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Abstract

In this paper we consider the problem of financing infrastructure when the regulator faces
a budget constraint. The optimal budget-constrained mechanism satisfies four properties.
The first property is bunching at the top, that is the more efficient firms produce the same
quantity. The second property is self-selection for the less efficient firms. The third property
is that the mechanism is a third best one. In other words, as long as the budget-constraint
is binding, the optimal output is strictly lower than the second best output for any given

type. Finally, if the budget constraint is too strong, then we have a full bunching solution.
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1 Introduction

In this paper we analyze the problem of financing infrastructure when the public authority faces
financial constraints and when the cost of the producer is unknown. Financing infrastructure
is a major issue in every economy. Building up useful and attractive infrastructures is a neces-
sary condition for the development of an economy. The benefits of infrastructure being widely
recognized, the main problem is to finance its construction. Infrastructures are either financed
completely by public funds (for example in the case of public goods which we address in this
paper), or is financed partially (or totally) by the private sector. An example of the second case
is network industries, where the essential facility is partially financed by the private competitors
that use it. However, liberalization and open-access policies do not eliminate the necessity for
the public authority to finance infrastructures. In network industries, the regulators should not
only guarantee an open-access of the network to competitors (through adequate access charge)
but should also guarantee the financing of infrastructures. If the essential facility cannot be
financed completely with the access charge, public funds should be invested to guarantee the
continuity and the quality of the service provided. In this context railway tracks is a good
example.!

Baron and Myerson (1982) and Laffont and Tirole (1993) develop a procedure to finance
infrastructure, when the cost of the monopolist firm (producing it) is unknown to the fund
provider or regulator.? The optimal mechanism specifies a quantity-transfer pair for each possible
cost. Self-selection is the major property of this mechanism. A firm with a high cost prefers to
build up a lower quantity for a lower transfer while a low cost firm prefers a larger transfer for
building up larger quantities. Self-selection is costly since there is a possibility that a low cost
firm can mimic a high cost firm and hence, in the optimal mechanism, it is necessary that the
low cost firms collect information rent. In the optimal mechanism all but the lowest cost firm
produce less than first best to reduce the cost of self-selection.

Unfortunately, if infrastructure projects are numerous, public funds are usually scarce. It is
reasonable to imagine that the fund provider may be unable to finance the infrastructure at the
level required for the optimal mechanism (Baron and Myerson (1982)). The aim of this paper is
to construct the optimal mechanism when the available fund is limited. We call this mechanism
the optimal budget-constrained mechanism. We highlight the differences between the optimal
mechanism and the budget-constrained one.

In many models on regulation, it is assumed that public subsidies are costly. Transferring
one dollar to the firm costs the authority (1 + \) dollars, where A represents the shadow cost of
public funds (Laffont and Tirole (1993)). This approach is relevant when the public authority

itself regulates the monopolist. Our approach applies when the task of regulation is delegated to

In July 2000, the British Government publised its ten year plan, announcing a £60 billion investment package
for the railways. Approximately £30 billion would come from the government itself, via the Strategic Rail

Authority (SRA)-Source: SRA Annual Report 2000-2001.
2The key point is asymetric information and not the absence of competition.



an agency to which the authority allocates funds (like in the British Government and Strategic
Rail Authority example). Thus, our framework is different since we consider the case in which
the public authority specifies a maximal level of subsidy that the regulatory agency can use to
finance the infrastructure. Finally, we do not model how the highest subsidy is determined by
the political authority and consider it as exogenously given.

The public authority faces a budget constraint whenever the highest transfer, specified in the
optimal mechanism, exceeds the total fund available for the project. In this case, the optimal
budget-constrained mechanism has the following properties. First, for the low cost firms, the
self-selection property does not hold. To limit the transfers, the regulator offers to these more
efficient (or low cost) firms a contract that specifies a fixed-quantity for a fixed payment. This
fixed payment is equal to the highest possible transfer. In short, the optimal budget-constrained
mechanism exhibits bunching at the top. Second, the high cost firms, for which the budget
constraint is not binding, receives a separating contract. Therefore, there is self-selection for the
less efficient (or high cost) firms. Third, for each type of the firm, the quantity under the optimal
budget-constrained mechanism is lower than that of the optimal mechanism. This makes the
optimal budget-constrained solution a third-best one. Quantities produced by the less efficient
firms, for which the financial constraint is absent, are reduced in order to decrease the rent paid
to the more efficient firms. Quantities produced by the more efficient firms are also reduced
compared to the second best since self-selection, for these firms, is too costly given the financial
constraint. Hence the more efficient firms are required to produce the same quantity irrespective
of their cost. It is important to note that, in the budget-constraint mechanism, the regulator
optimally limits the interval for which there is bunching, by reducing the quantities produced
by the less efficient firms even further. Finally, if the financial constraint is too strong, the
budget-constrained mechanism prescribes full bunching.

A financially constrained regulator has two instruments to limit the transfer: bunching for the
more efficient firms and under-production. Our comparative static result show that a reduction
in available fund reduces the quantities produced by all types of firms and increases the interval
in which there is bunching.

There are several papers similar to our work. Laffont and Robert (1996) describe the optimal
auction when all the bidders have a financial constraint which is common knowledge. Like in
our optimal budget-constraint mechanism, the financial constraint in Laffont and Roberts (1996)
reduces the bids of all participants (even those with a low valuation for the good). Che and
Gale (2000) extends the result in Laffont and Roberts (1996) by relaxing the assumption that
financial constraints are common knowledge. Monteiro and Page Jr. (1998) describe the optimal
selling mechanisms for multiproduct monopolists in the presence of budget constrained buyers.
To construct the optimal budget-constrained mechanism, we extend the methodology of Thomas
(2002). Thomas (2002) considers the incentive problem of a monopolist who faces financially
constrained buyers. Surprisingly, in his mechanism, the financial constraint may imply over-

consumption (relative to the complete information case) for some types of buyers for whom the



self-selection property holds in the constrained mechanism. In contrast, our mechanism imply
underproduction for all types, whenever the available budget is lower than the highest transfer
required in the optimal mechanism. Finally, Gautier (2002) considers the regulator’s mechanism
design problem under financial constraint when there are two types of firm. In Gautier (2002),
bunching is an issue only if the financial constraint is sufficiently strong.

The paper is organized in the following way. In Section 2, we develop the benchmark model.
In Section 3, we introduce and analyze the mechanism design problem under budget constraint.
We conclude our analysis in Section 4. Section 5 is the Appendix where we provide the proof of

our main Theorem.

2 The Model

The utility of the monopolist is U,, = t — 0q where t is the transfer that she receives from the
regulator and € is her marginal cost and ¢ is the quantity of the public good she produces.
The utility function of the regulator is U, = S(q) — t where S(q) is the consumer’s surplus
when a quantity ¢ of public good is supplied and ¢ is the transfer to the monopolist. S(q) is
assumed to be twice differentiable with S’(¢) > 0, S”(¢) < 0 and S’(0) = oo. The regulator’s
main objective is to select the quantity ¢ to maximize U,.. Since S’(0) = oo, the good is always
produced. If the regulator knows the marginal cost of the monopolist 6, then the optimal
quantity is ¢/ (0) = S'71(0) and the optimal transfer to the monopolist is ¢(6) = g/ (). The
pair (¢f(0),t/(0)) is the first best outcome.

If the marginal cost is private information then we have a mechanism design problem under
incomplete information. In this context, we assume that the marginal cost of the monopolist
belongs to the interval [0, ] where 0 < § < 6. This interval is assumed to be common knowledge.
It is also common knowledge that (i) the marginal cost has a continuous and almost everywhere
differentiable density f(6) for all @ € (,0) and that (ii) f(0) > 0 for all 0 € [0, 0].

The regulator’s objective is to design a direct mechanism that maximizes her expected util-
ity fg {S(q(0)) —t(0)} f(0)dO subject to (i) incentive compatibility constraint (or IC) and (ii)
parti_cipation constraint (or PC). A direct mechanism M = (q(.),t(.)), in this context, simply
specifies a type contingent quantity-transfer pair. Here both quantity and transfer are mappings
from the interval of types to the non-negative orthant of the real line, that is ¢ : [0,0] — R
and t : [0,0] — R.. For simplicity we restrict attention to continuous and almost everywhere
differentiable mechanisms. Let U,,(0;60") = (') — 0q(¢’) be the utility of the monopolist under
the mechanism M if her true type is 6 and if she announces ¢’ € [¢,60]. With slight abuse of
notation, let us define U,,(0) = U,,(0;0), V0 € [0,0]. Given these definitions, IC states that
Un(0) > Upn(0;0'), ¥{0,0'} € [0,0])? and PC states that U,,(0) > 0, V0 € [0,0]. It is well known
in the literature that the optimal mechanism M satisfies IC and PC only if V0 € [0,0], the
optimal quantity ¢(f) is non-increasing in 6 and Uy, (0) = fgg q(t)dr.3

3The reason for the necessity of non-increasingness of optimal quantity follows directly by solving the inequality



We will refer to the mechanism design problem of the regulator, stated in the previous
paragraph, as the benchmark model. The optimal (or second best) mechanism for the benchmark
model is summarized in the next Proposition. Before stating the Proposition we provide two
relevant definitions. For any 6 € [0, 0], let L(0) = % be the hazard rate function where F\(.)
is the distribution function associated with the density function f(.). For any 0 € [0,0], let

z(0) = 0 + L(0) be the virtual type function.

PROPOSITION 2.1 The optimal mechanism is M® = (¢®(.),*(.)) where

1. ¢*(0) = S""(2(0)) and

2. t°(0) = 0g°(0) + fqb(T)dT Vo € [0, 0]

We omit the proof of Proposition 2.1 since it is quite well known in the literature. The
benchmark model is a simplified version of the Baron and Myerson (1982) model. In Baron and
Myerson (1982), the regulator can use three regulatory instruments-(i) she can decide whether
or not to allow the firm to operate in the market, (ii) if the firm is in business then the regulator
can regulate its price or quantity and (iii) the firm may be given subsidy or charged a tax.
In the benchmark model the only regulatory instrument is transfer (or subsidy) to the firm.
Moreover, the objective function of the regulator, in the benchmark model, is also simpler than
the regulator’s objective function in Baron and Myerson (1982). The reason for using these
simplifications is to highlight the issue of financial constraint in building infrastructure.

It is important to observe that for the benchmark model it is necessary that q®(#) is non-
increasing in 6 € [f,0]. Non-increasingness of quantity is satisfied if and only if the virtual
type z(0) is non-decreasing in 6 € [0,0]. Given that z(0) is non-decreasing, we get ¢°(#) is
non-increasing in 6 € [0,0]. Moreover, since L() > 0 for all § € (0,0] and z(0) > 0, we get
®(0) < ¢f () for all 6 € (0,0] and ¢°(8) = ¢ (). Thus, for all but the lowest cost firm, we
have underproduction under second best compared to the first best. For our main problem,
to be analyzed in the next section, we take the following assumption which is stronger than

non-decreasingness of the virtual type function z(.).
ASSUMPTION 1 For almost all § € (0,0), (1 + L'(0)) > 2L(6).

For assumption 1, it is necessary that z(6) is non-decreasing for all d(€ [0, 0]) for which
assumption 1 holds. Observe that non-decreasingness of z(f) means that 1+ L'(6) > 0 for all
0 € (0,0). This is clearly a necessary condition for assumption 1 since # > 0 and L(#) > 0
for all @ € [§,0]. For all density functions with the property that f/(#) < 0 for all § € (8,0),

in the definition of IC for any pair of types. The reason for the necessity of U (0) = [, : q(7)dr is the following.
For IC to hold it is necessary that Uy, (8) = —q(6) for almost all 8 € (6, 8). Under the optimal mechanism PC
implies that U, (6) = 0. These two conditions together imply that U,,(8) = f: q(T)dr for all 4 € [0, 0].



assumption 1 is satisfied. Therefore, Exponential Distribution, Pareto Distribution and Uniform
Distribution satisfies assumption 1. Under certain parametric restrictions Beta Distributions,
Gamma Distributions and Weibull Distributions also satisfy assumption 1. Among the class of
distributions with the property that there exists a non-empty interval (a,b) such that f'() >0
for all 0 € (a,b), Triangular Distribution satisfy assumption 1. A Normal Distribution satisfies
(6+9)

#2(;‘;_1,)) > L(x) for all x € (@, ) where the mean p = =~ and

o is the standard deviation. For Logistic and Laplace Distributions, the sufficiency conditions

assumption 1 if and only if 0

are § > 37@0 and g > % respectively.

3 Budget Constraint

In the benchmark problem we have a complete separating mechanism where the optimal transfer
is strictly decreasing in type. Complete separation is feasible if the maximum fund available
to the regulator (or the regulator’s budget constraint) T’ exceeds the transfer that needs to be
provided to the lowest type t°(9).> However, if this fund is less than the transfer needed to
separate out all types, that is if T < °(8), then the regulator’s problem is

0
P mas [1S(a0) - 10)) 70)d0

subject to
L. Un(0) > Un(6;0"), v{0,0'} € [0,0)?,
2. Un(0) >0, V0 € [0,0] and

3. t(0) <T Voo,

=

The optimal budget-constrained mechanism for [P*] is summarized in the next Theorem.
THEOREM 3.1 Under Assumption 1, the optimal budget constrained mechanism for [P*] is
M* = (¢*(.),t*(.),0) where

1.

q*(0) Vo € [9,0)

Q*(e) = g1 (2(9) + &))> Yo € [é,m

. s 9)2 Y )
with U(0) = % > 0= (0) for all 6 € (0,0),

4We obtained the condition for Normal Distribution by taking doubly-truncated Normal Distribution following
Hald’s (1952) convention. The same double truncation technique was applied to obtain the sufficiency conditions
with Logistic and Laplace Distributions. For all these three Distributions we assumed symmetry, that is yu = Q%g.
Given that the transfer under second best is strictly decreasing, t°(8) > t*() for all 6 € (8, 6], if the budget

constraint T > t°(0) then the second best mechanism is always feasible.



T(=t*(0)) Vo € [0,0)

£(0) = 7 _
0q*(0) + [ ¢*()dr V0 € [0,7]
0

3. the optimal cut-off point 6 € [, 8] is obtained from T

3" (6) + [ 4" (),
7

provided T > T = 65"} (z(a) + \I’((g))> If T < T then M* = (¢*(.),t(.),0) specifies a full-
"(0) = 0

t*(0) =T) for all 6 € [0, 0].
PROOQOF: See Appendix. ]

mll’ﬂl

f
bunching solution with = & and (q

REMARK 3.1 Assumption 1 is sufficient to guarantee that for any given cut-off point 0 €
[0,0], z(0) + f((e)) is non-decreasing in @ for all 6 € (6, 6]. Monotonicity of z(#) + f((G)) is necessary
for the optimal output ¢*(6) to be non-increasing in € [f,6]. Moreover, assumption 1 also
guarantees that W(6) is non-decreasing in 0 € [0, 0]. Assumption 1, is sufficient for the mono-

tonicity of z(0) + f(( )) since it implies and is implied by non-decreasingness of z(6) + f((e)) for all

6 € [0,0]. If the monotonicity of z(#) + %;)) is violated in the non-bunching interval (6, 8], then
the analysis can be modified & la Guesnerie and Laffont (1984).

From Theorem 3.1 it is obvious that the optimal quantity % for the full bunching case (that
is for T' < T) is strictly lower than any ¢*(0) for the partial bunching case (that is for 7" > T).
Moreover, from Theorem 3.1 it also follows that if the budget constraint is not binding, that
is if T > t*(0), then ¢*(0) = ¢°(0) VO € [0,0] since ¥(0) = 0. If, instead, T < t°(f), then
the following two Propositions summarize a comparative study between the optimal budget-

constrained mechanism AM* and the optimal mechanism M? under the benchmark model.

PROPOSITION 3.2 If T < t%(9), then ¢*(0) < ¢°(0) V0 € [9,7)].

PROOF: Consider first the partial bunching case, that is consider T < T < t*(8). Observe first

that the number () is strictly positive. This implies that for all § € [, 9], S'~! (Z(H) + %) <

S"~1(2(6)). Therefore, ¢*(0) < ¢°(0) for all @ € [, ). Moreover, for all § € [0, 0), ¢*(0) = ¢*(0) <
q"(0) since ¢°(8) > ¢*() for all 6 € [9,0). For the full bunching case, that is for T < T < t°(8),
it is obvious that the optimal fixed quantity % is strictly smaller than any ¢*(6) for the partial

bunching case. Hence the result follows. [ |

PROPOSITION 3.3 Call = {0 € (6,0) | t*(0) = T}. If T < t*(8) then 0 > 4.

PROOF: Observe first that by definition A¢®(6) + fg Q(r)dr =T = 0g*(0) + fg q*(7)dr. Using

this observation, we prove the proposition by contradiction. We first assume that 0 < 0. Then



define h(0) = ¢*(0) — ¢*(0) for all @ € (0,0]. Given Proposition 3.2, h(f) > 0 for all 6 € (0,0].

Using the observation we get

) 3 ;
B(h(6) + ¢ (0)) — g*(B) + /9 h(r)dr + /9 QP (F)dr =0 (3.1)

Since by assumption § < 6, from the optimal budget-constrained mechanism M* we get
¢*(0) = ¢*(0). Substituting ¢*(0) = ¢*(0) in (3.1) we get

On(0) — (0 — 0)q* (0) + /9 ' h(r)dr + /0 ’ ¢*(t)dr =0 (3.2)

Since fé,é @(r)dr > (6 —0)q*(0), the left hand side of (3.2) is strictly positive. Hence we have

a contradiction. [ ]

[
l :
I I
' I
I I
I I
I I
l |
0 0 0

Figure 1: The Optimal Quantities for 7' = t*(9) and T € (T,t°(9)).

Theorem 3.1 and its two complementary Propositions (3.2 and 3.3) describe the optimal
budget-constrained mechanism and compare it with the optimal mechanism. While self-selection
is the main property of the unconstrained mechanism M?, this property does not hold in the
budget-constrained mechanism M*, at least for the lower cost firms. In the budget-constrained
mechanism, there is a conflict between the necessity of self-selection (the IC constraints) and
the budget constraint. Self-selection implies increasing information rents for the lower cost
firms. With limited resources, it becomes impossible to finance the information rents of the

more efficient firms. Hence, there is bunching for the lower cost firms. However, the regulator



limits as much as possible the region in which the regulatory contract is a bunching contract
(see Proposition 3.3). For that, the contract offered to the higher cost firms (that is firms for
which the budget constraint is non-binding) is distorted compared to the optimal mechanism
M?®. Reducing the quantities of the less efficient firms (compared to the optimal mechanism
M?), reduces the information rent, and hence, it is possible to finance self-selection for a larger
fringe of firms. Without any distortions in quantity, the bunching zone would have been [, é],
while by imposing optimal distortions in quantity, the bunching zone is reduced to [0, é] This is
shown in Figure 1. The optimal budget-constrained mechanism, described in the Theorem 3.1,
takes care of the trade off between the cost of abandoning self-selection for the more efficient
firms and the cost of larger distortions to preserve it. However, the cost of keeping self-selection
for high cost firm may be too high. In that case we have a full bunching solution.

In Baron and Myerson (1982), the decision to build up the infrastructure is itself a regulatory
instrument. In their optimal mechanism, the infrastructure is built whenever the associated
surplus is larger than the cost and this decision does not interfere with the optimal mechanism.
Likewise, if, in our problem, S’(0) is finite, then exclusion of the higher cost firms from the
mechanism is another instrument that can be used to tackle the problem of budget constraint.
In our problem, the decision to build the infrastructure can be incorporated ex-post, together
with the cut-off point. Given S'(0) < oo, let 6** denote the highest type for which ¢*(6**) > 0.

Then 6** and 6 are determined by the following conditions:

o**
T = dq*(0) + / ¢ (7)dr.
6

It is obvious that 8** is lower than its corresponding value in the optimal mechanism M?. Hence,
a financial constraint also reduces the probability F'(60**) that the infrastructure is built. Thus,
if S’(0) is finite, then it is possible that building infrastructure will be delayed due to inadequate
funds.

We conclude the analysis of the budget-constrained mechanism with a comparative static
result followed by a simple example. Consider any two budget constraints 7} and 75 such that
Ty < Ty < t*(@). With slight abuse of notation, let ¢} (6) be the type contingent output and 0;
be the cut-off point, both associated with the budget constraint 7; for i = 1, 2.

PROPOSITION 3.4 If T < T} < T < t*(8), then ¥(A;) > () and 6, > H, which together
imply ¢} (0) < ¢5(0)V0 € [0, 0.

PROOF: From the optimal mechanism in Theorem 3.1, we know that T} = ézq;‘ (91) + g qf (T)dr
for i = 1,2. Given that ¥/(f) > 0, we have the following possibilities:

1. él > 9~2 and \I/(él) > \I/(ég) and



2. él < ég and \I/(él) < \I/(ég)

We now show that condition (2) is incompatible with Ty < T». Observe that Ty < T implies
that

02
Oui (02) = 02g3(02) + [ (ai(r) = az(r))dr + [ ai(r)ar <0 (33)
02 01

If 01¢; (1) > 02¢35(02), then we already have a contradiction to condition (3.3) since fg (g7 (7) —
¢3(7))dr > 0 and f 0> gi(r)dr > 0. Therefore, for condition (3.3) to be true it is necessary

that 01¢5(0;) < 92q2(92) Moreover, for condition (3.3) to hold it is also necessary that
0205 (02) — O1q7(61) > 92 ¢i(T)dr. We now show that this condition is not true. Observe

first that f02 qi(r)dr > (6?2 — 01)qt(0o) since qf(0) > qt(f) for all & € [01,0). Observe
next that (0 — 91)q1(92) > 0q5(02) — 01¢3(01). These two observations together imply that
0205 (02) — 01¢7(01) < 92 q;(T)dr. Thus, for this case we get T > T» which is a contradiction.
Thus, we have proved that only condition (1) is compatible with 73 < T». Hence for all
0 € (0.7, 4i(0) < g3(0). .
A reduction in available funds reduces the optimal quantities and the cut-off point (provided
T < Ti). This comparative static result is intuitive. Due to the scarcity of resources, the
opportunity cost of paying information rents to the more efficient firms increases and hence the
regulator prefers to save on these rents to finance the infrastructure with its available resources.
This result also explains why for a sufficiently low transfer T'(< T), the budget-constrained

mechanism prescribes full bunching.

EXAMPLE 3.1 In this example we consider a very simple functional form for the surplus
function and assume that f(.) has uniform distribution over [#,0]. In particular, we take the
surplus function to be S(q) = 2,/g. Under these assumptions the optimal budget-constrained
mechanism M* = (¢*(.),t*(.), ) specifies for the partial bunching case the following type con-

tingent quantity-transfer pairs:

2 ~
o & v0 € [0,0)
q(0) = % Vo € [0,0]
(2(6-6)+5 )2
T(=t*(6)) V0 € [0,0)

£(0) = 7 _
¢'(O)+ [ (r)dr V0 € [0.7)

6°(2(9-6)0+90)
P(20-0)6+6%)
of the transfer is T = 5—3. Therefore, for all T < T, the optimal budget-constrained mechanism

The optimal cut-off pomt 6 can be obtained by solving T = The critical value

M* = (¢*(.),t*(.),0) gives a full bunching solution where the optimal quantity-transfer pair is
<q* 0) = %, t*(0) = T) for all # € [0, 8] and the optimal cut-off point is 6 = 6.



4 Conclusions

In this paper, we have analyzed the problem of financing infrastructure under asymmetric infor-
mation, when there is financial constraint. The optimal budget-constrained mechanism broadly
differs from the optimal mechanism in three respects. Firstly, there is an overall reduction in
the quantity of the public good provided. This makes the budget-constrained solution a third
best one. Hence the efficiency at the top does not hold. Secondly, the budget-constrained mech-
anism exhibits a substantial amount of bunching. Our comparative static results show that as
the available resources decreases, more and more types of firms are bunched. Finally, if the
available resources are too small, there is full bunching. This result is not surprising. If the
available resources are too small, the regulator prefers to use less efficient regulation and invest
the money in infrastructure building rather than in financing self-selection.

Given that the budget-constrained solution is a third-best one, there are welfare losses. The
welfare is reduced because each type of firm produces a lower quantity of the public good and
hence the consumer surplus is lower. Moreover, the welfare is also reduced because there is
bunching for the more efficient firms. To satisfy the wealth constraint, the regulator gives up
self-selection for the more efficient firms. From our comparative static result it is obvious that
welfare loss is decreasing in available resources (7).

In this paper we looked at a pure public goods problem where the regulator contracts with a
monopolistic firm for the provision of infrastructure and finances it with a subsidy. Alternatively,
the authority can delegate, to the regulated firm, the responsibilities for both the construction
of the infrastructure and the provision of services to consumers. In this case, the authority
also regulates the consumer price for the good. In Baron and Myerson (1982), the regulated
price is equal to the virtual marginal cost. Increasing the consumer price can partially offset
the quantity reduction implied by the limited subsidies. Hence, instead of having infrastructure

financed by public subsidies, the financing can be partially delegated to the private sector.
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5 Appendix

PROOF OF THEOREM 3.1: For an almost everywhere differentiable mechanism, incentive
compatibility (or IC) implies that truth-telling is a best response of the monopolist, that is
{%[Um(e; o’ )]}9,:9 = 0 almost everywhere. This condition implies that t'(f) = 0¢'(0) almost
everywhere. From IC we also know that ¢(f) must be non-increasing in 6 and hence '(0) < 0
almost everywhere in (6,0). For the optimization program [P*], let 0 be the first type for which
the budget constraint is not binding. Therefore, for all § € [0, é), the budget constraint is
binding and for all # € [6,d], the budget constraint is not binding (or free).% This means that
t'(9) = 0 for all @ € (0,0) and ¢'(§) < 0 for all # € (§,0). From IC and PC we also know
that U} (0) = —q(0) < 0 for all § € [§,0] and optimality of the mechanism guarantees that
Upnm(9) = 0. Finally, non-increasingness of ¢() implies that ¢/(8) = 0 for all 6 € (6,6), ¢'(9) <0
for all # € (0,9) and since #(.) is not differentiable at 6,

q(07) > q(0") (5.4)

The regulator’s optimization problem [P*] can now be divided into two sub-problems [Pf]
and [Py] for the intervals [0, 6) and [6, 8] respectively.

2] max [{S(a(6)) — Un(6) — 0as(0)} £(0)d0 subject t0

1. U/n(e) = —q1(6?),
2. T = Un(0) — 0g:1(0) = 0,

T
3. Un(8) free, 6 and U,,(#) given, and

3. 0 and U,,(0) given, and

4. ¢2(0) = q(0).

6Observe that we are assuming that it is possible to find type contingent quantity-transfer pairs which allows

for partial bunching and partial self-selection. In otherwords, we are trying to find the optimal constrained
mechanism for the case when the available fund T is above some critical level T which allows for partial bunching

and partial separation. The solution to this program will provide the exact amount of this critical level T.
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[Pf] and [P5] are two optimal control problems. In both these sub-problems ¢(.) is the
control variable and U,,(.) is the state variable. Finally, 0 is the optimal cut-off point that links
the two problems.

The Hamiltonian function associated with [P;"] is H;(0) = {S(qi(6)) — Um(0) — 04¢:(6)} f(8)—
Xi(0)qi(0) for i = 1,2. Here \;(0) is the co-state (or auxiliary) variable associated with the
Hamiltonian H;(6) for the type #. The Lagrangian associated with the sub-problem [P}] is
L1(0) = Hy(0) + u(0)[T — Up(0) — 0q1(0)] where p(6) is the Lagrangian multiplier associated
with the type 6.

The necessary conditions for [P;] are

[PE(D)] 5245 = {S"(@1(0)) — 03 £(0) = M (0) — Opu(0) = 0,
[PF(2)] M(0) = — 35255 = £(0) + u(0),

[P (3)] A1(0) is free,

[PF(4)] \(0) =0,

[P (5)] () > 0 and

[PE(6)] T = Un(6) — 041 (6) = 0.

Similarly, the necessary conditions for [Py] are

(P3(1)] S = {S"(a2(0)) — 0} £(0) — Xa(6) = 0,
[P5(2)] A(0) = — 3725 = £(0),

[P(3)] X2(f) is free and

[P5(4)] Xa2(B) is free.

M(0) = F(0) + U(0) + ky (5.5)

where U (6) = fg (7)dT and k; is the constant of integration.” Since ¥(#) = F(§) = 0 and since
A1(0) = 0 from [Py (4)], we get k1 = 0. Therefore, from (5.5) we get

M(0) = F(6) + T(6) (5.6)

From [P5(2)] we get
Ao () = F(0) + ko (5.7)

where ks is the constant of integration. Since 6 is the optimal cut-off point for the program [P*],
we get A1(0) = Ao(6). Then from conditions (5.6) and (5.7) we get k2 = ¥(f) and hence

Xo(0) = F(6) + ¥(6) (5.8)

It is important to note that ¥'() = u(6). This fact will be used later to determine the functional form of
v(0).
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Substituting (5.6) in [P;(1)] and then simplifying it, using ¢(0) = ¢(f) for all V0 € [0, 0), we get
F(0)+ v(0)+0u(9)

S (q1(0)) =0 + 5.9
for all @ € [6,0).
Similarly, substituting (5.8) in [P;(1)] and then simplifying it we get V0 € [0, 6]
F(0)+T(0
S (@(0) =0+ =) (5.10)

To show that ¢(.) is continuous at the cut-off point 0, we must show that the left hand side of

[P} (1)] and [P3(1)] are the same at 6, that is {S"(q1(0)) — 6} f(8) — \.(0) — Ou(8) = {5"(g2(0)) —
0} f(0) — Ma(6). Using A1(0) = Xo(0) we get

0(0)
f0)
If 41(6) > 0, then the right hand side of condition (5.11) is positive. This means that S’(q1()) >
S"(g2(A)) and hence by strict concavity of S(.) we get ¢1(6)) < g2(f). This violates condition
(5.4). Therefore, it must be the case that u(f) = 0 and hence ¢1(0)) = g2(6).

Therefore, the optimal budget constraint mechanism M* for the partial bunching case sat-

S'(q1(0)) — S'(a2(0)) = (5.11)

isfies the following three conditions:
(p1) §'(q*(0)) = 0 + HOELEIUE for all 0 € [0, 0), p(6) =0,

(p2) S'(q*(0)) = 0 + % for all 0 € [0, 0] and

(p3) T = Un(8) + 04" (6)
Here (pl) follows from condition (5.9), (p2) follows from condition (5.10) and (p3) is obtained
from [P;(6)] which gives us the optimal cut-off point 6.

We now determine (). Integrating condition (5.9) after substituting d%[HF (0)] =06f(0) +
F(0), L10U(0)] = 0u(0) + ¥ (0) and S'(q(0)) = c(0) we get

OF(0) + 0T (0) = c(0)F(0) + k3 (5.12)

for all # € [9,0). Here k3 is the constant of integration. Using F(8) = ¥(#) = 0 in condition
(5.12) we get k3 = 0. Substituting k3 = 0 in condition (5.12) and then simplifying it we get

U() = (C(é)e 9) F(6) (5.13)

Differentiating (5.13) with respect to 6 and then using u(f) = 0 we get S'(¢(9)) = c(0) =
}

_210) ituting 0 = § ) i iti j) = (L0
(af(o) 50 )>. Substituting 6 = 0 and ¢(f) in condition (5.13) we get ¥(0) ( —

Since W(f) = fe (7)dr and the Lagrangian multiplier (#) > 0 for all 6 € [6, ), it is necessary
that W(f) > 0. It is obvious that ¥(f) = 0 since F () = 0. Therefore, to show that ¥(8) > 0
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for all @ € (0,0) it is now more than enough to show that ¥/() > 0 for all € (0,0). By
differentiating W () with respect to 6 € (g,0) and then setting it to be non-negative we get
(b) 6(1 + L'(9)) > 2L(0) for all 6 € (6,0). Condition (b) is identical to assumption 1. Hence,
U'(0) > 0 for all § € (0,0) which implies that ¥() > 0 for all § € (§,6). This however means
that ¥(0) = (%) > 0 for all § € (0,0) since our assumption that f(f) > 0 for all
0 € [0,0] implies that F(0) > 0 for all § € (0,60) and since for ¥(0) to be non-negative it is
always necessary that 6f(0) — F(9) > 0. Thus, conditions (pl), (p2) and (p3) together with

T(h) = (M > 0 gives us the conditions in Theorem 3.1 when partial bunching is

0f(0)—F(0)
optimal.
We will show that given () = (ﬁ%), q*(0) is non-increasing in 6 € [0, 0]. Observe

first that from condition (p1) it follows that ¢*() = ¢*(0) for all 0 € [0, 0). To show that ¢*(6) is
non-increasing in € [0, 6] we have to show that z(0) = z(0)+ % is non-decreasing in 6 € [0, 9].
Differentiating Z(#) with respect to 6 € (6,6) and then setting it to be non-negative we get (c)

%W < 2. To show that condition (c) is true, it is more than enough to show that
%W_< 2 since /() > 0 for all § € (0,0) implies that FOE (6())%1/(0)) < o ((;)*‘I'(e))
for all § € (0,0). From assumption 1 we know that for all 0 € (6, 0),

0(1+L'(0)) = 2L(0)
F1(0)F(9)

or 6 (2 GO > 210
or 7 (2= L) 2 2
o2 (75) = (o) (F ™)
or 2(50)) > (LG (LOFO) (nce w(0) = (L2 for all )
or 2> (LOUEELVO))

Thus from assumption 1, we get L&Tp()) < 2 for all § € (6,0). Therefore, condition

(c) holds. This proves that z() = z(0) + % is non-decreasing in 6 € [0,0] and hence

q*(0) is non-increasing in 6 € [A,d]. Observe that § = 8, corresponds to the transfer T =

09" (0 + %) > 0. Therefore, for all T > T the optimal mechanism is a partial bunch-
ing one. Finally, since the Hamiltonian Hj is concave in ¢(.) and linear in U,,(.), the necessary
conditions are also sufficient for [Pj]. The necessary conditions are also sufficient for [P}] since
the Lagrangian L;(6) is concave in (g, Uy,) for all 6 € [0, ) (see Chiang (1992)).

If T < T, then a partial bunching contract is not feasible. Hence, for T < T, the optimal
solution is a full-bunching one implying ¢*(8) = q for all @ € [#,0]. Given that the mechanism
is s optimal, from IC and PC it follows that Upn(0) = E q*(r)dr. Therefore, from U, (6)

9 q*(1)dr, we get T — 0q = (0 — 0)q. Hence T = 0q. Therefore in the full bunching case 6 =

and ¢*(0) = :g for all 0 € [0, 0].

I<b| Il
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