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Abstract

In this paper we consider the problem of regulating an open access essential facility. A

vertically integrated firm owns an essential input and operates on the downstream market

under the roof of a regulatory mechanism. There is a potential entrant in the downstream

market. Both competitors use the same essential input to provide the final services to the

consumers. The regulator designs a mechanism that guarantees financing of the essential

input and adequate competition in the downstream market. We consider a regulatory mech-

anism that grants non-discriminatory access of the essential facility to a competitor. We

show that this mechanism is welfare improving but it generates inefficient entry. That is a

more efficient competitor may stay out of the market or a less efficient competitor may enter

the market.
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1 Introduction

There is an increasing worldwide trend to liberalize markets and introduce competition for ser-

vices that were previously operated by a monopolist. Markets like electricity, railways, telecom-

munication services, gas and water supply are now (or will be in the near future) open to

competition. A common feature of these markets is the presence of an ”essential facility” (or

input). The term essential facility is used to describe a facility or infrastructure which is essential

for reaching customers and/or enabling competitors to carry on their business and it is a facility

that cannot be cheaply duplicated. In this scenario, all competitors, contemplating entry in this

market, will have to use the same essential facility (as input) to provide these services. Hence

regulating the access of essential facility is an important issue.

Allowing for competition reduces the need to regulate if, due to technical changes, the entrant

or entrants can bypass the infrastructure of the monopolist. For example, it is now possible to

provide telecommunication services with wireless or cable TV networks and these companies can

compete with wire line networks on the telecommunication services market. However, when this

sort of bypass is not possible, that is, when there is a monopoly bottleneck in the production chain

due to the presence of the essential facility, competition and regulation are complements rather

than substitutes.1 Long-distance electricity transmission, high-speed rail-tracks, local wire line

telecommunication, water supply network are still considered as natural monopolies. In these

markets, allowing the access of essential facility (the bottleneck input) of the incumbent firm to

competitors helps to achieve a sufficient level of competition for the final services. Moreover,

financing the infrastructure is also an important concern for the regulator. Therefore, there is

a two dimensional conflict between granting generous access that reduces downstream profits

and the possibility of recovering the cost of the essential input. Hence, the downstream market

structure is a crucial part of the regulatory environment in a market with essential facility.

In this paper, we deal simultaneously with this two dimensional conflict and in particular, we

consider an endogenous market structure on the downstream market.

In the theory of access pricing proposed by Laffont and Tirole (1994), the market structure

is assumed to be exogenously given.2 In Laffont and Tirole (1994), the access charges, designed

by the regulator, aim at maximizing the total consumer surplus taking the number and the type

of competitors as given. Our approach is different since in our problem the regulator specifies

the access charges, to be paid by the potential entrant, without knowing the entrant’s cost
1World Bank (2002), World Development Report, chapter 8.
2So does the Efficient Component Pricing Rule (ECPR) approach of Baumol et al. (1982) and Armstrong

(2001).
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conditions. Therefore, in our problem, entry takes place after the regulator has specified the

access charges. Auriol and Laffont (1993) consider the problem of firms with unknown cost

competing ex-ante for a market. In their problem, the market structure, ex-post, is part of the

regulatory mechanism and the regulator can allow the firms to operate as a duopoly in order to

reduce their information rent. Hence, the mechanism in Auriol and Laffont (1993) completely

regulates the market.3 We depart from this framework and analyze the situation in which it is

not possible for the regulator to regulate the activities of the potential entrant. Consequently,

there is no competition ex-ante for the market (the regulator cannot decides on the market

structure ex-ante) but ex-post, there is competition on the market.

In this paper, we assume that the regulator cannot extract the entrant’s cost information.

Given this lack of information, the regulator allows the entrant to use the essential facility on an

open access basis provided it pays the incumbent some specified price for using the same. Open

access means that any competitor that meets some pre-specified requirements (for example,

technical, safety or financial fitness requirements) can get access of the essential input on a

non-discriminatory basis.4 Granting a non-discriminatory access to the essential input is quite

common in practice. The European Commission specifies that access fees and access conditions

to the bottleneck input should be designed on a non-discriminatory basis (irrespective of the

entrant’s cost). For example, in the preamble to the rail directive 2002/14/EC, it is required

that: ”To ensure transparency and non-discriminatory access to rail infrastructure for all railway

undertakings, all the necessary information required to use the access rights are to be published

in a network statement” and ”The charging and capacity allocation schemes should permit

equal and non-discriminatory access for all undertakings”. Non-discriminatory access to the

railway tracks has been advocated by a large number of competition authorities, at least for

freight operators. For passenger services, access is limited to moderate competition (in the

UK for example).5 Similarly, in telecommunication, non-discriminatory access of wire lines

to competitors is the recommended policy. It is also quite common to have an asymmetric

regulatory regime between the incumbent and the entrants. The entrants are often free to pick

and choose the market and consumers while the incumbent is forced to serve all consumers.

Universal service obligations often apply only to the historical operator in the market. This

asymmetric treatment follows from the open-access regime: non-discrimination does not allow

the regulator to impose targeted regulatory constraints on the entrant beyond some minimal
3In Dana and Spier (1994), the government only regulates the market structure but not the firms’ output.
4In the European Union, railway undertakings need to apply for a licence and a safety certificate delivered by

the Member States to provide rail services.
5Campos and Cantos (1999).
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quality standard common to all entrants. While the established monopolist is under the roof

of a more stringent regulatory regime, especially when the regulator finances, at least partially,

the incumbent’s infrastructure.

Our paper integrates these two features: open and non-discriminatory access to the essential

input and different regulatory regime for the incumbent and the competitor. We consider the

problem of regulating both the service provision of an incumbent firm which is the owner of an

essential input (for example, railway tracks) and the access charges to be paid by the competitors

for using the incumbent’s input. Cost recovering of the bottleneck input is a major concern in this

problem. This paper describes the regulatory mechanism when the essential input is operated

on an non-discriminatory open access basis. It also raises the question of efficient entry. Entry

is not efficient when either a more efficient competitor stays out of the market or a less efficient

competitor enters the market.

The regulatory mechanism, under known marginal cost of the incumbent, prescribes (1)

above marginal cost pricing if entry does not occur but a price below the incumbent’s marginal

cost if entry does occur, (2) a positive lump-sum entry fee to be paid by the entrant to finance the

incumbent’s network cost, (3) a per-unit subsidy to be paid by the incumbent to the entrant to

reduce the post entry marginal cost of the entrant to achieve near competitive output, (4) a public

subsidy to finance the infrastructure cost uncovered by access charges, (5) competition reduces

the share of public transfer in infrastructure financing and (6) absence of cross subsidization

of the incumbent’s network costs by the incumbent’s profit on the downstream market. Under

this regulatory regime, a potential entrant, more efficient than the regulated incumbent, may

stay out of the market. The regulator imposes high access charges and thereby allows fewer

entry to reduce the financial needs of the infrastructure owner. Therefore, entry of a more

efficient competitor does not necessarily occur since there is a conflict between competition

and infrastructure financing. If the regulator is unaware of the incumbent’s cost of producing

downstream services, she designs a mechanism which leaves an information rent to the more

efficient incumbent firm. Given that these rents are socially costly, the regulator reduces these

rents by allowing more entry on the downstream market. A more severe competitive pressure

reduces the information rents paid to the incumbent. Hence, under asymmetric information,

the regulator partially substitute incumbent’s production by entrant’s production. However,

inefficient entry occurs in both directions. An entrant less cost efficient than the incumbent can

enter the downstream market or an entrant more efficient cannot operate on the market.

One can compare the results of our paper with other papers dealing with the problem of reg-

ulation with an endogenous market structure. Caillaud and Tirole (2003) consider the problem
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of infrastructure financing under asymmetric information. Like in our model, an open access

policy raises welfare but since competition reduces profit, the project could be non-viable if it

is operated on an open access basis. However, in their model, a monopoly franchise on the

downstream market is granted to the incumbent firm in situations where competition may be

highly valuable, for example, when the market has a high future profitability. It is only for less

favorable market conditions that the downstream market is open to competition. This pattern

results from the common value environment of the model. Both social welfare and profit in-

crease with the market profitability and it is not possible for the regulator to extract the private

information of the incumbent when the market profitability is high unless it grants a monopoly

franchise. The regulator and the incumbent firm are in a situation of non-responsiveness where

efficiency and incentives conflict.6 Caillaud (1990) considers the problem of regulating an incum-

bent firm facing the threat of entry on the downstream market. Like in our setting, unregulated

competitors can enter the downstream market after the regulator had specified the regulatory

mechanism. But, in Caillaud (1990) competitors bypass the essential input of the incumbent

and supplies the service on the downstream market using an alternate technology. The regulator

then has fewer instruments to influence the entry decision and she cannot credibly deter entry

by setting large access charges. Caillaud’s model applies, for example, to competition between a

regulated train operator and competitive coach services. In his framework, there is a competitive

fringe of entrants on the market and the regulator shuts down the incumbent if the competitors

are more efficient than the incumbent. This is not possible in our framework, since shut down

implies that the market would be then left to an unregulated monopolist. In a market where

competitors use the incumbent’s essential facility, it is not possible to have a competitive fringe

of entrants because perfect competition drives profits to zero. Hence, either the access charges

should be set to zero to allow for entry or, if the regulator wants the entrants to partially finance

the infrastructure, there is no entry.

2 The main problem

A regulated incumbent firm provides services to the final consumers. To provide the services, the

firm uses an essential facility (network) as input. There is a potential entrant on the downstream

market. To operate on the downstream market, both the incumbent and the entrant use the

same essential input. The entrant can use the incumbent’s essential input provided that it
6Guesnerie and Laffont (1984).
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pays the incumbent an appropriate access charge.7 We suppose that the incumbent firm is

vertically integrated and owns the network. The incumbent receives public subsidies to finance

the network. Given that the public authority finances (at least partially) the essential input

of the incumbent, it regulates the incumbent on the downstream market. In particular, the

regulator (or public authority) specifies the amount of services that the incumbent should supply

to the consumers. The regulator also specifies the amount of access charge that the incumbent

should receive from the entrant if it decides to enter the downstream market. The access charge,

in our problem is a two-part tariff that is, it consists of a fixed entry fee and a per-unit fee.

Given the open access nature of the essential facility, an entrant who pays the access charge to

the incumbent, can operate on the downstream market without being further regulated. The

regulatory mechanism is observable and hence the potential entrant decides on whether or not

to enter the downstream market after observing the decision imposed on the incumbent by the

regulator. Figure 1 depicts the timing of the events.

- time
Firms learn
their costs privately.

The regulator designs
the regulatory mechanism.

The potential entrant
decides on entry

Active firms compete
on the downstream market.

Figure 1: The timing of the events

The downstream market demand function is P (Q) = a − bQ where a > 0, b > 0, Q is the

quantity demanded and P (Q) is the market clearing price corresponding to Q. The vertically

integrated incumbent builds up the essential facility and provides services to the final consumers.

The (known) fixed cost of building up the infrastructure is c > 0. There is no cost of using the

infrastructure.8 The incumbent can supply services at a constant marginal cost θ ∈ [θ, θ]. The

total cost of the integrated firm (or incumbent), when it supplies qi units, is C(qi, θ) = θqi + c.

We will consider the possibility of both known and unknown cost. When the cost is unknown,

we need the following assumptions for our analysis.

1. The marginal cost has a continuous and almost everywhere differentiable density f(.) and

f(θ) > 0 for all θ ∈ [θ, θ],
7The European Union adopted this type of regime for gas, electricity and rail markets: the network owner

should provide access to competitors on a non-discriminatory basis.
8This is for simplicity only. If there is a marginal cost ψ of operating on the network, the per-unit access

charge paid by the entrant and the incumbent’s marginal cost should both be increased by ψ and the analysis is

identical.
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2. The distribution satisfies the hazard rate condition: F (θ)
f(θ) is increasing in θ.

The potential entrant can produce an amount qe at a marginal cost of φ ∈ [θ, θ]. Throughout

the paper we assume that the marginal cost of the entrant is unknown and that it follows a

uniform distribution, that is g(φ) = 1
∆ for all φ ∈ [θ, θ] where ∆ ≡ θ − θ. We also assume that

the marginal cost of the entrant is independent of the marginal cost of the incumbent. When

correlation between the incumbent’s and the entrant’s cost is positive, the regulatory problem

is in general non concave, hence untractable (see Caillaud (1990)). With independence, the

problem may be non concave too but a solution is possible. The entrant observes the incumbent’s

regulatory regime before his entry decision. If the potential entrant decides to enter the market,

it has to compensate the incumbent adequately. We consider a two part access charge-a fixed

fee A and a per-unit fee α. In our problem, an entrant, that supplies qe > 0 units of the facility,

pays A + αqe to the incumbent. The amounts of A and α are specified by the regulator.

The regulator maximizes the consumer surplus net of transfer to the incumbent, that is,

W = S(Q)− P (Q)Q− t where S(Q) =
∫ Q
0 P (x)dx and t is the amount of transfer paid by the

regulator to the incumbent. In this context, the transfer t is meant to finance the infrastructure.

We assume that there exists a non-distortionary tax system and hence the shadow cost of public

fund is equal to zero. Hence, the regulator has four instruments at her disposal-the quantity of

the incumbent qi, the transfer t, the fixed fee A and the per-unit fee α.

There are two stages to our problem. In the first stage the regulator offers a regulatory

mechanism to the incumbent. The regulatory mechanism M = 〈qi(.), A(.), α(.), t(.)〉 specifies a

quantity-access charge-transfer quadruple that depends on the marginal cost of the incumbent.

Here the quantity of the incumbent, fixed fee and per unit fee of the entrant and the transfer are

mappings from the interval of types to a subset of the real line. In particular, qi : [θ, θ] → R+,

A : [θ, θ] → R, α : [θ, θ] → R and t : [θ, θ] → R. We restrict attention to continuous and

differentiable mechanisms. Given the regulatory mechanism, in stage 2, the potential entrant

decides whether or not to enter the market. If it decides to enter, it pays the access charge to

the incumbent and decides what amount of service it will supply.

In our framework, the entrant observes the regulatory mechanism before it makes its entry

and quantity decisions. The entrant is a Stackelberg follower in the quantity game. The price is

then set to equate demand and supply. The Stackelberg structure of the quantity game reflects

the dominant position of the incumbent in the downstream market. Competitive entry is not

possible in this framework since under perfect competition, the price is driven to marginal cost

and firms make zero profit. Hence the entrant cannot pay the access charges. Before analyzing
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our main problem, we first study the case of no entry under both complete and incomplete

information.

3 Downstream Monopoly

In this section we assume that the incumbent firm does not face the threat of entry, that is

the incumbent is a monopolist. The regulatory mechanism M̃(θ) = 〈qi(θ), t(θ)〉 then specifies a

quantity transfer pair only. If the regulator knows the true cost of the incumbent, the optimal

regulatory mechanism is obtained by maximizing W (θ) = S(qi(θ))−P (qi(θ))qi(θ)− t(θ) subject

to the participation constraint of the incumbent: Πi(θ) = (P (qi(θ))− θ)qi(θ)− c + t(θ) ≥ 0.

PROPOSITION 3.1 Without the threat of entry, the optimal regulatory mechanism under

complete information is M̃ f̃ (θ) = 〈qf̃
i (θ), tf̃ (θ)〉 for any given θ ∈ [θ, θ] where

1. qf̃
i (θ) = a−θ

b and

2. tf̃ (θ) = c

Observe that given the objective function of the regulator and the participation constraint

of the monopolist, it is optimal for the regulator to set the profit of the monopolist to zero.

Incorporating profit equals to zero in the objective function we get the optimal regulatory

quantity and hence the transfer. Under the optimal mechanism, the regulated downstream

monopolist is required to produce the quantities qf̃
i (θ) such that the market clearing price

equals the firm’s marginal cost: P (qf̃
i (θ)) = θ. Consumer surplus is then maximized but the

firm cannot cover its infrastructure cost with its receipts. Hence, the regulator fully finances the

infrastructure with transfer: tf̃ (θ) = c.

If the regulator is unaware of the true marginal cost of the monopolist, the regulator’s ob-

jective now is to design a direct mechanism that maximizes the expected welfare
∫ θ
θ W (θ)f(θ)dθ

subject to the participation constraint and incentive compatibility constraint of the monop-

olist.9 Using the Revelation Principle we restrict our attention to direct revelation mecha-

nism where the firm announces a type (or marginal cost) and based on this announcement

the mechanism M̃(.) = 〈qi(.), t(.)〉 specifies a type contingent quantity-transfer pair. Let

Πi(θ′; θ) = Πi(θ′) − (θ − θ′)qi(θ′). In other words, Πi(θ′; θ) is the profit of the incumbent

firm, under the mechanism M̃ s̃(.), if the true marginal cost is θ ∈ [θ, θ] and if the announce-

ment is θ′ ∈ [θ, θ]. Clearly, Πi(θ; θ) = Πi(θ), ∀θ ∈ [θ, θ]. Given these definitions, incentive
9The problem of regulating a monopolist with unknown cost was first considered by Baron and Myerson (1982).
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compatibility constraint states that Πi(θ) ≥ Πi(θ; θ′), ∀(θ, θ′) ∈ [θ, θ]2 and, as stated earlier,

Πi(θ) ≥ 0, ∀θ ∈ [θ, θ] is the participation constraint. It is well known in the literature that

the optimal mechanism M̃ s̃(.) = 〈qf̃
i (.), tf̃ (.)〉 satisfies the incentive compatibility and the par-

ticipation constraint if and only if ∀θ ∈ [θ, θ], the optimal quantity qs̃
i (θ) is non-increasing in

θ and Πi(θ) =
∫ θ
θ qs̃

i (τ)dτ .10 The objective of the regulator is to select that M̃(.) = 〈qi(.), t(.)〉

(from the class of direct revelation mechanisms) which maximizes Ŵ ≡
∫ θ=θ
θ=θ W (θ)f(θ)dθ =∫ θ=θ

θ=θ [S(qi(θ))− P (qi(θ))qi(θ)− t(θ)] f(θ)dθ subject to (i) Πi(θ) ≥ Πi(θ; θ′), ∀(θ, θ′) ∈ [θ, θ]2 and

(ii) Πi(θ) ≥ 0, ∀θ ∈ [θ, θ].

Before providing the solution we define L(θ) = F (θ)
f(θ) as the hazard function and z(θ) = θ+L(θ)

as the virtual type function. z(θ) is increasing in θ by assumption 2.

PROPOSITION 3.2 Without the threat of entry, the optimal regulatory mechanism under

incomplete information is M̃ s̃(.) = 〈qs̃
i (.), t

s̃(.)〉 where for any announced θ ∈ [θ, θ],

1. qs̃
i (θ) = qf̃

i (z(θ)) = a−z(θ)
b and

2. ts̃(θ) = c− L(θ)qs̃
i (θ) +

∫ θ
θ qs̃

i (τ)dτ

The proof is fairly standard in the mechanism design literature and is hence eliminated.

Here the market clearing price equals the virtual marginal cost z(θ) instead of the true marginal

cost θ. Observe that the relevant constraint is not the participation constraint but the incentive

constraint (for all but the highest type). The firm truthfully reveals its marginal cost only if

it gets adequate information rent. To reduce this cost of truth-telling, the regulator optimally

distorts the quantity supplied by the firm and hence the price is above the marginal cost for

all but the lowest cost firm. Once the optimal amount of service is specified, the transfer of

the monopolist with type θ follows from Πi(θ) =
∫ θ
θ qs̃

i (τ)dτ . Given the type contingent optimal

quantity qs̃
i (θ), z(θ) is increasing in θ is necessary to guarantee that the optimal quantity is

decreasing in θ. This in turn is a sufficient condition to guarantee that incentive compatibility

and individual rationality conditions are satisfied. Thus, the assumption on L(θ) guarantees a

separating optimal mechanism.
10The reason why optimal quantity is non-increasing follows directly by solving the inequality in the definition

of incentive compatibility for any pair of types. The reason for the necessity of Πi(θ) =
∫ θ

θ
qs̃

i (τ)dτ is the following.

For incentive constraint to hold, it is necessary that ∂Πi(θ)
∂θ

= −qs̃
i (θ) for almost all θ ∈ (θ, θ). Moreover, under

the optimal mechanism participation constraint implies that Πi(θ) = 0. These two conditions together imply that

Πi(θ) =
∫ θ

θ
qs̃

i (τ)dτ for all θ ∈ [θ, θ].
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4 Downstream Competition

In this section, we describe the regulatory mechanism when there is the possibility of entry in

the downstream market. We consider two sub-cases, one where the cost of the incumbent in

known and one where it is unknown.

4.1 Known cost of the incumbent

In the presence of entry possibility, the regulatory mechanism M(θ) specifies a quadruple:

M(θ) = 〈qi(θ), A(θ), α(θ), t(θ)〉 for any given and commonly known marginal cost θ ∈ [θ, θ]

of the incumbent. The entry decision is taken after the regulator has designed the regulatory

mechanism. Therefore, even if the entrant is not regulated, the regulatory mechanism (except

the transfer received by the incumbent) affects the entry decision and the quantity supplied by

the entrant. For brevity of notation let us denote 〈qi(θ), A(θ), α(θ)〉 by V (θ). The entrant’s

maximization problem is to select qe(V (θ)) = maxqe Πe(qe, V (θ);φ) where Πe(qe, V (θ);φ) ≡

(P (qe + qi(θ))−α(θ)− φ)qe −A(θ). Assuming entry takes place, the solution to this problem is

qe(V (θ)) =
a− α(θ)− φ

2b
− qi(θ)

2
(4.1)

The profit of an entrant, active in the downstream market, is:

Πe(qe(V (θ)), V (θ);φ) =
(a− α(θ)− φ− bqi(θ))

2

4b
−A(θ) (4.2)

Clearly, the potential entrant will enter the downstream market if its profit is strictly positive.

Given the regulatory mechanism M(θ) = 〈qi(θ), A(θ), α(θ), t(θ)〉, it is obvious from (4.2) that

the potential entrant enters the downstream market if φ ∈ [θ,K(θ)) where K(θ) = P (qi(θ)) −

α(θ) − 2
√

bA(θ). It is also clear from (4.2) that the larger the gap between the no-entry price

P (qi(θ)) = a−bqi(θ) and the entrant’s marginal cost plus the per-unit fee φ+α(θ), the larger the

entrant’s profit. Hence, there is entry if the price marginal cost gap (including in the marginal

cost the entry fee α(θ)) is sufficiently large to cover the fixed entry cost A(θ). Therefore, the

profit of the entrant, with per unit cost φ ∈ [θ, θ], is

Πe(qe(V (θ)), V (θ);φ) =

 0 if φ ≥ K(θ)

(P (Q(θ))− α(θ)− φ) qe(V (θ))−A(θ) if φ < K(θ)

where Q(θ) = qi(θ) + qe(V (θ)). The ex-post profit of the incumbent under the mechanism M(.)

with known marginal cost θ ∈ [θ, θ], is

Πi(M(θ); θ) =

 (P (qi(θ))− θ) qi(θ)− c + t(θ) if φ ≥ K(θ)

(P (Q(θ))− θ) qi(θ)− c + t(θ) + α(θ)qe(V (θ)) + A(θ) if φ < K(θ)

9



We now consider the mechanism design problem of the regulator. Consider any mechanism
M(.). Given that the marginal cost of the potential entrant is unknown and follows a uniform
distribution over the relevant marginal cost interval [θ, θ], the expected profit of the incumbent
in stage 1 is Π̂i(θ) = 1

∆

∫ φ=θ
φ=θ Πi(M(θ); θ)dφ. Simplifying the expected profit of the incumbent

we get

Π̂i(θ) =
1

∆

 φ=K(θ)∫
φ=θ

{P (Q(θ))qi(θ) + α(θ)qe(V (θ)) +A(θ)} dφ+

φ=θ∫
φ=K(θ)

P (qi(θ))qi(θ)dφ

−c−θqi(θ)+ t(θ) (4.3)

The regulator’s objective is (I) to select a quadruple M(θ) = 〈qi(θ), A(θ), α(θ), t(θ)〉, for any

commonly known θ ∈ [θ, θ], that maximizes W (θ) = 1
∆

∫ φ=θ
φ=θ {S(Q(θ))− P (Q(θ))Q(θ)− t(θ)} dφ

subject to the participation constraint of the incumbent (that is, subject to Π̂i(θ) ≥ 0).

PROPOSITION 4.3 The solution to the regulator’s optimization problem (I) is the following:

for any known θ ∈ [θ, θ], the optimal mechanism is Mf (θ) = 〈qf
i (θ), Af (θ), αf (θ), tf (θ)〉 where

1. qf
i (θ) = a−H(θ)

b

2. αf (θ) = − 5
11(H(θ)− θ) < 0

3. Af (θ) = 36(H(θ)−θ)2

121b and

4. tf (θ) = c− 1
∆

φ=K(θ)∫
φ=θ

{Af (θ) + αf (θ)qe(V f (θ))}dφ = c− 4(H(θ)−θ)3

113b∆
≤ c

H(θ) is a strictly increasing and strictly convex function in θ with H(θ) = θ and H(θ) > θ for

all θ ∈ (θ, θ].

PROOF: See Appendix.

Compared to downstream monopoly where, under symmetric information, the market clears

at marginal cost, here, the market price is above the incumbent’s marginal cost if entry does

not occur that is P (qf
i (θ)) = H(θ) > θ for all θ ∈ (θ, θ]. This means that the incumbent

produces less compared to the regulated monopoly regime. However, if entry takes place,

the market price falls below the incumbent’s marginal cost. Interestingly, the expected price

is such that the incumbent realizes a zero profit from its downstream operations, that is

P̂ f (θ) ≡ 1
∆

[∫ φ=Kf (θ)
φ=θ P (qe(V f (θ)) + qf

i (θ))dφ +
∫ φ=θ
φ=Kf (θ)

P (qf
i (θ))dφ

]
= θ for all θ ∈ [θ, θ].

Even though the expected price (the expected consumer surplus) is identical to the price (the

consumer surplus) under the regulated monopoly regime, competition increases welfare because

the financial contribution of the regulator is lower (tf (θ) < c = tf̃ (θ) for all θ ∈ (θ, θ]).

The infrastructure is financed by (i) the net payment of the entrant, (ii) the public transfer

of the regulator. If the potential entrant decides to enter, it has to pay a lump-sum access charge
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to the incumbent and it receives a per-unit subsidy from the incumbent. The reason for per-unit

subsidy is to reduce the market power of the entrant. In the absence of per-unit subsidy, the

entrant, being unregulated, enjoys market power and supplies less than the competitive output.

In other words, in the absence of per-unit subsidy, the entrant will supply an output less than

that under perfect competition (since Stackelberg follower output is lower than the competitive

output). By setting αf (θ) < 0 for all θ ∈ (θ, θ], the regulator artificially reduces the entrant’s

marginal cost and thereby partially offsets the negative effect of the entrant’s market power.11

It is worth noting that, if the downstream market was more competitive, that is, if there were

a larger number of potential entrants, then the entrants would have had less market power and

hence the regulator will subsidize them less. Being distortionary, the per-unit access charge is

used only to cancel partially the entrant’s market power. Conversely, the non-distortionary fixed

fee is used by the regulator to transfer profit from the unregulated competitors to the incumbent

since the incumbent owns the essential facility that needs financing.

In our problem, even if the subsidy reduces the market power of the entrant, in the optimal

mechanism, there is a positive net transfer from the entrant to the incumbent. This is captured

by 1
∆

∫ φ=K(θ)
φ=θ {Af (θ)+αf (θ)qe(V f (θ))}dφ = 4(H(θ)−θ)3

113b∆
> 0 for all θ ∈ (θ, θ]. The fixed part of the

access charge aims to partially finance the infrastructure and to deter entry of high marginal cost

potential entrants. Entry needs to be restricted optimally because the price is above marginal

cost under the optimal mechanism if the incumbent stays as a monopolist. This price mark up

attracts inefficient entrants in the downstream market. To exclude these potential inefficient

entrants, the regulator fixes a high access charge Af (θ). Finally, when will entry take place?

The next proposition answers this question.

PROPOSITION 4.4 Under Mf (θ) = 〈qf
i (θ), Af (θ), αf (θ), tf (θ)〉, entry is inefficient. Entry

takes place for all φ ∈ [θ,Kf (θ)) where θ < Kf (θ) < θ, ∀θ ∈ (θ, θ] and Kf (θ) = θ.

PROOF: Under the optimal mechanism Mf (θ) = 〈qf
i (θ), Af (θ), αf (θ), tf (θ)〉, the entry limit

is Kf (θ) = 4
11H(θ) + 7

11θ. Using H(θ), we get Kf (θ) = θ + 11∆
14 − 1

14

√
121∆2 − 112∆(θ − θ).

From Kf (θ), it follows that Kf (θ) = θ and Kf (θ) = 4
7θ + 3

7θ < θ. To show that Kf (θ) < θ for

all θ ∈ (θ, θ), we consider θ−Kf (θ) = (θ−θ)− 11∆
14 + 1

14

√
121∆2 − 112∆(θ − θ). We then apply

proof by contradiction to show that θ −Kf (θ) > 0. Finally, θ < Kf (θ) for all θ ∈ (θ, θ) follows

from the fact that Kf (θ) = θ and from the fact that ∂Kf (θ)
∂θ > 0 over the relevant range.

11This result is standard in the access pricing literature. See Laffont and Tirole (2000), chapter 2. Note that

with a positive marginal cost ψ of operating on the network, the optimal per-unit access charge is ψ+αf (θ) < ψ.

In this case, the access charge is not necessarily negative but entry is subsidized as the entrant pays less than the

marginal cost of operating the service.
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To preserve financing of the essential facility, the regulator bans those entrants that are more

efficient than the operating incumbent but for which the cost advantage is not that high (that

is, entrants whose marginal cost φ ∈ (Kf (θ), θ]). By limiting entry, the regulator raises the

incumbent’s revenue. However, all type of incumbent firms, but the most efficient one, face a

positive probability of entry since θ < Kf (θ), ∀θ ∈ (θ, θ]. This means that, except for the most

efficient incumbent, the regulator never grants a monopoly franchise to the incumbent firm.

When the infrastructure cost is partially financed by public transfers, it is always efficient to

allow for the entry of a more efficient competitor, provided that the efficiency advantage of the

competitor is sufficiently large. This part of the result is in sharp contrast to the result in Caillaud

and Tirole (2003). In Caillaud and Tirole (2003), the regulator bans entry of competitors on

market with high future profitability.

4.2 Unknown cost of the incumbent

In this sub-section we assume that marginal cost of the incumbent is private information. Hence,

the regulator is unaware of the marginal cost of both the incumbent and the entrant. Therefore,

we have a mechanism design problem of the regulator under incomplete information.

The objective of the regulator now is (II) to select M = 〈qi(θ), A(θ), α(θ), t(θ)〉, that maxi-

mizes Ŵ ≡
∫ θ=θ
θ=θ W (θ)dθ =

∫ θ=θ
θ=θ

[
1
∆

∫ φ=θ
φ=θ {S(Q(θ))− P (Q(θ))Q(θ)− t(θ)} dφ

]
dθ subject to (i)

the participation constraint Π̂i(θ) ≥ 0, ∀θ ∈ [θ, θ] and (ii) the incentive compatible constraint:

Π̂i(θ) ≥ Π̂i(θ; θ′), ∀(θ, θ′) ∈ [θ, θ]2 where Π̂i(θ; θ′) = Π̂i(θ′)− (θ − θ′)qi(θ′). Applying arguments

similar to the no-entry case under asymmetric information we get that the optimal mechanism

M satisfies the incentive compatibility and the participation constraint if and only if ∀θ ∈ [θ, θ],

the optimal quantity qi(θ) is non-increasing in θ and Π̂i(θ) =
∫ θ
θ qi(τ)dτ .

The optimization problem (II) may turn out to be non concave for certain density function

f(.) of marginal cost of the incumbent. For example, if f(.) is uniform, the optimization problem

is not concave. When (II) is not concave, a characterization of the solution is possible by

bunching types appropriately. The problem may be non concave because the market structure

is endogenous. Though the welfare function is a regular quadratic function but since qi(θ)

determines the entry condition, the expected surplus is a cubical equation.12

PROPOSITION 4.5 Under Assumptions 1 and 2, the solution to the regulator’s optimiza-

tion problem (II) is the following: for each θ ∈ [θ, θ], the optimal mechanism is M s(θ) =
12Caillaud (1990) demonstrates that when a competitive fringe can compete with a regulated monopolist, in his

case without using the monopolist’s essential facility, the problem may not satisfied concavity, even if the virtual

type function z(θ) ≡ θ + L(θ) is increasing in θ.
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〈qs
i (θ), A

s(θ), αs(θ), ts(θ)〉, where

1. the optimal type contingent quantity of the incumbent is

qs
i (θ) =

 qf (z(θ)) ∀θ ∈ [θ, θ̃]

qf (z(θ̃)) ∀θ ∈ (θ̃, θ]

2. the optimal incumbent type contingent fixed access charge for the potential entrant is

As
i (θ) =

 Af (z(θ)) ∀θ ∈ [θ, θ̃]

Af (z(θ̃)) ∀θ ∈ (θ̃, θ]

3. the optimal incumbent type contingent per unit access charge for the potential entrant is

αs
i (θ) =

 αf (z(θ)) ∀θ ∈ [θ, θ̃]

αf (z(θ̃)) ∀θ ∈ (θ̃, θ]

4. the optimal type contingent transfer to the incumbent is

ts(θ) =

 tf (z(θ))− L(θ)qs
i (θ) +

∫ θ
θ qs

i (τ)dτ ∀θ ∈ [θ, θ̃]

ts(θ̃) ∀θ ∈ (θ̃, θ]

and

5. the full separability (that is θ̃ = θ) or partial separability of optimal output of the incum-

bent is determined by

θ̃ =

 θ if z(θ) ≤ θ + 9∆
112

z−1
(
θ + 9∆

112

)
otherwise

PROOF: See Appendix.

The mechanism under asymmetric information is similar to the complete information frame-

work, modulo the facts that the regulator uses the virtual marginal cost z(θ) for the incumbent

rather than its true cost θ and that there could be bunching of the less efficient types of incum-

bent.

Like in Caillaud (1990), the regulator substitutes the production of the incumbent by the

production of the entrant, hence, the rents paid to the incumbent are lower while the expected

price remains identical (P̂ s(θ) = z(θ) for all θ ≤ θ̃). Thus, competition is welfare enhancing.

However, the incumbent always produces while in Caillaud (1990), the incumbent is shut down

when its virtual marginal cost is larger than the expected cost of the entrant. The reason is that
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incumbent’s presence enhances competition on the downstream market which is not necessary

in Caillaud’s framework due to the presence of a competitive fringe of entrants.

When concavity is not satisfied, that is for some f(θ) and θ > θ̃, the mechanism is a third best

one where there is bunching. Bunching appears when there is a lot of entry i.e. for the highest

values of θ. To overcome the existence problem and to preserve competition, the regulator sets

a minimal quantity for the higher types.

Without bunching, the expected price P̂ s(θ) is equal to the virtual marginal cost z(θ).

Hence, for each θ, the consumer surplus is in average identical to the regulated monopoly regime

under asymmetric information. Competition is welfare improving because the contribution of

the regulator to the infrastructure cost is lower: ts(θ) < ts̃(θ). Like in the known cost case,

the positive contribution of the entrant to the infrastructure cost implies a reduction of the

transfer. In addition, given that the incumbent produces less when it faces the threat of entry,

the information rent is also lower, hence another reason to reduce the transfer. In the bunching

region, P̂ s(θ) = z(θ̃) < z(θ) for all θ ∈ (θ̃, θ]. Consumer surplus in average increase compared to

the monopoly regime, and competition is also welfare improving, even if transfer may increase.

In this mechanism, entry occurs if φ ≤ Ks(θ) = Kf (z(θ)). Again, we raise the question of

efficient entry and we compare the entry levels under complete and incomplete information.

PROPOSITION 4.6 Under M s(θ) = 〈qs
i (θ), A

s(θ), αs(θ), ts(θ)〉, the following can be said

about the entry limit Ks(θ).

1. If θ̃ = θ, then Ks(θ) = θ, Ks(θ) < θ, Ks(θ) is strictly increasing in θ ∈ (θ, θ) and

Kf (θ) < Ks(θ) for all θ ∈ (θ, θ].

2. If θ̃ < θ, then Ks(θ) = θ, Ks(θ̃) < θ, Ks(θ) is strictly increasing in θ ∈ (θ, θ̃), Ks(θ) =

Ks(θ̃) for all θ ∈ [θ̃, θ] and Kf (θ) < Ks(θ) for all θ ∈ (θ, θ].

PROOF: If θ̃ = θ, then Ks(θ) = Kf (z(θ)) = θ. Observe that Ks(θ) = 11
14θ + 3

14θ −
1
14

√
9∆2 − 112∆L(θ) < θ since

√
9∆2 − 112∆L(θ) is a positive real number. Moreover, since

Ks(θ) = Kf (z(θ)) and Kf (z(θ)) and z(θ) are increasing in z(θ) and θ respectively, it follows

that Ks(θ) is increasing in θ ∈ (θ, θ).13 Finally, Ks(θ) −Kf (θ) = 4
11(H(z(θ)) −H(θ)) > 0 for

all θ ∈ (θ, θ].

If θ̃ < θ, then Ks(θ) = θ. Given H(z(θ̃)) = 121∆
56 , we get Ks(θ̃) = 11

14θ+ 3
14θ. Hence, Ks(θ̃) <

θ. Moreover, for all θ ∈ (θ, θ̃), Ks(θ) = Kf (z(θ)) and Kf (z(θ)) and z(θ) are increasing in z(θ)
13Note that it is not obvious whether Ks(θ) is increasing at a decreasing or an increasing rate.
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and θ respectively. Therefore, Ks(θ) is increasing in θ ∈ (θ, θ̃). With bunching, qs
i (θ) = qs

i (θ̃)

for all θ ∈ [θ̃, θ]. This means that Ks(θ) = 4
11H(z(θ̃)) + θ = Ks(θ̃) for all θ ∈ [θ̃, θ]. To prove

the last part of the Proposition, observe first that (a) Ks(θ)−Kf (θ) = 4
11(H(z(θ))−H(θ)) > 0

for all θ ∈ (θ, θ̃]. Observe next that (b) for all θ ∈ (θ̃, θ), Ks(θ) = Ks(θ̃) and Kf (θ) is increasing

at an increasing rate. Lastly, observe that (c) Kf (θ)(= 4
7θ + 3

7θ) < Ks(θ̃)(= 11
14θ + 3

14θ). From

observations (a), (b) and (c) it follows that Kf (θ) < Ks(θ) for all θ ∈ (θ, θ].

What follows from Proposition 4.6 is that Kf (θ) < Ks(θ) for all θ ∈ (θ, θ], that is, there

is more entry under M s(θ) in comparison to Mf (θ). The reason is that the regulator allows

entry by considering the gap between the incumbent’s virtual marginal cost and the entrant’s

true marginal cost while under complete information, the regulator allows entry by considering

the gap between the incumbent’s true (and not virtual) marginal cost and the entrant’s true

marginal cost. Since the virtual marginal cost of the incumbent is larger than its true marginal

cost, there is more entry under asymmetric information. There is more entry under incomplete

information due to the asymmetric regulatory treatment between the incumbent and the entrant.

For efficiency reasons, the regulator extracts the private information of the incumbent through

a fully or partially separating regulatory mechanism. But due to asymmetric information the

incumbent receives information rent. While given the open-access nature of the infrastructure,

the entrant’s regulatory regime (the entry conditions) does not depend on its private informa-

tion. Hence, the regulator pays information rents only to the incumbent which imply that the

incumbent’s marginal cost raises from θ to z(θ). Hence, the regulator allows more entry under

asymmetric information simply because production of the incumbent is relatively more costly

than that of the entrant.14

Under M s(θ) two types of inefficient entry is possible. They are: (1) not allowing a potential

entrant, more efficient than the incumbent, to operate on the downstream market and (2)

allowing a potential entrant, less efficient than the incumbent, to operate on the downstream

market. The first type of inefficiency (that is, not allowing a potential entrant, more efficient than

the incumbent, to operate on the downstream market) follows from Proposition 4.6. Note that

Ks(θ) = θ and Ks(θ) < θ (Ks(θ̃) < θ) under a fully (partially) separating mechanism guarantees

that there are intervals in the domain of the continuously differentiable Ks(θ) function such

that Ks(θ) < θ. However, the other type of inefficiency (that is, allowing a potential entrant,

less efficient than the incumbent, to operate on the downstream market) does not follow from

Proposition 4.6. While the first type of inefficiency is always true. The second type of inefficiency

depends on distribution of the marginal cost of the incumbent. It is easy to see that if, for
14McAfee and McMillan (1987) have a similar result in the context of auctions.
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example, f(.) follows uniform distribution, that is, if f(θ) = g(θ) = 1
∆ for all θ ∈ [θ, θ], then

the second type of inefficiency is also possible. With uniform distribution there will be pooling

and in particular the cut-off point is θ̃ = 121
224θ + 103

224θ. Given that Ks(θ̃) = 11
14θ + 3

14θ, it follows

that Ks(θ̃) − θ̃ = 55
224∆ > 0. Hence, if the marginal cost of the incumbent follows uniform

distribution, then Ks(θ̃) > θ̃ which implies that there are stretches of the Ks(θ) function where

the second type of inefficiency arises that is there are intervals in the domain of Ks(θ) where

Ks(θ) > θ.

5 Conclusions

The main conclusion of this paper is that granting non-discriminatory access of the essential facil-

ity to a competitor is welfare improving but it generates inefficient entry. Welfare improvement is

due to (1) the contribution of the entrant to infrastructure financing and (2) lower information

rent paid to the incumbent when the regulator is unaware of the incumbent’s marginal cost.

Competition leads to a larger consumer surplus only when there is bunching of less efficient

incumbents. In the other cases, the expected price is the same as in the regulated monopoly

regime and competition allows the regulator to reduce her transfer. As a result, we have a rise

in social welfare.

The regulatory mechanism takes care of the conflict between efficient market structure and

infrastructure financing. Under known cost of the incumbent, entry ban of more efficient com-

petitor aims to finance the infrastructure. By allowing only the entry of competitor with a

sufficiently large cost advantage, the regulator can extract a larger contribution towards the

cost of the essential input. Under unknown cost, the regulator allows the entry of competitor

with a sufficiently large cost advantage over the virtual marginal cost. Since the virtual marginal

cost is above the marginal cost, there is more entry compared to the known cost case. More-

over, the incumbent’s production decrease with the virtual marginal cost thereby generating

more entry. Depending on the distribution of the incumbent’s marginal cost, the other form of

inefficiency arises, that is, a less efficient competitor enters the market.

There is more competition on the downstream market under asymmetric information than

under symmetric information. This is in sharp contrast with Dana and Spier (1994) and Caillaud

and Tirole (2003), where incomplete information reduces competition. In Dana and Spier (1994),

where the regulator only regulates the market structure, monopoly production is more likely

under asymmetric information. Moreover, the monopoly right is not necessarily granted to the

more efficient firm. The market could be operated alone by the high cost firm when the low
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cost firm has a larger virtual marginal cost than the high cost one. This can happen only if the

marginal costs are not distributed according to the same density function. In our framework, this

could happen even if θ and φ are distributed according to the same distribution. But there is no

exclusive right: except for the most efficient incumbent, the regulator never grants a monopoly

franchise and all types of incumbent face a positive probability of entry.

In Caillaud (1990), the incumbent shuts down whenever the virtual marginal cost of the

incumbent is larger than the expected marginal cost of the entrants (z(θ) > E(φ)), provided that

the marginal costs of the incumbent and the competitive fringe are distributed independently.

Hence, the mechanism allows the entry of less efficient competitors, when on an average the

entrants’ technology is more efficient than the incumbent’s one. Being regulated, the cost of the

incumbent’s technology includes an information rent. When the incumbent operates, the price

is maintained at the level of the regulated monopoly regime, but the incumbent produces less.

Given that the regulator cannot deter entry by setting a large fixed access charge (since the

entrants bypass the incumbent’s input), there is more entry compared to our setting.

In a regulated market, open to competition, an efficient market structure is not granted since

market efficiency conflicts with other objectives of the regulator, like infrastructure financing.

6 Appendix

PROOF OF PROPOSITION 4.3: From condition (4.1) it follows that in stage 2, the

optimal quantity of the entrant is

qe(V ) =

 0 if φ ≥ K(θ)
a−φ−α(θ)−bqi(θ)

2b if φ < K(θ)

where the entry limit is K(θ) = P (qi(θ)) − α(θ) − 2
√

bA(θ) and zero quantity refers to the no

entry case. In stage 1, the regulator incorporates this entry decision in her optimization program

(I). Using the incumbent’s profit function Πi(θ) we substitute

P (Q(θ))qi(θ) + t(θ) =

 Πi(θ) + c + θqi(θ) if no entry

Πi(θ) + c + θqi(θ)− α(θ)qe(V (θ))−A(θ) if entry

in (I). This substitution means that the regulator’s objective function for any type θ ∈ [θ, θ] is

W1(θ) =
1

∆

 φ=K(θ)∫
φ=θ

{S(Q(θ))− (P (Q(θ))− α(θ))qe(V (θ)) +A(θ)} dφ+

φ=θ∫
φ=K(θ)

S(qi(θ))dφ

− θqi(θ)− c− Π̂i(θ)

Simplifying the function W1(θ), by substituting S(Q(θ)) =
∫ qi(θ)
0 P (x)dx +

∫ Q(θ)
qi(θ)

P (x)dx and by

substituting Q(θ) = qi(θ) + qe(V (θ)) in the first integrand, we get
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W1(θ) = (a− θ)qi(θ)−
b{qi(θ)}2

2
+
A(θ)J(θ)

∆
− 7

√
b{A(θ)}

3
2

3∆
− α(θ)A(θ)

∆
+
α(θ)J2(θ)

4b∆
+
J3(θ)

24b∆
− c− Π̂i(θ) (6.4)

where J(θ) ≡ P (qi(θ)) − θ − α(θ). Given the objective function (6.4), it is obvious that, since

the regulator wants to ensure the participation constraint of the incumbent and since the cost

of the incumbent is common knowledge, she will select qi(θ), A(θ), α(θ) and t(θ) in such a way

that Π̂i(θ) = 0. Incorporating Π̂i(θ) = 0 in (6.4) we get

W f (θ) = (a− θ)qi(θ)−
b{qi(θ)}2

2
+
A(θ)J(θ)

∆
− 7

√
b{A(θ)}

3
2

3∆
− α(θ)A(θ)

∆
+
α(θ)J2(θ)

4b∆
+
J3(θ)

24b∆
− c (6.5)

Therefore, the problem of the regulator now reduces to the selection of qi(θ), A(θ) and α(θ) that

maximizes W f (θ). The partial derivatives of W f (θ) with respect to qi(θ), A(θ) and α(θ) are

∂W f (θ)
∂qi(θ)

= P (qi(θ))− θ − A(θ)b
∆

− α(θ)J(θ)
2∆

− J2(θ)
8∆

(6.6)

∂W f (θ)
∂A(θ)

=
J(θ)
∆

− 7
√

bA(θ)
2∆

− α(θ)
∆

(6.7)

and

∂W f (θ)
∂α(θ)

= −2A(θ)
∆

+
J2(θ)
8b∆

− α(θ)J(θ)
2b∆

(6.8)

respectively.

From (6.7) we get A(θ) = 4
49b(J(θ)− α(θ))2 or

49bA(θ)− 4J2(θ) + 8J(θ)α(θ) = 4α2(θ) (6.9)

From (6.8) we get

16bA(θ)− J2(θ) + 4J(θ)α(θ) = 0 (6.10)

From (6.9) and (6.10) we get

15J2(θ) + 68J(θ)α(θ) + 64α2(θ) = 0 (6.11)

Solving (6.11) we get

α(θ) = −3(P (qi(θ))− θ) (6.12)
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and

α(θ) = − 5
11

(P (qi(θ))− θ) (6.13)

If (6.12) holds, then from (6.9) we get A(θ) = 4
49bα

2(θ). By substituting A(θ) = 4
49bα

2(θ) in

(6.6), we have after simplifications: P (qi(θ)) = θ. Therefore, one possible candidate solution is

V1(θ) = 〈qi(θ) = a−θ
b , A(θ) = 4

b (θ − θ)2, α(θ) = −3(θ − θ)〉. This solution implies a total entry

ban: K(θ) = θ ∀θ. If (6.13) holds, then from (6.9) we get A(θ) = 36
25bα

2(θ). By substituting

A(θ) = 36
25bα

2(θ)in (6.6), we have after simplifications:

P (qi(θ)) = θ +
28
25

α2(θ)
∆

(6.14)

From (6.13) and (6.14), we get

−11
5

α(θ) + θ = θ +
28
25

α2(θ)
∆

(6.15)

Solving for α(θ), we get

α(θ) = − 5
56

(11∆±
√

121∆2 − 112∆(θ − θ) (6.16)

Since at θ, α(θ) = 0, we get α(θ) = − 5
56(11∆ −

√
121∆2 − 112∆(θ − θ)). Then from con-

dition (6.13), we get P (qi(θ)) = θ − 11
5 α(θ). Thus, the other possible candidate solution

is V2(θ) = 〈qi(θ) = a−H(θ)
b , α(θ) = − 5

11(H(θ) − θ), A(θ) = 36(H(θ)−θ)2

121b 〉 where H(θ) = θ +
121∆−11

√
121∆2−112∆(θ−θ)

56 . From the expression of H(θ), it is easy to check that H(θ) = θ and

H(θ) > θ for all θ ∈ (θ, θ]. Differentiating H(θ) twice with respect to θ we get that H(θ)

is strictly increasing and strictly convex in θ ∈ (θ, θ). With solution V2(θ), there is an entry

possibility. In particular, the entry limit is K(θ) = θ + 4
11 [121∆ − 11

√
121∆2 − 112∆(θ − θ)].

Here K(θ) ∈ (θ, θ) for all θ ∈ (θ, θ].

It is straightforward to show that the welfare associated with the solution V2(θ) is larger

than the no entry solution V1(θ) for all θ ∈ (θ, θ]. For any type θ ∈ [θ, θ], the welfare difference

between the entry and no entry case is

W f (θ)|V2(θ) −W f (θ)|V1(θ) =
(H(θ)− θ)(H(θ)− θ)

3b

1− 3
4

1−

√
1− 112(θ − θ)

121∆


 (6.17)

Condition (6.17) is obtained after substituting the values of V2(θ) and V1(θ) in W f (θ)|V2(θ) and

W f (θ)|V1(θ) respectively and then simplifying W f (θ)|V2(θ) −W f (θ)|V1(θ) by using the condition

(H(θ)−θ)2 = 121∆
28 (H(θ)−θ).15 From condition (6.17) it follows that W f (θ)|V2(θ) = W f (θ)|V1(θ)

15This condition follows quite easily by simplifying (H(θ)− θ)2.
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since H(θ) = θ. More importantly, from condition (6.17) it also follows that W f (θ)|V2(θ) >

W f (θ)|V1(θ) for all θ ∈ (θ, θ] since the right hand side of condition (6.17) is then strictly positive.

Hence, solution V2(θ) gives a higher welfare than the no entry solution V1(θ).

To verify the second order condition under V2(θ), we first incorporate the values of α(θ) =

− 5
11(P (qi(θ))− θ) and A(θ) = 36(P (qi(θ))−θ)2

121b as a function of the quantity qi(θ) in W f (θ). This

gives

W f (θ) = (a− θ)qi(θ)−
b{qi(θ)}2

2
+

28(P (qi(θ))− θ)3

363b∆
− c (6.18)

The second derivative of W f (θ) with respect to qi(θ) gives

∂2W f (θ)
∂qi(θ)2

= −b

√
121∆2 − 112∆(θ − θ)

11∆
(6.19)

Clearly,
∂2W f (θ)|S2

∂qi(θ)2
< 0 for all θ ∈ (θ, θ). Hence the optimal solution to the regulator’s problem

is V2(θ) = 〈qf
i (θ) = a−H(θ)

b , Af (θ) = 36(H(θ)−θ)2

121b , αf (θ) = − 5
11(H(θ) − θ)〉 where H(θ) = θ +

121∆−11
√

121∆2−112∆(θ−θ)

56 . The optimal transfer is obtained from the profit expression Π̂f
i (θ) = 0.

Recall that Π̂f
i (θ) = 0 implies that

1

∆

 φ=Kf (θ)∫
φ=θ

{
P (Qf (θ))qf

i (θ) + αf (θ)qe(V2(θ), φ) +Af (θ)
}
dφ+

φ=θ∫
φ=Kf (θ)

P (qf
i (θ))qf

i (θ)dφ

−c−θqf
i (θ)+tf (θ) = 0

(6.20)

Using the optimal solution V2(θ), it is easy to verify that expected market price for any θ ∈ [θ, θ]

is

P̂ f (θ) ≡

 φ=Kf (θ)∫
φ=θ

P (Qf (θ))dφ +
φ=θ∫

φ=Kf (θ)

P (qf
i (θ))dφ

 = θ (6.21)

Condition (6.21) is obtained after simplifying P̂ f (θ) by using (H(θ)− θ)2 = 121∆
28 (H(θ)− θ). By

substituting (6.21) in (6.20) and then simplifying it we get

tf (θ) = c− 1
∆

 φ=K(θ)∫
φ=θ

{α(θ)qe(V (θ)) + A(θ)} dφ

 (6.22)

for all θ ∈ [θ, θ]. Finally, one can easily verify that the expected revenue of the incumbent,

that is, 1
∆

[∫ φ=K(θ)
φ=θ {α(θ)qe(V (θ)) + A(θ)} dφ

]
is equal to 4(H(θ)−θ)3

113b∆
> 0 for all θ ∈ (θ, θ] which

implies that tf (θ) < c for all θ ∈ (θ, θ].

PROOF OF PROPOSITION 4.5: The objective of the regulator is to select a quadruple
M = 〈qi(θ), α(θ), A(θ), t(θ)〉 that maximizes the objective function Ŵ ≡

∫ θ=θ
θ=θ W (θ)dθ subject to

the incentive compatibility constraint (Π̂i(θ) ≥ Π̂i(θ; θ′),∀(θ, θ′) ∈ [θ, θ]2) and the participation
constraint (Π̂i(θ) ≥ 0,∀θ ∈ [θ, θ]. Here the social welfare function, when the incumbent’s
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type is θ, is given by W (θ) = 1
∆

∫ φ=θ
φ=θ {S(Q(θ))− P (Q(θ))Q(θ)− t(θ)} dφ. Following the same

steps as in the proof of Proposition 4.3 (for simplifying W (θ)), one can rewrite the problem
of the regulator as one of maximizing Ŵ ≡

∫ θ=θ
θ=θ W1(θ)dθ subject to (i) Π̂i(θ) ≥ Π̂i(θ; θ′),

∀(θ, θ′) ∈ [θ, θ]2 and (ii) Π̂i(θ) ≥ 0, ∀θ ∈ [θ, θ] where W1(θ) is given by (6.4). From the incentive
constraint and participation constraint we know that Π̂i(θ) =

∫ θ
θ qi(τ)dτ . Incorporating this

restriction on expected profit of the incumbent, we can write the objective function of the
regulator as Ŵ ≡

∫ θ=θ
θ=θ W̄1(θ)dθ where

W̄1(θ) = a−θqi(θ)−
b{qi(θ)}2

2
+
A(θ)J(θ)

∆
− 7

√
b{A(θ)}

3
2

3∆
−α(θ)A(θ)

∆
+
α(θ)J2(θ)

4b∆
+
J3(θ)

24b∆
−c−

∫ θ

θ

qs
i (τ)dτ (6.23)

Since integrating
∫ θ=θ
θ=θ

{∫ θ
θ qi(τ)dτ

}
dθ by parts we get

∫ θ=θ
θ=θ

{∫ θ
θ qi(τ)dτ

}
dθ =

∫ θ=θ
θ=θ L(θ)qi(θ)dθ,

we can finally write down the objective function of the regulator as Ŵ ≡
∫ θ=θ
θ=θ W s

1 (θ)dθ where

W s
1 (θ) = a− z(θ)qi(θ)−

b{qi(θ)}2

2
+
A(θ)J(θ)

∆
− 7

√
b{A(θ)}

3
2

3∆
− α(θ)A(θ)

∆
+
α(θ)J2(θ)

4b∆
+
J3(θ)

24b∆
− c (6.24)

The optimization can now be done pointwise, that is, the regulator’s problem now is to select

qi(θ), A(θ) and α(θ) that maximizes W s
1 (θ) (given by (6.24)) for each θ. This problem is similar to

that of the maximization problem in the proof of Proposition (4.3) where the regulator’s problem

was to select qi(θ), A(θ) and α(θ) to maximize W f
1 (θ) given by (6.5). The only difference between

W f
1 (θ) and W s

1 (θ) is that while in the former we had a term −θqi(θ), in the latter this term is

replaced by −z(θ)qi(θ). Thus, following similar steps we get the optimal quantity of the incum-

bent and the optimal access charges as qs
i (θ) = qf

i (z(θ)), As(θ) = Af (z(θ)) and αs(θ) = αf (z(θ))

respectively for each θ ∈ [θ, θ]. Thus, the optimal solution is V s(θ) = 〈qs
i (θ), A

s(θ), αs(θ)〉. It

is important to note that like in the known cost case the entry ban solution under asymmetric

information (that is, V (θ) = 〈qi(θ) = a−z(θ)
b , A(θ) = 4

b (z(θ) − θ)2, α(θ) = −3(z(θ) − θ)〉) is

pointwise sub-optimal since, for each type θ, it yields a welfare not higher than the optimal so-

lution V s(θ). Finally, by substituting the optimal qs
i (θ), As(θ) and αs(θ) in (4.3) and by setting

Π̂i(θ) =
∫ θ
θ qi(τ)dτ , we get ts(θ) = tf (z(θ))− L(θ)qs

i (θ) +
∫ θ
θ qs

i (τ)dτ .

If the distribution f(θ) is such that z(θ) ≤ θ + 9
112∆, then H(z(θ)) is defined for all θ ∈ [θ, θ]

and the solution given above is valid. If, however, z(θ) > θ + 9
112∆ then we have an existence

problem. This means that H(z(θ)) = θ + 121∆−11
√

121∆2−112∆(z(θ)−θ)

56 is not defined when z(θ)

is above θ + 9
112∆. Given that z(θ) is increasing in θ, there is an existence problem for all

θ ∈ [θ̃, θ] where θ̃ = z−1(θ + 9
112∆). The existence problem comes from the non concavity of the

W s
1 (θ) function for all θ such that z(θ) > θ + 9

112∆. When we incorporate the optimal values of

αs(θ), As(θ) in W s
1 (θ), we get:

W s
1 (θ) = (a− z(θ))qi(θ)−

b{qi(θ)}2

2
+

28(P (qi(θ))− θ)3

363b∆
− c (6.25)
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The second derivative of W s
1 (θ) with respect to qs

i (θ) gives:

∂2W s
1 (θ)

∂qs
i (θ)2

= −b

√
121∆2 − 112∆(z(θ)− θ)

11∆
(6.26)

The second derivative in condition (6.26) is negative only if z(θ) < θ + 9
112∆ and not defined

otherwise. Hence, if the distribution f(θ) is such that (6.26) is not defined, the above solution

is not valid for all θ ∈ [θ̃, θ].

To solve this non-existence problem with pointwise optimization we incorporate optimum

bunching procedure. For that we need to apply optimal control theory. We break the regulator’s

problem into two sub-problems. We define an interval [θ, θ̃) where we have full separability of

types and the interval [θ̃, θ] where we have pooling of types and θ̃ is an, as yet undetermined,

cut-off point. The incentive compatibility problem in terms of the first derivative (that is,
∂Π̂i(θ)

∂θ = −qi(θ)) acts as the equation of motion in the two sub-problems and the condition

Π̂i(θ) = 0 (obtained from participation constraint) is the transversality condition. We solve for

the two sub-problems and finally select the optimal cut-off point θ̃. This cut-off point turns out

to be a point where we had existence problem with pointwise maximization. Thus, the optimal

solution is identical to the pointwise optimization problem in the well-defined zone and is a

pooling one for higher types. Finally, it is quite easy to verify that this solution weakly dominates

the monopoly solution V (θ) = 〈qi(θ) = a−z(θ)
b , A(θ) = 4

b (z(θ) − θ)2, α(θ) = −3(z(θ) − θ)〉

pointwise.
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