equilibrium, 8¢ is an ESS. Furthermore, since
f22(0,0) = =2 and f4,,(0,0) = 0, it is also a CSS and a NIS.

However, it is not uninvadable because for all ¢ > 0 there exists an z
such that with @ = (1 — )0 + €6,

E(Q,Q) = (1 =) [(2,0) + *f(z,2) = z" —c2” > 0 (6)
but £(8, Q) = 0.

To see that it is not Lyapunov stable with respect to any payoff monotone
dynamic consider a starting population @ = (1 —¢)8p + b5, which is e—close
to 8o. Since E(8z, Q) > E(bo, Q) for all x such that (6) is satisfied, the mass

on x increases to one.

Examples 1 and 2 show that the existing static evolutionary concepts
fail to guarantee dynamic stability. Example 1 shows that uninvadability
misses the point stressed by CSS and NIS, namely that the pure equilibrium

strategy must do well also against pure strategies close to it. Example 2



shows that CSS or NIS alone miss the uniform invasion barrier property
required by uninvadability. An appropriate static stability concept must
therefore bring these two points together.

We conclude this section with an example showing that the number of

uninvadable populations can be uncountable with a continuum of strategies.

Example 3 Consider a game with strategy set S = [—1, 1] and payoff func-
tion f(z,y) = —a% + 2xy. The best reply function is r(y) =y, hence there
are uncountably many strict Nash equilibria (z,x), hence uncountably many
ESS. The populations 65 are even uninvadable since for Q@ = (1 —n)6z +nR
we have for R # 6,

E(6:,Q)—FE(RQ) = (1—-n) 77( T —|—2qu))
—-(1- )( V(R) — p*(R) + 2zp(R))
—n (=V(R) + p*(R))
= (1-29) (z - u(R))* +nV(R) > 0.

5 Evolutionary robustness

Now we introduce the concept which we propose to use with continuous

strategy spaces.

Definition 5 A population P* € A(S) is evolutionarily robust (ER) if
there exists an invasion barrier ¢ > 0 such that for all Q@ # P* with

p(Q. P*) < < we have B(P*,Q) > B(Q, Q).

Note that £R is based on the same condition as uninvadability. However,
the set of e—close populations ¢ is much larger since the weak topology
is used instead of the variational topology. As we have mentioned above,
ER captures two aspects of stability against mutations. An evolutionarily
robust population is strong against large deviations by a small fraction of
the population on the one hand and against small shifts by a large fraction

of the population on the other hand.

10



We show next that £R is in fact stronger than the previously defined
concepts. First, since a population which is close in the variational norm is

also close in the weak topology, we clearly have the following

Proposition 1 If P* is ER, then it is strongly uninvadable and, hence,

uninvadable and an ESS.

Since CSS and NIS are only defined for pure strategies, we consider only

pure £R in the following propositions.
Proposition 2 Let 6, be a homogeneous ER. Then u is a NIS.

Proof. Follows directly from the definition of £R by setting @ = &..

Thus, £R implies ESS and NIS and, as we show next, those two combined
imply CSS for most twice differentiable payoff functions.

Proposition 3 Let u be a NIS and a ESS. If f is twice continuously dif-
ferentiable with fyg(u,uw) # 0 or fp,(u,w) # 0, then u is also CSS.

or

Proof. NIS states that the function h(y) = E(6y,6y) —E(6y,6y) = f(u,y)
f(y,y) has a strict local minimum in «. Thus, &' (x) = 0 and k" (u) > 0,

equivalently
fa(u,u) =0
and

f:c:c(u7 U) + Qfmy(u, u) < 0.

Since (u,u) is an ESS, we have fyz(u,u) <O0. If fzz(u,u) <0, then
2fpa(u, w) + 2fgy(u,u) <0,

which is a sufficient condition for CSS (see (4)).
If fzy(u,u) > 0 then, we have also fz(u,u) <0, thus as before

2fpa(u, w) + 2fgy(u,u) < 0.

If fyy(u,u) <0, then because of frg(u,u) <0, for(u,w) + foy(u,u) <O0.

11



EXR

Prop.2 % Prop.1
Thm. * % Prop.3

NIS Lyapunov CSS Strong|y

Stable uninvadable
Prop5 uninvadable
strict Nash
ESS
Nash

Figure 1. A familiy tree of stability concepts
An arrow means implication, * for doubly symmetric games, ** for payoff functions

with fzg 7 0 or fzy 7# 0.

Example 4 There are populations that satisfy uninvadability and CSS but
not ER. For f(x,y) = —x% 4 xy, S is an uninvadable CSS which is not
ER.

Proof. It is straightforward to check that 0 is an uninvadable CSS. But 0
is not NIS, hence it cannot be ER.

Figure 1 summarizes the relations between the various stability concepts
in a “familiy tree”.

It is well known from the finite case that ESS need not exist. The same
holds obviously true for £R. On the other hand, ESS has the advantage to
be a very strong refinement of the Nash equilibrium concept. In particular,
there are at most finitely many ESS is finite models. This appealing property

holds no longer true for ESS and uninvadability in the continuous model,

12



see Example 3, but it does hold true for the proposed concept ER.*
Proposition 4 If S is compact, then the number of ER is finite.

Proof. Suppose not. Then there is, due to compactness of A in the weak
topology, a sequence of ER (P™), which converges weakly to a ER P. For
large n, P" is arbitrarily close to P, and since P is £R, we must therefore
have E/(P, P") > E(P", P™). On the other hand, since every P" is a Nash
equilibrium, E(P", P") > E(P, P"), a contradiction.

5.1 Stability of £R in symmetric games

The main problem in providing a general proof for dynamic stability is that
the standard Lyapunov function for the finite case, namely cross entropy, is
not well defined in the continuous case unless densities exist. Moreover, cross
entropy is not continuous with respect to the weak topology. Nevertheless,
we state the following as a conjecture which is based, in particular, on our

inability to find a counter example.
Conjecture 1 ER is a sufficient condition for dynamic stability.

In the following, we prove this conjecture for a special case. The general
case seems to require different techniques. We restrict ourselves to the case
of (doubly) symmetric payoff functions. Let S be compact and assume that
f:8x 8 — Ris continuous and f(x,y) = f(y,z). Symmetry implies that
E(P,Q) = E(Q, P) for all P,Q. As in the finite case, we are able to prove
that the Fundamental Law of Natural Selection holds in this case.’

Let P* be ER and A(Q) = E(P*, P*) — E(Q, Q) the difference between
mean fitness in the equilibrium population and mean fitness in some arbi-
trary population (). As the next theorem shows, A constitutes a Lyapunov

function for the replicator dynamics.

Theorem 1 Let P* be ER. The function A(Q) is a Lyapunov function with

respect to the replicator dynamics. Thus, P* is Lyapunov stable.

‘See e.g. Van Damme [19], Lemma 9.2.6, for the equivalent result in the finite case.
®The law states that average fitness of a population increases over time. For the finite
case see e.g. Hofbauer and Sigmund [10, p.226].

13



Proof. see Appendix.

Remark 2 Lyapunov’s Theorem is usually stated for R"™ only and cannot
simply be extended to the space of measures on (S,B). For example, Lya-
punov’s method does not work with the variational norm because the unit
ball is not compact in this topology. With the weak topology, Lyapunov’s
Theorem holds true because the set of populations A(S) is compact in this

topology. We prove Lyapunov’s theorem for the present case in the Appendix.

From the finite case it is well known (see e.g. Weibull, 1995) that the
converse to the above Theorem need not be true. As in the finite case a
necessary condition for a population P to be Lyapunov stable is that (P, P)

is a Nash equilibrium.

Proposition 5 If P is Lyapunov stable in some payoff monotone dynamic,
then (P, P) is a Nash equilibrium.

Proof. The proof is equivalent to the finite case (see e.g. Prop. 4.8 of
Weibull, 1995).

5.2 Asymptotic stability for homogeneous ER

For homogeneous £R we can strengthen the previous result to obtain asymp-
totic stability for the case that the initial population Qo places some (if
small) mass on the equilibrium population.

Let 69 be &R and stable. Choose & > 0 such that when we start in
Q(0) with p(Q(0),60) < 6, then p (Q(t), 60) < £ for all £ where £ > 0 is the

invasion barrier.

Theorem 2 A homogeneous, Lyapunov stable ER g is asymptotically sta-
ble in the following sense. If Q(0) ({0}) > 0 and p (Q(0),60) < 6, then

P (Q(1),60) =00 0.

Proof. By stability we know that we stay close to 6g. Hence,
Q) ({0}) = o (0,Q(1)) Q1) ({0}) > 0.

14



Therefore, the weight on 0 increases, thus the equicontinuous function
Q(t) ({0}) converges to some ¢ > 0. This in turn implies that @ ({0}) goes
to zero. Therefore, also o (0,Q(¢)) — 0.

Since A(S) is compact in the weak topology, every sequence (Q(¢,))
with ¢, — oo has accumulation points. Let @ be such an accumulation
point. Since ¢ is continuous with respect to the weak topology, it follows
that o (0,@) = 0. By stability, Q is close to 8. Since &g is ER, this implies
Q@ = 8. Since the accumulation point of every converging subsequence of

(Q(t,)) is equal to &y, the trajectory converges to dp.

Remark 3 Note that double symmetry of the fitness function f is not re-
quired for Theorem 2 to hold.

6 Finite approximation of an infinite strategy space

If the continuous model is to be used, it must be a good approximation to
discrete models when the number of strategies grows large. We show that
this is in fact the case in this section. We consider the following discretization

of the strategy space S = [a,b] C R for arbitrary fixed grid size 1/n, n € N.%

k k
Sy = {—:—GS,ICGZ}.
n n
The payoff function f can be approximated, for example, by the following

step function.

k1, . k k41 L I+1
Jalzoy)=f(= -)ifzel—,——)andy € [-,—).
nn n o n n n
If the payoff function is continuous, the approximations f,, converge uni-
formly to f as n — oo. As the following theorem shows, the corresponding

replicator dynamics converge also.

Tn this section, we consider only compact strategy spaces. Under some additional
boundedness assumption, the results can be extended to half-spaces and the whole real
line.

15



Theorem 3 Let f : SxS — R be bounded and f,, : SX 5 — R be a sequence
with f = fullas = 5Dz yes |1 (2.5) = ul@,9)] —nsoe 0. Denote by Qu()
the replicator dynamics induced by fr, and by Q(t) the replicator dynamics
induced by f. Assume furthermore that all replicator dynamics start with
the same population P € A(S). Then Qn converges in variational norm to

Q uniformly on compact sets:
0<t<T

Proof. see Appendix.

Theorem 3 yields a very strong type of convergence. If the discretization
is made fine enough, then the two trajectories of the replicator dynamics are
arbitrarily close together. Note, that convergence in variational norm, i.e.
convergence on every set A € B, of course implies weak convergence.

We can also consider what happens when we vary the initial condition
P (for example, when the support of P does not belong to the set of grid

points). This is done in the next theorem.

Theorem 4 Let f: 5 x5 — R be bounded and Lipschitz continuous. As-
sume Pp, — P in the weak topology. Denote by Qn(t) the replicator dynamics
starting in Py, and by Q(t) the replicator dynamics starting in P. Then Qp,

converges in the weak topology to ) uniformly on compact sets:

sup p (Q(t), Qn(t)) —n-oo 0.
0<s<T

Proof. See Appendix.

Theorems 3 and 4 taken together show that the continuous case is indeed
the limit of successively finer approximations. Note, that the results do
not depend on the particular choice of the grid. They are true for any
approximation by a partition of S as long as the mesh of the partition goes
to zero.

In light of the approximation results there seems to be an apparent
contradiction between the stability of strict equilibria in the finite case and

our counter examples from the previous section (in which strict equilibria
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are unstable). To see that this is not really a contradiction let us review
a very simple proof for the fact that a strict equilibrium population &, is
asymptotically stable for finite S,. Since fp(u,u) > fn(z,u) for all z # u,
we have that fp(u,u) > E,(R,8,) for all R # 6,. The trick is that for any
fixed grid size 1/n we can choose £ small enough such that only populations
Q = (1 —n)by + nR with np < e are e—close to 6,. By choosing e sufficiently

small, we can find an w > 0 such that

En(6y,Q) —w = (1 —n)fnlu,u) +nEp(6y, R) —w >
(1 - n)En<R7 6u) + 77En<R7 R) = En<Q7 Q)

Hence, with any payoff monotone dynamic Q({u}) will grow exponentially
faster than any other strategy and asymptotic stability is assured. Note
the important role played by the possibility to choose ¢ small enough for
given n such that only populations @) with at least mass (1 — ¢) are close
to 6,. It would certainly be desirable to be able to choose a uniform ¢ > 0
for all grid sizes n. However, this can not be done in general. Another
way of expressing this is by saying that the basin of attraction of a strict

equilibrium may vanish as n — oo.

Definition 6 The basin of attraction of a population 6, is given as

B(8,) = {Q(0) € A+ p(Q(1),6.,) — 0}.

The size of the basin is measured as
sup{e : YQ(0) € A with p(Q(0),8.) < = Q(0) € B(8,)}-

Example 5 Consider the discretization of the payoff function in FExample
1. The size of the basin of attraction of the strict equilibrium population dp

vanishes as n — 0.

Suppose the basin does not vanish. Then there exists a sequence of
Qn(0) which converges to the Normal distribution P with 1(0),V(0) > 0
and @Qn(0) € B(6p). Yet, as shown in Example 1, the replicator dynamics
starting from P diverge to infinity, which yields a contradiction to Theorems
3 and 4.

17



Appendix
A Example 1

First, we give a rigorous proof of the claims in Example 1.

Lemma 1 The class of normal distributions is invariant with respect to the
replicator dynamics in games with the payoff function f(x,y) = —x%+2azxy,

for some parameter a.

Proof. Simple calculations show that the fitness differential is

E(6,,Q) — B(Q,Q) = —2® + 2azp — ((2a — 1) p*> = V),

where 11 denotes the mean of population ¢, and V' its variance. By Theorem
6 of Oechssler and Riedel [13], the density of Q(¢) with respect to the initial

distribution is, under replicator dynamics,

dQ(t)
dQ(0)

@) = | B2, Q(s)) — BQ), Q()as)

—exp (=t 20 [ p(@enas— [ (@a- 1 (@Y - V@) as).

If Q(0) is a normal distribution, then @Q(¢) is also a normal distribution,
because the density of dQ(t)/dQ(0) can be written in the form exp(az? +
Br + 7).

Next we calculate the ODFE’s of the mean and the variance for the game
of Example 1. By the preceding lemma, we know that Q(¢) is a normal
distribution if Q(0) is normal, that is Q(¢) = N(u(t), V(t)) for some mean
value p(t) and variance V(). If Q@ = N(u, V') is a normal distribution, then
the fitness differential is

0(2,Q) = E(6:,Q) — B(Q,Q) = —2” + dap — 3u” + V.

The derivative of p(t) is therefore
i) = [ «Qas)
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_ / TB(8:, Q1)) — E(Q(t), Q(1)(dx)
_ / (=% + da2pu(t) — 3ap2(t) + 2V () Q(t) (da).

Since the third moment of the normal distribution Q(?) is
malt) = [ 4QU)(da) = (0 + ()Y (1),
it follows that
(1) = 2OV (1) (7)
By a similar calculation, using the fact that the fourth moment of the normal

distribution is my(t) = 3V2(£)+6u2(t)V (t)+p4(t), one obtains for the second
moment ma(t) = [2?Q(t)(dz) the ODE

ra(t) = / 220 (z,Q(t)) dz

_ / (42 pu(t) — 30222(1) + 22V (1)) Q(t)(dx)
= —my(t )+4m3( )i (t) = 3ma () (t) + ma(t)V (t)

= —3V( ) POV (E) = 1t (1) +4 (17 () + 3V (#)) n(t)
=3 (V) +12(t) () + (V) + 17 (1) V(®)

= —2V2( )+4/~L OV ().
Since the variance is given by V(t) = may(t) — p2(t), we get for the variance
the dynamics

V() = ha(t) — 240)u(t) = ~2V2(0) )
The solution of (8) and (7) is
V) = Tranen

u(t) = p(0)(1+2V(0)0).

This shows that for every initial normally distributed population with pos-
itive mean and positive variance, the mean diverges to infinity. Since every
neighborhood of the uninvadable state &g contains such normal distributions,

the uninvadable state g is not Lyapunov stable.
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B Lyapunov’s Theorem

In this part of the appendix, we prove Lyapunov’s theorem for the present
case. Denote by M the vector space of all finite measures on the measurable
space (5, B(S)). Let P* be a ER with invasion barrier e > 0. Let

R : M—M
@— (14— [ oe.Qatan)

the function which defines replicator dynamics. Let A : M — R be contin-
uously differentiable with respect to the weak topology. We denote by VA
the gradient of A. VA(Q) is a linear functional on M which we denote by
(VA@),) -

A is called a Lyapunov function if it satisfies in an e-neighborhood of P*
1) A(Q) >0and A(Q) =0=Q = P*,
2) (VAQ), R(Q)) 0.

Proposition 6 If a Lyapunov function A exists, then P* is a stable state

for the replicator dynamics.

Proof. The proof is exactly analogous to the proof in the finite dimensional
case. We just highlight the point where our choice of the weak topology plays
an important role.

Let n > 0 be given, and without loss of generality, 7 < . The ball
K, ={Q e M : p(Q, P*) <n} is compact in the weak topology. Therefore,
m = mingesxk, A(Q) exists and is strictly positive (this is the step which
does not work with the variational norm). Now choose § > 0 such that
p(Q, P*) < 6 implies A(Q) < m. If we start closer than 6 to P*, we can
never leave K. This establishes stability.

Note that A(Q) = E(P*, P*) — E(Q,Q) is a continuous bilinear func-
tional, hence continuously differentiable. The above theorem provides there-

fore a rigorous foundation for the stability theorem of Section 4.
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C Proof of Theorem 1

In order to show that A is a Lyapunov function, we have to establish that

for @ with p(Q,6,) <e
e A(Q) >0, and A(Q) = 0 if and only if Q@ = P*,

e and that A(Q(¢)) decreases along trajectories induced by replicator dy-
namics as long as we stay close to P*, or equivalently, (VA(Q), R(Q)) <
0 in the e-neighborhood of P*.

For the first claim, note that for ¢ close to P*,

AQ) = B, PY) - EQ Q)
= BE(P",PY) - E(P",Q)+ E(P, Q) — B(Q,Q)
> B(P*, P7) - BE(P",Q)
= B, P7) - EQ@,FP)
> 0

The second and the third equalities follow from symmetry of f. Note that the
first inequality becomes strict unless (2 = P*. Finally, the second inequality
is implied by the fact that every £R is a symmetric Nash equilibrium.

For the second assertion, note that due to symmetry

(VAQ), R(Q)) = —E (R(Q), Q) — E(Q, R(Q)) = —2E(R(Q),Q) .

But
E(RQ),Q) = / / (@, y)o (z.Q) Q(dz)Q(dy)
— [ [ e . @)
_ / E (82,Q) 0 (2, Q) Q(du)
_ / (B (82, Q) — B(Q, Q) o (x,Q) Q(dx)
~ [e@@rau) =0
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where the fourth equality is due to the fact that [ o (x,Q) Q(dx) =0, hence
one can introduce the constant F(Q), Q) without changing the value of the

expression.

D Proof of Theorem 3.

We write e, = || f — full, and on(z,Q) = [ fulz, y)Q(dy)— [[ fn(z,y)Q(dy)Q(dx)
during the proof. Recall that the variational norm for probability measures
is given by

|1P = Q|| := 2 sup | P(A) — Q(A)].
AeB
The proof is based upon the inequality
o(z, P) = on(z, Q)| < L(en + 1P — Q) (9)

for a positive constant L. The inequality is proved below.
For all A € B we have that

rmwm—%@mwﬁé@@mm—L@mmmw

[ [ e ewena— [ [ oaume. s

SEAAw@mm—%@@wmmwmm

+AA%@%@@@W%%@WMS

Using inequality (9) and the fact that oy (2, @n(s)) is bounded in 2 by some

constant M, we conclude

[Q()(A) = Qn(t)(A)] < /0 L(en +|Q(s) = @n(s) )+ M[|Q(s) — Qnls)l| ds

s@+waé<%+wm@—@a@mw. (10)
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Setting (1) = e +||Q() — Qn(?)||, we obtain 7(¢) < e, +(L+ M) fot 7(s)ds.
By Gronwall’s Lemma, 7(t) < epexp((L + M)t) < epexp((L + M)T) for
t <T. Since (10) holds for all A € B, we have that

sup [|Q(t) — @n(®)|| < en (exp((L + M)T) — 1) —p—00 0,
0<t<T

as required. It remains to prove inequality (9).

o2, P) — on(, Q)] < ] [iwura - [ fn<x,y)@<dy)]

+’/f(x,y)P(dy)P(dﬂc) —/fn(xyy)Q(dy)Q(dx)

< / ) — Fals)| P(dy) + / e 9)] [P(dy) — Q(dy)
+ [ 17w = fuler)| Pl P)

T ] [ o) 1Pta) — @) 1Ptay) - @(dy)]]
< cnt Il 1P = QU+ 20+ 1l 1P — Q.

Since the functions f,, are uniformly bounded, inequality (9) follows.

E Proof of Theorem 4.

In this proof, we will use the metric ||-|| 5;, induced by the space of bounded,
Lipschitz continuous functions on S. This metric also metrizes the weak
topology. For small p(P, @) the following estimate holds( cf. [16, p. 315])

2/3P2<P7 Q) <||1P—Qls- (11)
Since f is Lipschitz continuous, we have
’O'<$7P)—O'<x7Q)’ SLHP_C2HBL (12)

for some constant . > 0.
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Let g be a bounded, Lipschitz continuous function on S. Then
t . .
’/gd@(t) —/ngn(t)’ = / /ng(s)ds—/ngn(s)ds
0

/0 / 9(z)o(z, Q(5))Q(s)(dx)ds — / 9(2) (2, Qn(3))Q@n(s) (dr)ds
/0 / 9(2) [0(, Q(5)) — (2, Qu(5))] Q(s5)(d)

/“

Using the fact that g is bounded and Lipschitz continuous together with in-
equality (12), we conclude that the first term is of the order of ||Q(s) — Qn(s)|| 5;.-
The fact that o(x, Q) is bounded and Lipschitz continuous, implies that the

IA

IA

ds

[ 000t Que) (@o)e) ~ @ul @)

second term is of the order of ||Q(s) — Qn(s)| 5. Altogether, we conclude
that

1Q() — Qu(t)l s, < K / 1Q(5) = Qu(3)] 51 ds

and the same argument as in the preceding proposition (Gronwall’s lemma)

yields in conjunction with (11) the claim.
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