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October 2004

Bonn Graduate Shool of EonomisDepartment of EonomisUniversity of BonnAdenauerallee 24 - 42D-53113 Bonn



                                     The Bonn Graduate School of  Economics is
                                                             sponsored by the



On the Existence of Linear Equilibria in the

Rochet-Vila Model of Market Making∗
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ON THE EXISTENCE OF LINEAR EQUILIBRIA IN THE
ROCHET-VILA MODEL OF MARKET MAKING

By Georg Nöldeke and Thomas Tröger

1. Introduction

Bagnoli, Viswanathan and Holden (2001) have presented a detailed inves-
tigation of linear equilibria in models of market making that follow either
Kyle (1985) or the extension of the Glosten and Milgrom (1985) model due
to Easley and O’Hara (1987). The study of linear equilibria in these models
is important as most of the market microstructure literature (See O’Hara
(1995) for a survey) focusses on such linear equilibria to understand the ef-
fects of differences in market microstructure on key variables such as liquid-
ity, the informational content of prices and the ability of informed traders
to profit from their private information. By deriving necessary and suffi-
cient conditions under which linear equilibria exist, Bagnoli, Viswanathan
and Holden delineate the range of distributions for which the implications
obtained from such studies of linear equilibria remain valid.

This paper extends the analysis in Bagnoli, Viswanathan and Holden
(2001). We study the existence of linear equilibria in Rochet and Vila’s
(1994) model of market making. The Rochet-Vila model differs from the
more familiar Kyle (1985) model in that a risk-neutral strategic trader ob-
serves not only private information about the asset payoff but also the liq-
uidity traders’ orders (noise trade) before submitting his own market or-
der. Market makers observe the net order flow, choose prices and then
execute every order.1 In contrast to the analysis in Bagnoli, Viswanathan
and Holden, we do not require the underlying random variables to be in-
dependent; indeed, we allow for an arbitrary degree of correlation between
asset payoff and noise trade. While most models of market making assume
independent random variables, this assumption is rather restrictive and has
no compelling justification. The Rochet-Vila model provides a convenient
starting point for an investigation of models of market making with de-
pendent random variables, as the dependence does not enter the strategic

1As demonstrated by Rochet and Vila this model is equivalent to the Kyle (1989) model
of competition in a limit order market when there is one risk neutral informed trader and
many risk-neutral market makers.
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traders’ problem, but only affects the inference problem of the market mak-
ers.

For the special case of independent random variables, the conditions
we obtain for the existence of linear equilibria in the Rochet-Vila model are
essentially equivalent to those obtained by Bagnoli, Viswanathan and Holden
(2001, Section 3) for the Kyle model. It then follows from Nöldeke and
Tröger (2001) that given independent random variables, a linear equilibrium
exists in the Rochet-Vila model for two different numbers of strategic traders
if and only if the random variables are normally distributed.

Relaxing the independence assumption has profound implications for the
existence of linear equilibria. Our main result shows that for distributions
that are determined by their moments linear equilibria in the Rochet-Vila
model exist for any number of strategic traders if and only if the random
variables are elliptically distributed.2 The most closely related result in the
literature is due to Foster and Viswanathan (1993). They show the existence
of linear equilibria in the Kyle model for any number of informed traders
when asset payoff and noise trading are semi-independent and elliptically
distributed. The important difference to our result lies in our demonstration
that the restriction to elliptically distributed random variables is not only
sufficient but necessary for the existence of linear equilibrium.

The remainder of this paper is organized as follows. Section 2 describes
the extension of the Rochet-Vila model to the case of N strategic traders
and introduces the definition of linear equilibrium. Section 3 presents a
characterization of linear equilibria from which we obtain a necessary and
sufficient condition for the existence of linear equilibria for a given number
of strategic traders. Section 4 characterizes those distributions which satisfy
this condition for any number of informed traders. Section 5 concludes with
a discussion. Proofs are in the Appendix.

2. The Model

The model extends Rochet and Vila (1994) by allowing for multiple strategic
traders. There are three types of traders: noise traders, risk neutral market
makers, and N ≥ 1 risk neutral strategic traders. The aggregate quantity
traded by noise traders and the payoff of the risky asset are given by exoge-
nous random variables. Noise trading is denoted by ũ. The payoff of the

2See Fang, Kotz and Ng (1990) for a detailed study of elliptical distributions. Foster
and Viswanathan (1993) present many examples of elliptical distributions and provide
references to applications in financial economics. A formal definition is given in Section 4.
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risky asset is denoted by ṽ. In contrast to most of the existing literature we
do not assume that ũ and ṽ are independent. We do however require the
following assumption.

Assumption 1 The distribution of (ũ, ṽ) has finite second moments sat-
isfying σ2

u = V ar[ũ] > 0, σ2
v = V ar[ṽ] > 0, and | σuv |< σuσv, where

σuv = Cov[ũ, ṽ].

The assumption that second moments are finite is necessary for a linear
equilibrium as defined below to exist.3 The additional assumptions exclude
(trivial) special cases in which the distribution has a one-dimensional sup-
port.

All strategic traders observe the realization of (ũ, ṽ) and then simul-
taneously decide on the market order they submit. A strategy for the
strategic trader n = 1, · · · , N is given by a Lebesgue measurable function
Xn : IR2 → IR, determining his market order as a function of the observed
values of the underlying random variables. For a given strategy Xn, let
x̃n = Xn(ũ, ṽ). A strategy combination (X1, · · · , XN ) determines the order
flow as ỹ =

∑
n x̃n + ũ.

Market makers observe the realization of the order flow, but not any of
its components, and engage in a competitive auction to serve the order flow.
The outcome of this competition is described by a Lebesgue measurable
function P : IR → IR, called the pricing rule. Given (P,X1, · · · , Xn) define
p̃ = P (ỹ) and let π̃n = (ṽ − p̃)x̃n denote the resulting trading profit of
insider n. To ensure that the expected profit of an insider is well-defined
for all feasible (P,X1, · · · , Xn), we restrict the strategy set of an insider
to X = {Xn : IR2 → IR | E[x̃2

n] < ∞} and the set of pricing rules to
P = {P | ∀(X1, · · · , XN ) ∈ XN : E[p̃2] < ∞}.

The equilibrium conditions are that the competition between market
makers drives their expected profits to zero conditional on the order flow
and that each strategic trader chooses his trading strategy to maximize his
expected profits.

Definition 1 (P,X1, · · · , XN ) ∈ XN × P is an equilibrium for the model
(ũ, ṽ, N) if

E[ṽ − p̃ | ỹ] = 0 (1)
3See Bagnoli, Viswanathan and Holden (2001) for an alternative definition of equilib-

rium under which they obtain existence of linear equilibria in models of market making
for distributions of (ũ, ṽ) without finite second moments.
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and, for all n and X ∈ X ,

E[π̃n] ≥ E[(ṽ − P (
∑
m6=n

x̃m + X(ũ, ṽ) + ũ))X(ũ, ṽ)]. (2)

It will be convenient to refer to (p̃, x̃1, · · · , xN ) as an equilibrium outcome of
the model (ũ, ṽ, N) if there exists an equilibrium (P,X1, · · · , XN ) such that
p̃ = P (ỹ) and x̃n = Xn(ũ, ṽ) for all n.

We are especially interested in those equilibria where the pricing rule is
a linear function of the observed order flow.4

Definition 2 An equilibrium (P,X1, · · · , XN ) for the model (ũ, ṽ, N) is lin-
ear if there exist µ, λ ∈ IR such that

∀y : P (y) = µ + λy.

3. Existence of Linear Equilibria for given N

We begin our analysis by obtaining a characterization of linear equilibria.
Let ρ = σuv/σuσv denote the coefficient of correlation between ũ and ṽ. By
Assumption 1 we have | ρ |< 1. Let

λN =
σv

σu
kN , (3)

where

kN =

√
(N − 1)2ρ2

4
+ N − (N − 1)ρ

2
, (4)

and let
µN = E[ṽ]− λNE[ũ]. (5)

Proposition 1 If (P,X1, · · · , XN ) is a linear equilibrium for the model
(ũ, ṽ, N) then

∀y : P (y) = µN + λNy.

The resulting equilibrium outcome (p̃, x̃1, · · · x̃n) satisfies

p̃ = ṽ − 1
N + 1

(ṽ − λN ũ− µN ) (6)

4To ease comparison with the existing literature, we follow the convention of referring
to any affine function as a linear function throughout this paper.
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and
x̃n =

1
λN (N + 1)

(ṽ − λN ũ− µN ) , n = 1, · · · , N, (7)

with resulting order flow

ỹ =
1

λN (N + 1)
(N (ṽ − µN ) + λN ũ) . (8)

The proof of Proposition 1 proceeds by showing that given any linear pricing
rule P (y) = µ+λy the strategic traders will choose strategies satisfying the
counterpart to (7) for the parameters µ and λ. This results in an order
flow that is the counterpart to (8). From the market efficiency condition
(1) it is immediate that every equilibrium must satisfy E[p̃] = E[ṽ] and
E[(ṽ − p̃)ỹ] = 0. These two equations determine the parameters of the
pricing rule as given in the proposition.

Proposition 1 shows that whenever it exists, a linear equilibrium is
unique in the sense that every linear equilibrium results in the same equilib-
rium outcome.5 Concerning the interpretation of the above characterization
of linear equilibria we content ourselves with the observation that if a lin-
ear equilibrium exists it is completely characterized by the distributional
parameters E[ũ], E[ṽ], σu, σv, ρ and the number of strategic traders N . In
particular if a linear equilibrium exists for a given (ũ, ṽ, N) the pricing rule
coincides with the one in a model in which ũ and ṽ are normally distributed
(in which a linear equilibrium exists; see Theorem 1 below).

Proposition 1 can be used to obtain a simple necessary and sufficient
condition for the existence of a linear equilibrium for given N . To do so, it
is convenient to consider a linear transformation of the underlying random
variables. Let ũ∗ = (ũ − E[ũ])/σu and ṽ∗ = (ṽ − E[ṽ])/σv denote the
standardization of the random variables (ũ, ṽ). Furthermore, let

z̃∗ =
1√

1− ρ2
(ũ∗ − ρṽ∗) .

The random variable z̃∗ is the (standardized) component of the noise trade
which is orthogonal to the payoff of the asset. A straightforward calculation
indeed verifies that E[z̃∗] = 0, V ar[z̃∗] = 1 and Cov[ṽ∗, z̃∗] = 0.

5For N = 1, Rochet and Vila (1994) show that the equilibrium outcome of their model
is unique. Consequently, Proposition 1 describes the unique equilibrium outcome of the
Rochet-Vila model whenever a linear equilibrium exists. The question whether uniqueness
of the equilibrium outcome in the Rochet-Vila model extends to the case N > 1 is beyond
the scope of this paper.
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Proposition 2 A linear equilibrium exists in the model (ũ, ṽ, N) if and only
if

E[αN z̃∗ − ṽ∗ | z̃∗ + αN ṽ∗] = 0, (9)

where

αN =
kN

√
1− ρ2

1− kNρ
. (10)

The result in Proposition 2 has a simple interpretation in terms of the dis-
tribution of the underlying random variables if ũ and ṽ are independent. In
that case we have ρ = 0, implying z̃∗ = ũ∗ and kN = αN =

√
N so that a

linear equilibrium exists if and only if

E[
√

Nũ∗ − ṽ∗ | ũ∗ +
√

Nv∗] = 0.

This is identical to the condition for the existence of linear equilibria in
the Kyle model with N informed traders in Proposition 1 of Nöldeke and
Tröger (2001). Under a fairly mild technical condition on the characteristic
function of ṽ it can be shown (cf. Bagnoli, Viswanathan and Holden, 2001)
that this condition is satisfied if and only if ṽ∗ has the same distribution as

1√
N

N∑
i=1

ũ∗n,

where the random variables ũ∗n are independent and have the same distrib-
ution as ũ∗.

Without assuming independence of ũ and ṽ condition (9) has no such
simple interpretation. We thus proceed to an investigation of the distribu-
tional implications of the requirement that a linear equilibrium exists for all
N .

4. Existence of Linear Equilibria for all N

By Proposition 2, we must determine those distributions of (z̃∗, ṽ∗) or (ũ, ṽ),
respectively, that satisfy (9) for all N . To this end, the following definition
is useful (Fang, Kotz and Ng, 1990).

Definition 3 The distribution of a random variable (ã, b̃) is rotation in-
variant (or spherical, or radially symmetric) if for all η ∈ IR the random
variable obtained from a rotation by the angle η around the origin,

(ãη, b̃η) = (cos ηã + sin ηb̃,− sin ηã + cos ηb̃),
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has the same distribution as (ã, b̃).
The distribution of any linear transformation of a rotation invariant

random variable is elliptical.

Note that a distribution is rotation invariant if it can be decomposed into
two independent distributions: the uniform distribution over directions in
the plane, and a distribution over Euclidian distances from the origin. In this
decomposition any distribution on [0,∞) can be used as a distribution over
Euclidian distances, so that there is a one-to-one correspondence between
distributions on [0,∞) and the set of rotation invariant distributions. For
example, the normal distribution with unitary variance covariance matrix
or the uniform distribution on any circle centered at the origin is rotation
invariant. Therefore, any normal distribution or uniform distribution on an
ellipse is elliptical. See Foster and Viswanathan (1993) for further examples.

Using standard results about characteristic functions it is straightforward
to show that condition (9) holds for all N if the distribution of (z̃∗, ṽ∗)
is rotation invariant. As we show in the following proposition the reverse
implication holds if the distribution of (z̃∗, ṽ∗) is determined by its moments,
that is all moments of the distribution exist and there is no other distribution
with the same moments.

Proposition 3 Suppose the distribution of (z̃∗, ṽ∗) is determined by its mo-
ments. Then condition (9) holds for all N if and only if the distribution of
(z̃∗, ṽ∗) is rotation invariant.

The proof of the “only if” part of the proposition uses the assumption that
the distribution of (z̃∗, ṽ∗) is determined by its moments. This implies that
the distribution of (z̃∗, ṽ∗) is determined by the higher order partial deriva-
tives of its characteristic function at the origin. Hence, once we have shown
that these derivatives are rotation invariant, we can conclude that the distri-
bution of (z̃∗, ṽ∗) is rotation invariant. More precisely, we have to show that
at the origin (s, t) = (0, 0) the higher order partial derivatives of Φη(s, t)
are independent of η, where Φη(s, t) denotes the characteristic function of
(z̃∗η , ṽ∗η).

In terms of the characteristic function of (z̃∗, ṽ∗), requiring condition
(9) for all N provides a set of points (s, t) and η where the partial deriv-
ative (∂Φη(s, t))/(∂η) vanishes. In neighborhoods of the origin, this set is
sufficiently rich such that for any rotation angle η, the higher order partial
derivatives of (∂Φη(s, t))/(∂η) with respect to s and t vanish at (s, t) = (0, 0).
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Therefore, at (s, t) = (0, 0) the higher order partial derivatives of Φη(s, t)
are independent of η, as was to be shown.

Using Proposition 3, it is not difficult to provide necessary and sufficient
conditions for the existence of linear equilibria in terms of the distribution
of (ũ, ṽ). By construction, we have (ũ, ṽ) = T (z̃∗, ṽ∗), where T : IR2 → IR2

is an injective linear transformation. It is then straightforward to verify
that the distribution of (z̃∗, ṽ∗) is determined by its moments whenever this
holds for the distribution of (ũ, ṽ). Furthermore, it is immediate that the
distribution of (ũ, ṽ) is elliptical if and only if the distribution of (z̃∗, ṽ∗) is
rotation invariant. Hence, we obtain without further proof:

Theorem 1 Suppose the distribution of (ũ, ṽ) is determined by its moments.
Then a linear equilibrium in the model (ũ, ṽ, N) exists for all N if and only
if the distribution of (ũ, ṽ) is elliptical.

Remark: In the special case in which ṽ∗ and z̃∗ are independent a stronger
version of Proposition 3 can be obtained. The arguments from Nöldeke
and Tröger (2001) can be applied to dispense with the requirement that
the distribution of (z̃∗, ṽ∗) is determined by its moments and obtain the
conclusion that (9) holds for all N if and only if the distribution of (z̃∗, ṽ∗) is
normal. As the distribution of (ũ, ṽ) is normal if and only if the distribution
of (z̃∗, ṽ∗) is normal, one obtains the result that whenever the error term in
the linear regression of ũ on ṽ is independent of ṽ a linear equilibrium exists
in the model (ũ, ṽ, N) for all N if and only if (ũ, ṽ) are normally distributed.

5. Discussion

We have studied necessary and sufficient condition for the existence of linear
equilibria in the Rochet-Vila model of market making. This complements
Bagnoli, Viswanathan and Holden (2001), who study linear equilibria in
other models of market making. Our results show that the conditions for
existence of linear equilibria in the Rochet-Vila model are equivalent to those
in the Kyle model in case asset payoff and noise trading are independent.
Without the independence assumption we find that for distributions that
are determined by their moments linear equilibria in the Rochet-Vila model
exist for all numbers of informed traders if and only if the random variables
are elliptically distributed.

To prove our characterization of the elliptically distributed class of ran-
dom variables we rely on the assumption that the distribution of (ũ, ṽ) is
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determined by its moments. While there are distributions which violate this
assumption (the log-normal is a prominent example in the one-dimensional
case), we note that in many cases of interest this assumption is satisfied.
For instance, if the distribution of (ũ, ṽ) has compact support, as it is as-
sumed by Rochet and Vila (1994) except when they consider the example
of normally distributed random variables, it is determined by its moments.
More generally, Shohat and Tamarkin (1950) show that the distribution of
(ũ, ṽ) is determined by its moments if

∞∑
k=1

(E[ṽ2k] + E[ũ2k])−1/2k = ∞,

i.e., the higher order moments must not increase too quickly. Given that
many of the familiar one-dimensional distributions are determined by their
moments, the result in Peterson (1982), who shows that the distribution of
(ũ, ṽ) is determined by its moments if the marginal distributions of ũ and ṽ
are determined by their moments, is of particular interest. For more recent
results on the multidimensional problem of moments we refer to Berg (1995).

Our method of proof does not work without the assumption that the
distribution is determined by its moments: based on the observation that
there are asymmetric one-dimensional distributions for which all moments
exist and all odd moments are equal to zero, it is straightforward to construct
an example of a bivariate distribution which is not rotation invariant, but
for which all moments exist and are rotation invariant. It remains an open
question whether a different approach could be used to broaden the class of
distributions under which Theorem 1 remains true.

Another interesting extension of our analysis would be to investigate
whether Theorem 1 holds true in the Kyle model with multiple informed
traders. The difficulty in obtaining such a result for the Kyle model lies
in excluding the possibility that linear equilibria exist in which strategic
traders use non-linear strategies. The existence of such equilibria (which we
have not been able to exclude in general) would invalidate the counterpart to
Proposition 1 for the Kyle model. The additional assumption that E[ũ | ṽ] is
linear in ṽ eliminates the difficulty, but also eliminates much of the interest
in the problem. Nevertheless it is noteworthy that under this assumption
the Kyle model will yield a counterpart to Proposition 2, albeit—unless
the random variables are uncorrelated— with different values of αN . This
implies that even under the additional assumption mentioned above the
conditions for the existence of linear equilibria in the Rochet-Vila model
and in the Kyle model for given N are not the same.
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APPENDIX

Proof of Proposition 1: Suppose (P,X1, · · · , XN ) is a linear equilib-
rium for the model (ũ, ṽ, N) with P (y) = µ + λy. Because Xn(u, v) is an
equilibrium strategy and thus satisfies (2):

Xn(u, v) ∈ arg max
x

v − µ− λ(
∑
m6=n

Xm(u, v) + u + x)

x, (ũ, ṽ)− a.e..

As ṽ is non-degenerate this condition can only be satisfied if λ > 0. For
λ > 0 the first order condition characterizes a maximum and yields

∀n : ṽ − µ− λ

(
ũ +

∑
m

x̃m + x̃n

)
= 0. (11)

Hence x̃n is independent of n. In particular, x̃m = x̃n in (11), implying

x̃n =
ṽ − µ− λũ

λ(N + 1)
. (12)

Consequently, the order flow is given by

ỹ =
1

λ(N + 1)
[N(ṽ − µ) + λũ] (13)

and thus
p̃ =

1
N + 1

[Nṽ + µ + λũ]. (14)

The market efficiency condition (1) implies

E[ṽ − p̃] = 0 (15)

and
E[(ṽ − p̃)ỹ] = 0. (16)

Using (14) and (15) we obtain

µ = E[ṽ]− λE[ũ]. (17)

Using (17) to eliminate µ from equations (13) and (14), (16) yields

Nσ2
v − λ2σ2

u − λ(N − 1)σuv = 0.
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Solving the last equation for λ > 0 then yields the equilibrium value of λN

as given by (3) and (4). Equation (5) is then immediate from (17) and (6)
- (8) follow from (12) - (14).

Proof of Proposition 2: From Proposition 1 every linear equilibrium
satisfies (6) and (8). Substituting into (1) we obtain

E[ṽ − λN ũ− µN | Nṽ + λN ũ] = 0 (18)

as a necessary condition for the existence of a linear equilibrium. Condition
(18) is also sufficient for the existence of a linear equilibrium. To see that,
note that given the pricing rule P (y) = µN + λNy the strategies

Xn(u, v) =
1

λN (N + 1)
(v − µN − λNu)

satisfy condition (2), cf. the proof of Proposition 1. By (18) the induced
order flow ỹ and price p̃ then satisfy condition (1) and (P,X1, · · · , Xn) is a
linear equilibrium.

It thus remains to show that condition (18) is equivalent to (9). Using
(3) it is straightforward to see that (18) is equivalent to

E[kN ũ∗ − ṽ∗ | kN ũ∗ + Nṽ∗] = 0.

Substituting ũ∗ =
√

1− ρ2z̃∗ + ρv∗ we obtain the equivalent condition

E[kN

√
1− ρ2z̃∗ − (1− kNρ)ṽ∗ | kN

√
1− ρ2z̃∗ + (N + ρkN )ṽ∗] = 0. (19)

Because kN as defined by (4) satisfies the relation

N − k2
N − kN (N − 1)ρ = 0

we have 1− kNρ 6= 0 (as otherwise ρ = 1) and

kN

√
1− ρ2

1− kNρ
= αN =

N + kNρ

kN

√
1− ρ2

. (20)

Using (20) one sees that (19) is equivalent to (9).

Proof of Proposition 3:
The following fact about the sequence defined by (10) is needed below.

αN is strictly increasing in N. (21)
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To prove this, note first that αN is strictly increasing in kN . It thus suffices
to show that kN is strictly increasing in N . For ρ ≤ 0 this is immediate
from the definition of kN . Hence, consider ρ > 0.

The function k : [1,∞) → IR given by

k(x) =

√
(x− 1)2ρ2

4
+ x− (x− 1)ρ

2

is differentiable with derivative given by

k′(x) =
(x−1)ρ2

2 + 1− ρ
√

(x−1)2ρ2

4 + x

2
√

(x−1)2ρ2

4 + x
.

From ρ < 1 we obtain(
(x− 1)ρ2

2
+ 1

)2

> ρ2

(
(x− 1)2ρ2

4
+ x

)

and thus k′(x) > 0. Consequently, k(x) strictly increasing. As kN = k(N)
for all N ∈ IN the desired result (21) follows.

For any infinitely differentiable function f of two real variables we use
the shortcuts (s, t ∈ IR, m,n ∈ IN0 = {0, 1, . . .})

f(m)(n)(s, t) =
∂m+nf

∂sm∂tn
(s, t), f(m)(n) = f(m)(n)(0, 0).

From Theorem 6.1.1. in Lukacs and Laha (1969, p. 103) condition (9) is
satisfied for all N if and only if (i =

√
−1 denotes the imaginary unit)

∀s,N : E[(αN z̃∗ − ṽ∗)eis(z̃∗+αN ṽ∗)] = 0.

Multiplying by i shows that this is equivalent to

∀s,N : αNE[iz̃∗eisz̃∗+iαNsṽ∗ ] = E[iṽ∗eisz̃∗+iαNsṽ],

or
∀s,N : αNΦ(1)(0)(s, αNs) = Φ(0)(1)(s, αNs), (22)

where Φ denotes the characteristic function of (z̃∗, ṽ∗).
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Now suppose the distribution of (z̃∗, ṽ∗), and thus its characteristic func-
tion, is rotation invariant; i.e., we have Φ(s, t) = ξ(s2 + t2) for some function
ξ. This implies (22).

To obtain the reverse implication, suppose that (22) is satisfied. Rotating
the random vector (z̃∗, ṽ∗) by the angle η ∈ IR yields the random vector
(z̃∗η , ṽ∗η) with the characteristic function

Φη(s, t) = E[eis(cos ηz̃∗+sin ηṽ∗)+it(− sin ηz̃∗+cos ηṽ∗)]
= Φ(s cos η − t sin η, s sin η + t cos η).

Because all moments exist for (z̃∗, ṽ∗), all moments exist for (z̃∗η , ṽ∗η) and
these moments are determined by the higher order partial derivatives of
the characteristic functions Φ(s, t) and Φη(s, t) at (0, 0). Because (z̃∗, ṽ∗) is
determined by its moments, it is rotation invariant if for all rotation angles
η the moments of (z̃∗η , ṽ∗η) equal those of (z̃∗, ṽ∗). I.e., it is sufficient to show
that

∀η ∈ IR, m, n ∈ IN0 : Φη
(m)(n) = Φ(m)(n). (23)

For all ŝ, t̂ ∈ IR, define

f(ŝ, t̂) = −t̂Φ(1)(0)(ŝ, t̂) + ŝΦ(0)(1)(ŝ, t̂).

It is straightforward to verify that

∀s, t, η ∈ IR :
∂

∂η
Φη(s, t) = f(ŝ(s, t, η), t̂(s, t, η)), (24)

where

ŝ(s, t, η) = s cos η − t sin η, t̂(s, t, η) = s sin η + t cos η.

From (22) we get

∀ŝ ∈ IR, N ∈ IN : f(ŝ, αN ŝ) = 0.

Therefore, for all k ∈ IN0 we have

∀ŝ ∈ IR, N ∈ IN :
dk

dŝk
f(ŝ, αN ŝ) = 0. (25)

Using induction over k, we get the following formula for higher order deriv-
atives:

∀k ∈ IN0, ŝ ∈ IR, N ∈ IN :
dk

dŝk
(f(ŝ, αN ŝ)) =

k∑
i=0

αi

(
k
i

)
f(k−i)(i)(ŝ, αŝ).
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For ŝ = 0, the r.h.s. is a polynomial in α. Because of (25) and {αN | N ∈ IN}
is infinite by (21), the polynomial has infinitely many zeros and is therefore
identically zero; i.e., we have

∀m,n ∈ IN0 : f(m)(n) = 0. (26)

The chain rule and induction over m + n imply that

∂m

∂sm

∂n

∂tn
f(ŝ(s, t, η), t̂(s, t, η))

is a linear combination of

{f(k)(l)(ŝ(s, t, η), t̂(s, t, η)) | k + l ≤ m + n}.

This together with (ŝ(0, 0, η), t̂(0, 0, η)) = (0, 0) and (26) implies that

∂m

∂sm

∂n

∂tn
f(ŝ(s, t, η), t̂(s, t, η))

∣∣∣∣
(s,t,η)=(0,0,η)

= 0. (27)

From (24) and (27) we get

∀m,n ∈ IN0, η ∈ IR :
∂

∂η
Φη

(m)(n) = 0,

which implies (23).
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