
Bonn Econ Discussion Papers

Discussion Paper 29/2002

Imitators and Optimizers in Cournot Oligopoly

by

Burkhard Schipper

October 2002

Bonn Graduate School of Economics
Department of Economics

University of Bonn
Adenauerallee 24 - 42

D-53113 Bonn

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6334422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


                                     The Bonn Graduate School of  Economics is
                                                             sponsored by the



Imitators and Optimizers in Cournot

Oligopoly∗

Burkhard C. Schipper

University of Bonn

October 24, 2002

∗I wish to thank among others Carlos Alós-Ferrer, Itzhak Gilboa, and Jörg Oechssler as

well as audiences of various seminars and conferences for very helpful comments. I thank

the School of Economics at Tel Aviv University, especially Phyllis Klein, for hosting me

within the European Doctoral Program of Quantitative Economics (EDP) during the year

2001-02 in which the paper was completed. Financial support by the DAAD and the DFG

is gratefully acknowledged. A slightly different but also more extensive previous version

had the title “Imitators and Optimizers in Symmetric n-Firm Cournot Oligopoly.”



Proposed title: Imitators and Optimizers in Cournot Oligopoly

Author: Burkhard C. Schipper, University of Bonn

Current address: Bonn Graduate School of Economics, Dept. of Economics, Uni-

versity of Bonn, Adenauerallee 24-42, 53113 Bonn, Germany, Tel: +49-228-73

9473, Fax: +49-228-73 9221, Email: burkhard.schipper@wiwi.uni-bonn.de, Web:

http://www.bgse.uni-bonn.de/∼burkhard

Abstract

We present a formal model of symmetric n-firm Cournot oligopoly

with a heterogeneous population of profit optimizers and imitators.

Imitators mimic the output decision of the most successful firms of

the previous round a là Vega-Redondo (1997). Optimizers play my-

opic best response to the opponents’ previous output. The dynamics

of the decision rules induce a Markov chain. As expression of bounded

rationality, firms are allowed to make mistakes and deviate from the

decision rules with a small probability. Applying stochastic stabil-

ity analysis, we characterize the long run behavior of the oligopoly.

We find that the long run distribution converges to a recurrent set

of states in which imitators are better off than are optimizers. This

finding appears to be robust even when optimizers are more sophisti-

cated. It suggests that imitators drive optimizers out of the market

contradicting a fundamental conjecture by Friedman (1953).

JEL-Classifications: C72, D21, D43, L13.

Keywords: imitation, myopic best reply, bounded rationality, profit

maximization hypothesis, stochastic stability, learning, Stackelberg.



1 Introduction

One of the most fundamental assumptions in economics is that firms maxi-

mize absolute profits. However, already Alchian (1950) suggested that firms

may maximize relative profits in the long run rather than absolute profits. In

contrast, Friedman (1953) argued that evolutionary selection forces favor ab-

solute profit maximization. In particular, he postulated that, although firms

may not know their profit functions, we can assume that they behave as if

they maximize profits because otherwise they would be driven out of the mar-

ket by firms that do behave as if they maximize profits. Koopmans (1957),

p. 140, remarked that if selection does lead to profit maximization then

such an evolutionary process should be part of economic modeling. Taking

Koopmans’ suggestion into consideration, this paper describes an attempt

to prove Friedman’s conjecture. This attempt failed. That is, in the model

presented here it turns out that Friedman’s conjecture is false.

The present paper was partly inspired by Vega-Redondo (1997).1 He

showes that, in a quantity setting n-firm symmetric Cournot oligopoly with

a homogeneous population of imitators, the long run outcome converges to

the competitive output if small mistakes are allowed. Imitators mimic the

output of the most successful firms in the previous round. His result is in

sharp contrast to a homogeneous population of optimizers, which is known to

converge under certain conditions in the Cournot tatonnement to the Cournot

Nash equilibrium. It seems natural to wonder what happens if imitators and

optimizers are mixed together in a heterogeneous population. According to

Friedman, we should find that optimizers are better off than are imitators,

and that consequently optimizers drive out imitators in any payoff monotone

1See also related work by Schaffer (1989), Rhode and Stegeman (2001) and Alós-Ferrer,

Ania, and Vega-Redondo (1999).
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selection dynamics. However, we find that imitators are strictly better off

than are optimizers, which is at first glance a rather surprising result given

that imitators are less sophisticated than optimizers. In a sense, this result

is reminiscent of Stackelberg behavior. That’s why we name the support of

the long run distribution the set of Pseudo-Stackelberg states. First, im-

itators and optimizers play roles analogous to those of the “independent”

and the “dependent” firms respectively in von Stackelberg’s (1934) work.

It is interesting to note that von Stackelberg himself never used the word

“leader” in his book but spoke of the “independent” and the “dependent”

firm. Moreover, today’s familiar sequential representation of the Stackelberg

game is not due to von Stackelberg but was introduced in a different con-

text as the “majorant game” by von Neumann and Morgenstern (1944), pp.

100.2 Optimizers are “dependent” since by definition they play best reply.

Although the imitators are “independent” because they do not perceive their

influence on the price but take them as given, they do not conform exactly

to the Stackelberg conjecture. Second, analogous to the profits in von Stack-

elberg’s (1934) independent and dependent firms, every imitator is better off

than every optimizers. Finally, our analysis retains the important aspect of

von Stackelberg’s (1934) idea: the modeling of asymmetries and behavioral

heterogeneity of firms and in particular the modeling of independent and

dependent firms.

Imitators and optimizers differ in respect to the knowledge required to

take their decisions. Whereas for imitators it is sufficient to know the previous

period’s outputs of every firm and their associated profits3, optimizers need to

know the total output of their opponents as well as their own profit function,

2I thank Prof. Selten for pointing me to the “majorant game”.
3See Alós-Ferrer (2001) for a study of imitators in Cournot oligopoly who take a longer

history into account.
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which implies knowing inverse demand and costs, in order to calculate the

myopic best response. Imitation is often associated with boundedly rational

behavior but note that imitation of successful behavior can be also a rational

rule of thumb (Vega-Redondo, 1997) when firms and decision makers have

difficulties in perceiving their profit functions. They can easily judge their

performance relative to other firms in the industry. This might be a reason

why one part of executives’ remuneration-packages is often based on the

firm’s stock outperforming the market index or similar means of comparison.

Earlier experimental studies on Cournot oligopoly like the one by Sauer-

mann and Selten (1959) found some support for the convergence to Cournot

Nash equilibrium. Recent studies by Huck, Normann, and Oechssler (1999,

2000) found support for imitative behavior in experimental Cournot settings.

Whereas in former experiments subjects had profit tables for easy calculation

of the best reply available, in later studies subjects received feedback about

the competitors’ profits and output levels. The informational framework of

these experimental designs corresponds closely to the information required

by each of the two decision rules (see also Offerman, Potters, and Sonnemans,

2002, for further experimental evidence).

In the proofs of our results, we rely on two main concepts, submodular-

ity of payoff functions and stochastic stability analysis. Submodularity (see

Topkis, 1998, pp. 43) is closely related to strategic substitutes (see Bulow,

Geanakoplos and Klemperer, 1985).4 The intuition for submodularity in our

context is that a firm’s payoff difference from an increase of its own output

decreases in the total output.

4For submodularity and supermodularity in the context of a Cournot oligopoly see Vives

(1990), Amir (1996) and Vives (2000), chapter 4. Formally, supermodularity is related to

the single-crossing property and submodularity to the dual single-crossing property (see

Topkis, 1998, Milgrom and Shannon, 1994).
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Following Kandori, Rob and Mailath (1993) and Young (1993), the dy-

namic analysis in this paper uses the concept of stochastic stability developed

by Freidlin and Wentzel (1984), as well as its characterization result (see also

Ellison, 2000, and others). The general idea is that mutations select among

absorbing sets of the decision process such that only the most robust absorb-

ing sets remain in the support of the limiting invariant distribution. There are

several alternative interpretations of the noise in our context. First, firms are

assumed to innovate in a sense of experimenting with various output levels.

Second, decision makers of the firms are assumed to be boundedly rational

in the sense that there is always a small positive probability of making mis-

takes in output decisions. Finally, every period, a small fraction of the firms

is replaced by newcomers who choose their output from tabula rasa. Any of

those interpretations adds some realistic feature to the model. Instead mak-

ing use of the graph theoretic arguments developed by Freidlin and Wentzel

(1984) as well as Kandori, Rob and Mailath (1993) and Young (1993), we

employ a simpler necessary condition for stochastic stability introduced by

Nöldeke and Samuelson (1993), Samuelson (1994) and Nöldeke and Samuel-

son (1997). They show that a necessary condition for a state to be contained

in the support of the unique invariant limiting distribution is that this state

be contained in the minimal set of absorbing sets that is robust to a single

mutation. Such a set is called recurrent set. In Theorem 1 we show that

the symmetric Cournot Nash equilibrium, the only absorbing state in which

optimizers are as well off as imitators, is not the unique stochastically stable

state. Moreover, in Theorem 2 we show that there are assumptions on the

parameters of the game such that the entire set of Pseudo-Stackelberg states

is the unique recurrent set and thus is the support of the unique limiting

invariant distribution.
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Apart from pure theoretical interest, the analysis presented here is of

practical relevance since imitation, in the form of “benchmarking” and “best

practices”, is widely used in today’s management. Given that such imitative

behavior exists among other decision rules in today’s business practice, it is

only natural for theorists to investigate imitation as well as the heterogeneity

of decision rules.

Conlisk (1980) also analyzes a dynamic model with imitators and opti-

mizers. His approach differs from the current one in that he takes the cost

of optimizing into account, and this cost is a key for obtaining his results.

Research on Friedman’s profit maximization hypothesis has been done for

example by Blume and Easley (2002), who find support for it in a general

equilibrium context. The present paper is also related to the literature on

interdependent preferences. In particular, Koçkesen, Ok and Sethi (2000)

found that players who also care about relative payoffs may have a strategic

advantage in a class of symmetric games including the Cournot game. Note

that imitators do care about relative payoffs since their decision rule involves

a comparison of profits among firms. Similarly, biased perceptions as studied

by Heifetz and Spiegel (2002), can yield a strategic advantage in our setting

if they induce players to play more aggressively compared to unbiased profit

maximizers.

The paper is organized as follows: Section 2 introduces the model and

the decision rules. It is followed in section 3 by an informal discussion of

candidates for solutions. Section 4 works out the results, which are subse-

quently discussed in the concluding section 5. All proofs are contained in the

appendix. The required mathematical tools are introduced along the way.
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2 Basic Model and Decision Rules

This section outlines the basic model in the spirit of Cournot (1838), pp.

79. Consider a finite number of firms N = {1, 2, ..., n} and a market for

a homogeneous good. Inverse demand is given by a function p : R+ −→

R+. For every total output quantity Q ∈ R+ this function specifies the

market clearing price p(Q). By the assumption of symmetry, every firm

i ∈ N possesses the same production technology. Hence the cost functions

c : R+ −→ R+ are identical. For each firm it is a function of the quantity qi

it produces. Let the total output over all firms be Q :=
∑

i∈N qi. Profits are

given by

πi(qi, Q) := qip(Q)− c(qi),∀i ∈ N. (1)

We restrict our analysis to a symmetric oligopoly since imitation is more

reasonable if firms face similar conditions of production.

For technical reasons we assume that firms choose output from a common

finite grid Γ = {0, δ, 2δ, ..., νδ}, where both δ > 0 and ν ∈ N are arbitrary.

This turns the strategic situation into a game with finite action space and

allows us to focus on finite Markov chains later in the dynamic analysis.

We wish to show that each firm’s payoff function is submodular in the

firm’s quantity and the total output. This observation will play a key role

in the proofs of our results. It is closely related to strategic substitutes (see

Bulow, Geanakoplos and Klemperer, 1985). To this end, a few definitions

are needed.

A lattice is defined as a poset5 〈X,≤〉 whose least upper bound and great-

5A partially ordered set (poset) 〈X,≤〉 is defined as a set X with a binary relation ≤

such that ∀x, y, z ∈ X the following conditions hold:

(i) reflexivity: ∀x ∈ X, x ≤ x,
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est lower bound are given by x′ ∨ x′′ = sup{x′, x′′} and x′ ∧ x′′ = inf{x′, x′′},

for all x′, x′′ ∈ X respectively. For example, if X is the product of several

ordered sets, one may define x′ ∨ x′′ (likewise x′ ∧ x′′) as the component-

wise max (min) to define a lattice. In our context Γ = {0, δ, 2δ, ..., νδ} and

products thereof endowed with component-wise max and min operations are

lattices. A real valued function f : X −→ R on a lattice X is called sub-

modular on X if ∀x′, x′′ ∈ X, f(x′ ∧ x′′) + f(x′ ∨ x′′) ≤ f(x′) + f(x′′). The

function f is called strictly submodular if the inequality holds strictly for all

unordered x′, x′′ ∈ X.6

Assumption 1 (Strictly Decreasing Demand) ∀Q, Q′ ∈ {0, δ, 2δ, ..., nνδ},

Q′ > Q =⇒ p(Q′) < p(Q).

Lemma 1 By Assumption 1, πi is strictly submodular in (qi, Q) on Γ ×

{0, δ, 2δ, ..., nνδ}, ∀i ∈ N , i.e. ∀(q′i, Q′), (q′′i , Q
′′) ∈ Γ× {0, δ, 2δ, ..., nνδ}

πi((q
′
i, Q

′) ∧ (q′′i , Q
′′)) + πi((q

′
i, Q

′) ∨ (q′′i , Q
′′)) ≤ πi(q

′
i, Q

′) + πi(q
′′
i , Q

′′). (2)

If Assumption 1 is modified such that p is weakly decreasing then πi is

submodular but not strictly submodular in (qi, Q) on Γ× {0, δ, 2δ, ..., nνδ}.

Remark 1 (Strict) submodularity implies (strict) quasi-submodularity of π

but not vice versa, i.e. inequality (2) implies7

π((q′, Q′) ∨ (q′′, Q′′)) ≥ π(q′′, Q′′) =⇒ π(q′, Q′) > π((q′, Q′) ∧ (q′′, Q′′)), (3)

π((q′, Q′) ∧ (q′′, Q′′)) ≥ π(q′′, Q′′) =⇒ π(q′, Q′) > π((q′, Q′) ∨ (q′′, Q′′)). (4)

(ii) antisymmetry: if x ≤ y and y ≤ x =⇒ x = y,

(iii) transitivity: if x ≤ y and y ≤ z =⇒ x ≤ z.

6A pair x′, x′′ ∈ X is unordered iff none of the two statements holds: x′ ≤ x′′, x′′ ≤ x′.
7For notational ease we drop subscripts and superscripts when no ambiguity is likely

to arise.
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The observation that payoffs are quasi-submodular8 in individual quantity

and total output will be used in later proofs repeatedly, in particular in

Lemma 4 and Remark 2. Note that this property follows directly from the

structure of the Cournot game. No additional assumptions on the game have

to be imposed.

The dynamics of the system is assumed to proceed in discrete time, in-

dexed by t = 0, 1, 2, .... At each t the state of the system is identified by the

current output schedule

ω(t) = (q1(t), q2(t), ..., qn(t)).

Thus, the state space of the system is identical to Γn. Associated with any

such state ω(t) ∈ Γn is the induced profit profile π(t) = (π1(t), π2(t), ..., πn(t))

at t, defined as follows:

πi(t) := qi(t)p(Q(t))− c(qi(t)),∀i ∈ N. (5)

Assumption 2 (Inertia) At every time t = 1, 2, ..., each firm i ∈ N has

regardless of history an i.i.d. probability ρ ∈ (0, 1) of being able to revise her

former output qi(t− 1).

Note that since ρ < 1 the process has inertia. That is, not every period all

firms adjust output. The idea is that it is too costly to always adjust output.

The finite population of firms N is partitioned into two subpopulations

of imitators and optimizers respectively. Let I be the subset of N that con-

tains all imitators. The fraction of imitators in the population is denoted

by θ = ]I
]N

. Throughout the paper we assume that θ ∈ (0, 1), i.e. we have

8For quasisubmodularity see also Milgrom and Shannon (1994), p. 162 and Topkis

(1998), pp. 58. It is the ordinal notion of submodularity.
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a heterogeneous population of firms with at least one imitator and one op-

timizer. The firms in the two subpopulations are characterized by different

decision rules. The idea of a decision rule is appropriately summarized by

Nelson and Winter (1982) who write that “...at any time, firms in an indus-

try can be viewed as operating with a set of techniques and decision rules

(routines), keyed to conditions external to the firm ... and to various inter-

nal state conditions...” (p. 165). Conventional economics focuses mainly on

profit maximization. However, “benchmarking”, “best practices” and other

imitation rules can be found in today’s management practice.

Definition 1 (Imitator) An imitator i ∈ I chooses with full support from

the set

DI(t− 1) := {q ∈ Γ : ∃j ∈ N s.t. q = qj(t− 1) and

∀k ∈ N, πj(t− 1) ≥ πk(t− 1)}. (6)

Definition 2 (Optimizer) An optimizer i ∈ N\I chooses from the set

DO(t− 1) := {q ∈ Γ : q ∈ bi(q−i(t− 1))}, (7)

with q−i :=
∑

j∈N\{i} qj and bi : Γ −→ Γ is defined to be firm i’s best reply

correspondence

bi(q−i) := {q′i ∈ Γ : q′ip(q−i + q′i)− c(q′i)

≥ qip(q−i + qi)− c(qi),∀qi ∈ Γ}. (8)

It is assumed that initially in t = 0 both types of firms start with an

arbitrary output within the admissible domain Γ.

The imitation rule is explained as follows: Every period there exists a firm

j that had the highest profit in the previous period. An imitator imitates
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the previous period’s quantity of firm j. It is the same imitation rule as

used in Vega-Redondo (1997). Definition 2 means that an optimizer sets

an output level that is a best reply to the opponents’ total output in the

previous period.

The process induced by the decision rules is a discrete time n-vector

finite Markov chain with stationary transition probabilities. Finiteness is

provided by the finite state space Γn. It is a vector process since each ω is a

vector in Γn. Due to the myopic decision rules, the process has the Markov

property, namely prob{ω(t + 1)|ω(t), ω(t − 1), ..., ω(t − k)} = prob{ω(t +

1)|ω(t)}. That is, ω(t) contains all the information needed to determine

transition probabilities. Since the decision rules themselves do not change

over time, the process has stationary transition probabilities prob{ω′(t +

1)|ω(t)} = prob{ω′(t + k + 1)|ω(t + k)}, k = 0, 1, ...

The Markov operator is defined in the standard way as the ]Γn × ]Γn-

transition probability matrix P = (pωω′)ω,ω′∈Γn with pωω′ = prob{ω′|ω},

pωω′ ≥ 0, ω, ω′ ∈ Γn and
∑

ω′∈Γn pωω′ = 1, ∀ω ∈ Γn. That is, the element

pωω′ in the transition probability matrix P is the conditional probability that

the state is in ω′ at t + 1 given that it is in ω at t. According to this defini-

tion of a Markov transition matrix, probability distributions over states are

represented by row vectors.

To complete the model of the decision process we make the following

assumption:

Assumption 3 (Noise) At every output revision opportunity t, each firm

follows her decision rule with probability (1 − ε), ε ∈ (0, a], a being small,

and with probability ε she randomizes with full support Γ.

As a matter of convention, we call a firm mutating in t if it randomizes

with full support in t. The noise has a convenient technical property. Let
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P (ε) be the Markov chain P perturbed with the level of noise ε. Then by

Assumption 3, P (ε) is regularly perturbed (Young, 1993, p. 70), i.e. it is an

ergodic and irreducible Markov chain on Γn. This implies that there exists

a unique invariant distribution ϕ(ε) on Γn (for standard results on Markov

processes see for example Masaaki, 1997). To put it more intuitively, the

noise makes any state accessible from any other state in finite time. This is

sufficient for the existence of the unique invariant distribution.

The following analysis focuses on the unique limiting invariant distribu-

tion ϕ∗ of P defined by ϕ(ε)P (ε) = ϕ(ε), ϕ∗ := limε→0 ϕ(ε) and ϕ∗P = ϕ∗.

In particular, the focus is on how to characterize this probability vector since

it provides a description of the long run output behavior of the market when

the noise goes to zero. For that reason we will refer to it also as the long

run distribution. It determines the average proportion of time spent in each

state of the state space in the long run, or expressed differently, the relative

frequency of a state’s appearance as the time goes to infinity (see Fudenberg

and Levine, 1998, or Samuelson, 1997, for an introduction and discussion of

this method).

3 Candidates for Solutions

In this section we informally discuss candidates for solutions. By standard

results (e.g. see Samuelson, 1997, Proposition 7.4) we know that the support

of the long run distribution can only contain states that are elements of

absorbing sets of the unperturbed process. Therefore we consider first the

case of no noise, ε = 0, and define an absorbing set A ⊆ Γn in the standard

way by

(i) ∀ω ∈ A, ∀ω′ /∈ A, pωω′ = 0 and
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(ii) ∀ω, ω′ ∈ A, ∃m ∈ N, m finite, s.t. p
(m)
ωω′ > 0, p

(m)
ωω′ being the m-step

transition probability from ω to ω′.

Let Z be the collection of all absorbing sets in Γn.

Vega-Redondo (1997) showed that a homogeneous population of imitators

in our framework converges to the competitive solution. Can the competitive

solution be an absorbing state given a heterogeneous population of imitators

and optimizers? Suppose the unique competitive solution exists in the grid.

Consider first the imitators. Every firm plays its share of the competitive so-

lution. By symmetry all firms make identical profits. Thus nobody is better

off and imitators have no reason to deviate from their output. However, since

n is finite, optimizers do not generally play a best reply. Each optimizer’s

share of the competitive output is larger than the best response. Hence they

will deviate to the best response leading to a state different from the com-

petitive solution. It follows that the competitive solution is not an absorbing

state.

Consider now a state where every firm sets its symmetric Cournot Nash

equilibrium output assuming that it exists in the grid Γ and that it is unique.

Definition 3 (Cournot Nash equilibrium) A combination of output strate-

gies (q◦1, q
◦
2, ..., q

◦
n) ∈ Γn is a Cournot Nash equilibrium if ∀i ∈ N ,

q◦i p(Q◦)− c(q◦i ) ≥ qip(Q◦ − q◦i + qi)− c(qi),∀qi ∈ Γ. (9)

It is known that in a homogeneous population of optimizers the Cournot

Nash equilibrium is the solution of a sequential best response process under

certain assumptions guaranteeing global convergence. In a heterogeneous

population, imitators do not deviate since all firms set identical outputs and

earn identical profits. Optimizers do not deviate too since they anyway set

best response quantities. Thus it appears that the symmetric Cournot Nash

12



equilibrium is an absorbing state. However, is it the unique absorbing state?

Consider the following state:9

Definition 4 (Pseudo-Stackelberg Solution) The Pseudo-Stackelberg so-

lution is a state ωS = (q1, ..., qθn, qθn+1, ..., qn) that satisfies the following con-

ditions:

(i) ∀i ∈ I, qi = qS s.t.

qSp(θnqS + (1− θ)nqD)− c(qS) >

qp(θnqS + (1− θ)nqD)− c(q),∀q ∈ Γ, (10)

(ii) ∀i ∈ N\I qi = qD,

qD := b(θnqS + ((1− θ)n− 1)qD). (11)

In the Pseudo-Stackelberg solution all imitators set the identical output.

This output maximizes profits of imitators given that they do not perceive

any influence on the price and the optimizers set the identical best reply.

We call this outcome the Pseudo-Stackelberg Solution because of its obvi-

ous similarities and differences to the notion of Stackelberg solution in the

literature.

Analogous to the profits of von Stackelberg’s (1934) independent and

dependent firms, every imitator is strictly better off than every optimizer

since inequality (10) holds for ∀q ∈ Γ, so also for qD. I.e. it follows that10

πi(q
S, qD, n, θ) > πj(q

S, qD, n, θ),∀i ∈ I, j ∈ N\I.

9We assume that the best reply is unique. The uniqueness condition later in Assump-

tion 5 ensures that the best reply to the opponents’ output is indeed a singleton.
10For notational convenience we write πi(q, q′, n, θ) for πi(q, θnq + (1− θ)nq′) if i ∈ I or

for πi(q′, θnq + (1− θ)nq′) if i ∈ N\I.

13



Why is the Pseudo-Stackelberg solution a candidate for a solution? As-

sume that the Pseudo-Stackelberg solution exists in Γn and that is unique.

Consider first the imitators: every imitator sets identical output and is

strictly better off than any optimizer. Hence an imitator has no reason to

deviate from its output. Also optimizers do not deviate from their output

since they play the best response.

In the following, we will reserve qS to denote the identical individual out-

put of any imitator in the Pseudo-Stackelberg solution. qI denotes that the

individual quantity q is set by each imitator (superscript “I” stands for “inde-

pendent” or all “imitators”). Analog, qD means that the individual quantity

q is set by each optimizer (superscript “D” stands for “dependent”). The

analogous notation applies to the profit functions πI and πD. Generally, a

superscript indicates identical individual values for all firms within a sub-

population whereas a subscript indicates individual not necessarily identical

values.

Previous arguments suggest already that the Cournot Nash equilibrium

and the Pseudo-Stackelberg solution may not be the only candidates for

solutions. To facilitate the analysis we define the following set of states:11

Definition 5 (Pseudo-Stackelberg States) The set of Pseudo-Stackelberg

states H consists of all states ω = (q1, ..., qθn, qθn+1, ..., qn) ∈ Γn that satisfy

the following properties:

(i) qi = qI , ∀i ∈ I and some qI ∈ Γ,

(ii) qi = qD, ∀i ∈ N\I, qD := b(θnqI + ((1− θ)n− 1)qD),

(iii) πI(qI , qD, n, θ) ≥ πD(qI , qD, n, θ),

11Again, we assume that the best reply is unique. The uniqueness condition later in

Assumption 5 ensures that the best reply to the opponents’ output is indeed a singleton.
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(iv) πI(qI , qD, n, θ) = πD(qI , qD, n, θ) iff qI = qD.

Assume that each Pseudo-Stackelberg state is uniquely defined by the

above conditions. If condition (i) is not satisfied, an imitator may mimic a

different output decision from another imitator if the latter happens to have

higher profits. If condition (ii) is not satisfied, not all optimizers are playing

the best reply having an incentive to deviate. If condition (iii) is not satisfied,

imitators will mimic optimizers. To understand the motivation of (iv) note

that by identical costs, qI = qD implies πI(qD, qI , n, θ) = πD(qD, qI , n, θ).

To see the purpose of the other direction note that if πI(qD, qI , n, θ) =

πD(qD, qI , n, θ) and qI 6= qD then imitators would be indifferent between

qI and qD thus adding a source of instability.

In each Pseudo-Stackelberg state, imitators are weakly better off than

optimizers. In fact, imitators are strictly better off in any Pseudo-Stackelberg

state except the Cournot Nash equilibrium, the only state where optimizers

are as well off as imitators.

It is clear that the set of Pseudo-Stackelberg states is nonempty since the

Cournot Nash equilibrium - assume that it exists - belongs to it. Moreover,

it is easy to see that the competitive solution is not a Pseudo-Stackelberg

state since optimizers do not set a best reply in the competitive solution

(unless n → ∞). Finally, if the Pseudo-Stackelberg solution exists and c is

strictly convex then the Pseudo-Stackelberg solution is a Pseudo-Stackelberg

state since qS > qD are such that πI(qS, qD, θ, n) > πD(qS, qD, θ, n). Thus

properties (i) to (iv) of Definition 5 of Pseudo-Stackelberg states are satisfied.

If c is not strictly convex condition (iv) might be violated. To see this,

assume that costs are linear (weakly convex). Imitators make zero profits

when price equals marginal costs. The optimizers’ best response is zero

output. Then imitators are indifferent between zero output and qS. If costs
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are strictly convex then imitators make strict positive profits and optimizers

set a positive output level which is lower than qS. Thus each optimizer makes

less profit than any imitator.

4 The Result

Before we state and prove the results in this section, we need to introduce

formally the assumptions. The first assumption concerns the existence of

outcomes.

Assumption 4 (Existence) The Cournot Nash equilibrium and at least

another Pseudo-Stackelberg state exists in Γn.

We like to focus on the dynamics in an oligopoly with a heterogeneous

population of firms. We do not concern ourselves with questions of existence,

which have been dealt with elsewhere. We avoid to state the above assump-

tion in terms of primitives of the model since the existence of Cournot Nash

equilibrium in a symmetric n-firm Cournot oligopoly can be shown under

very general alternative assumptions even without concave profit functions

(see for example Roberts and Sonnenschein, 1976, Amir, 1996, and Vives,

2000). In a non-degenerate Cournot oligopoly, whenever the Cournot Nash

equilibrium exists, some other Pseudo-Stackelberg states also exist. The

existence of another Pseudo-Stackelberg state makes the Cournot oligopoly

interesting. The fact that those outputs are an element of Γ is not really an

assumption since the grid Γ is arbitrary.

Assumption 5 (Uniqueness) For q′−i < q−i, q′ ∈ b(q′−i), q ∈ b(q−i), we

have

q′ − q

q′−i − q−i

> −1. (12)
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This second assumption is rather standard and is made in order to obtain

a unique best reply. Vives (2000), Theorem 2.8 shows in a simple proof that

if a Cournot Nash equilibrium exists and the above assumption holds, then

it must be unique. Note that the condition is equivalent to q′−i + q′ < q−i + q.

The requirement is that the best reply correspondence must have slopes

strictly above −1. It means that total output is strictly increasing in the op-

ponents’ output. The uniqueness condition implies that the unique Cournot

Nash equilibrium is symmetric and that the best reply correspondence is in

fact a function (see Vives, 2000, p. 43).

Assumption 6 (Generalized Ordinal Potential) The Cournot game has

a generalized ordinal potential.12

A potential function monitors the drift towards the Nash equilibrium. In

the context of a general Cournot oligopoly, a potential function is generally

difficult to interpret. It raises the question what do the firms consciously

or unconsciously try to jointly optimize? Important is that such a poten-

tial function implies the existence of a finite improvement path towards the

unique Nash equilibrium (Monderer and Shapley, 1996, Lemma 2.5). Slade

(1994) proves the existence of an exact potential, a much stronger version

than the generalized ordinal potential function, for the case of a Cournot

oligopoly with linear demand. An example for the existence of an ordinal

potential is given for a Cournot oligopoly with linear costs by Monderer and

12A generalized ordinal potential (see Monderer and Shapley, 1996) is a function

P : Γn −→ R for the Cournot game such that for every i ∈ N and for every

q−i ∈ {0, δ, 2δ, ..., (n− 1)νδ} and every q, q′ ∈ Γ it holds that

πi(q, q−i)− πi(q′, q−i) > 0 =⇒ P (q, q−i)− P (q′, q−i) > 0.
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Shapley (1996), p. 124. We do not know of a full characterization of sym-

metric n-firm Cournot oligopoly satisfying the weaker requirement of the

existence of a generalized ordinal potential. We conjecture that such charac-

terization would be more general than the ones satisfying exact, weighted, or

ordinal potentials. At this point of time, investigation of this conjecture is left

to further research. The existence of a finite improvement path implies that

the sequential best response dynamics converges to the Nash equilibrium.

Huck, Normann, and Oechssler (1999) make use of this result to show that

the best reply process with inertia converges to the Cournot Nash equilib-

rium in a quantity setting symmetric linear quadropoly. Note that there are

of course alternative assumptions that would guarantee convergence to the

Cournot Nash equilibrium, for instance dominance solvability (see Moulin,

1984).

Assumption 7 (Quasiconcavity) πi is quasiconcave in qi, ∀i ∈ I. That

is ∀qi, q
′
i ∈ Γ, ∀λ ∈ [0, 1]

π(λqi + (1− λ)q′i, Q) ≥ min{π(qi, Q), π(q′i, Q)},∀Q ∈ {0, δ, 2δ, ..., nνδ}. (13)

The intuition for quasiconcavity is single-peakedness. The set of maxima

is convex. If the inequality holds strictly for λ ∈ (0, 1), then π is strictly

quasiconcave and the maximum is unique. Concavity and weak concavity

imply quasiconcavity but not vice versa.

We are finally ready to state the main result.

Theorem 1 Let S denote the support of the long run distribution ϕ∗. Under

the above assumptions, we have S ⊆ H. Moreover, it is never true that

S = {ω◦}.

The result is that given our assumptions the support S of the long run

distribution ϕ∗ is contained in the set of Pseudo-Stackelberg states H ⊂ Γn.
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Moreover, the Cournot state ω◦, the only state in which optimizers are as

well off as imitators, is never the unique long run outcome. It follows that

imitators are strictly better off than are optimizers in the long run.

The proof in the appendix is divided into three lemmata. First, in

Lemma 2 we work out the absorbing sets of the unperturbed process. As we

suggested in the previous section, the set of absorbing sets comprises exactly

of the set of Pseudo-Stackelberg states, whereby each Pseudo-Stackelberg

state is an absorbing state. Since by standard arguments the support of the

long run distribution is a subset of the set of absorbing sets, we can con-

clude immediately that the support is the subset of the Pseudo-Stackelberg

states. It implies that the imitators are weakly better off than are opti-

mizers. Second, making use of the Lemma 3 by Nöldeke and Samuelson

(1993), Samuelson (1994) and Nöldeke and Samuelson (1997), we show with

Lemma 4 that the Cournot Nash equilibrium is not uniquely stochastically

stable. That is, the Cournot Nash equilibrium is not robust against a single

mutation. Since the Cournot Nash equilibrium is the only state in which

optimizers are as well off as imitators, we can finally conclude that imitators

are strictly better off than are optimizers in the long run.

In the proof of Theorem 1, particularly in Lemma 4, we show even more.

We can order the Pseudo-Stackelberg states according to the identical out-

put of imitators. We then show that, making use of quasi-submodularity

and quasi-concavity, we can find a sequence of single mutations followed

by the unperturbed decision dynamics by which one can move through the

Pseudo-Stackelberg states step-wise upwards starting at the Cournot Nash

equilibrium. If the Pseudo-Stackelberg solution does not exist within the set

of Pseudo-Stackelberg states, this step-wise mutation-sequence terminates

at the Pseudo-Stackelberg state with the highest output of imitators. If
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the Pseudo-Stackelberg solution does exist in the set of Pseudo-Stackelberg

states, then the sequence ends there. In this case one can also find a sequence

of single mutations by which one can move step-wise downwards starting from

the Pseudo-Stackelberg state with the highest output of imitators and end-

ing at the Pseudo-Stackelberg solution. In fact, if the Pseudo-Stackelberg

solution exists within the set of Pseudo-Stackelberg states, we show the fol-

lowing.

Remark 2 Suppose that Assumptions 1 to 6 hold. If ωS ∈ H, then any state

in H can be connected to the Pseudo-Stackelberg solution by a single suitable

mutation followed by the unperturbed decision dynamics.

We can connect any Pseudo-Stackelberg state to the Pseudo-Stackelberg so-

lution by a single suitable mutation even without the assumption of quasi-

concavity. It suggests that the Pseudo-Stackelberg solution - if it exists in

H - is a candidate for a unique long run solution. It also establishes with-

out the assumption of quasi-concavity that the Cournot Nash equilibrium

is not uniquely stochastically stable. However, it is premature to conjec-

ture that the Pseudo-Stackelberg solution is the unique long run outcome.

In particular, we can destabilize any Pseudo-Stackelberg state including the

Pseudo-Stackelberg solution by a single suitable mutation with a sufficient

large output. In Theorem 2 we show that it is even possible to find plausible

assumptions on the parameters of the model that are sufficient for the entire

set of the Pseudo-Stackelberg states being in the support of the long run

distribution.

Theorem 2 Suppose that above assumptions hold. Then there exist p, c, θ,

δ and finite n such that S = H.
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Indeed, one can find reasonable functions p, c and parameters θ, δ as

well as a finite n that are sufficient for the entire set of Pseudo-Stackelberg

states to be the support of the unique limiting invariant distribution. For

example, consider p(Q) = 10 − Q, c(qi) = q2
i , θ = 0.6, δ = 0.2 and n =

5. Those assumptions are sufficient to show that any Pseudo-Stackelberg

state can be connected to the Cournot Nash equilibrium as well as to the

Pseudo-Stackelberg state with the largest output of imitators by a sequence

of single suitable mutations followed by the unperturbed decision dynamics.

This is done in Lemmata 6 and 7 respectively, making use of Lemma 5.

Together with Lemma 4, in which we showed the existence of increasing and

decreasing sequences of single mutations in the set of Pseudo-Stackelberg

states, it implies that the entire set of Pseudo-Stackelberg states is the unique

recurrent set. Using Lemma 3 by Nöldeke and Samuelson (1993), Samuelson

(1994) and Nöldeke and Samuelson (1997) we can conclude that the entire

set of Pseudo-Stackelberg states is the support of the long run distribution.

Again, it follows that imitators are strictly better off than are optimizers.

5 Discussion

The significance of the previous results stems from the following conclusion: If

imitators are strictly better off than are optimizers, then any payoff monotone

selection dynamics (see for example Weibull, 1995) on the long run profits

selects imitators in favor of optimizers. That is, an evolutionary dynamics

reflecting the paradigm of “survival of the fittest” will show that imitators

drive optimizers out of the market. Thus Friedman’s (1953) conjecture is

false in the oldest formal model of market competition in economics, the

Cournot oligopoly (Cournot, 1838). In a working paper-version (Schipper,
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2002) we make this argument precise by showing how imitators drive out

optimizers in the example of the discrete time finite population replicator

dynamics on the long run profits. The intuition there is that firms enter each

market day with a fixed decision rule and the market day takes as long as

the long run outcome of outputs to emerge. Before markets are reopened

the next day, the “evolutionary hand” chooses for each firm the decision

rule selecting effectively among firms. Alternatively, one can assume that at

the end of each day, the management of every firm holds independently a

strategy meeting to decide on its decision rule for the next day according to

the relative performance of their current decision rule. The market sessions

are repeated day for day. One can show that a homogeneous population

of imitators is the unique asymptotically stable population state. From this

evolutionary prospectus we can not assume in economics that firms behave as

if the maximize absolute profits.13 After all Vega-Redondo’s (1997) imitators

are supported by those evolutionary arguments. The same holds for Alchian’s

(1950) suggestion since imitators want to be as well off as others, which is

closely related to relative profit maximization.

There are a few critiques we like to address. First, one may criticize

the limitations of the optimizers. Playing myopic best response is not really

sophisticated optimization. Consider what happens if we make the optimizers

more and more sophisticated. Suppose first we would allow optimizers to

take a longer history of output decisions into account when deciding which

output level to set. Then results are not likely to change but convergence may

13Alternatively, one may want to extent the Markov chain to a product set of the output

space and the decision rule space. If we assume that the probability of revising decision

rules is sufficiently lower than the probability of adjusting outputs, then the same result

is likely to emerge.
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be slower since the adjustment process becomes similar to fictitious play.14

Second, suppose that optimizers can forecast the behavior of the imitators.

What does it help them if imitators set some large output, which they will do

in finite time by the noise assumed? All the optimizers can do is playing best

reply against their beliefs leading them to play a smaller output with smaller

profits than imitators. Finally, assume that optimizers are so sophisticated

that they can even forecast their effect of their own action on the imitators’

behavior. For imitators to make lower profits than optimizers, the latter have

to induce the former to lower quantities. Lower quantities in turn are played

by imitators if the most successful firm of some previous round did play such

low quantity. In Cournot games a lower quantity is more profitable than a

larger one if the total market output is huge, e.g. some firms must play huge

quantities making even higher losses than imitators in order to reduce the

imitators quantities. This strategy is very costly to optimizers such that it

is unlikely to make optimizers relatively better off than imitators. Moreover,

any profitable “low-balling” of imitators by optimizers can happen by inertia

just temporarily since imitators would seek to mimic optimizers immediately.

It appears that no matter how sophisticated the optimization behavior of

optimizers is, by the order structure of the Cournot game, optimizers can

not beat imitators.

In this context it is natural to ask, why optimizers do not just mimic

imitators? Suppose they do. Then all firms behave as if they are imitators

and Vega-Redondo’s (1997) result of a competitive solution would emerge.

However, in the competitive solution every optimizer has an incentive to de-

viate to its lower best reply output since it would increase its profit although

it increases the profits of imitators even more. The imitation rule is a com-

14Regarding fictitious play refer for example to Fudenberg and Levine (1998), pp. 29.
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mitment technology, which the optimizer does not like to adopt, not because

it involves some investment cost but because the optimizer is worse off in

absolute terms when adopting the technology although it can improve its

relative standing.

A second critique could aim at the semantics of profit optimization. Ob-

viously in my setting the optimizers are absolute profit maximizers in regard

to their objective but not in terms of the result. This highlights the ambigu-

ity of profit maximization in Cournot oligopoly. Aiming to maximize profit

may not be the way to actually obtain the maximal profit. We show that

the standard text book understanding of profit maximizing firms can not be

supported by evolutionary arguments in Cournot oligopoly. Our awareness

of the ambiguity of “profit maximization” in a class of games is an insight

gained from this analysis rather than a flaw of this approach.

A third possible critique point is of a more technical nature. We use the

concept of stochastic stability developed by Freidlin and Wentzel (1984) as

well as Kandori, Rob and Mailath (1993) and Young (1993). In many applica-

tions of this concept in literature (for a partial review of the increasing litera-

ture using this method see for example Fudenberg and Levine, 1998, chapter

5), the characterization of the long run distribution involves a comparison of

a multiplicity of highly unlikely mutations. A meaningful application of this

method must address the question about the speed of convergence. How long

does it take for the long run outcome to emerge? The advantage of applying

the necessary condition for a state being contained in the support of the long

run distribution introduced by Nöldeke and Samuelson (1993) is that one

can conclude immediately that just a single suitable mutations is required

to trigger the long run outcome. That is, given our set of absorbing states,

convergence to the long run outcome is comparatively rather fast. Note how-
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ever, that this condition is not applicable generally and does not allow in

general for conclusions about the speed of convergence. See Ellison (2000)

for a more general method also characterizing the speed of convergence.

The key property driving the result is the observation that the payoff

functions in a Cournot game are submodular in individual and total quantity.

This is closely related to strategic substitutes. It suggests that the same result

does not emerge in games with a different order structure such as games with

strategic complements. It also suggests that the same result holds in other

games with strategic substitutes and negative aggregate externalities. E.g.

consider a repeated Nash demand game.15 Suppose now that the imitator

demands a share larger than 50% of the pie. What can an optimizer do?

It can optimize by demanding the highest share compatible to the claim of

the imitator. If the optimizer demands less then it forgoes profits. If the

optimizer demands more then both make zero profits. Assuming that the

imitator mimics itself in such situation we can conclude that the optimizer

can not manipulate the decision of the imitator in its favor. Hence it appears

that also in this repeated Nash demand game the imitator is better off than

is the optimizer. What is eventually wrong with Friedman’s conjecture is

that he does not consider a class of strategic situations in which “the wise

one gives in” (a translated German proverb: “Der Klügere gibt nach.”) The

mechanism is similar to the idea of spiteful behavior in evolutionary biology.

A firm’s action can be called spiteful if it forgoes profits in order to lower

the profits of its competitors even further (see for example Schaffer, 1989).

In our context, we face the “dual” to spite. The optimizers, while increasing

their absolute profits, do not care about increasing the profits of the imitators

even further.

15I thank Ariel Rubinstein for motivating this example.
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Since both, imitation behavior as well as best response, is supported

by experimental findings in Cournot markets depending on the amount of

information provided to subjects (see Sauermann and Selten, 1959, Huck,

Normann, and Oechssler, 1999, 2000, Offerman, Potters, and Sonnemans,

2002), it is only natural to test whether my results can be supported experi-

mentally if different amounts of information are given to various firms in an

oligopoly experiment. This shall be left to further research.

A Proofs

A.1 Proof of Lemma 1.

To show this Lemma for all (q, Q) ∈ Γ × {0, δ, 2δ, ..., nνδ}, one has to show the

following inequality

π((q′, Q′) ∧ (q′′, Q′′)) + π((q′, Q′) ∨ (q′′, Q′′)) ≤ π(q′, Q′) + π(q′′, Q′′) (14)

for the cases (i) q′ ≥ q′′ and Q′ ≥ Q′′, (ii) q′ < q′′ and Q′ ≥ Q′′, (iii) q′ ≥ q′′ and

Q′ < Q′′ as well as (iv) q′ < q′′ and Q′ < Q′′. In particular, strict submodularity

requires to show a strict inequality for the cases (ii) and (iii) since neither (q′, Q′) ≥

(q′′, Q′′) nor (q′′, Q′′) ≥ (q′, Q′).

Case (i) and (iv):

π((q′, Q′) ∧ (q′′, Q′′)) + π((q′, Q′) ∨ (q′′, Q′′)) = π(q′, Q′) + π(q′′, Q′′).

Case (iii): Since by Assumption 1, p is strictly decreasing

p(Q′′) < p(Q′)

p(Q′′)(q′ − q′′) < p(Q′)(q′ − q′′)

p(Q′′)(q′ − q′′)− c(q′) + c(q′′) < p(Q′)(q′ − q′′)− c(q′) + c(q′′)

π(q′, Q′′)− π(q′′, Q′′) < π(q′, Q′)− π(q′′, Q′)
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π(q′′, Q′) + π(q′, Q′′) < π(q′, Q′) + π(q′′, Q′′)

π((q′, Q′) ∧ (q′′, Q′′)) + π((q′, Q′) ∨ (q′′, Q′′)) < π(q′, Q′) + π(q′′, Q′′).

Case (ii): By Assumption 1, p is strictly decreasing. Thus we have analogous to

previous steps

p(Q′′) > p(Q′)

p(Q′′)(q′ − q′′) < p(Q′)(q′ − q′′)

π((q′, Q′) ∧ (q′′, Q′′)) + π((q′, Q′) ∨ (q′′, Q′′)) < π(q′, Q′) + π(q′′, Q′′).

This completes the proof of Lemma 1.

A.2 Proof of Theorem 1

The proof of the Theorem 1 follows from below lemmata.

Recall that Z is the collection of all absorbing sets of the unperturbed decision

dynamics when ε = 0.

Lemma 2 (Absorbing Sets) If Assumptions 2, 4, 5 and 6 hold, then Z = H

with Z = {{ω} : ω ∈ H}.

Proof. First, suppose that some state ω /∈ H, ω ∈ Γn is an element of an

absorbing set A. At least one condition of (i) to (iv) of Definition 5 is violated.

Thus there will be an incentive for some imitators or some optimizers to deviate

from their output in ω. By Assumptions 2 and 6 we can construct an unperturbed

adjustment process based on the decision rules leading in the subsequent periods

to a state ω′ ∈ H, noting that by Assumptions 4 and 5 such ω′ ∈ H exists and is

uniquely defined.

Second, we show that every absorbing set A ⊆ H is a singleton. Suppose

∃ω′, ω ∈ A ⊆ H such that ω′ 6= ω. Note that by Assumptions 4 and 5 at least

two Pseudo-Stackelberg states exist and are uniquely defined. By the definition

of absorbing set, ∃m ∈ N, m finite s.t. p
(m)
ωω′ > 0. Consider any imitator i ∈ I.
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Since in ω ∈ H it follows by Definition 5 (i), (iii), and (iv) as well as DI that

no imitator i ∈ I wants to deviate form its output in ω ∈ H. Now consider an

optimizer i ∈ N \ I. Since ω ∈ H, it follows by aforesaid Definition 5 (ii) that no

optimizer i ∈ N \ I wants to deviate from its best reply in ω ∈ H, which is by

Assumption 5 uniquely defined. Since both types of firms do not deviate in ω ∈ H,

no firm i ∈ N deviates in any of the following periods. Thus p
(m)
ωω′ = 0,∀m ∈ N,

which contradicts that ω′, ω ∈ A, ω′ 6= ω. It follows that pωω = 1 for each ω ∈ H

such that {ω} = A, ∀ω ∈ H. From the first part of the proof we can conclude that

6 ∃ω /∈ H s.t. ω ∈ A, A ∈ Z. Hence Z = {{ω} : ω ∈ H}. This completes the proof

of Lemma 2. q.e.d.

In order to characterize the support of the unique limiting invariant distribution

further, we consider perturbations introduced by Assumption 3. We show that the

Cournot Nash equilibrium is not the unique stochastically stable state.

We call states ω and ω′ adjacent if exactly one mutation can change the state

from ω to ω′ (and vice versa), i.e. if exactly one firm’s change of output changes

the state ω to the state ω′. The set of all states adjacent to state ω is the single

mutation neighborhood of ω denoted by M(ω). The basin of attraction of an

absorbing set A is the set B(A) = {ω ∈ Γn|∃m ∈ N,∃ω′ ∈ A s.t. p
(m)
ωω′ > 0}.

It is the collection of all states from which there is a strict positive probability

that the (unperturbed) dynamics leads to the absorbing set A. A recurrent set

R is a minimal collection of absorbing sets with the property that there do not

exist absorbing sets A ∈ R and A′ /∈ R such that ∀ω ∈ A, M(ω) ∩ B(A′) 6= ∅.

That is, a recurrent set R is a minimal collection of absorbing sets for which it is

impossible that a single mutation followed by the unperturbed dynamics leads to

an absorbing set not contained in R. The importance of the recurrent set stems

from below Lemma 3 by Nöldeke and Samuelson (1993), Samuelson (1994) and

Nöldeke and Samuelson (1997).

Lemma 3 (Nöldeke and Samuelson) Given a regularly perturbed finite Markov
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chain, then at least one recurrent set exists. Recurrent sets are disjoint. Let the

state ω be contained in the support of the unique limiting invariant distribution

ϕ∗. Then ω ∈ R, R being a recurrent set. Moreover, ∀ω′ ∈ R, ϕ∗(ω′) > 0.

A proof of Lemma 3 is contained in Samuelson (1997), Lemma 7.1 and Propo-

sition 7.7., proof pp. 236-238.

Definition 6 Define ω̄ ∈ H to be the Pseudo-Stackelberg state with the largest

possible identical output of imitators, that is

q̄p(θnq̄ + (1− θ)nqD)− c(q̄) >

qDp(θnq̄ + (1− θ)nqD)− c(qD), (15)

with qD = b(θnq̄ + ((1− θ)n− 1)qD),

(q̄ + δ)p(θn(q̄ + δ) + (1− θ)nqDδ)− c(q̄ + δ) ≤

qDδp(θn(q̄ + δ) + (1− θ)nqDδ)− c(qDδ), (16)

with qDδ = b(θn(q̄ + δ) + ((1− θ)n− 1)qDδ).

It is easy to see that ω̄ is indeed in H, since by definition all imitators set identical

output q̄, all optimizer play best response qD (which is unique by Assumption 5),

and imitators make strictly higher profits than optimizers. That is, all conditions

of Definition 5 are satisfied. q̄ is indeed the largest identical output that each

imitator can set within the set of Pseudo-Stackelberg states since an increase by δ

yields a state not in H.

Remark 3 Given Assumptions 4 and 5, the Cournot Nash equilibrium ω◦ ∈ H

is the state with the lowest identical output of imitators in the set of Pseudo-

Stackelberg states H.

We call a sequence of Pseudo-Stackelberg states ω1, ..., ωm ∈ H increasing

(decreasing) iff the identical output of each imitator in those Pseudo-Stackelberg

states is such that qI
ωj

< qI
ωj+1

(qI
ωj

> qI
ωj+1

), j = 1, ...,m− 1.
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Lemma 4 Under above assumptions we conclude:

(i) If ωS /∈ H then there exists an increasing sequence ω1, ..., ωm ∈ H with

ω1 = ω◦ and ωm = ω̄ s.t. M(ωj) ∩B({ωj+1}) 6= ∅, j = 1, ...,m− 1.

(ii) If ωS ∈ H then there exists an increasing sequence ω1, ..., ωm ∈ H with

ω1 = ω◦ and ωm = ωS s.t. M(ωj) ∩B({ωj+1}) 6= ∅, j = 1, ...,m− 1.

(iii) If ωS ∈ H then there exists a decreasing sequence ω1, ..., ωm ∈ H with ω1 = ω̄

and ωm = ωS s.t. M(ωj) ∩B({ωj+1}) 6= ∅, j = 1, ...,m− 1.

Proof. By Lemma 2 we know that each absorbing set is a singleton in H. More-

over, we can enumerate the absorbing sets since Γ is a finite output grid.

(i): ωS /∈ H then qS > q̄. Define a sequence of absorbing states ω1, ..., ωm ∈

H ⊂ Γn such that ω1 = ω◦, ω2 s.t. qI
ω2

= q◦ + δ, ω3 s.t. qI
ω3

= q◦ + 2δ, ..., ωm−1

s.t. qI
ωm−1

= q̄ − δ and ωm = ω̄. Clearly, this sequence is increasing. In order to

show that M(ωj)∩B({ωj+1}) 6= ∅ for j = 1, ...,m− 1, we have to show for k = 1,

∀q ∈ [q◦, q̄) ⊂ Γ,

(q + δ)p((θn− k)q + k(q + δ) + (1− θ)nqD)− c(q + δ) >

qp((θn− k)q + k(q + δ) + (1− θ)nqD)− c(q), (17)

with qD = b((θn− k)q + k(q + δ) + ((1− θ)n− 1)qD), which is uniquely defined by

Assumption 5.

By Assumption 1, Lemma 1 and Remark 1, π is strictly quasi-submodular

(formulas (3) and (4)). Define q′ = q + δ, q′′ = q, Q′ = (θn − k)q + k(q +

δ) + (1 − θ)nqD′
and Q′′ = θn(q + δ) + (1 − θ)nqD′′

, with qD′
= b(θn − k)q +

k(q + δ) + ((1 − θ)n − 1)qD′
) and qD′′

= b(θn(q + δ) + ((1 − θ)n − 1)qD′′
) being

uniquely defined by Assumption 5. Then the right hand side of “=⇒” in the

upper formula (3) is equivalent to inequality (17) if qS ≥ q̄, i.e. it is equivalent to

π(q′, Q′) > π((q′, Q′) ∧ (q′′, Q′′′)).

What is left to show is that the left hand side of “=⇒” in the upper formula (3)

is implied by the Assumption 7 of quasiconcavity. To see this note that for each
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q ∈ [q◦, q̄] ⊂ Γ there exists a λ ∈ [0, 1] s.t. q + δ = λq + (1− λ)q̄. Since qS ≥ q̄, we

have min{π(q, Q), π(q̄, Q)} = π(q, Q), ∀q ∈ [q◦, q̄], ∀Q ∈ {0, δ, 2δ, ..., nνδ}. Hence

π(q + δ,Q′′) ≥ π(q, Q′′), ∀q ∈ [q◦, q̄], which is equivalent to the left hand side of

“=⇒” in the upper formula (3), i.e. it is equivalent to π((q′, Q′) ∨ (q′′, Q′′)) ≥

π(q′′, Q′′). Thus we have shown that if qS ≥ q̄ there exists an increasing sequence

of absorbing states through which we can move from the absorbing state with the

lowest output of imitators ω◦ to the absorbing state with the highest output of

imitators ω̄ by a sequence of single suitable mutations.

(ii) and (iii): If ωS ∈ H then qS ≤ q̄. Partition [q◦, q̄] ⊂ Γ into {[q◦, qS), qS , (qS , q̄]}.

For any q ∈ [q◦, qS) we can show inequality (17) analogous to previous case (i).

The same holds if qS = q̄. Hence (ii) is shown.

To show (iii) consider the interval (qS , q̄]. Define a sequence of absorbing states

ω1, ..., ωm ∈ H ⊂ Γn such that ω1 = ω̄, ω2 s.t. qI
ω2

= q̄− δ, ω3 s.t. qI
ω3

= q̄− 2δ, ...,

ωm−1 s.t. qI
ωm−1

= qS + δ and ωm = ωS . Clearly, this sequence is decreasing. In

order to show that M(ωj) ∩ B({ωj+1}) 6= ∅ for j = 1, ...,m − 1, we have to show

for k = 1, ∀q ∈ (qS , q̄] ⊂ Γ,

(q − δ)p((θn− k)q + k(q − δ) + (1− θ)nqD)− c(q − δ) >

qp((θn− k)q + k(q − δ) + (1− θ)nqD)− c(q), (18)

with qD = b((θn− k)q + k(q− δ) + ((1− θ)n− 1)qD), which is uniquely defined by

Assumption 5.

By Assumption 1, Lemma 1 and Remark 1, π is strictly quasi-submodular

(formulas (3) and (4)). Define q′ = q− δ, q′′ = q, Q′ = (θn− k)q + k(q− δ) + (1−

θ)nqD′
and Q′′ = θn(q− δ)+ (1− θ)nqD′′

, with qD′
= b(θn−k)q +k(q− δ)+ ((1−

θ)n− 1)qD′
) and qD′′

= b(θn(q− δ)+ ((1− θ)n− 1)qD′′
) being uniquely defined by

Assumption 5. Since qS < q̄, the right hand side of “=⇒” in the lower formula (4)

is equivalent to inequality (18).

What is left to show is that the left hand side of “=⇒” in the lower formula (4)

is implied by the Assumption 7 of quasiconcavity. To see this note that for each
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q ∈ [qS , q̄] ⊂ Γ there exists a λ ∈ [0, 1] s.t. q− δ = λq +(1−λ)qS . Since qS < q̄, we

have min{π(q, Q), π(qS , Q)} = π(q, Q), ∀q ∈ [qS , q̄], ∀Q ∈ {0, δ, 2δ, ..., nνδ}. Hence

π(q − δ,Q′′) ≥ π(q, Q′′), ∀q ∈ [qS , q̄], which is equivalent to the left hand side of

“=⇒” in the lower formula (4). This completes the proof of Lemma 4. q.e.d.

Corollary 1 From previous Lemma 4 follows that S 6= {ω◦}.

Proof. By Lemma 4 we know that ∃ω ∈ H, ω 6= ω◦ s.t. M(ω◦) ∩ B({ω}) 6= ∅.

Hence by the definition of a recurrent set we have R 6= {ω◦}. Thus by Lemma 3

we can conclude that S 6= {ω◦}. q.e.d.

This completes the proof of the Theorem 1.

A.3 Remark 2

Suppose that Assumptions 1 to 6 hold. We have to show that if ωS ∈ H then

M(ω) ∩B({ωS}) 6= ∅, ∀ω ∈ H \ {ωS}.

Assume ωS ∈ H. It is sufficient to show that ∀q ∈ Γ, q being a component of

an arbitrary ω ∈ H, ω 6= ωS , k ∈ N, 1 ≤ k ≤ θn,

qSp((θn− k)q + kqS + (1− θ)nqD)− c(qS) >

qp((θn− k)q + kqS + (1− θ)nqD)− c(q), (19)

with qD = b((θn− k)q + kqS + ((1− θ)n− 1)qD).

By Assumption 1, Lemma 1 and Remark 1, π is strictly quasi-submodular

(formulas (3) and (4)) in (q, Q) on Γ× {0, δ, 2δ, ..., nνδ}. Define q′ := qS , q′′ := q,

Q′ := (θn − k)q + kqS + (1 − θ)nqD′
and Q′′ := θnqS + (1 − θ)nqD′′

with qD′
=

b((θn − k)q + kqS + ((1 − θ)n − 1)qD′
) and qD′′

= b(θnqS + ((1 − θ)n − 1)qD′′
)

being uniquely defined by Assumption 5. If q′ > q′′ then θnq′ > (θn− k)q′′ + kq′.

By Assumption 5, we get qD′′ ≥ qD′
. We conclude that Q′′ > Q′. If q′ < q′′ then

θnq′ < (θn − k)q′′ + kq′. By Assumption 5, we get qD′′ ≤ qD′
and conclude that
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Q′′ < Q′. It follows that if q < qS the left hand side of “=⇒” in formula (3) is

given by inequality (10) of Definition 5 of the Pseudo-Stackelberg solution (i). In

this case the right hand side of “=⇒” in formula (3) yields above inequality (19).

If q > qS the left hand side of “=⇒” in formula (4) is given by inequality (10)

of Definition 5 of the Pseudo-Stackelberg solution (i). In this case the right hand

side of “=⇒” in formula (4) yields above inequality (19). Finally, set k = 1 to see

that one suitable mutation only is required to connect every ω ∈ H to ωS ∈ H.

This completes the proof of Remark 2.16

A.4 Proof of Theorem 2

The proof of the Theorem 2 follows from below lemmata.

Lemma 5 There exist p, c, θ, δ and finite n such that

q◦p((2n− 3)q◦)− c(q◦) ≤ 0, (20)

(n− 1)q◦p((n− 1)q◦)− c((n− 1)q◦) ≤ 0, (21)

q• ≡ q̄, (22)

with q• ∈ Γ being the monopoly output.17

Proof. Consider the example p(Q) = 10 −Q, c(qi) = q2
i , θ = 0.6, δ = 0.2, and

n = 5. It is straight forward to verify that formulas (20) to (22) hold. q.e.d.

16An analog proof to the one of Remark 2 can be used to prove a result of Vega-Redondo

(1997) for θ = 1. Just erase any output by optimizers, replace qS by the competitive out-

put, and plug in the formula of quasi-submodularity the definition of competitive solution

instead the imitator’s Pseudo-Stackelberg solution. Then one can conclude that the com-

petitive solution can be reached by a single suitable mutation in a homogeneous population

of imitators from any other monomorphic absorbing state. It is the submodularity of the

Cournot game, which makes Vega-Redondo’s (1997) result work.
17To avoid stating an additional definition note that the monopoly-output is a special

case of the Cournot Nash equilibrium in Definition 3 for n = 1.
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We show that the properties of Lemma 5 together with the above assumptions

are sufficient to show that we can connect any Pseudo-Stackelberg state to the

Cournot Nash equilibrium by a single suitable mutation followed by the unper-

turbed decision dynamics.

Lemma 6 Suppose that Assumptions 2 to 6 hold. Moreover, let p, c, θ, δ and n

such that the properties of Lemma 5 hold. Then M(ω) ∩B({ω◦}) 6= ∅, ∀ω ∈ H.

Proof. Suppose in t any arbitrary state ω(t) ∈ H. By Assumptions 4 and 5 such

state exists and is uniquely defined. W.l.o.g. suppose by Assumptions 2 and 3

that in t + 1 a mutation by one firm i ∈ N occurs such that qi(t + 1) = (n− 1)q◦.

Note that by Assumption 4 and 5 the Cournot Nash equilibrium output q◦ ∈ Γ

exists and is unique. Since ω(t) ∈ H, we have Q(t + 1) ≥ (n− 1)q◦ + (n− 1)q◦ =

(2n − 2)q◦ > (2n − 3)q◦. By Lemma 5, inequality (20), πj(t + 1) < 0, ∀j ∈ N .

W.l.o.g. assume that by Assumption 2 a firm k ∈ N\I, k 6= i and only a firm k has

the opportunity to adjust output in t+2. Since DO(t+1) = 0, we have qk(t+2) = 0.

Q(t + 2) ≥ (2n− 3)q◦. By Lemma 5, inequality (20), πj(t + 1) < 0, ∀j ∈ N\{k}.

W.l.o.g. assume that by Assumption 2 and DO(t+2) = DI(t+2) = 0 all j ∈ N\{i}

adjust output in t+3 such that Q(t+3) = qi(t+3) = qi(t+2) = qi(t+1) = (n−1)q◦.

By Lemma 5, inequality (21), πi(t+3) ≤ 0. W.l.o.g. assume that by Assumption 2,

5 and DO(t + 3) = b((n − 1)q◦) = q◦ another firm k ∈ N\I has the opportunity

to adjust output in t + 4. Since πk(t + 4) > πj(t + 4), j ∈ N\{k} we can assume

w.l.o.g. that by Assumption 2 and DI(t + 4) = q◦ all j ∈ I adjust output. By

Assumptions 2 and 6 let all remaining optimizers adjust output in the subsequent

periods such that with positive probability ω◦ is reached in finite time. Since we

started in any arbitrary absorbing state ω(t) ∈ H (in particular it also includes

ωS if ωS ∈ H) we have shown that M(A) ∩B({ω◦}) 6= ∅, ∀A ∈ Z. q.e.d.

We show that the properties of Lemma 5 together with the above assumptions

are also sufficient to show that we can connect any Pseudo-Stackelberg state to
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the Pseudo-Stackelberg solution with the largest output of imitators by a single

suitable mutation followed by the unperturbed decision dynamics.

Lemma 7 Suppose that Assumptions 2 to 6 hold. Moreover, let p, c, θ, δ and n

such that the properties of Lemma 5 hold. Then M(ω) ∩B({ω̄}) 6= ∅, ∀ω ∈ H.

Proof. By Assumption 4 and 5, q̄ exists and is uniquely defined. Suppose in t

any arbitrary state ω(t) ∈ H, which by Assumption 4 exists. W.l.o.g. assume that

by Assumptions 2 and 3 in t + 1 a mutation by an imitator i ∈ I occurs setting a

large q̂i such that

qp(Q− qi + q̂)− c(q) < 0,∀q > 0. (23)

That is, πj(t+1) < 0, ∀j ∈ N . W.l.o.g. assume that by Assumption 2 all optimizers

in N\I have the opportunity to adjust output in t+2. Since DO(t+1) = 0, we have

qD(t+2) = 0 with πD(t+2) = 0. By inequality (23), we have πI(t+2) < πD(t+2).

W.l.o.g. assume that by Assumption 2 all imitators in I adjust output in t + 3

to DI(t + 2) = qI(t + 3) = 0. Hence, Q(t + 3) = 0. W.l.o.g. assume now that

by Assumption 2 in t + 4 an optimizer k and only an optimizer k ∈ N \ I adjusts

output such that DO(t + 3) = b(0) = q•(t + 4), which by Assumptions 4 and 5

exists and is uniquely defined. W.l.o.g. assume that by Assumptions 2 in t + 5 all

imitators in I adjusts output such that DI(t + 4) = q•(t + 5). Let all optimizers

in N\I adjust output in the subsequent periods such that by Assumptions 2, 4,

5, and 6 a state ω• = (q•1, ..., q
•
θn, qD

θn+1, ..., q
D
n ) is reached in finite time. Since by

Lemma 5, q̄ = q•, we can conclude that ω• = ω̄. q.e.d.

In Lemma 4 we showed already that we can connect the Pseudo-Stackelberg

states by a increasing or decreasing sequence of single suitable mutations followed

by the decision dynamics starting in the Cournot Nash equilibrium or the Pseudo-

Stackelberg state with the largest identical output of imitators. In Lemma 6 and 7

we showed that we can connect by single suitable mutations followed by the deci-

sion dynamics any Pseudo-Stackelberg state to the Cournot Nash equilibrium and
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the Pseudo-Stackelberg state with the largest output of imitators if the properties

of Lemma 5 hold. Hence there exists a sequence of single suitable mutations by

which we can move through the entire set of Pseudo-Stackelberg states. It follows

that H is the unique recurrent set. By Lemma 3 it follows that S = H. This

completes the proof of Theorem 2.
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