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Abstract

Within the structural approach for credit risk models we discuss the optimal exercise of
the callable and convertible bonds. The Vasic̆ek–model is applied to incorporate interest
rate risk into the firm’s value process which follows a geometric Brownian motion. Finally,
we derive pricing bounds for convertible bonds in an uncertain volatility model, i.e. when
the volatility of the firm value process lies between two extreme values.
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1 Introduction

Callable and convertible bonds have attracted substantial research attention due to their expo-
sure to both credit and market risk and the corresponding optimal conversion and call strategies.
The bondholder receives coupons plus the return of principal at maturity, given that the issuer
(usually the shareholder) does not default on the obligations. Moreover, prior to and at the
maturity the bondholder has the right to convert the bond into a given number of stocks. On
the other hand, the bond is also callable by the issuer, i.e. the bondholder can be enforced to
surrender the bond to the issuer for a previously agreed price. In the context of the structural
model the arbitrage free pricing problem was first treated by Brennan and Schwarz (1977) and
Ingersoll (1977). Recent articles of Sirbu, Pilovsky and Schreve (2004) and Kallsen and Kühn
(2005) treat the optimal behavior of the contract partners more rigorously. The valuation of
callable and convertible bond is explicitly related to the game option.

Empirical research indicates that firms that issue convertible bonds often tend to be highly
leveraged, the default risk may play a significant role. Moreover, the equity and default risk
cannot be treated independently and their interplay must be modeled explicitly. Default risk
models can be categorized into two fundamental classes: firm’s value models or structural models,
and reduced-form or default-rate models. In the structural model, one constructs a stochastic
process of the firm’s value which indirectly leads to default, while in the reduced-form model
the default process is modeled directly. In the structural models default risk depends mainly
on the stochastic evolution of the asset value and default occurs when the random variable de-
scribing the firm’s value is insufficient for repayment of debt. Instead of asking why the firm
defaults, in the reduced-form model formulation, the intensity of the default process is mod-
eled exogenously by using both market-wide as well as firm-specific factors, such as stock prices
and default intensities. While both approaches have certain shortcomings, the strength of the
structural approach is that it provides economical explanation of the capital structure decision,
default triggering, influence of dividend payments and of the behaviors of debtor and creditor.
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It describes why a firm defaults and it allows for the description of the strategies of the debtor
and creditor. Especially for complex contracts where the strategic behaviors of the debtor and
the creditor play an important role, structural models are well suited for the analysis of the
relative power of shareholders and creditors. Another reason that we work with the structural
approach is because it allows for an integrated model of equity and default risk through common
dependence on stochastic variables.

Callable and convertible bonds are American-style contract, meaning that conversion is allowed
at any time during the life of the contract, and by existence of a call provision for the issuer
this leads to a problem of optimal stopping for both bondholder and issuer. Therefore when we
compute the no-arbitrage price of such a contract, we have to take into account the aspect of
strategic optimal behaviors which are the study focus of this paper. Based on the results of Kifer
(2000) and Kallsen and Kühn (2005) we show that the optimal strategy for the bondholder is
to select the stopping time which maximizes the expected payoff given the minimizing strategy
of the issuer, while the issuer will choose the stopping time that minimizes the expected payoff
given the maximizing strategy of the bondholder. This max-min strategy of the bondholder leads
to the lower value of the convertible bond, whereas the min-max strategy of the issuer leads to
the upper value of the convertible bond. The assumption that the call value is always larger than
the conversion value prior to maturity T and they are the same at maturity T ensures that the
lower value equals the upper value such that there exists a unique solution. The no-arbitrage
price can be approximated numerically by means of backward induction. In absence of interest
rate risk, the recursion procedure is carried out on the Cox-Ross-Rubinstein binomial lattice.
To incorporate the influence of the interest rate risk, we use a combination of an analytical
approach and a binomial tree approach developed by Menkveld and Vorst (1998) where the
interest rate is Gaussian and correlation between the interest rate process and the firm’s value
process is explicitly modeled. We show that the influence of interest rate risk is small. This can
be explained by the fact that the volatility of the interest process is in comparison with that
of the firm’s value process relatively low, moreover, both parties have the possibility of early
exercise.

In practice it is often a difficult problem to calibrate a given model to the available data. Here
one major drawback of the structural model is that it specifies a certain firm’s value process. As
the firm’s value, however, is not always observable, e.g. due to incomplete information, deter-
mining the volatility of this process is a non-trivial problem. In this paper, we circumvent this
problem by applying the uncertain volatility model of Avellaneda, Levy and Parás (1995) and
combining it with the results of Kallsen and Kühn (2005) on game option in incomplete market
to derive certain pricing bounds for convertible bonds. Hereby we only known that the volatility
of the firm’s value process lies between two extreme values. The bondholder selects the stopping
time which maximizes the expected payoff given the minimizing strategy of the issuer, and the
expectation is taken with the most pessimistic estimate from the aspect of the bondholder. Thus
the optimal strategy of the bondholder and his choice of the pricing measure determine the lower
bound of the no-arbitrage price. Whereas the issuer chooses the stopping time that minimizes the
expected payoff given the maximizing strategy of the bondholder. This expectation is also the
most pessimistic one but from the aspect of the issuer, thus the upper bound of the no-arbitrage
price can be derived. Numerically, to make the computation tractable a constant interest rate is
assumed. The pricing bounds can be calculated with recursions on a recombining trinomial tree.

The remainder of the paper is structured as follows. Section 2 introduces the model framework:
market assumptions, dynamics of the interest rate and firm’s value processes, capital structure
and the default mechanism are established. The contract feature of the callable and convertible
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bond is described in Section 3. Section 4 focuses on the description of the optimal strategies
and the determination of the no-arbitrage value of the callable and convertible bond. The
formulation and solution of the optimization problem are first presented with constant interest
rate in Section 5, then the interest rate risk is incorporated in Section 6. In Section 7 uncertain
volatilities of the firm value are introduced and pricing bounds are derived. Section 8 concludes
the paper.

2 Model Framework

2.1 Model assumptions

We adopt a first passage model and the model assumptions are made mainly according to Briys
and de Varenne (1997) and Bielecki and Rutkowski (2004)1, with some slight modifications. It
covers both the firm specific default risk and the market interest rate risk and correlation of them.
The financial market is frictionless, which means there are no transactions costs, bankruptcy
costs and taxes, and all securities in the market are arbitrarily divisible. Every individual can
buy or sell as much of any security as he wishes without affecting the market price. Risk-free
assets earn the instantaneous risk-free interest rate. One can borrow and lend at the same
interest rate and take short positions in any securities. The Modigliani-Miller theorem is valid,
i.e. the firm’s value is independent of the capital structure of the firm. In particular, the value
of the firm does not change at the time of conversion and is reduced by the amount of the call
price paid to the bondholder at the time of the call. Trading takes place continuously. Under
these assumptions, the financial market is complete, and according to Harrison and Kreps (1979)
there exists a unique probability measure P ∗ under which the continuously discounted price of
any security is a P ∗-martingale.

2.2 Dynamic of the firm’s value

The Vasic̆ek–model, in its simplest form, a one-factor mean-reverting model is applied to incor-
porate interest rate risk into the process of the firm’s value. The conform short rate follows an
Ornstein–Uhlenbeck process

dr(t) = (ar − brr(t))dt + σrdW ∗
1 (t), (1)

with constant volatility σr > 0, and the short rate is pulled to the long-run mean
ar

br
at a speed

rate of br . W ∗
1 (t) is a 1 -dimensional standard Brownian motion under the martingale measure

P ∗. Accordingly, the value of a default free zero coupon bond B(t, T ) follows the dynamic

dB(t, T ) = B(t, T )(rtdt − b(t, T )dW ∗
1 (t)) (2)

where the volatility of the zero coupon bond has the following form

b(t, T ) =
σr

br
(1 − e−br(T−t)).

The firm’s value V is assumed to follow a geometric Brownian motion under the martingale
measure P ∗ of the form

dVt

Vt
= (rt − κ)dt + σV (ρdW ∗

1 (t) +
√

1 − ρ2dW ∗
2 (t)) (3)

1See, Section 3.4 of their book.
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where W ∗
2 (t) is a 1 -dimensional standard Brownian motion, independent of W ∗

1 (t) and ρ ∈
[−1, 1] is the correlation coefficient between the interest rate and the firm’s value. The volatility
σV > 0 and the payout rate κ are assumed to be constant. The amount κVtdt is used to pay
coupons and dividends.

Under the martingale measure P ∗ the no-arbitrage price of a contingent claim is derived as
expected discounted payoff, but in the case of stochastic discount factor the calculation can be
quite complicated. The calculation can be simplified if the T -forward risk adjusted martingale
measure P T is applied.

Definition 2.1. A T -forward risk adjusted martingale measure P T on (Ω,FT ) is equivalent
to P ∗ and the Radon-Nikodým derivative is given by the formula

dP T

dP ∗ =
exp{−

∫ T

0 r(u)du}

EP ∗

[

exp{−
∫ T

0 r(u)du}
] =

exp{−
∫ T

0 r(u)du}
B(0, T )

,

and when restricted to the σ− field Ft ,

dP T

dP ∗ |Ft := EP ∗

[

exp{−
∫ T

0 r(u)du}
B(0, T )

∣
∣
∣Ft

]

=
exp{−

∫ t

0 r(u)du}B(t, T )

B(0, T )
.

Especially for Gaussian term structure model, when the zero bond price is given by Equation
(2), an explicit density function exists. Namely,

dP T

dP ∗ |Ft = exp

{

−1

2

∫ t

0
b2(u, T )du −

∫ t

0
b(u, T )dW ∗

1 (u)

}

.

Furthermore,

W T
1 (t) = W ∗

1 (t) +

∫ t

0
b(u, T )du (4)

follows a standard Brownian motion under the forward measure P T .

Thus the forward price of the firm’s value FV (t, T ) := Vt/B(t, T ) satisfies the following dynamics
under the T -forward risk adjusted martingale measure P T 2,

dFV (t, T )

FV (t, T )
= −κdt + (ρσV + b(t, T ))dW T

1 (t) + σV

√

1 − ρ2dW ∗
2 (t)

= −κdt + σF (t, T )dW T (t), (5)

where W T
1 (t) is given by Equation (4) and

σ2
F (t, T ) =

∫ t

0

(

σ2
V + 2ρσV b(u, T ) + b2(u, T )

)

du, (6)

and W T (t) is a 1-dimensional standard Brownian motion that arises from the independent
Brownian motions W T

1 (t) and W ∗
2 (t) 3 by the following equality in law aW T

1 (t) + bW ∗
2 (t) ∼√

a2 + b2W T (t), where a , b are constant. Thus the auxiliary process

F κ
V (t, T ) := FV (t, T )eκt (7)

2The dynamic of the forward firm value is derived by application of Itô’s Lemma.
3The independence of W T

1 (t) and W ∗

2 (t) is due to the assumption that W ∗

1 (t) and W ∗

2 (t) are independent
and this property remains after the change of measure acted on W ∗

1 (t) .
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is a martingale under P T and is log-normally distributed. Specifically, we have

dF κ
V (t, T ) = F κ

V (t, T ) · σF (t, T )dW T (t). (8)

According to Equation (3) a constant payout rate of κ is assumed, and κVtdt is the sum of the
continuous coupon and dividend payments. Thus the firm’s value FV (t, T ) is not a martingale
under the T -forward risk adjusted martingale measure P T , but after compensated with the
payout, the auxiliary process F κ

V (t, T ) is a martingale under P T .

2.3 Capital structure and default mechanism

The equity price may drop at time of conversion, as the equity-holders may own a smaller
portion of the equity after bondholders convert their holdings and become new equity-holders.
To capture this effect, we assume that until time of conversion, at time t , the firm’s asset
consists of m identical stocks with value St and of n identical callable and convertible bonds
with value CCBt, thus

Vt = m · St + n · CCBt.

Especially, at time t = 0, the initial firm’s value satisfies

V0 = m · S0 + n · CCB0. (9)

Moreover, we set the principal that the firm must pay back at maturity T to be L for each
bond and assume that bondholders are protected by a safety covenant that allows them to
trigger early default. The firm defaults as soon as its value hits a prescribed barrier and the
default time τ is defined in a standard way by

τ = inf {t > 0 : Vt ≤ νt} . (10)

3 Contract Feature

In the following we assume that the bond matures at time T ∈ R+. The coupons are paid
out continuously with a constant rate of c , given that the firm’s value is above the level ηt .
The contract terminates either at maturity T or, in case of premature default, at the default
time τ, which is the first hitting time of the barrier νt by the firm’s value. Moreover, the
contract stops also by conversion or call. The bondholder can stop and convert the bond into
equities according to the prescribed conversion ratio γ. The conversion time of the bondholder
is denoted as τb ∈ [0, τ ]. The shareholder can stop and buy back the bond at a price given by
the maximum of the deterministic call level Ht and the current conversion price. This ensures
that the payoff by call is never lower than the conversion payoff. This assumption makes the
aspect of game option relevant and interesting for the valuation of callable convertible bonds.
The call time of the seller is denoted as τs ∈ [0, τ ] .

3.1 Discounted payoff

First, we introduce the notation β(s, t) = exp{−
∫ t

s
r(u)du} which is the discount factor, where

r(t) is the instantaneous risk-free interest rate. The discounted payoff of a callable and convert-
ible bond can be distinguished in four cases.

(i) Let τb < τs ≤ T, such that the contract begins at time 0 and is stopped and converted by
the bondholder. In this case, the discounted payoff conv(0) of the callable and convertible
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bond at time 0 is composed of the accumulated coupon payments and the payoff through
conversion

conv(0) = c

∫ τb∧τ

0
β(0, s)1{Vs>ηs}ds +

ντ

n
· β(0, τ)1{τ≤τb}

+β(0, τb)1{τb<τ}

( γVτb

m + γn

)

. (11)

(ii) Let τs < τb ≤ T, such that the contract is bought back by the shareholder before the
bondholder converts. In this case, the discounted payoff call(0) of the callable and con-
vertible bond at time 0 is composed of the accumulated coupon payments and the payoff
through call,

call(0) = c

∫ τs∧τ

0
β(0, s)1{Vs>ηs}ds +

ντ

n
· β(0, τ)1{τ≤τs}

+β(0, τs)1{τs<τ} max
{

Hτs ,
γVτs

m + γn

}

. (12)

(iii) If τs = τb < T the discounted payoff of the bond equals the smaller value, i.e. the
discounted payoff with conversion.

(iv) For τb ≥ T and τs ≥ T, the discounted payoff of a callable and convertible bond at time
0 is

term(0) = c

∫ τ∧T

0
β(0, s)1{Vs>ηs}ds +

ντ

n
· β(0, τ)1{τ≤T}

+β(0, T )1{T<τ} max

{
γVT

m + γn
,min

{
VT

n
,L

}}

.

Note that
VT

n
>

γVT

m + γn
since n, m ∈ N+ and γ ∈ R+. Hence in the case

VT

n
≤ L the

bondholder would not convert and

1{VT≤nL} max

{
γVT

m + γn
, min

{
VT

n
,L

}}

=
VT

n
.

Thus, in the case (iv), we can rewrite the discounted payoff term(0) as

term(0) = c

∫ τ∧T

0
β(0, s)1{Vs>ηs}ds +

ντ

n
· β(0, τ)1{τ≤T}

+β(0, T )1{T<τ,VT >nL} max

{
γVT

m + γn
, L

}

+ β(0, T )1{T<τ,VT≤nL}
VT

n
. (13)

Denote the minimum of conversion and call time by ζ = τs ∧ τb. Then, all in all, the discounted
payoff of a callable and convertible bond ccb(0) is given as the sum of the payoffs in the former
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four cases and amounts to

cbb(0) = 1{ζ<τ}

(

c

∫ ζ∧T

0
β(0, s)1{Vs>ηs}ds + 1{ζ=τs<τb≤T}β(0, ζ) max

{

Hζ ,
γVζ

m + γn

}

+1{ζ=τb<τs<T}β(0, ζ)
γVζ

m + γn
+ 1{ζ=T}β(0, ζ) max

{
γVT

m + γn
, L

})

+ 1{τ≤ζ}

(

c

∫ τ∧T

0
β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(0, τ)

ντ

n

+1{T<τ}β(0, T ) min

{
VT

n
,L

})

. (14)

3.2 Decomposition of the payoff

The callable and convertible bond can be decomposed into a straight bond component and an
option component. The decomposition enables us to investigate the pure effect caused by the
conversion and call rights.

Theorem 3.1. The payoff of a callable and convertible bond can be decomposed into a straight
bond d(0) and a defaultable game option component g(0) .

ccb(0) = d(0) + g(0) (15)

with

d(0) := c

∫ τ∧T

0
β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(0, τ)

ντ

n
+ 1{T<τ}β(0, T ) min

{
VT

n
,L

}

,

and

g(0) := 1{ζ<τ}β(0, ζ)

{

1{ζ=τb<τs<T}

(
γVζ

m + γn
− φζ

)

+1{ζ=τs<τb≤T}

(

max

{

Hζ ,
γVζ

m + γn

}

− φζ

)

+ 1{ζ=T}

(
γVT

m + γn
− L

)+
}

,

where

φζ := c

∫ τ∧T

ζ

β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(ζ, τ)
ντ

n
+ 1{T<τ}β(ζ, T ) min

{
VT

n
,L

}

(16)

is the discounted value (discounted to time ζ ) of the sum of the remaining coupon payments
and the principal payment of a straight coupon bond given that it has not defaulted till time ζ .
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Proof 3.2. We can reformulate ccb(0) in Equation 14 as follows

ccb(0) = 1{ζ<τ}β(0, ζ)

(

1{ζ=τb<τs<T}
γVζ

m + γn
+ 1{ζ=τs<τb≤T} max

{

Hζ ,
γVζ

m + γn

}

+1{ζ=T} max

{
γVT

m + γn
, L

})

+

(

c

∫ τ∧T

0
β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(0, τ)

ντ

n
+ 1{T<τ}β(0, T ) min

{
VT

n
,L

})

︸ ︷︷ ︸

=d(0)

−1{ζ<τ}

(

c

∫ τ∧T

ζ

β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(0, τ)
ντ

n
+ 1{T<τ}β(0, T ) min

{
VT

n
,L

})

︸ ︷︷ ︸

:=β(0,ζ)φζ

.

Since
VT

n
≥ L if ζ ≤ T, otherwise the bondholder would not make use of his conversion right.

2

4 Optimal Strategies

After the inception of the contract, the bondholder’s aim is to maximize the value of the bond
by means of optimal exercise of the conversion right. The incentive of the issuer to call a bond
is to limit the bondholder’s participation in rising stock prices. The embedded option rights
owned by both of the bondholder and issuer can be treated with the well developed theories on
the game option.

4.1 Game option

In this section we summarize the valuation problem of game options and highlight some impor-
tant results derived by Kifer (2000). .

Definition 4.1. Let T ∈ R+. Consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ). A
game option is a contract between a seller A and a buyer B which enables A to terminate
it and B to exercise it at any time t ∈ [0, T ] up to the maturity date T. If B exercises at
time t, he obtains from A the payment Xt. If A terminates the contract at time t before it
is exercised by B, then he has to pay B the amount Yt, where Xt and Yt are two stochastic
processes which are adapted to the filtration (Ft)t∈[0,T ] , and satisfy the following condition

Xt ≤ Yt, for t ∈ [0, T ], and XT = YT . (17)

Moreover, if the seller A terminates and the buyer B exercises at the same time, A only has to
pay the lower value Xt. Loosely speaking, the seller must pay certain penalty if he terminates
the contract before the buyer exercises it.

Game options include both American and European options as special cases. Formally, if we set
Yt = ∞ for t ∈ [0, T ), then we obtain an American option. A European option is obtained by
setting Xt = 0 for t ∈ [0, T ) and XT is a nonnegative FT -measurable random variable.
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If the seller A selects a stopping time τA as termination time and the buyer B chooses a
stopping time τB as exercise time, then A promises to pay B at time τA ∧ τB the amount

g(τA, τB) := XτB
1{τB≤τA} + YτA

1{τA<τB}, (18)

which denotes the payoff of a game option.

The aim of the buyer B is to maximize the payoff g(τA, τB), while the seller A tends to mini-
mize the payoff. The optimal strategy for the buyer is therefore to select the stopping time which
maximizes his expected discounted payoff given the minimizing strategy of the seller, while the
seller will choose the stopping time that minimizes the expected discounted payoff given the
maximizing strategy of the buyer. This max-min strategy of the buyer leads to the lower value
of the game option, whereas the min-max strategy of the seller leads to the upper value of the
game option. In a complete market the condition described by Equation (17) ensures that the
lower value equals the upper value such that there exists a solution for the pricing problem of a
game option.

The existence and uniqueness of the no-arbitrage price in a complete market where the filtration
{Fu}0≤u≤T is generated by a standard one-dimensional Brownian motion is proved in Kifer
(2000), Theorem 3.1. The no-arbitrage price of a game option equals G(0) ,

G(0) = sup
τB∈F0T

inf
τA∈F0T

EP ∗ [e−r(τA∧τB)g(τA, τB)]

= inf
τA∈F0T

sup
τB∈F0T

EP ∗ [e−r(τA∧τB)g(τA, τB)] (19)

where F0T is the set of stopping times with respect to the filtration {Fu}0≤u≤T with values in
[0, T ]. After the inception of the contract, the value process G(t) , t ∈ (0, T ] satisfies

G(t) = esssupτB∈FtT
essinfτA∈FtT

EP ∗ [e−r(τA∧τB)g(τA, τB)|Ft] (20)

= essinfτA∈FtT
esssupτB∈FtT

EP ∗ [e−r(τA∧τB)g(τA, τB)|Ft].

Where FtT is the set of stopping times with values in [t, T ]. Further, the optimal stopping
times for the seller A and buyer B respectively are

τ∗
A = inf{t ∈ [0, T ] | e−rtYt ≤ G(t)}

τ∗
B = inf{t ∈ [0, T ] | e−rtXt ≥ G(t)}. (21)

It is optimal for the seller A to buy back the option as soon as the current exercise value e−rtYt

is equal to or smaller than the value function G(t) , while the optimal strategy for the buyer B
is to exercise the option as soon as the current exercise value e−rtXt is equal to or greater than
the value function G(t).

4.2 Optimal stopping and no-arbitrage value of callable and convertible bond

The discounted conversion value of the callable and convertible bond, described with Equation
(11), contains expressions about default times. But in the structural approach, the default
time is a predictable stopping time, and adapted to the filtration (Ft)t∈[0,T ] generated by the
firm’s value. Thus the discounted conversion value is adapted to the filtration (Ft)t∈[0,T ] . And
the same is valid for the discounted call value and the discounted terminal payoff, described
with Equations (12) and (13) respectively. Moreover, the call value is always larger than the
conversion value for t < T , and they coincide at maturity T . Hence, the payoffs in the case
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of conversion and call satisfy the requirements on the payoffs of the game option. Furthermore,
the market in our structural approach is assumed to be complete. Therefore the theory on game
option developed by Kifer (2000) can be applied to derive the unique no-arbitrage value and the
optimal strategies.

Proposition 4.2. Plugging the payoff functions ccb(0) in Equation (19), the unique no-
arbitrage price CCB(0) at time t = 0 of the callable and convertible bond is given by

CCB(0) = sup
τb∈F0T

inf
τs∈F0T

EP ∗ [ccb(0)] = inf
τs∈F0T

sup
τb∈F0T

EP ∗ [ccb(0)]. (22)

After the inception of the contract, the value process CCB(t) satisfies

CCB(t) = esssupτb∈FtT
essinfτs∈FtT

EP ∗ [ccb(0)|Ft] (23)

= essinfτs∈FtT
esssupτb∈FtT

EP ∗ [ccb(0)|Ft].

The optimal strategy for the bondholder is to select the stopping time which maximizes the
expected payoff given the minimizing strategy of the issuer, while the issuer will choose the
stopping time that minimizes the expected payoff given the maximizing strategy of the bond-
holder. This max-min strategy of the bondholder leads to the lower value of the convertible
bond, whereas the min-max strategy of the issuer leads to the upper value of the convertible
bond. The assumption that the call value is always larger than the conversion value prior to the
maturity and they are the same at maturity T ensures that the lower value equals the upper
value such that there exists a unique solution.

Furthermore, the optimal stopping times for the equity holder and bondholder respectively are

τ∗
b = inf{t ∈ [0, T ] | conv(0) ≥ CCB(t)}

τ∗
s = inf{t ∈ [0, T ] | call(0) ≤ CCB(t)}. (24)

It is optimal to convert as soon as the current conversion value is equal to or larger than the
value function CBB(t), while the optimal strategy for the issuer is to call the bond as soon as
the current call value is equal to or smaller than the value function CBB(t).

Remark 4.3. The no-arbitrage value of the callable and convertible bond and the optimal
stopping times described by Equation (22) and (24) incorporate also the case of stochastic
interest rate. Kifer (2000) assumes that the interest rate is constant, but this assumption is
not necessary, because the game option is essentially a zero-sum Dynkin stopping game and the
min-max and max-min strategies are also valid for the stochastic discount factor. For details,
see e.g. Kifer (2000) and Cvitanić and Karatzas (1996).

In section 3.2 it has been shown that the callable and convertible bond can be decomposed into
a straight bond and a game option component

ccb(0) = d(0) + g(0).

Therefore the no-arbitrage price of the callable and convertible bond can also be derived in the
following way

CCB(0) = EP ∗ [d(0)] + EP ∗ [g(0)].

The no-arbitrage price of the game option component G(0) equals

G(0) := EP ∗ [g(0)]

= sup
τb∈F0T

inf
τs∈F0T

EP ∗ [g(0)] = inf
τs∈F0T

sup
τb∈F0T

EP ∗ [g(0)]. (25)
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5 Deterministic Interest Rates

In general, closed-form solutions of the optimization problems stated in Equations (22) and (25)
are not available. One alternative solution is to approximate the continuous time problem with
a discrete time one. The no-arbitrage value of the callable and convertible bond can then be
derived by a recursion formula. In order to focus on the recursion procedure, we assume in the
first step that the interest rate is constant. Theorem 2.1 of Kifer (2000) illustrates the recursion
method for the game option and the optimal stopping strategies of both counterparts. The
discretization method and its convergence is proved in Proposition 3.2 of the same paper. We
will apply and adapt this recursion method to determine the no-arbitrage value and optimal
stopping times of the callable and convertible bond.

5.1 Discretization and recursion schema

The time interval [0, T ] is discretized into N equidistant time steps 0 = t0 < t1 < . . . < tN =
T , with ti − ti−1 = ∆ . Assume that the bondholder does not receive the coupon for the period
in which the bond is converted, while receives the dividends for the converted shares, though.
If the bond is called, coupon will be paid. CCB(tn) , the recursion value of the callable and
convertible bond at time tn , can be derived by means of the max-min or min-max recursion,
illustrated in Figure 1 and 2. Note that in complete markets the max-min strategy leads to
the same value as the min-max strategy. Hence it does not matter whether we carry out the
recursion according to the strategy of the bondholder or that of the shareholder. In the recursion
schema Vt+n

is the firm’s value just before payout and νtn is the default barrier. The discretized
coupon ctn equals c∆ , and will only be paid out if the firm’s value is above certain level, i.e.
Vt+n

> ηtn , therefore ctn is path-dependent.

For n = 0, 1, ..., N − 1,

CCB(tn) =







min

{

e−rtn max
{

H + ctn
,

γVt
+
n

m + γn

}

,

max
{

e−rtn

γVt
+
n

m + γn
, EP∗ [CCB(tn+1)|Ftn

] + e−rtnctn

}
}

if Vt
+
n

> νtn

e−rtn

Vt
+
n

n
if Vt

+
n
≤ νtn

(26)

and

CCB(T ) =







e−rT max

{
γVT+

m + γn
, L + ctN

}

if VT+ > n(L + ctN
)

e−rT VT+

n
if VT+ ≤ n(L + ctN

)

(27)

Figure 1: Min-max recursion callable and convertible bond, strategy of the issuer
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For n = 0, 1, ..., N − 1,

CCB(tn) =







max

{

e−rtn

γVt
+
n

m + γn
,min

{

e−rtn max
{

H + ctn
,

γVt
+
n

m + γn

}

,

EP∗ [CCB(tn+1)|Ftn
] + e−rtnctn

}
}

if Vt
+
n

> νtn

e−rtn

Vt
+
n

n
if Vt

+
n
≤ νtn

(28)

and

CCB(T ) =







e−rT max

{
γVT+

m + γn
, L + ctN

}

if VT+ > n(L + ctN
)

e−rT VT+

n
if VT+ ≤ n(L + ctN

)

(29)

Figure 2: Max-min recursion callable and convertible bond, strategy of the bondholder

Furthermore, for each i = 0, 1, ..., N − 1, the rational conversion time after time ti equals

τ∗
b (ti) = min

{

tk ∈ {ti, ..., tN−1}
∣
∣
∣ e−rtk

γVt+
k

m + γn
= CCB(tk)

}

,

the rational call time after time ti equals

τ∗
s (ti) = min

{

tk ∈ {ti, ..., tN−1}
∣
∣
∣ e−rtk max

{

H + ctk ,
γVt+

k

m + γn

}

= CCB(tk)
}

.

Therefore at time tk , it is optimal to convert or call when the current conversion or call value
equals the payoff function CCB(tk) .

Remark 5.1. For convenience of notation, the call value H is assumed be constant, but the
same recursion formulas also hold in the case of a deterministic and time dependent call level
H(t). In that case H has to be replaced by H(t+n ) in the above formulas.

Analogously, the no-arbitrage value of the pure game option component G(tn) at time tn can
be derived through the recursion shown in Figure 3 with φtn as discretized value defined by
Equation (16).

5.2 Implementation with binomial tree

As the firm’s value in our structural model follows a geometric Brownian motion, in absence
of interest rate risk, it can be approximated by the Cox-Ross-Rubinstein model. The time
interval [0, T ] is divided in N subintervals of equal lengths, the distance between two periods
is ∆ = T/N. The stochastic evolution of the firm’s value is then modeled by

V (i, j) = V (0)ujdi−j κ̂i, for all j = 0, ..., i, i = 1, ..., N, (30)

and
u = eσV

√
∆, d = e−σV

√
∆, κ̂ = e−κ∆,

where V (i, j) denotes the firm’s value at time ti after j up movements, and less the amount
to be paid out. And according to Equation (30), the firm’s value just before the payment equals
V (i, j)

κ̂
, and the total amount to be paid out at time ti is V (i, j)

κ̂

1 − κ̂
. We see that u, d

12



For n = 0, 1, ..., N − 1,

G(tn) =







min

{

e−rtn

(

max
{

H + ctn
,

γVt
+
n

m + γn

}

− φtn

)

,

max

{

e−rtn

(
γVt

+
n

m + γn
− φtn

)

, EP∗ [G(tn+1)|Ftn
]

}}

if Vt
+
n

> νtn

0 if Vt
+
n
≤ νtn

or

G(tn) =







max

{

e−rtn

(
γVt

+
n

m + γn
− φtn

)

,

min
{

e−rtn

(

max
{

H + ctn
,

γVt
+
n

m + γn

}

− φtn

)

,

EP∗ [G(tn+1)|Ftn
]
}
}

if Vt
+
n

> νtn

0 if Vt
+
n
≤ νtn

and

G(T ) =







e−rT max

{
γVT+

m + γn
− L − cN , 0

}

if VT+ > n(L + cN )

0 if VT+ ≤ n(L + cN )

Figure 3: Max-min and min-max recursion game option component

and κ̂ are time and state independent. The equivalent martingale measure P ∗ exists if the
periodical discount factor d < 1 + r̂ = er∆ < u. The transition probability is given by

p∗ :=
1 + r̂ − d

u − d
.

Concretely, the recursion procedure of the min-max strategy 4 of the issuer of a callable and
convertible bond, described by Equations (26) and (27), can be implemented within the Cox-
Ross-Rubinstein model with Algorithm I (Figure 4). The no-arbitrage price of the callable and
convertible bond is then given by CCB(0, 0) .

The first loop in Algorithm I (Figure 4) determines the optimal strategy and thus the optimal
terminal value CCB(N, j) . While the second loop determines the value of CCB(i, j) according
to the min-max strategy at node (i, j) of the tree. The value of each CCB(i, j) is stored in
a data matrix, and the event of conversion, call or continuation of the contract is recorded for
each node (i, j) . Then given the development, i.e. the path of the firm’s value V (i, j) , the
bondholder and issuer can determine their optimal stopping times by moving forward alongside
the tree. At the time the contract is terminated, i.e. converted, called or default at the node
(i, j) , CCB(i, j) is then the discounted payoff of the callable and convertible bond for this
realization of the firm’s value.

5.3 Influences of model parameters illustrated with a numerical example

The no-arbitrage value of the callable and convertible bond is affected by the randomness of
the firm’s value, and the randomness of the termination time. It is a complex contract and

4The algorithm of max-min strategy and recursion of the best strategy of the game option component can be
written in the similar way, therefore we omit these cases.
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for j = 0, 1, . . . , N,

if
V (N, j)

κ̂
> nL + ncN,j ,

then CCB(N, j) = max
{ γ

m + γn
· V (N, j)

κ̂
, L + cN,j

}

else, CCB(N, j) =
V (N, j)

n · κ̂

for i = N − 1, . . . , 0,

for j = i, . . . , 0,

if V (i, j) > K, then

CCB(i, j) = min

{

max
[

H + ci,j ,
γ

m + γn
· V (i, j)

κ̂

]

,

max
[ γ

m + γn
· V (i, j)

κ̂
,

1

1 + r̂

(

p∗ · CCB(i + 1, j)

+(1 − p∗) · CCB(i + 1, j + 1)
)

+ ci,j

]
}

,

else, CCB(i, j) =
V (i, j)

n · κ̂

Figure 4: Algorithm I: Min-max recursion American-style callable and convertible bond

influenced by a number of parameters: e.g. the value of coupon and principal, default barrier,
volatility of the firm’s value, conversion ratio, call level, maturity, etc. The firm’s value in total
follows a diffusion process, while the bond and equity value are results of a strategic game, which
are not simple diffusion processes. Change of one parameter causes simultaneous changes of the
value of bond and equity. For example, intuitively, the increment of the conversion ratio causes
the rise of conversion value, thus the rise of the bond price, but at the same time the reduction
of the equity value, and consequently the decline of the conversion value. The direction and
quantity of the total effect cannot be determined without numerical evaluation. Moreover, to
design a meaningful callable and convertible bond, the parameters should in accordance with
each other. The situation such that the bond will be converted or called immediately after the
start of the contract, should not happen. In the following, we will illustrate the influences of the
model parameters and their interactions with a close study of a numerical example.

Example 5.2. As an explicit numerical example we choose the following parameters: T =
8, σV = 0.2, r = 0.06, V (0) = 1000, K = 400, ω = 1300, L = 100, γ = 1.5, m = 10, n =
8, H = 120.

The results in Table 1 are derived for different payout ratios κ and coupons c 5. They illustrate
first that the value of the game option component decreases when coupon payment rises. The
reason is that the value of the remaining coupon and principal payment defined by Equation (16)
can be thought as the strike of the game option, which is an increasing function of coupon rate
c , and the value of the game option component decreases in strike. The large price difference of
game option component G(0) in the case κ = 0, c = 0 , to the case κ = 0.04, c = 2 is due to

5The coupons are to be paid if the firm’s value is above ηt = ω · e−r(T−t)e−κt , The default barrier is νt =
K · e−r(T−t)e−κt
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σV = 0.2 σV = 0.4

κ c SB(0) G(0) CCB(0) S(0) SB(0) G(0) CCB(0) S(0)

0 0 59.40 16.92 76.32 38.94 48.01 26.85 74.86 40.11
0.04 2 65.15 8.65 73.80 40.96 52.38 20.41 72.79 41.77
0.04 3 69.83 7.82 77.65 37.88 56.39 18.72 75.12 39.91
0.04 4 74.50 6.99 81.50 34.80 60.40 17.03 77.44 38.06

Table 1: Influence of the volatility of the firm’s value and coupons on the no-arbitrage price of
the callable and convertible bond (384 steps)

the increment of payout ratio and coupon rate. Both factors together result in a large drop of
the value of G(0) . The second effect shown by Table 1 is that the more volatile the firm’s value,
the larger the default probability, hence the smaller the value of straight bond SB(0) . But on
the other side the game option component G(0) becomes more valuable. In our example, the
value of the callable and convertible bond CCB(0) which is the sum of the both components
decreases in volatility6.

σV = 0.2 σV = 0.4

∆ SB(0) CCB(0) G(0) SB(0) CCB(0) G(0)

1 69.37 77.00 7.64 54.30 73.83 19.54
1/12 69.82 77.65 7.82 56.14 75.12 18.96
1/48 69.83 77.64 7.81 56.39 75.12 18.72
1/100 69.83 77.64 7.81 56.45 75.11 18.66
1/250 69.83 77.64 7.81 56.51 75.12 18.61

Table 2: Stability of the recursion

Remark 5.3. The stability of the recursion is demonstrated with Table 2. The recursions are
carried out alongside trees with different steps for σV = 0.2 and σV = 0.4. We can see that the
numerical results stabilized at ∆ = 1/48. Further refinements ( ∆ = 1/100 and ∆ = 1/250 ) of
the tree do not change the numerical results considerably while much more time are needed for
the calculation. Therefore, for the further calculations in this example ∆ is always set to be
1/48, which approximately corresponds to a weekly valuation. By ∆ = 1/48 and a maturity of
T = 8 it corresponds to a tree with 384 steps.

Table 3 has the same structure as Table 1 and shows the influence of the conversion ratio γ on
G(0) and CCB(0) . The volatility of the firm’s value is kept to be constant, i.e. σV = 0.2.
The change of conversion ratio γ does not affect the price of the straight coupon bond and
it only changes the value of G(0) . The increase of γ from 1.5 to 2.0 makes the game option
component more valuable, thus in total the callable and convertible bond more valuable7. The
case by κ = 0.04, c = 2 and γ = 2 is not a good contract design. As with CCB(0) = 78.27 ,
and S(0) = 37.38 , the initial price of the bond is almost equal to the initial conversion value,
which means that the conversion may take place very quickly after the inception of the con-
tract, because a slight increase of the firm’s value will make conversion the optimal choice of the

6In Example 5.2, the value of the callable and convertible bond increases in volatility, but one cannot argue it
generally, as it depends also on other factors e.g. default barrier and maturity.

7Again we cannot take it as a general result, as it depends also on the parameters m and n .
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γ = 1.5 γ = 2

κ c SB(0) G(0) CCB(0) S(0) SB(0) G(0) CCB(0) S(0)

0 0 59.40 16.92 76.32 38.94 59.40 22.96 82.35 34.12
0.04 2 65.15 8.65 73.80 40.96 65.15 13.12 78.27 37.38
0.04 3 69.83 7.82 77.65 37.88 69.83 11.71 81.54 34.77
0.04 4 74.50 6.99 81.50 34.80 74.50 10.39 84.90 32.08

Table 3: Influence of the conversion ratio on the no-arbitrage price of the callable and convertible
bond (384 steps)

bondholder. Usually it is not the intention of the issuer to issue a bond which will be converted
or called immediately after the inception of the contract.

T = 8 T = 6

κ c SB(0) G(0) CCB(0) S(0) SB(0) G(0) CCB(0) S(0)

0 0 59.40 16.92 76.32 38.94 67.21 11.91 79.12 36.71
0.04 2 65.15 8.65 73.80 40.96 71.75 6.22 77.97 37.62
0.04 3 69.83 7.82 77.65 37.88 75.57 5.75 81.33 34.94
0.04 4 74.50 6.99 81.50 34.80 74.50 5.27 84.67 32.26

Table 4: Influence of the maturity on the no-arbitrage price of the callable and convertible bond
(384 steps)

Table 4 is also structured in the same way as Tables 3 and 1. It demonstrates the influence of
the maturity T on G(0) and CCB(0) . The volatility of the firm’s value and conversion ratio
are σV = 0.2 and γ = 1.5 . Comparing the case T = 8 with T = 6 , we observe that the
straight bond is more valuable with shorter maturity, because the default probability is lower
and by positive interest rate the principal is more valuable if it is paid earlier. The game option
component G(0) is less valuable in the case of shorter maturity. It is due to two effects: first,
shorter maturity means less conversion chances for the bondholder, and secondly, an increase of
the value of the straight bond reduces the value of the equity thus the conversion value. The
reduction of G(0) may in turn increase the value of equity, here the final result is that reduction
in maturity increases the value of the callable and convertible bond CCB(0) .

The value of the game option component can be restricted when the call level is reduced. This
effect is confirmed by the results in Table 5. The reduction of the call level is achieved by making
the call level to be time dependent

H(t) = e−ω(T−t)H , ω ≥ 0. (31)

The value of H(t) increases in time and reaches H at maturity T. By ω = 0 , the call level
reaches its maximum and is a constant H . The impact of the call level on the no-arbitrage price
of game option component is stronger in the case of higher coupon rate c and lower volatility
of the firm’s value σV .
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κ c ω = 0, σV = 0.2 ω = 0.04, σV = 0.2 ω = 0, σV = 0.4 ω = 0.04, σV = 0.4

0 0 16.92 14.84 26.85 24.40
0.04 2 8.65 7.67 20.41 19.00
0.04 4 6.99 3.64 17.03 13.58

Table 5: Influence of the call level on the no-arbitrage price of the game option component (384
steps)

6 Stochastic Interest Rate

6.1 Recursion schema

In this section we solve the optimization problems stated in Equations (22) and (25) by allowing
stochastic interest rate. Similar as in Section 5, the continuous time problem is approximated
with a discrete time one and the no-arbitrage value is derived by a recursive formula. We
discretize the forward price of the firm’s value process modeled in Section 2.2. Accordingly, the
call level and coupons are adjusted to the forward value. The recursion is carried out on the
T -forward adjusted values, see Figure 5, where FV (t+n , T ) is the forward price of the firm’s value
just before payout and CCBF (tn) is the T -forward value of the callable and convertible bond
at time tn . At the terminal date T , FV (T, T ) = VT thus CCBF (T ) = CCB(T ) . νtn is the
default barrier. The coupon ctn will only be paid out if the firm’s value is above certain level, i.e.
Vt+n

> ηtn . The no-arbitrage price of the callable and convertible bond equals B(0, T )CCBF (0) .

For n = 0, 1, ..., N − 1,

CCBF (tn) =







min

{

max
{H + ctn

B(tn, T )
,
γFV (t+n , T )

m + γn

}

,

max
{γFV (t+n , T )

m + γn
,

EP T [CCBF (tn+1)|Ftn
] +

ctn

B(tn, T )

}
}

if FV (t+n , T ) > νtn

FV (t+n , T )

n
if FV (t+n , T ) ≤ νtn

(32)

and

CCB(T ) =







max

{
γVT+

m + γn
, L + ctN

}

if VT+ > n(L + ctN
)

VT+

n
if VT+ ≤ n(L + ctN

)

(33)

Figure 5: Min-max recursion callable and convertible bond, T -forward value

6.2 Some conditional expectations

The recursion formula, Equation (32) contains both FV (tn, T ) and B(tn, T ) as variables. In
order to circumvent a two-dimensional tree, we solve CCBF (tn, T ) as conditional expectation
given FV (tn, T ) . To achieve the analytical closed-form solution, we first explore the relationship
between FV (t, T ) and B(t, T ) .
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According to the assumptions on the firm’s value made in Section 2.2, under P T the auxiliary
forward price of the firm’s value F κ

V (t, T ) and the T -forward price of the default free zero

coupon bond FB(t, s, T ) :=
B(t, s)

B(t, T )
, t ≤ s < T are both martingales, and satisfy

dF κ
V (t, T ) = F κ

V (t, T ) · σF (t, T )dW T
t .

dFB(t, s, T ) = FB(t, s, T ) · σB(t, s, T )dZT
t

with

σ2
F (t, T ) =

∫ t

0
σ2

V + 2ρσV b(u, T ) + b2(u, T )du

σ2
B(t, s, T ) =

∫ t

0
(b(u, s) − b(u, T ))2du

and
b(t, s) =

σr

b
(1 − e−b(s−t)).

W T
t and ZT

t are two correlated standard Brownian motion with constant coefficient of corre-
lation equals ρ .

Hence F κ
V (t, T ) and FB(t, t, T ) =

B(t, t)

B(t, T )
=

1

B(t, T )
are bivariate normally distributed and

have the following variances, expectations and covariances8

σ2
1 := VP T [lnF κ

V (t, T )] =

∫ t

0
(σ2

V + 2ρσV b(s, T ) + b2(s, T ))ds

σ2
2 := VP T [lnFB(t, t, T )] =

1

2b3
(1 − e−2bt)b(t, T )2

µ1 := EP T [lnF κ
V (t, T )] = lnF κ

V (0, T ) − 1

2
σ2

1

µ2 := EP T [lnB(t, T )] = E[− lnFB(t, t, T )] = ln
B(0, T )

B(0, t)
+

1

2
σ2

2

and

γ := CovP T (lnF κ
V (t, T ), lnB(t, T ))

= −CovP T (lnF κ
V (t, T ), lnFB(t, T ))

=

∫ t

0

(

ρσV (b(u, T ) − b(u, t)) + (b(u, t)b(u, T ) − b(u, t)2)
)

du.

Given these relationships the expectation and variance of lnB(t, T ) conditional on the forward
price of the firm’s value can be derived with the following formulas

µ3 := E

[

lnB(t, T ) | lnF κ
V (t, T ) = w̄

]

= µ2 +
γ

σ2
1

(ln w̄ − µ1), (34)

σ2
3 := V

[

lnB(t, T ) | lnF κ
V (t, T ) = w̄

]

= σ2
2 − γ2

σ2
1

. (35)

Therefore, conditional on lnF κ
V (t, T ) = w̄ the random variable ln(B(t, T )) equals

lnB(t, T )
(

lnF κ
V (t, T ) = w̄

)

= µ3 + σ3x

8For details see Menkveld and Vorst (2000).
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where x is a standard normal random variable. Thus the following conditional expectation can
be derived after some elementary integration

E

[ 1

B(t, T )

∣
∣
∣ lnF κ

V (t, T ) = w̄
]

= exp

(

−µ3 +
1

2
σ2

3

)

(36)

E

[
( p

B(t, T )
− q
)+ ∣∣
∣ lnF κ

V (t, T ) = w̄

]

=

∫ h

−∞

( p

eµ3+σ3·x − q
)e−

x2

2

√
2π

dx

= p · e−µ3+
σ2
3
2 N(h + σ3) − q · N(h) (37)

with h = (ln(p/q) − µ3))/σ3 for some p, q ∈ R+. Here, N(·) denotes the cumulative distribu-
tion function of a standard normal distribution.

6.3 Implementation with binomial tree

For the implementation of the recursion schema displayed in Figure 5 we apply the method
developed by Menkveld and Vorst (1998) which is a combination of an analytical approach and
a one-dimensional binomial tree approach. A simple recombining binomial tree for the forward
price FV (t, T ) := Vt/B(t, T ) of the firm’s value can be constructed with the trick that the
interval [0, T ] is not divided into periods of equal length, but into periods of equal volatility.
Recursion is then carried out alongside the T -forward risk adjusted tree. The interval [0, T ] is
divided into periods 0 = t0 < t1 < ... < tN = T of equal volatility

σN
F :=

1

N

∫ T

0
(σ2

V + 2ρσV b(s, T ) + b2(s, T ))ds.

The stochastic evolution of the forward price of the firm’s value is then modeled by

FV (n, j) = F (0)ujdn−j κ̂n, ∀j = 0, ..., n, n = 1, ..., N

with F (0) = V (0)/B(0, T ) and

u = eσN
F , d = e−σN

F , κ̂n = e−κ∆n , ∆n = tn − tn−1,

where FV (n, j) denotes the forward price of the firm’s value after payout, at time tn after j
up-movements. F (0) is the initial forward price of the firm’s value. The expressions show that
u and d are time and state independent. κ̂n is time dependent as the time steps are no longer
of equal length. The (time dependent) coupon payment is given by c(n) = c∆n. The forward
martingale measure P T exists because d < 1 < u and the transition probability is given by

pT :=
1 − d

u − d
.

Thus the conditional expectation in the recursion schema can be calculated as

EV (n, j) := pT · CCBF (n + 1, j) + (1 − pT ) · CCBF (n + 1, j + 1)

The forward price of the firm’s value at time tn after j up movements and just before payout
is

FV (n+, j) :=
FV (n, j)

1 − κ̂n
.
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At each node (n, j) we calculate the expected value of the min-max strategy under the measure
P T conditional on the available information FV (n, j). The calculation is tedious but can be
solved analytically. We make first some simplifications of the notations which are only used for
the calculation of CCBF (n, j) . H(n, j) and c(n, j) are written as H and c , and

CV :=
γFV (n+, j)

m + γn
EV := EV (n, j)

which are conversion and simple recursion value. According to the recursion formula Equation
(32),

CCBF (n, j) = min

{

max
{ H + c

B(tn, T )
, CV

}

, max
{

CV, EV +
c

B(tn, T )

}}

= min

{[
H + c

B(tn, T )
− CV

]+

+ CV,

[

EV +
c

B(tn, T )
− CV

]+

+ CV

}

= CV +

[

EV +
c

B(tn, T )
− CV

]+

−
[

H

B(tn, T )
− EV

]+

1{ H+c
B(tn,T )

>CV }1{EV + c
B(tn,T )

>CV }. (38)

Equation (38) can be further calculated in two cases.

(i) CV ≤ EV

CCBF (n, j) = EV +
c

B(tn, T )
−
[

H

B(tn, T )
− EV

]+

(39)

because in this case the second term of Equation (38) is certainly positive and
H

B(tn, T )
>

CV includes also the case
H + c

B(tn, T )
> CV .

(ii) CV > EV

CCBF (n, j) = CV +

[
c

B(tn, T )
− (CV − EV )

]+

−
[

H

B(tn, T )
− EV

]+

1{B(tn,T )>MIN} (40)

where

MIN := min

[
H

EV
,

H + c

CV
,

c

CV − EV

]

.

According to the conditional expectations given in Equations (36) and (37), the analytical
solution of Equations (39) and (40) can be derived as conditional expectations given F κ

V (n, j) =
FV (n, j)eκtn = w̄ .

(i) CV ≤ EV

CCBF (n, j) = EV + c · exp
[

− µ3 +
σ2

3

2

]

− H · exp
[

− µ3 +
σ2

3

2

]

N(h1 + σ3) + EV · N(h1)

where

h1 :=
ln H

EV
− µ3

σ3
.
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(ii) CV > EV

CCBF (n, j) = CV + c · exp
[

− µ3 +
σ2

3

2

]

· N(h2 + σ3) − (CV − EV )N(h2)

+H · exp
[

− µ3 +
σ2

3

2

]

· N(h3 + σ3) − EV N(h3)

where

h2 :=
ln c

CV −EV
− µ3

σ3

h3 :=
lnMIN − µ3

σ3
.

And µ3 and σ3 have been defined in Equations (34) and (35).

In the following numerical example we compute the no-arbitrage price of a callable and convert-
ible bond with stochastic interest rates.

Example 6.1. The initial term structure is flat, choose T = 8, σV = 0.2, K = 400, ω =
1300, σr = 0.02, b = 0.1, V (0) = 1000, L = 100, K = 400, m = 10, n = 8, H = 120, γ =
1.5, r0 = 0.06. 9 The recursions are carried out alongside a tree with 384 steps.

The no-arbitrage prices of a straight bond, a callable and convertible bond and the game option
component in American-style with and without stochastic interest rates are presented in Table
6. “Non” stands for no interest rate risk, “-0.5” and “0.5” give the correlation coefficient of the
interest rate and firm’s value. The values are derived for different payout and coupon combina-
tions.

G(0) CCB(0) SB(0)

κ c Non −0.5 0.5 Non −0.5 0.5 Non −0.5 0.5

0 0 16.92 15.80 19.07 76.32 76.00 76.49 59.40 60.21 57.41

0.04 2 8.65 7.42 9.97 73.80 73.97 73.40 65.15 66.56 62.35

0.04 4 6.99 6.03 8.88 81.05 82.09 80.29 74.50 76.06 71.41

Table 6: No-arbitrage prices of the non-convertible bond, callable and convertible bond and
game option component in American-style with stochastic interest rate (384 steps)

Increasing correlation between the interest rate and the firm’s value causes increasing volatility
of the forward price of the firm’s value. The default probability rises with increasing volatility,
which results in a reduction of the value of the straight bond SB(0) . But on the other side, the
value of the game option component G(0) increases in volatility. Therefore in general the total
effect is uncertain, in our concrete example the total value declines with increasing correlation.
Moreover, the influence of the interest rate risk is relatively small which is recognized by the
value of the convertible bond, the results listed in the columns under CCB(0) .

9The default barrier is ηt = KB(t, T )e−κt , and the coupons are to be paid if the firm’s value is above
ηt = ωB(t, T )e−κt .
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7 Uncertain Volatility of Firm Value

In practice it is often a difficult problem to calibrate a model to the available data. Here one
major drawback of the structural model approach is that it specifies a certain firm’s value pro-
cess. As the firm’s value, however, is not always observable, e.g. due to incomplete information,
determining the volatility of this process is a non-trivial problem. Moreover, the interest rate
risk and the uncertainty about the correlation of the interest rate and firm value process are
other contributors to the uncertainty of the volatility.

To relax the assumption of constant volatility of the firm’s value, one can specify volatility as
a particular function of the firm’s value, or model volatility itself with a stochastic process.
However, specification of a reasonable model for the volatility dynamics and precise estimation
of the parameters would be a difficult task. We circumvent these problems by assuming that
the volatility of the firm’s value process lies between two extreme values. The volatility is no
longer assumed to be constant or a function of underlying and time. It is instead assumed to
lie between two extreme values σmin and σmax, which can be viewed as a confidence interval
for the future volatilities. This assumption is less stringent compared to the approaches where
the volatility is modeled as a function of the underlying or as a stochastic process. It needs also
less parameter inputs.

We treat the callable and convertible bond with uncertain volatility by applying the model of
Avellaneda et al. (1995) and Lyons (1995) and combining it with the results of Kallsen and
Kühn (2005) on game option in incomplete market such that certain pricing bounds can be
derived. The bondholder selects the stopping time which maximizes the expected payoff given
the minimizing strategy of the issuer, and the expectation is taken with the most pessimist
estimate from the aspect of the bondholder. The optimal strategy of the bondholder and his
choice of the pricing measure determine the lower bound for the no-arbitrage price. Whereas
the issuer chooses the stopping time that minimizes the expected payoff given the maximizing
strategy of the bondholder and the expectation is also the most pessimist one but from the aspect
of the issuer, thus the upper bound of the no-arbitrage price can be derived. The volatility is
selected dynamically from the two values σmin and σmax in a way that always the one with the
worse effect, thus the most pessimist pricing measure is chosen.

7.1 Uncertain volatility model

The uncertain volatility model is first proposed independently by Avellaneda et al. (1995) and
Lyons (1995). It is an extension of the Black-Scholes framework to deal with the biased estimate
of the historical volatility or the smile effect of the implied volatility10. Avellaneda et al. (1995)
study the case of derivatives written on a single underlying asset. The volatility of the asset
is not assumed to be a constant or a function of the underlying or rather stochastic. Instead,
it is only assumed to lie between two extreme values σmin and σmax, which can be viewed as
a confidence interval for the future volatilities. This assumption is less stringent compared to
other approaches and it needs also less parameter inputs. The derivation of a no-arbitrage pric-
ing bound is based on a super-hedging strategy which is a worst case estimation. At each (t, x)
the volatility is selected dynamically from the two values σmin and σmax in a way that always
the one with the worse effect on the value of the derivative from aspect of seller or buyer is chosen.

For a given martingale measure Q , suppose the stock price evolves according to the following

10The volatility implied from the traded options, plotted as a function of the strike price, often exhibits a
specific U-shape, which is referred to as the smile effect.
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dynamic
dSt = St(rdt + σtdW ∗

t ),

where, for simplification the interest rate r is assumed to be constant. The super-hedge, i.e.
the worst case scenario leads to the solution of a non-linear PDE, which is called Black-Scholes-
Barenblatt equation

∂f

∂t
+ r

(

S
∂f

∂S
− f

)

+
1

2
Σ2

[
∂2f

∂S2

]

S2 ∂2f

∂S2
= 0, (41)

with terminal value f(S, T ) = F (S), and Σ2[x] stands for a volatility parameter which depends
on x , the convexity of function f . For example, the super-hedge price for the seller of a call
option can be obtained by setting

Σ2 [x] =







σ2
max if x ≥ 0

σ2
min else.

The authors provide also a simple algorithm for solving the equation by a trinomial tree and
prove the convergence of this discrete scheme. In case of vanilla European options, the pricing
bounds can be derived simply with the Black-Scholes equations using the extreme values of the
volatility parameter, thus the nonlinear solution is reduced to the linear Black-Scholes solution.

Lyons (1995) treats the case of derivatives written on multiple assets. The volatility is assumed to
lie in some convex region depending on the prices of the underlying and time. Same as Avellaneda
et al. (1995), the volatility matrix is chosen such that the worst effect on the derivative is
achieved. However, vanilla European options written on multi-assets, in general, cannot be
derived simply by using the extreme values of the volatility parameter. Moreover, it is only
possible under particular conditions to reduce the nonlinear solution to the linear Black-Scholes
solution.

7.2 No-arbitrage pricing bounds

The relax of the assumption of deterministic volatility and the adoption of the uncertain volatil-
ity introduce market incompleteness. There would be a set of possible equivalent martingale
measures which are compatible with the no arbitrage requirement. The holder and issuer of a
callable and convertible bond must not only decide their optimal stopping strategies but also
the proper pricing measure.

This problem has been considered by Kallsen and Kühn (2005) in context of game option in
incomplete market. Theorem 2.2 of their paper tells us that: suppose that only a buy-and-hold

strategy is allowed in the game option, while the underlying risky asset and the savings account
can be traded dynamically, the set of initial no-arbitrage prices is determined by super hedging
and lies in the interval [Glow(0), Gup(0)] with

Glow(0) = sup
τB∈F0T

inf
τA∈F0T

inf
Q∈Q

EQ[e−r(τA∧τB)g(τA, τB)] (42)

Gup(0) = inf
τA∈F0T

sup
τB∈F0T

sup
Q∈Q

EQ[e−r(τA∧τB)g(τA, τB)] (43)

where Q is the family of equivalent martingale measures, F0T is the set of stopping times
with respect to the filtration {Fu}0≤u≤T with values in [0, T ], and g(τA, τB) is defined in
Section 4.1 by Equation (18). The bondholder selects the stopping time which maximizes the
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expected payoff given the minimizing strategy of the issuer, and the expectation is taken with
the most pessimistic estimate from the aspect of the bondholder. The optimal strategy of the
bondholder and his choice of the pricing measure determine the lower bound of the no-arbitrage
price. Whereas the issuer chooses the stopping time that minimizes the expected payoff given
the maximizing strategy of the bondholder. This expectation is also the most pessimistic one
but from the aspect of the issuer, thus the upper bound of the no-arbitrage price can be derived.

Suppose that the callable and convertible bond is not traded dynamically, applying the results
from the theory of game option which are given in Equations (42) and (43), the set of initial
no-arbitrage prices can be determined. It is given by the interval [CCBlow(0), CCBup(0)] with

CCBlow(0) = sup
τB∈F0T

inf
τA∈F0T

inf
Q∈Q

EQ[ccb(0)] (44)

and
CCBup(0) = inf

τA∈F0T

sup
τB∈F0T

sup
Q∈Q

EQ[ccb(0)] (45)

where Q is the family of equivalent martingale measures, F0T is the set of stopping times with
respect to the filtration {Fu}0≤u≤T with values in [0, T ], cbb(0) is defined in Section 3.1 by
Equation (14).

7.3 Discretization and recursion schema

The upper and lower bound CCBup(0) and CCBlow(0) can be approximated with the recur-
sions demonstrated in Figures 6 and 7.

For n = 0, 1, ..., N − 1,

CCBup(tn) =







min

{

e−rtn max
{

H + ctn
,

γVt
+
n

m + γn

}

,max
{

e−rtn

γVt
+
n

m + γn
,

supQ∈Q EQ[CCBup(tn+1)|Ftn
] + e−rtnctn

}
}

if Vt
+
n

> νtn

e−rtn

Vt
+
n

n
if Vt

+
n
≤ νtn

and

CCB(T ) =







e−rT max

{
γVT+

m + γn
, L + ctN

}

if VT+ > n(L + ctN
)

e−rT VT+

n
if VT+ ≤ n(L + ctN

)

Figure 6: Recursion: upper bound for callable and convertible bond

7.4 Implementation with trinomial tree

To make the computation tractable, we make some simplifications on the firm’s value process
and the default mechanism defined in Section 2. The interest rate r, the payout rate κ and the
default barrier K are assumed to be constant. The volatility of the firm’s value lies between
two extreme values σmin and σmax which are two constant. The firm’s value process can thus
be described with the following diffusion process

dVt = Vt((r − κ)dt + σtdWt)
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For n = 0, 1, ..., N − 1,

CCBlow(tn) =







max

{

e−rtn

γVt
+
n

m + γn
,min

{

e−rtn max
{

H + ctn
,

γVt
+
n

m + γn

}

,

inf
Q∈Q

EQ[CCBlow(tn+1)|Ftn
] + e−rtnctn

}
}

if Vt
+
n

> νtn

e−rtn

Vt
+
n

n
if Vt

+
n
≤ νtn

and

CCB(T ) =







e−rT max

{
γVT+

m + γn
, L + ctN

}

if VT+ > n(L + ctN
)

e−rT VT+

n
if VT+ ≤ n(L + ctN

)

Figure 7: Recursion: lower bound for callable and convertible bond

and
σmin ≤ σt ≤ σmax.

Avellaneda et al. (1995) provide also a simple algorithm for solving the Black-Scholes-Barenblatt
equation by a trinomial tree. According to this discretization, the time interval [0, T ] is divided
in N subintervals of equal lengths. The distance between two periods is ∆ = T/N. After
each period ∆, the firm’s value will go up, in the middle way, or down, and then has the
corresponding value

Vtn+1 = u · Vtn , Vtn+1 = m · Vtn , Vtn+1 = d · Vtn ,

where
u = eσmax

√
∆+(r−κ)∆, m = e(r−κ)∆, d = e−σmax

√
∆+(r−κ)∆.

The so constructed tree is recombining because m2 = u · d. The stochastic evolution of the
firm’s value is then modeled by

V (n, j) = V (0) · ej·σmax

√
∆+n·(r−κ)∆, ∀j = 0, ..., 2n, n = 1, ..., N,

where V (n, j) denotes the firm’s value at time tn := n∆ in state j. At time tn+1 there are
three possible nodes conditional on (n, j) : in case of an up-movement we have (n + 1, j + 1),
in case of a down-movement (n+1, j−1) and in case of the middle way (n+1, j). Thus higher
j indicates a higher firm’s value at time tn. V (0) is the initial firm’s value. The transition
probability for the up- and down-movement is, respectively, given by

pu(p) := p ·
(

1 − σmax

√
∆

2

)

pd(p) = p ·
(

1 +
σmax

√
∆

2

)

pm(p) = 1 − 2p

where the parameter p varies in the range σ2
min/(2σ2

max) ≤ p ≤ 1/2. 11 This condition ensures
that the uncertain volatility σ takes values such that σmin ≤ σ ≤ σmax. The trinomial tree

11The transition probabilities depend on p because otherwise we would have a deterministic volatility model.
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has one degree of freedom at each node, thus the choice of risk-adjusted probabilities is not
unique. This freedom is used to model heteroskedasticity. For p = 1/2 , highest probabili-
ties are assigned to the extreme nodes u and d which yields the largest volatility. While for
p = σ2

min/(2σ2
max) highest probability is assigned to center node m , thus the lowest volatility is

achieved. Therefore, by fixing u , d and m and allowing the risk-adjusted probabilities to vary
over a one-dimensional set, a range of variances within the volatility band [σmin, σmax] can be
modeled.

Define
EV +(tn) := sup

Q∈Q
EQ[CCBup(tn+1)|Ftn ]

and
EV −(tn) := inf

Q∈Q
EQ[CCBup(tn+1)|Ftn ],

at each node (n, j)

EV +(n, j) =







CCBup(n + 1, j) +
1

2
Z+(n + 1, j) if Z+(n + 1, j) > 0

CCBup(n + 1, j) +
σ2

min

2σ2
max

Z+(n + 1, j) if Z+(n + 1, j) ≤ 0

and

EV −(n, j) =







CCBlow(n + 1, j) +
1

2
Z−(n + 1, j) if Z−(n + 1, j) < 0

CCBlow(n + 1, j) +
σ2

min

2σ2
max

Z−(n + 1, j) if Z−(n + 1, j) ≥ 0

where Z+(n + 1, j) and Z−(n + 1, j) are the approximations of the second-derivative and are
defined as

Z+(n + 1, j) := (1 − σmax

√
∆

2
)CCBup(n + 1, j + 1) + (1 +

σmax

√
∆

2
)CCBup(n + 1, j − 1)

− 2CCBup(n + 1, j)

Z−(n + 1, j) := (1 − σmax

√
∆

2
)CCBlow(n + 1, j + 1) + (1 +

σmax

√
∆

2
)CCBlow(n + 1, j − 1)

− 2CCBlow(n + 1, j).

7.5 Illustration with a numerical example

Example 7.1. Let T = 8, σmin = 0.2, σmax = 0.4, V = 1000, L = 100, K = 300, m =
10, n = 8, H = 120, γ = 1.5, r = 0.06. In Table 7 the call level is kept constant with H while
in Table 8 the call level is time dependent with

H(t) = e−w(T−t)H, w = 0.04.

The pricing bounds of the callable and convertible bonds with uncertain volatility which lies
in the interval [0.2, 0.4] are summarized in Tables 7 and 8. These price bounds are compared
with the results if they are calculated with the extreme values of the volatility. Since we chose
a relatively wide range of volatilities, σmin = 0.2 and σmax = 0.4, the price differential of
the lower and upper bound is relatively large. Moreover, the lower (upper) bounds are smaller
(larger) than the results calculated with extreme volatilities.
The reduction of the call level is achieved in Table 8 by making it time dependent. Comparing
the results in Tables 7 and 8, we see that both lower and upper bound are lower in Table 8.
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κ c σV ∈ [0.2, 0.4] σV = 0.2 σV = 0.4

0 0 73.68 78.67 76.33 74.90
0.04 2 69.20 75.70 73.81 71.60
0.04 3 71.23 79.22 77.66 73.35
0.04 4 73.20 82.94 81.50 75.08

Table 7: Pricing bounds callable and convertible bond with uncertain volatility and constant
call level H (384 steps)

κ c σV ∈ [0.2, 0.4] σV = 0.2 σV = 0.4

0 0 71.97 75.06 74.25 72.37
0.04 2 69.04 73.56 72.83 70.57
0.04 3 70.26 76.24 75.51 71.49
0.04 4 71.20 78.94 78.16 72.41

Table 8: Pricing bounds callable and convertible bond with uncertain volatility and time depen-
dent call level H(t) (384 steps)

It is intuitive as the callable and convertible bond is less valuable by a lower call level. The
reduction of the call level has larger impact on the upper bound. For example, for κ = 0.04 and
c = 4 , the lower bound goes from 73.20 to 71.20 while the upper bound drops from 82.94 to 78.94.

8 Conclusion

Modeling of the callable and convertible bond as a defaultable game option within structural
approach has been studied by Sirbu et al. (2004) and further developed in a companion paper
of Sirbu and Schreve (2006). In their models the volatility of the firm’s value and the inter-
est rate are constant. The bond earns continuously a stream of coupon at a fixed rate. The
dynamic of the firm’s value does not follow a geometric Brownian motion, but a more general
one-dimensional diffusion due to the fixed rate of coupon payment. Default occurs if the firm’s
value falls to zero which means both equity and bond have zero recovery. The no-arbitrage price
of the bond is characterized as the result of a two-person zero-sum game. Viscosity solution
concept is used to determine the no-arbitrage price and optimal stopping strategies. Our model
differs from theirs mainly by allowing non-zero recovery rate of the bond and default occurs
if the firm’s value hit a low but positive boundary. The dynamic of the firm’s value follows a
geometric Brownian motion which means that the underlying process, the evolution of the firm’s
value, does not depend on the solution of the game option. Therefore the results of Kifer (2000)
can be applied to the valuation of the bond. Simple recursion with a binomial tree can be used
to derive the value of the bond and the optimal strategies. Moreover, stochastic interest rate
and uncertain volatility can be incorporated into our model.

Our idealized model illustrates how the optimal strategies work and what are the important
underlying factors. For practical use other features have to be taken into account. For example,
a firm issues usually several different kinds of debt with different priorities. Convertible bonds
are usually junior debt. The mutual dependence of the different debts and stocks must also be
modeled. We derived pricing bounds for convertible and callable bonds under the assumption
that the volatility of the firm value process lies between two extreme values. The pricing bounds
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can be improved if a narrower confidence interval of the volatility of the firm value is avail-
able. Otherwise we need more knowledge of the risk preferences of the bondholder and issuer.
Randomization of the strategies and partial exercises could be the subject of the future study.
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