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Abstract

We consider optimal stopping problems in uncertain environments
for an agent assessing utility by virtue of dynamic variational pref-
erences as in [15] or, equivalently, assessing risk by dynamic convex
risk measures as in [4]. The solution is achieved by generalizing the
approach in [20] introducing the concept of variational supermartin-
gales and an accompanying theory. To illustrate results, we consider
prominent examples: dynamic entropic risk measures and a dynamic
version of generalized average value at risk introduced in [5].
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1 Introduction

In our everyday life we face a broad variety of optimal stopping problems: We
accept bids for our used car to sell or stop the process of potential marriage
partners not knowing whether a more appropriate partner is still to come.
On financial markets, agents try to maximize profits from American options.
Hence, optimal stopping problems are not just of value for theoretical con-
siderations but of great virtue in applications. All examples have in common
that, on an abstract level, an agent has to find an optimal stopping time for
some stochastic payoff process.

The classical solution to this problem, as inter alia given in [17], assumes
the agent to possess a unique subjective prior ruling the payoff process and to
maximize expected payoff. In an uncertain environment however, there might
not be a unique prior distribution: On incomplete financial markets, we might
be faced with multiple equivalent martingale measures not being sure which
one is ruling the world. Hence, with multiple possible distributions, a solution
to the problem by virtue of simple expected utility maximization with respect
to some subjective prior cannot be eligible: An alternative notion of“expected
reward” has to be used. In this article, we hereto choose dynamic variational
preferences.

Equivalently, a risk manager runs the danger of high model risk when
assuming a particular probabilistic model. An alternative route is given by
dynamic convex risk measures: the robust representation explicitly mirrors
multiplicity of possible distributions and hence reduces model risk. As will
be motivated below, both approaches, dynamic convex risk measures and
dynamic variational preferences, are equivalent in mathematical terms for
our model. Only the economic interpretation differs.

In [20], the problem to optimally stop an adapted payoff process (Xt)t∈N

facing uncertainty is considered when expected reward is induced by dynamic
multiple prior preferences introduced in [8]. By virtue of a robust representa-
tion theorem, expected reward at time 0 from stopping time τ is then given
by minimal expectation of the form

inf
Q∈Q

EQ[Xτ ]

for a fixed set Q of prior distributions of the payoff process. In this sense,
an uncertainty averse agent, not able to determine a unique subjective prior,
considers a set Q of distributions to be possible and equally likely. Equiva-
lently, the above minimized expectation is, modulo a minus sign, the robust
representation of coherent risk measures introduced in [1] and applied to a
dynamic setting in [19]: Risk is assessed as maximal expected loss with re-
spect to all distributions that are considered likely. Hence, model risk is
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significantly reduced as no specific probability distribution is assumed. How-
ever, limitations of coherent risk measures are stated in [10]: Due to homo-
geneity coherent risk measures do not account for liquidity risk. Secondly,
the robust representation shows coherent risk measures to assess risk quite
conservatively. To overcome these shortcomings, the coherent approach is
generalized to convex risk measures relaxing homogeneity and sub-additivity
to a convexity condition; in a dynamic context elaborately discussed in [11]
and [4]. Furthermore, the fundermental entropic risk measure is not coherent
but convex.

Equivalently, multiple prior preferences are generalized to so called vari-
ational preferences in [14] and to dynamic variational preferences in [15].
In a more general setup, dynamic risk adjusted values or concave utilities
are introduced in [4] for stochastic processes. Under the assumption of risk
neutrality but uncertainty aversion, a discount factor of unity and without
intermediate payoffs, expected reward πt at time t for stopping the process
(Xt)t with stopping strategy τ induced by dynamic variational preferences is
given by a robust representation of the form

πt(Xτ ) = ess inf
Q

(
EQ[Xτ |Ft] + αt(Q)

)
,

for some dynamic penalty (αt)t. Intuitively, expected reward (πt)t is given
by minimal penalized expectation – penalized in the sense that nature has to
compensate the agent for choosing a distribution. Again, dynamic variational
preferences and dynamic convex risk measures are equivalent as the robust
representations coincide up to a minus sign: The equivalent dynamic convex
risk measure is then given as ρt := −πt. Hence, in terms of the above
robust representation, assing risk by virtue of dynamic convex risk measures
amounts to maximal penalized expected loss. It is immediate that dynamic
multiple prior preferences are a special case of dynamic variational preferences
when the penalty is trivial, i.e. only achieves values null and infinity. In the
same token, this holds for dynamic coherent risk measures as a special case
of dynamic convex ones. It is beyond the scope of this article to discuss the
axioms of variational preferences or convex risk measures, respectively. We
just take the robust representation as given.

The dynamic penalty (αt)t, formally derived by a Fenchel-Legendre trans-
form, might be interpreted as ambiguity index as in [14] and [15]. From a
preference based point of view, (αt)t is a measure for uncertainty aversion:
Given two agents assessing utility in terms of dynamic variational prefer-
ences, one with penalty (α1

t )t, the other with (α2
t )t. If (α1

t )t ≥ (α2
t )t, then

agent 1 is less uncertainty averse than agent 2. In other terms, risk measure
1 is less conservative than 2. Equivalently, we might think of (αt)t as an in-
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verse likelihood of a distribution to be the ruling one: the larger the penalty,
the less likely the agent assumes the respective distribution. Thus, nature
has to compensate the agent more, the less likely the chosen distribution. In
the prominent example of entropic risk measures or multiplier preferences,
penalty is given by relative entropy. The“further away”a chosen distribution
in terms of entropy from the reference distribution, the higher the penalty
nature has to pay. Throughout this article we make use of robust representa-
tion in terms of the minimal dynamic penalty (αmin

t )t, uniquely characterizing
the underlying dynamic variational preference.

For dynamic models, the first question is how conditional preferences πt

at distinct time periods are interrelated. An assumption that serves as a link
between time periods is time-consistency, defined by virtue of πt = πt(πt+1).
Robust representation results showing equivalence of time-consistency and a
condition on minimal dynamic penalty (αmin

t )t, called no-gain condition, are
obtained in [4], [11], and [15]: Minimal penalty can be rephrased as a sum of
contingent penalties and a one-step-ahead penalty. Hence, time-consistency
leads to a recursive robust representation in terms of minimal penalized ex-
pected utility. As shown in [15], the no-gain condition on (αmin

t )t reduces to
stability of the set Q of priors for dynamic multiple prior preferences.

Results in this article constitute a generalization of results in [20] by
applying optimal stopping to dynamic variational preferences. By virtue
of the recursion formula for robust representation, we obtain a worst-case
distribution among those with finite penalty. However we do not obtain the
elegant intuition in [20] that the agent behaves as expected utility maximizer
with respect to the worst-case distribution as the penalty is not trivial and,
hence, does not necessarily vanish for the worst-case distribution. As in [17]
and [20], we make use of a Snell envelope approach to solve the optimal
stopping problem under dynamic variational preferences by showing equality
of the value function and an appropriately generalized Snell envelope, called
variational Snell envelope, for a finite horizon. In the infinite horizon case,
we show the Bellman principle to hold for the value function. These results
allow us to obtain an optimal stopping strategy recursively. We observe that
the smallest optimal stopping time obeys well-known characteristics: Stop
when the payoff process equals the problem’s value. A further result is a
minimax theorem. We introduce the notion of variational (super-, sub-)
martingales and an accompanying theory: We obtain a Doob decomposition
and an optional sampling theorem.

To illustrate our results, we consider two prominent examples: dynamic
entropic risk measures (or dynamic multiplier preferences) and a dynamic
convex generalization of average value at risk (AVaR) introduced in [5]. Ex-
amples are stated in terms of dynamic convex risk measures instead of dy-



2 THE MODEL 5

namic variational preferences. Due to mathematical equivalence of both ap-
proaches, the reason is merely owed to topicality of appropriate risk measures
for financial markets in face of the current financial crisis questioning the core
of financial practice. In the first example on dynamic entropic risk measures,
we obtain quite intuitive results on the worst-case measure for a specific kind
of payoff processes. Thereafter, we consider generalized average value at risk
(gAVaR) as introduced in [4]. As the natural dynamic extension of these
risk measures is not time-consistent, we achieve a time-consistent version by
virtue of a recursive construction in terms of the minimal penalty. As we see
in the examples, when considering non-trivial penalty functions applications
become more complex: in particular, independence, inevitably used in simple
examples in [20], does not hold any longer. Nevertheless, the second example
constitutes a tangible alternative to widely used VaR taking into account
liquidity risk, satisfying time-consistency, and avoiding the problem of risk
accumulation caused by VaR.

In [23] an approach to optimal behavior on financial markets is applied
without time-consistency. Agents maximize minimal penalized intertemporal
utility as given above. Making use of convex conjugates, a minimax theorem
similar to ours is achieved but without constructive recursion for worst-case
measures. However, we are convinced that time-consistency is not only a
crucial property from a theoretical perspective but also intuitively justifiable.

The article is structured as follows: The next section defines the model,
gathers the relevant assumptions and then states the optimal stopping prob-
lem. This directly leads to the definition of variational supermartingales and
an accompanying theory in Section 3. Section 4 contains the main results.
Section 5 discusses examples. Thereafter, we conclude. Elaborate proofs are
given in the Appendix.

2 The Model

Let T ∈ N ∪ {∞} and (Ω,F , (Ft)t≤T , P0) be an arbitrary but fixed underly-
ing filtered probability space with F0 := {∅, Ω} and F = σ

(⋃

t≤T Ft

)
. Intu-

itively, the filtration (Ft)t≤T models the information process for the agent.
Let (Xt)t≤T be an adapted essentially bounded payoff process that the

agent aims to optimally stop in an uncertain environment, i.e. to find a
stopping time τ in order to maximize expected reward. The specific form
of expected reward used in this article emerging from dynamic variational
preferences will be encountered below.

Equalities are meant to hold P0-a.s. Let Me(P0) denote the set of all
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probability distributions on (Ω,F) that are locally equivalent to P0, i.e.

Me(P0) := {P |∀t ≤ T,∀F ∈ Ft, P(F ) = 0 ⇔ P0(F ) = 0} .

As we see in [11], the assumption to only consider locally equivalent dis-
tributions is justified as the robust representation of dynamic variational
preferences is only based on these. Intuitively, the reference distribution P0

fixes the null sets, i.e. sure and impossible events. Recall that a stopping
time τ is an integer valued random variable such that {τ ≤ t} ∈ Ft for all
t ≤ T . For ω ∈ Ω, we set Xτ (ω) := Xτ(ω)(ω). Let L∞ := L∞(Ω,F , P0) be
the space of all essentially bounded F -measurable random variables. Analog,
for t ≤ T , let L∞

t := L∞(Ω,Ft, P0) be the space of all essentially bounded
Ft-measurable random variables.

2.1 Robust Representation of Time-Consistent Dynamic

Variational Preferences

Given a stopping time τ , we first have to answer how agents assess utility
in uncertain environments? More elaborately, given the agent is not able to
entirely assess the ruling distribution of the payoff process and is uncerteinty
averse but risk neutral, how does expected reward look like? In expected
utility theory the agent is assumed to possess a unique subjective probability
distribution, say Q, and assesses expected reward by EQ[Xτ ]. In [20] the
agent is not sure about the distribution of (Xt)t≤T but assumes the relevant
distributions in some convex set Q ⊂ Me(P0) all being equally likely. Then,
multiple prior expected reward is given by infQ∈Q EQ[Xτ ].

In this article, we go a step further by assuming that an agent determines
expected reward in terms of dynamic variational preferences as introduced
in [15] or, equivalently, by a dynamic convex risk measure as in [11] assuming
risk neutrality and no discounting. As shown in [15] and [4], the agent then
assesses conditional variational expected reward πt(Xτ ) at time t from stop-
ping at τ by virtue of a robust representation in terms of minimal penalized
expected utility. This is obtained from the axioms of dynamic variational
preferences. As we do not consider the axioms, we pose assumptions that
imply this robust representation.

Notation 2.1. Throughout this article, we denote by (ρt)t≤T a dynamic con-
vex risk measure as introduced in [11] or, equivalently, by (πt)t≤T the robust
representation of a dynamic variational preference as in [15]. Moreover, we
identify the preference with its robust representation.

We now state rigorous definitions obtained from [11] and [15]:
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Definition 2.2 (Dynamic Penalty & Time-Consistency). (a) We call a fam-
ily (αt)t≤T a dynamic penalty if each αt satisfies:

• αt is a mapping αt : Me(P0) → L1
+(Ft): For each Q ∈ Me(P0), αt(Q)

is an Ft-measurable random variable with values in R+ ∪ {∞}.1

• For all t ≥ 0, αt is grounded, i.e. ess infQ∈Me(P0) αt(Q) = 0.

• αt is closed and convex.2

(b) Given a dynamic convex risk measure (ρt)t≤T . At t, define the acceptance
set by At := {X ∈ L∞|ρt(X) ≤ 0}. Then, we define the minimal penalty
(αmin

t )t≤T by

αmin
t (Q) := ess sup

X∈At

EQ[−X|Ft].

for all Q ∈ M.3

(c) Let (pt)t≤T (resp. (qt)t≤T ) denote the density process of P (resp. Q) in

Me(P0) with respect to P0, i.e. pt := dP

dP0

∣
∣
∣
Ft

, where dP

dP0
denotes the Radon-

Nikodym derivative. For a stopping time θ define the “pasted distribution”
P ⊗θ Q by

d(P ⊗θ Q)

dP0

∣
∣
∣
∣
Ft

:=

{
pt if t ≤ θ,
pθqt

qθ
else.

(d) (αt)t≤T satisfies the no-gain condition if for all t ≥ 0 and Q we have

αt(Q) = EQ [αt+1(Q)|Ft] + ess inf
P∈M

αt(Q ⊗t+1 P). (1)

(e) (πt)t≤T is called time-consistent if it satisfies πt = πt(πt+1) for all t < T .
Equivalently, ρt = ρt(−ρt+1).

4

1More elaborately, for all ω ∈ Ω, αt(·)(ω) is a function on the Ft-bayesian updated dis-
tributions in Me(P0), i.e. the effective domain satisfies effdom(αt(·)(ω)) ⊂ {Q(·|Ft) : Q ∈
Me(P0), ω ∈ Ft ∈ Ft}. Hence, when writing αt(Q) we actually have in mind αt(Q(·|Ft)).

2This assumption is well defined by [10], Remark 4.16.
3(αmin

t )t≤T is a penalty function in terms of (a).
4In general, time-consistency is defined as: ρt = ρt(−ρt+s), t, s ≤ T , t + s ≤ T .

In this sense, our definition of time-consistency is a special case, called “one-step time-
consistency” in [4]. However, for the proofs in this article, our definition is sufficient and,
of course, always satisfied in the general case of time-consistency. On the other hand, one-
step time-consistency implies general time-consistency under our continuity assumptions
by Proposition 4.5 in [4]. Hence, our definition of time-consistency in terms of ”one-step
time-consistency” is equivalent to the general notion of time-consistency.
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Notation 2.3. Define the set M of distributions in Me(P0) by5

M := {Q ∈ Me(P0) | α0(Q) < ∞}.

Given the distribution Q ∈ M, Q|Ft
denotes the restriction of Q to Ft given

Ft−1. As usual Q(·|Ft) denotes the conditional probability distribution of the
process given history up to time t.

Taking into account that αt only depends on bayesian updates, we simplify
notation when appropriate and write αt(Q ⊗t+1 P) = αt(qt+1pt+2 . . .).

Assumption 2.4 (Main Assumption). Throughout this article we assume
the agent to assess risk in terms of a relevant time-consistent dynamic convex
risk measure (ρt)t≤T on the set of essentially bounded F-measurable random
variables as in [11] or, equivalently, assess utility in terms of time-consistent
dynamic variational preferences (πt)t≤T for end-period payoffs as in [15] with
no-discounting and risk neutrality. Furthermore, we assume continuity from
below for (ρt)t≤T , i.e. for all (Xn)n ⊂ L∞ such that Xn ր X for some
X ∈ L∞, we have ρt(Xn) ց ρt(X). Equivalently, we assume continuity from
below of (πt)t≤T , i.e. πt(Xn) ր πt(X) for the above sequence.

Remark 2.5. Given the payoff process (Xt)t≤T and stopping time τ ≤ T , [4]
and [11] show that, under Assumption 2.4, (ρt)t≤T and (πt)t≤T have a robust
representation of the form

πt(Xτ ) = ess inf
Q∈M

{
EQ[Xτ |Ft] + αmin

t (Q)
}

= −ρt(Xτ ),

with (αmin
t )t≤T , the minimal penalty, assumed to satisfy the no-gain condition.

Consider a distribution Q ∈ Me(P0) such that, for all t, αt(Q) = 0 and
∞ else: We achieve expected utility with subjective prior Q. As shown in
[15], multiple prior expected reward with Q ⊂ Me(P0) is a special case of
variational expected reward with αt = 0 on Q and ∞ else. Hence, the present
article is a generalization of the approach in [20].

By the Fenchel-Legendre Transform, minimal penalty can be written as

αmin
t (Q) = ess sup

X∈L∞

(EQ[−X|Ft] − ρt(X))

5It can be seen in [11], Lemma 3.5, that this domain of a penalty is well defined in
case of relevant time-consistent dynamic convex risk measures as relevance allows to only
consider the set of locally equivalent distributions in the robust representation and time-
consistency in conjunction with relevance implies αt(Q) < ∞ for all t. We call a dynamic
convex risk measure (ρt)t≤T relevant, if P0[ρt(−ǫIA) > 0] > 0 for all t, ǫ > 0 and A ∈ F
such that P0[A] > 0.
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for all Q ∈ M. The term “minimal” is justified as the robust representation
allows for multiple penalties (αt)t≤T , but the minimal one satisfies αmin

t (Q) ≤
αt(Q) for all Q ∈ M. The minimal penalty uniquely characterizes the agent’s
preferences or, equivalently, risk attitude. Throughout, we assume a robust
representation in terms of minimal penalty for technical reasons.

The intuition of equation (1) is the following: Nature has to pay a penalty
for choosing a specific distribution at time t: αt. On the left hand side of
equation (1), nature uses the time-consistent way by just choosing a prob-
ability Q, pay the appropriate amount and do nothing in the next period
but go with the conditional distribution Q(·|Ft). However, the right hand
side describes the possibly time-inconsistent way of choosing a probability:
It chooses today a distribution P that inuces the same distribution today
as Q but may differ from tomorrow on and pays the amount αt(Q ⊗t+1 P).
In the second step, i.e. after realization of Ft+1, nature may deviate and,
conditionally on Ft, choose a distribution Q. If this time-inconsistent way
of choosing a distribution is not less costly, (αt)t satisfies equation (1). In
particular, the cost of choosing Q at time t can be decomposed into the sum
of expected cost of choosing Q’s conditionals at time t + 1 and the cost of
inducing Q|Ft+1 as a so-called one-period-ahead marginal distribution of the
payoff process at time t. The no-gain condition on (αt)t is the generalization
of the time-consistency condition in [20]: As shown in [15], if (αt) is trivial,
the no-gain condition is equivalent to stability of the set of priors. This also
holds true in the not necessarily finite case as shown in e.g. in [4]. In course
of this section, we explicitly show time-consistency results.

Remark 2.6. (a) As motivated in Remark 2.5, the no-gain condition on
(αmin

t )t is equivalent to time-consistency. We will make this explicit later.
(b) As stated in [12], Remark 1.1, continuity from below of πt or ρt im-

plies continuity from above of either one. Continuity from above is equivalent
to the existence of a robust representation of πt (or ρt) in terms of minimal
penalized expected payoff. Continuity from below induces the worst case dis-
tribution to be achieved. We will make this explicit in Proposition 3.2. We
hence could change the inf into a min but stick to the notion above as this
seems common in the literature.

Remark 2.7. The following assumption is equivalent to πt (or equivalently
ρt) being continuous from below:

{
dP

dP0

∣
∣
∣
∣
Ft

∣
∣
∣
∣

P ∈ M, αmin
t (P) < c

}

,

for each c ∈ R, t ∈ N, being relatively weakly compact in L1(Ω,F , P0).
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Proof. Theorem 1.2 in [12] states the assertion in an unconditional setting.
Due to the properties of conditional expectations, the assertion also holds in
our dynamic set-up.

Remark 2.8 (Conditional Cash Invariance). One of the axioms of dynamic
variational preferences (and dynamic convex risk measures) is conditional
cash invariance. In conjunction with a normalization assumption, this prop-
erty becomes: for all t ≤ T and Ft-measurable Xt, we have πt(Xt) = Xt.
As we do not consider the axiomatic approach, we immediately derive this
property from the robust representation as αt is assumed to be grounded:

πt(Xt) = Xt + ess inf
Q∈M

αmin
t (Q) = Xt.

The next result explicitly states the connection of time-consistency and
the no-gain condition. The proof is a special case of the proof of Theorem
4.22 in [4]. It is stated as it generates fruitful insights.

Proposition 2.9. Equation (1) implies time-consistency of (πt)t≤T . More
precisely, we have for all (Xt)t≤T and τ ≤ T

πt(Xτ ) = Xτ I{τ≤t} + πt(πt+1(Xτ ))I{τ≥t+1} = πt(πt+1(Xτ )).

Proof. See Appendix A.1

As in [15], we have the following result on the recursive structure of
variational expected reward πt at time t. However, we achieve this result
for more general probability spaces but under the assumption of end-period
payoffs, risk neutrality and a discount factor of unity.

Corollary 2.10. Given equation (1), it holds

πt(Xτ ) = Xτ I{τ≤t} + ess inf
µ∈M|Ft+1

(∫

πt+1(Xτ )dµ + γt(µ)

)

I{τ≥t+1},

where

γt(µ) := ess inf
Q∈M

αmin
t (µ ⊗t+1 Q) ∀µ ∈ M|Ft+1 ,

and M|Ft+1 denotes the set of all distributions in M restricted on Ft+1 condi-
tional on Ft. To have this expression well-defined, we set ess infP∈M αmin

t (µ⊗t+1

P) := ess infP∈M αmin
t (Q ⊗t+1 P) with Q ∈ M such that Q|Ft+1(·|Ft) = µ.

Proof. See Appendix A.1
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γt might be viewed as nature’s penalty when choosing the one-period-
ahead marginal µ. Hence, it is called one-period-ahead penalty in analogy to
[15]. In terms of γt, equation (1) becomes

αmin
t (Q) = EQ[αmin

t+1(Q)|Ft] + γt(Q|Ft+1(·|Ft)). (2)

Remark 2.11 (Bellman Principle for Nature). Given τ ≤ T , Corollary 2.10
can be rephrased as

πt(Xτ ) = ess inf
Q|Ft+1

∈M|Ft+1

(

E
Q|Ft+1 [πt+1(Xτ )|Ft] + γt(Q|Ft+1)

)

.

Intuitively, this constitutes a Bellman principle for nature’s choice of a
worst-case distribution:6 Given the optimal (worst-case) distribution from
time t+1 on, represented by its value πt+1, nature chooses a minimizing one-
period ahead conditional distribution Q|Ft+1. Note, that the above expression
is basically the same as the robust representation but in terms of a one-
step-ahead problem. This insight is particularly adjuvant when constructing
a worst-case distribution in Proposition 3.2 in terms of pasted one-period
ahead conditional distributions.

2.2 The Agent’s Problem

Given (Xt)t≤T , T ∈ N∪{∞}, the agent has to maximize variational expected
reward (πt(Xτ ))t≤T , i.e. the agent solves the following problem by finding an
appropriate stopping time τ with respect to (Ft)t≤T :

sup
0≤τ≤T

inf
Q∈M

(
EQ[Xτ |F0] + αmin

0 (Q)
)

among all stopping times that are universally finite, i.e.

inf
Q∈M

Q[τ < ∞] = 1.

Definition 2.12 (Value Function, Snell Envelope). (a) For the problem at
hand, the value (function) (Vt)t≤T at time t ≤ T is given by

Vt := ess sup
T≥τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
. (3)

6This should not be mixed up with the Bellman principle in the next chapter’s theorems
on optimal stopping: there, we achieve Bellman equations for the optimal stopping decision
of the agent, not for the worst-case distribution decision of nature.
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(b) For finite T , define the variational Snell envelope (Ut)t≤T of (Xt)t≤T with
respect to dynamic minimal penalty (αmin

t )t≤T recursively by UT := XT and

Ut := max

{

Xt, ess inf
Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)
}

for t < T . (4)

(c) Define the stopping time

τ ∗ := inf{t ≥ 0|Ut = Xt}. (5)

By time-consistency the variational Snell envelope can also be written as:

Ut = max

{

Xt; ess inf
µ∈M|Ft+1

(∫

Ut+1dµ + γt(µ)

)}

Subsequently, we show that the value function and the variational Snell
envelope coincide when T is finite. In the infinite time-horizon case, we show
the Bellman principle to hold for the value function allowing for recursive
solutions. Furthermore, it follows that τ ∗ is an optimal stopping time, i.e.
a solution to the initial problem. Note, that the variational Snell envelope
coincides with the multiple prior Snell envelope in case of multiple prior
preferences as introduced in [20]. It coincides with the “good old” Snell
envelope as e.g. set out in [17] in case of a unique subjective prior.

3 Variational Supermartingales

From the approach to optimal stopping in terms of Snell envelopes or more
generally with multiple prior Snell envelopes as in [20], we know that the value
function satisfies some kind of martingale property until optimal stopping
and some kind of supermartingale property thereafter. We now come up
with an appropriate notion of martingale for dynamic variational preferences
generalizing the notion of multiple prior (sub-, super-) martingales in [20]:

Definition 3.1. Given dynamic minimal penalty (αmin
t )t∈N satisfying equa-

tion (1). Let (Mt)t∈N be an (Ft)t∈N-adapted process with EQ[|Mt|] < ∞ for
all t ∈ N and all Q ∈ M. (Mt)t∈N is called a variational (sub-, super-)
martingale with respect to (αmin

t )t∈N if the following relation holds for t ∈ N:

ess inf
Q∈M

(
EQ[Mt+1|Ft] + αmin

t (Q)
)

= (≥,≤)Mt.
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[20], Lemma 6, shows an elegant way to characterize the concepts of mul-
tiple prior (sub-, super-) martingales in terms of (sub-, super-) martingales
with respect to a worst-case distribution P∗ ∈ Q. However, this result is
owed to the simple structure of (αmin

t )t∈N in the multiple priors case. Un-
der variational preferences we can state a similar result for variational su-
permartingales as being a supermartingale “modulo penalty” with respect
to some worst-case distribution Q∗ ∈ M. This non-vanishing penalty is
the reason why the intuition of an agent behaving as expected utility maxi-
mizer under the worst case distribution does not carry over from [20]. The
worst-case distribution is achieved recursively: At each time t, the worst-case
conditional one-step-ahead distribution is chosen. In [20], time-consistency is
needed to ensure the recursively pasted distribution to be again in the set pri-
ors Q. By definition of M and equation (1), we obviously have that pasted
distributions are again in M: αmin

t+1(Q) < ∞ implies αmin
t (Q) < ∞. The

most important part in our construction is that, given equation (1), pasting
of worst-case one-step-ahead distributions is consistent with being of worst-
case type: Having achieved a worst-case distribution from t + 1 onwards, we
paste this with the one-step-ahead worst-case conditional distribution from t

to t + 1 and achieve the worst-case distribution from time t onwards.

Proposition 3.2. Let (Mt)t∈N be an adapted process and (αmin
t )t∈N satisfy

equation (1).
(a) If (Mt)t∈N is a Q-submartingale for all Q ∈ M, then (Mt)t∈N is a varia-
tional submartingale with respect to (αmin

t )t.
(b) (Mt)t∈N is a variational supermartingale with respect to (αmin

t )t∈N if and
only if there exists a Q∗ ∈ M such that (Mt)t∈N is a Q∗-supermartingale
“modulo penalty”, i.e.

EQ∗

[Mt+1|Ft] + αmin
t (Q∗) ≤ Mt.

In particular, (Mt)t∈N is a Q∗-supermartingale, i.e. EQ∗
[Mt+1|Ft] ≤ Mt.

Proof. See Appendix A.2

Remark 3.3. By lemmata in Appendix A.2, the foregoing assertion can be
generalized to: ∃ Q∗ ∈ M such that ∀t, s we have

EQ∗

[Ms|Ft] + αt(Q
∗)I{s>t} ≤ Mt.

In the same token as in [20], we generalize standard results for super-
martingales to our notion of variational supermartingales.

Proposition 3.4 (Doob Decomposition). Let (St)t∈N be a variational super-
martingale with respect to dynamic penalty (αmin

t )t∈N satisfying equation (1).
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Then there exists a variational martingale (Mt)t∈N with respect to (αmin
t )t∈N

and a predictable non-decreasing process (At)t∈N, A0 = 0, such that St =
Mt − At for all t and this decomposition is unique.

Proof. See Appendix A.3

In [20], the proof of optional sampling is immediate as the minimal penalty
vanishes; here we mimic the proof of the original optional sampling theorem.

Proposition 3.5 (Optional Sampling). Let (St)t∈N be a variational super-
martingale with respect to dynamic minimal penalty (αmin

t )t∈N satisfying equa-
tion (1) and σ ≤ τ be universally finite stopping times. Then

Sσ ≥ ess inf
Q∈M

(
EQ[Sτ |Fσ] + αmin

σ (Q)
)
.

Proof. See Appendix A.3

Corollary 3.6 (from Propsition 3.5). Let (St)t∈N be a variational super-
martingale with respect to dynamic minimal penalty (αmin

t )t∈N satisfying equa-
tion (1). Then we have for every universally finite stopping time τ

Sτ∧t ≥ ess inf
Q∈M

(
EQ[Sτ∧(t+1)|Ft] + αmin

t (Q)
)
.

Proof. See Appendix A.3

4 Main Results

We are now enabled to state and prove the main results of this article.
These directly generalize the results in [20] to dynamic variational prefer-
ences. Throughout, we assume (αmin

t )t≤T to satisfy equation (1).

4.1 Finite Horizon

Let T < ∞. The following result extends the fundamental Propositions
VI-1-2 and VI-1-3 in [17] to dynamic variational preferences:

Theorem 4.1. (a) The variational Snell envelope (Ut)t≤T defined in equation
(4) is the smallest variational supermartingale with respect to (αmin

t )t≤T that
dominates (Xt)t≤T .

(b) We have Ut = Vt for all t ≤ T , i.e. the variational Snell envelope,
equation (4), equals the problem’s value function, equation (3).

(c) τ ∗ from equation (5) is the smallest optimal stopping time, i.e. solves
the optimal stopping problem stated in Remark ??.
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Proof. See Appendix A.4

We now state a minimax-theorem allowing to interchange the “inf” and
“sup” in the formulation of the problem: It does not matter if nature chooses
a worst case distribution first and then the agent maximizes or vice versa.

Theorem 4.2 (Minimax-Theorem). For every t ≤ T , we have

ess sup
T≥τ≥t

ess inf
Q∈M

(

EQ[Xτ |Ft] + αmin
t (Q)

)

= ess inf
Q∈M

(

ess sup
T≥τ≥t

EQ[Xτ |Ft] + αmin
t (Q)

)

.

Proof. See Appendix A.4

Remark 4.3. Posed in another way, we have

Ut = ess sup
T≥τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
UQ

t + αmin
t (Q)

)
,

where UQ
t denotes the Snell envelope of the expected-utility optimal stopping

problem with subjective prior Q. Hence, we do not have the elegant result as
in [20] that the variational Snell envelope (Ut)t≤T is the lower envelope of the
individual Snell envelopes (UQ

t )t≤T as the penalty is not necessarily zero.

Remark 4.4. Set QM the worst-case distribution for dynamic variational
preferences and QQ the worst-case distribution for multiple priors in Q as-
suming M = Q, i.e. the sets of distributions with finite penalty coincide.
Let (Vt)t≤T denote the value function for dynamic variational preferences
and (V Q

t )t≤T the value of the optimal stopping problem with subjective prior
Q for an expected utility maximizer. We then have

Vt = ess sup
T≥τ≥t

(

EQM

[Xτ |Ft] + αmin
t (QM)

)

≥ V QM

t .

In particular, smallest optimal stopping times differ. Furthermore, we see

Vt ≥ V QQ

t .

In other words, sophistication of (αmin
t )t≤T increases expected reward. In-

tuitively: The agent has more information on the likelihood of distributions
available under variational preferences than under multiple priors and hence
values the problem more. Stated in other terms more important to applica-
tions in risk management: Convex risk measures assess risk in a more liberal
fashion than coherent ones given the sets of considered distributions coincide.
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4.2 Infinite Horizon

Let T = ∞. We now show the value function to satisfy the Bellman principle:

Theorem 4.5. (a) The value process (Vt)t∈N as defined in equation (3) is the
smallest variational supermartingale with respect to (αmin

t )t∈N that dominates
the payoff process (Xt)t∈N.
(b) The value process (Vt)t∈N satisfies the Bellman principle, i.e.

Vt = max

{

Xt, ess inf
Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)
}

for all t ≥ 0.

(c) τ ∗ := inf{t ≥ 0|Vt = Xt} is the smallest optimal stopping time.
(d) Let (UT

t )t≤T denote the variational Snell envelope with respect to (αmin
t )t≤T

for the optimal stopping problem of (Xt)t≤T truncated to finite horizon T <

∞. Let (Vt)t∈N denote the value of the infinite problem. Then we have
limT→∞ UT

t = Vt for all t ≥ 0.

Proof. See Appendix A.5.

The last part of the foregoing theorem is particularly valuable for con-
structive solutions of infinite models in terms of limiting solutions of trun-
cated ones.

5 Examples

In this section, we consider optimal stopping problems for prominent exam-
ples of dynamic variational preferences. First, we consider stopping with
dynamic multiplier preferences or, equivalently, dynamic entropic risk mea-
sures. Secondly, we apply our theory to a generalized version of average value
at risk (gAVaR) particularly paying attention to time-consistency issues.

In [20], simplicity of examples is due to triviality of the dynamic minimal
penalty for multiple prior preferences. In particular, for monotone problems,
this fact allows to obtain a worst-case distribution by virtue of stochastic
dominance for the expectation operator. Then, the agent behaves as expected
utility maximizer with respect to this worst-case distribution. As the penalty
is not trivial here, we might have a trade off between stochastic dominance on
the payoff process and the penalty. Hence, the worst-case distribution cannot
be attained any longer by stochastic dominance for the payoff process even in
the monotone case. Furthermore, we observe that correlation is introduced
even in quite simple contexts.
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5.1 Dynamic Entropic Risk Measures

As first example we consider dynamic entropic risk measures as in [4] and
[11] or, equivalently, dynamic multiplier preferences as in as in [15].

Definition 5.1. For P ≪ Q, locally, we define the conditional relative en-
tropy of P with respect to Q at time t ≥ 0 as

Ĥt(P|Q) := EP

[

ln

(
ZT

Zt

)∣
∣
∣
∣
Ft

]

= EQ

[
ZT

Zt

ln

(
ZT

Zt

)∣
∣
∣
∣
Ft

]

I{Zt>0},

where Zt := dP

dQ

∣
∣
∣
Ft

.

Basic properties of relative entropy are stated in [7]. As we assume local
equivalence, the indicator function in the last equation vanishes.

We now formally introduce dynamic multiplier preferences:

Definition 5.2. Let θ > 0. We say that dynamic variational expected reward
(πe

t (Xτ ))t≤T is obtained by dynamic multiplier preferences given reference
model Q or, equivalently, by dynamic entropic risk measures, if its robust
representation is of the form

πe
t (Xτ ) = ess inf

P∈M

(

EP[Xτ |Ft] + θĤt(P|Q)
)

. (6)

Intuitively, the agent expects a reference distribution Q ∈ M most likely
and distributions further away – in the sense of relative entropy – seem to be
more and more unlikely.

Remark 5.3. The variational formula for relative entropy implies

πe
t (Xτ ) = −θ ln(EQ[e−

1
θ
Xτ |Ft]).

Proposition 5.4. Dynamic multiplier preferences with reference distribution
Q ∈ M are time-consistent: Its robust representation has minimal penalty
αmin

t (P) = θĤt(P|Q) for t ≤ T , P ∈ M. Hence, we have

πe
t (Xτ ) = XtI{τ=t} + ess inf

µ∈M|Ft+1

(∫

πe
t+1(Xτ )dµ + θĤt+1(µ|Q(·|Ft))

)

I{τ≥t+1},

where we set Ĥt+1(µ|Q(·|Ft)) := Eµ[ln( dµ

dQ(·|Ft)|Ft+1
)] which, by abuse of no-

tation, we write as Eµ[ln( dµ

dQ(·|Ft)

∣
∣
∣
Ft+1

)], µ ∈ M|Ft+1.
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Proof. The specific form of minimal penalty is shown in [11], Lemma 6.2;
time-consistency in [11], p.92. The intuitive representation in terms of one-
step ahead penalty can straightforwardly be achieved by Corollary 2.10; as
the calculations are simple but extensive, we do not state them here.

As we want to achieve explicit solutions, we further confine ourselves:

Assumption 5.5. Let the underlying probability space (Ω,F , (Ft)t≤T , P0) be
given as the independent product of the time-t state space, (S,S, ν0), S ⊂ R.
Then P0 = ⊗T

t=1νo and Fs is generated by the projection mappings ǫt : Ω 7→ S,
t ≤ s. In particular, the ǫt’s are i.i.d. with ν0 under P0.

As in [20], we confine ourselves to the set

M[a,b] :=

{

Pβ ≈ P0 :
dPβ

dP0

∣
∣
∣
∣
Ft

= D
β
t ∀t, (βt)t ⊂ [a, b], predictable

}

,

D
β
t := exp(

∑t

s=1 βsǫs −
∑t

s=1 L(βs)) for some predictable process (βt)t≤T ⊂
[a, b] ⊂ R and L(βt) := ln

∫

S
eβtxν0(dx).

Notation 5.6. The reference distribution of the entropic penalty write as
Q := Pβ1

, i.e. (β1
t )t≤T denotes the process defining the penalty’s reference

distribution. Other distributions in M[a,b] write as P := Pβ2
. Then, the

entropic penalty with reference distribution Q is given by

αmin
t (Pβ2

) = θEPβ2

[
T∑

s=t+1

(β2
s − β1

s )ǫs −
T∑

s=t+1

[L(β2
s ) − L(β1

s )]

∣
∣
∣
∣
∣
Ft

]

.

We write Eβ := EPβ

and Ĥt(β
2|β1) := Ĥt(P

β2
|Pβ1

) as well as αmin
t (β2).

Note, in case Q = P0, we have (β1
t )t≤T = 0 and hence for P = Pβ2

: αmin
t (β2) =

θEβ2
[
∑T

s=t+1 β2
s ǫs −

∑T

s=t+1 L(β2
s )
∣
∣
∣Ft

]

.

Hence, the value function is achieved by

Vt = ess sup
t≤τ≤T

ess inf
β2⊂[a,b]

Eβ2

[

Xτ + θ

(
T∑

s=t+1

(β2
s − β1

s )ǫs (7)

−
T∑

s=t+1

[L(β2
s ) − L(β1

s )]

)∣
∣
∣
∣
∣
Ft

]

= max
{

Xt ; ess inf
β2

t+1∈[a,b]
Eβ2

t+1
[
Vt+1 + θ

(
(β2

t+1 − β1
t+1)ǫt+1

−(L(β2
t+1) − L(β1

t+1))
)] }

.
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In particular, we see that the value of the problem – and hence the worst case
distribution – depends on the reference distribution Q = Pβ1

of the penalty.
To further solve problems under entropic risk, we constraint ourselves to

monotone problems:

Assumption 5.7. Xt := f(t, ǫt), t ≤ T , where f is a bounded measurable
function that is strictly monotone in the state variable ǫt.

For monotone payoff processes under multiple priors it is shown in [20]
that Ut is increasing in ǫt. However, having a look at the proof therein, we
see that this crucially depends on ǫt being independent of Ft−1 which does
not hold in case of dynamic variational preferences. Furthermore, in [20] the
calculation of a worst case measure is done by virtue of stochastic dominance
on the payoff process. It is intuitive that this cannot work as elegant under
variational preferences as the penalty is not trivial. In particular, in the
entropic case, the worst-case measure depends on the reference distribution
Q: there might be a trade off between stochastic dominance on (Xt)t and the
penalty: The penalty increases the further nature moves away from Q and in
direction of a distribution minimizing the expectation of the payoff process.

Example 5.8. Let f be increasing and the reference distribution be Pa. We
encounter for the first term in the value function, Eβ2

[f(τ, ǫτ )|Ft]: Pa is
stochastically dominated, i.e. minimizes that term on M[a,b]. Pa also mini-
mizes the penalty: Ĥt(β

2|a) is increasing in β2 on [a, b], Ĥt ≥ 0 and zero if
and only if Pβ2

= Pa. Hence we have equivalence of the problem under dy-
namic multiplier preferences and the expected utility problem under the worst
case distribution Pa as in Theorem 5 in [20]:

Proposition 5.9. Let f be increasing, T < ∞, and τa denote the optimal
stopping time for the classical optimal stopping problem of (Xt)t≤T under
subjective distribution Pa, i.e. τa solves max0≤τ≤T Ea[Xτ ]. Let Q = Pa be the
reference distribution for the penalty. Then, τa is the solution to the robust
problem with dynamic multiplier preferences (πe

t )t≤T .

Proof. For all increasing bounded measurable functions h : Ω → R and all
t ≥ 1, we have by Lemma 13 in [20]

Ea[h(ǫt)|Ft−1] = ess inf
β2[a,b]

Eβ2

[h(ǫt)|Ft−1] + min
β2∈[a,b]

θĤt−1(β
2|a)

︸ ︷︷ ︸

=Ĥt(a|a)=0

= ess inf
β2∈[a,b]

(

Eβ2

[h(ǫt)|Ft−1] + θĤt−1(β
2|a)
)

,
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where the last equation follows as the joint minimizer of both summands is Pa.
Given this result, we can mimic the proof of Theorem 5 in [20]: Let (Ut)t≤T de-
note the variational Snell envelope of the problem with multiplier preferences
and reference distribution Pa and (Ua

t )t≤T the classical Snell envelope with
respect to subjective prior Pa. For t = T , we have UT = XT = f(T, ǫT ) = Ua

T

and hence increasing in ǫT . As by induction hypothesis Ut+1 is an increasing
function of ǫt+1, say Ut+1 = u(ǫt+1) for some bounded measurable increasing
u, we have for all t < T

Ut := max

{

f(t, ǫt), ess inf
β2∈M[a,b]

(

Eβ2

[Ut+1|Ft] + θĤt(β
2|a)
)}

= max






f(t, ǫt), Ea[Ut+1|Ft] + θĤt(a|a)

︸ ︷︷ ︸

=0







= max {f(t, ǫt), Ea[Ut+1|Ft]} =: Ua
t .

The argument in the foregoing proof for the case Q = Pa is that Pa mini-
mizes EP[f(t, ǫt)] as well as Ĥt(P|a). Of course, this does not hold true if the
reference distribution Q = Pβ1

is such that β1
t is not identical a. Then, we

have a trade off between a decrease in the first term, EP[f(t, ǫt)], which is in-
dependent of Pβ1

, and an increase of the penalty in the second term, Ĥt(P|β
1),

the further nature deviates from the reference distribution Pβ1
.However, mov-

ing from Pβ1
in direction of the upper extremal distribution Pb, both terms

increase:

Proposition 5.10. Let Q = Pβ1
∈ M[a,b] be the reference distribution of the

entropic penalty, and f be increasing. Then, the worst-case distribution Pβ̄2

satisfies β̄2
t ∈ [a, β1

t ] ∀t.

Proof. For h as above, we have

ess inf
β∈[a,b]

{

Eβ[h(ǫt)|Ft−1] + Ĥt−1(β|β
1)
}

≤ Eβ2

[h(ǫt)|Ft−1] + Ĥt−1(β
2|β1)

for all β2
t ∈ [β1

t , b] for all t as Ĥt−1(β
1|β1) = 0 and ≥ 0 else and furthermore

Eβ2
[h(ǫt)|Ft−1] is increasing in β2 as seen in the proof of Lemma 13 in [20]. As

Ĥt(·|β
1) is strictly increasing on [β1

t , b], we have strict inequality on ]β1
t , b].

Remark 5.11. In particular, we see that the worst case distribution depends
on the specific form of f , not just on f being increasing. This has severe
consequences for the complexity of calculations: Let us for example take the
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case of an American call as considered in [20]. When out of the money,
nature cannot just apply a distribution low enough to likely staying out of the
money but also has to take care of being close enough to Q not to increase the
penalty too much. In particular, the one step ahead worst case distribution
depends on the current state: In case of dynamic variational preferences,
correlation is already introduced for the call that has independent rewards
under multiple priors as shown in [20].

In general, we obtain a negation of Theorem 5 in [20] for our approach:

Remark 5.12. Let (β̄2
t )t denote the process of the worst-case distribution for

the monotone problem under dynamic multiplier preferences (πe
t )t≤T . Then,

Ut = max
{

Xt; E
β̄2

t+1 [Ut+1|Ft] + θHt+1(β̄
2
t+1|P

β1

(·|Ft))
}

≥ max
{

Xt; E
β̄2

t+1 [Ut+1|Ft]
}

= U
β̄2

t ,

where U
β̄2

t denotes the classical Snell envelope of the optimal stopping problem
under subjective prior given by β̄2. In particular, we see that

τ ∗ = inf
t
{Xt = Ut} ≥ inf

t
{Xt = U

β̄2

t } = τ β̄2∗.

The intuition in [20] is not valid anymore: The agent does not behave as
the expected utility maximizer under the worst case distribution. However,
sophistication of the penalty has increased the problem’s value.

Example 5.13 (American Options in CRR-Model). Consider an agent with
expected reward (πe

t )t≤T given by parameter θ = 1 and reference distribution
Pb, i.e. the agent to consider the market as “emerging”. We consider Amer-
ican options for the Cox-Ross-Rubinstein (CRR) model: Let Ω := {0, 1}T ,
T < ∞. Let ǫt : Ω → {0, 1}, t ≤ T , be the projection mappings and P0 such
that ǫt’s are i.i.d. under P0 with P0[ǫt = 1] = P0[ǫt = 0] = 1

2
. Let M[a,b] be

given as in Assumption 5.5. As in [20], we then have for all β := (βt)t that

Pβ[ǫt = 1|Ft−1] ∈ [p; p̄], where p := ea

1+ea and p̄ := eb

1+eb . Let Pa be again the
distribution induced by the constant process with βt = a for all t and equiva-
lently for Pb. Then, under Pa, ǫt’s are i.i.d. with Pa[ǫt] = p and equivalently

for Pb with Pb[ǫt] = p̄.
The “ingredients” of the CRR-model are given by a risk-less asset with

value process Bt = (1 + r)t for some fixed interest rate r > −1 and a risky
asset with value process St at t such that S0 = 1 and

St+1 = St ·

{
(1 + d) if ǫt+1 = 1,
(1 + c) if ǫt+1 = 0,
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where we assume the constants to satisfy −1 < c < r < d for the model not
to allow for arbitrage opportunities.

Let Ap(t, St) bei an American put and, hence, decreasing in St for all t.
Let (U b

t )t≤T denote the classical Snell envelope of Ap(t, St) under subjective
probability Pb, i.e.

U b
t (t, St) = max

{

Ap(t, St); p̄U b
t (t + 1, St(1 + d)) + (1 − p̄)U b

t (t + 1, St(1 + c))
}

.

The following assertion holds: The variational Snell envelope (Ut)t≤T of the
American put problem with dynamic multiplier preferences (πe

t )t≤T and refer-
ence distribution Pb satisfies (Ut)t≤T = (U b

t )t≤T . In particular, the worst case
distribution is given by Pb and, as the penalty vanishes for this distribution,
the optimal stopping time is given by τ ∗ = inf{t ≥ 0|Ap(t, St) = U b

t } = τ b∗,
i.e. the optimal stopping time τ b∗ of the problem under subjective prior Pb.

The proof of this assertion is immediate by virtue of stochastic dominance:
As in Appendix H in [20], we show for the variational Snell envelope (Ut)t≤T

that Ut = u(t, St) = U b
t , t ≤ T , for a function u that is decreasing in the

second variable: First, we have UT = Ap(T, ST ) = U b
T by definition. For an

inductive proof, we write with a slight but intuitively understandable misuse
of notation Ĥt(pt+1 ⊗ pt+2 ⊗ . . . |Pb)7 for pi ∈ [p; p̄] and note that Ĥt(p̄ ⊗

p̄ ⊗ . . . |Pb) = 0 and ≥ 0 else. From the induction hypothesis, we have u(t +
1, St(1 + d)) ≤ u(t + 1, St(1 + c)) and hence

Ut = max
{

Ap(t, St) ; min
pt+1∈[p;p̄]

{
pt+1u(t + 1, St(1 + d))

+(1 − pt+1)u(t + 1, St(1 + c))

+Ht(pt+1 ⊗ p̄ ⊗ . . . |Pb)
}}

= max
{

Ap(t, St) ; p̄u(t + 1, St(1 + d)) + (1 − p̄)u(t + 1, St(1 + c))

+Ht(p̄ ⊗ p̄ ⊗ . . . |Pb)
︸ ︷︷ ︸

=0

}

= U b
t .

In a way, the result in the example is more like a self fulfilling prophecy
as the agent assumes the worst-case distribution to be the most likely one.
The same holds true for an American call with reference distribution Pa: In
that case, the reference distribution is also the worst-case one. However, due
to the tradeoff effects, Pa is not the worst-case distribution for the American
call when Pb is the reference distribution; as Pb is not worst-case distribution
for the American put when Pa is the reference one.

7Formally: Ĥt(pt+1 ⊗ pt+2 ⊗ . . . |Pb) := Ĥt(P
β |Pb) with (βt)t≤T such that Pβ [ǫt =

1|Ft−1] = pt for t ≤ T ; well defined as p1, . . . , pt drops by general definition of Ĥt.
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5.2 Dynamic Generalized AVaR

In the financial industry value at risk (V aR) still is a standard method for
risk quantification and risk management. Prominence of VaR is due to its
simplicity and intuitive appeal. Though widely used, V aR is not convex:
Applying V aR, a risk officer runs the danger or accumulating a highly risky
portfolio. A standard example is inter alia given in [16]. Being aware of
VaR’s shortcomings, average value at risk (AV aR) is introduced taking into
account not only loss probabilities in terms of quantiles, as V aR does, but
also the amount of possible loss. Nevertheless, AV aR is still intuitive and
easily implemented by virtue of

AV aRλ(XT ) :=
1

λ

∫ λ

0

V aRm(XT )dm

for some level λ ∈]0, 1[. It can be shown that AVaR satisfies a robust repre-
sentation with minimal penalty

αmin(Q) =

{
0 if dQ

dP0
≤ 1

λ
,

∞ else.

Hence AV aR is a coherent risk measure. Elaborate discussions on AVaR can
be found in [16]. A generalization, called utility based shortfall risk measure,
is introduced in [12]. A convenient representation for AV aR which has an
immediate generalization to a convex risk measure, called generalized AV aR

(gAV aR) here, is given in [12]. This convex risk measure gives raise to a
variational preference in the canonical way.

As shown in [6] as well as [2] the natural dynamic extension of AV aR, and
hence of gAV aR, in terms of conditional expectations is not time-consistent.
We thus define a time-consistent dynamic version of gAV aR, directly induc-
ing a time-consistent dynamic variational preference, recursively in terms of
the penalty function as in [15] by composing one period ahead penalties.

To introduce a dynamic version, we start with the static convex risk
measure gAV aR for some end period payoff XT ∈ L∞

T as in [5]:

Definition 5.14. For (θ, β, p) ∈]0,∞[×]1,∞[×[1,∞[, define the risk mea-
sure gAVaR for XT ∈ L∞

T , called generalized Average Value at Risk (gAVaR):

gAV aR
β,p
θ (XT ) := min

s∈R

{
1

θ

∥
∥(s − XT )+

∥
∥

β

p
− s

}

,

where ‖ · ‖p := (EP0|FT [| · |p])
1
p denotes the usual p-norm.
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For ease of notation, we do not explicitly state the parameters but just
write gAV aR instead of gAV aR

β,p
θ when these are obvious. We have:

Proposition 5.15. (a) For (θ, β, p) ∈ ]0,∞[×]1,∞[×[1,∞[, gAV aR
β,p
θ is

a convex risk measure with minimal penalty αmingAVaR
(Q) := c

∥
∥
∥

dQ|FT

dP0|FT

∥
∥
∥

d

q
,

where q := p

p−1
, d := β

β−1
and c = θd−1β1−dd−1. Hence

gAV aR
β,p
θ (XT ) = sup

Q∈M

{

EQ|FT [−XT ] − c

∥
∥
∥
∥

dQ|FT

dP0|FT

∥
∥
∥
∥

d

q

}

.

(b) For θ ∈]0, 1[, β = p = 1, we have ‖
dQ|FT

dP0|FT

‖∞ = ess sup |
dQ|FT

dP0|FT

| and hence

the robust representation becomes

gAV aR
1,1
θ (XT ) = sup

Q∈M

{

EQ|FT [−XT ]

∣
∣
∣
∣
0 ≤

dQ|FT

dP0|FT

≤
1

θ

}

= AV aRθ(XT ).

Proof. cp. [5].

A time-consistent dynamic version of AV aR for end period payoff XT

is recursively achieved in [6]. Mimicking this approach by virtue of the
definition of time-consistency for dynamic convex risk measures, i.e. ρt =
ρt(−ρt+1), we would obtain a time-consistent dynamic version of gAV aR

β,p
θ .

However, this would not be in terms of a robust representation needed to
achieve explicit solutions in terms of worst-case distributions. Hence, we use
the minimal penalty αmingAVaR

of the static gAV aR as defined in Proposition
5.15: We apply the recursive procedure from [15], Theorem 2, in terms of
one period ahead penalties (γgAV aR

t )t≤T to achieve a time-consistent dynamic
minimal penalty (αmingAVaR

t )t≤T . Define γ
gAV aR
t on M|Ft+1 by

γ
gAV aR
t (Q|Ft+1(·|Ft)) := c

(

EP0

[(

dQ

dP0

∣
∣
∣
∣
Ft+1

)q∣
∣
∣
∣
∣
Ft

]) d
q

,

and recursively (αmingAVaR

t )t≤T :

Definition 5.16. Let Ft ∈ Ft. Set

αmingAVaR

T (Q)(ω) :=

{
0 if Q = I{ω},
∞ else

for ω ∈ Ω,

αmingAVaR

t (Q)(Ft) :=

∫

αmingAVaR

t+1 (Q(·|Ft+1))dQ(·|Ft) + γ
gAV aR
t (Q(·|Ft)|Ft+1)

if Q(Ft) > 0,

αmingAVaR

t (Q)(Ft) := ∞ if Q(Ft) = 0,
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for t < T . Hence, for XT ∈ L∞
T , we define (παmingAVaR

t )t≤T by

παmingAVaR

t (XT ) := ess inf
Q∈M

{

EQ[XT |Ft] + αmingAVaR

t (Q)
}

.

Remark 5.17. (παmingAVaR

t )t≤T is a time-consistent dynamic variational pref-
erence: It is a dynamic variational preference by virtue of its definition in
terms of a robust representation. Time-consistency follows by Proposition
2.9 as (αmingAVaR

t )t≤T is defined recursively in terms of the no-gain condition.

Thus, we have a recursive representation for the variational Snell enve-

lope of time-consistent dynamic variational preferences (παmingAVaR

t )t≤T . This
representation enables us, given an explicit structure of (Xt)t≤T , to solve the
problem for an optimal stopping time τ ∗ as in Theorem 4.1.

6 Conclusions

We have generalized the theory of optimal stopping with multiple priors as
set out in [20] to dynamic variational preferences introduced in [15] or, equiv-
alently, dynamic convex risk measures in [11]. To achieve our results, we have
introduced the notion of variational supermartingales as a generalization of
the usual notion of supermartingales. For this concept, we have obtained re-
sults including a Doob decomposition and optional sampling. These enabled
us to generalize the classical optimal stopping approach for an expected util-
ity maximizer in [17] (Section VI.1) in terms of Snell envelopes to the case
of dynamic variational preferences by virtue of variational Snell envelopes.
We have achieved minimal optimal stopping times and an explicit character-
ization of worst-case distributions. We have shown that the solution to the
infitite horizon problem can be approximated by a sequence of solutions for
an approximating sequence of finite horizon problems. A further insight is
a minimax theorem similar to a minimax result in [23] but making use of
time-consistency.

Our results were applied to prominent examples: dynamic entropic risk
and dynamic generalized average value at risk. For the latter, we are not
aware of any reference having considered this notion in a dynamic context.

To conclude, the virtue of the present article is that optimal stopping
problems are now solved for dynamic variational preferences or, equivalently,
dynamic convex risk measures. This is important for applications on financial
markets: coherent risk measures, as a robust approach reducing model risk,
are too conservative. Convex risk measures are a comprehensive vehicle to
more liberally assess risk while still being robust, as no specific probabilistic
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model is assumed, and satisfying the “margin of conservatism” required in
the Basel II accord.

Our approach leaves a realm for further generalizations. It seems possible
to achieve the results in this article for general time-consistent (monotone)
monetary risk measures, i.e. relaxing the convexity assumption. Of course,
in that case, the robust representation in terms of penalty α does not hold
anymore. However, as explicitly stated, the variational Snell envelope does
not need a robust representation and can hence be generalized to more general
risk measures as done in [4], Chapter 5.3. It is shown that the value function
is time-consistent and again a monetary risk measure. Due to a missing
robust representation, the solution is not explicit. The next direction in
which theory might be generalized is to relax the assumption of the payoff
process being essentially bounded. Several of the cited references consider
convex risk measures for Lp processes or, as in [5], risk measures defined on
Orlicz spaces.

Besides these theoretical considerations, further examples and concrete
applications might be elaborated: dynamic convex risk measures based on
expected shortfall, inter alia elaborated in [12] and [9], are a generalization
of dynamic entropic risk measures or dynamic multiplier preferences when
loss is not exponential.

At last, the problem might be considered in a continuous time setting.
Several approaches to convex risk measures in a time-continuous framework
are available: In [3], dynamic convex risk measures are achieved by virtue of
BMO martingales. A special case of this approach is given in [22] via BSDE
resulting in g-expectations as introduced in [18].

A Proofs

A.1 Proof of Proposition 2.9

Proof of Proposition 2.9. (i) τ ≤ t: In this case, Xτ is Ft-measurable and in
particular Ft+1-measurable. Hence, by conditional cash invariance, we have

πt(Xτ ) = Xτ = πt+1(Xτ )

and hence πt(Xτ ) = πt(πt+1(Xτ )).
(ii) τ ≥ t + 1: “≤”: If, for all Q ∈ A, we have

αmin
t (Q) ≤ EQ

[
αmin

t+1(Q)|Ft

]
+ ess inf

P∈M
αmin

t (Q ⊗t+1 P),

then also

αmin
t (Q ⊗t+1 P) ≤ EQ⊗t+1P

[
αmin

t+1(Q ⊗t+1 P)|Ft

]
+ αmin

t (Q).
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It is immediate that

{
EP[Xτ |Ft+1] + αmin

t+1(P) : P ∈ M
}

is downward directed. Hence, there exists a sequence (Pn)n ⊂ M such that

EPn [Xτ |Ft+1] + αmin
t+1(Pn) ց πt+1(Xτ ).

As M is closed under pasting, we obtain for all Q ∈ M and such Pn:

πt(Xτ ) = ess inf
P,Q

(
EQ⊗t+1P[Xτ |Ft] + αmin

t (Q ⊗t+1 P)
)

≤ EQ⊗t+1Pn [Xτ |Ft] + αmin
t (Q ⊗t+1 Pn)

≤ EQ⊗t+1Pn [Xτ |Ft]
︸ ︷︷ ︸

=EQ [EPn [Xτ |Ft+1]|Ft]

+EQ⊗t+1Pn
[
αmin

t+1(Q ⊗t+1 Pn)|Ft

]
+ αmin

t (Q)

= EQ
[
EPn [Xτ |Ft+1] + αmin

t+1(Pn)
∣
∣Ft

]
+ αmin

t (Q).

Hence, letting n → ∞, we achieve for all Q ∈ M

πt(Xτ ) ≤ EQ [πt+1(Xτ )| Ft] + αmin
t (Q).

Applying the essential infimum to this expression yields

πt(Xτ ) ≤ πt(πt+1(Xτ )).

“≥”: Assuming

αmin
t (Q) ≥ EQ

[
αmin

t+1(Q)|Ft

]
+ ess inf

P∈M
αmin

t (Q ⊗t+1 P)

for all Q ∈ M, we obtain

EQ[Xτ |Ft] + αmin
t (Q)

≥ EQ[Xτ |Ft] + EQ
[
αmin

t+1(Q)|Ft

]
+ ess inf

P∈M
αmin

t (Q ⊗t+1 P)

≥ ess inf
P∈M

(
EQ⊗t+1P

[
EQ [Xτ |Ft+1] + αmin

t+1(Q)
∣
∣Ft

]
+ αmin

t (Q ⊗t+1 P)
)

≥ ess inf
P∈M

(
EQ⊗t+1P [πt+1(Xτ )| Ft] + αmin

t (Q ⊗t+1 P)
)

≥ πt(πt+1(Xτ )).

Applying the essential infimum, we achieve

πt(Xτ ) ≥ πt(πt+1(Xτ )).
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Proof of Corollary 2.10. By conditional cash invariance, we have

πt(Xτ ) = Xτ I{τ≤t} + πt(πt+1(Xτ ))I{τ≥t+1}.

As πt+1 is Ft+1-measurable we have, whenever τ ≥ t + 1,

πt(πt+1(Xτ )) = ess inf
Q∈M

(
EQ[πt+1(Xτ )|Ft] + αmin

t (Q)
)

= ess inf
R,P∈M







ER⊗t+1P[πt+1(Xτ )|Ft]
︸ ︷︷ ︸

E
R|Ft+1 [πt+1(Xτ )|Ft]

+αmin
t (R ⊗t+1 P)







= ess inf
µ∈M|Ft+1

,P∈M

(
Eµ[πt+1(Xτ )|Ft] + αmin

t (µ ⊗t+1 P)
)

= ess inf
µ∈M|Ft+1







Eµ[πt+1(Xτ )|Ft] + ess inf
P∈M

αmin
t (µ ⊗t+1 P)

︸ ︷︷ ︸

=:γt(µ)







.

A.2 Proof of Proposition 3.2

The following lemmata directly generalize Lemmata 9 and 10 in [20] to dy-
namic variational preferences applying interim results from [11].

Lemma A.1. Let Z ∈ L∞
T . Then, for any stopping time τ , the set

{
EQ[Z|Fτ ] + αmin

τ (Q) : Q ∈ M, Pτ |Fτ
= P0|Fτ

}

is downward directed, i.e. for any Q1, Q2 ∈ M with Q1|Fτ
= Q2|Fτ

= P0|Fτ
,

there exists Q3 ∈ M with Q3|Fτ
= P0|Fτ

such that

EQ3 [Z|Fτ ] + αmin
τ (Q3) = min

{

EQ1 [Z|Fτ ] + αmin
τ (Q1); E

Q2 [Z|Fτ ] + αmin
τ (Q2)

}

.

Proof. Let Q1 and Q2 be chosen as above. Consider some arbitrary set
B ∈ Fτ and define Q3 by virtue of

dQ3

dP0

:= IB

dQ1

dP0

+ IBC

dQ2

dP0

.

We have Q3 ∈ M, Q3|Fτ
= P0|Fτ

, and by [11], Lemma 3.3, we have the local
propery of dynamic minimal penalty:

αmin
τ (Q3) = IBαmin

τ (Q1) + IBCαmin
τ (Q2) < ∞.
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Now, define B ∈ Fτ by

B :=
{
EQ2 [Z|Fτ ] + αmin

τ (Q2) ≥ EQ1 [Z|Fτ ] + αmin
τ (Q1)

}
.

Then, by definition of Q3 and the local property, we have

EQ3 [Z|Fτ ] + αmin
τ (Q3)

=
(
EQ1 [Z|Fτ ] + αmin

τ (Q1)
)

IB +
(
EQ2 [Z|Fτ ] + αmin

τ (Q2)
)

IBC

= min
{
EQ1 [Z|Fτ ] + αmin

τ (Q1); E
Q2 [Z|Fτ ] + αmin

τ (Q2)
}

,

which completes the proof.

Lemma A.2. For all µ ∈ M|Ft+1 there exists P∗ ∈ M(·|Ft+1) such that
αmin

t (µ ⊗t+1 P∗) = ess infP∈M(·|Ft+1) αmin
t (µ ⊗t+1 P).

Proof. By the weak compactness of the set of density processes, it is sufficient
to show that there exists a sequence (Pn)n ⊂ M(·|Ft+1) such that

αmin
t (µ ⊗t+1 Pn) ց ess inf

P∈M(·|Ft+1)
αmin

t (µ ⊗t+1 P).

Hence, it suffices to show that for all µ ∈ M|Ft+1 , the set

{αmin
t (µ ⊗t+1 Pn) : P ∈ M(·|Ft+1)}

is downward directed, i.e. for every P1, P2 ∈ M(·|Ft+1), there exists a P3 ∈
M(·|Ft+1) sucht that

min
{
αmin

t (µ ⊗t+1 P1), α
min
t (µ ⊗t+1 P2)

}
= αmin

t (µ ⊗t+1 P3). (8)

Indeed, set A := {αmin
t (µ ⊗t+1 P1) < αmin

t (µ ⊗t+1 P2)} and define P3 by

dP3

dP0

:= IA

dP1

dP0

+ IAC

dP2

dP0

.

By Lemma 3.3 in [11], we have αmin
t (µ ⊗t+1 P3) = IAαmin

t (µ ⊗t+1 P1) +
IACαmin

t (µ⊗t+1 P2) since µ⊗t+1 P3 = (µ⊗t+1 P1)IA + (µ⊗t+1 P2)IAC . Hence,
equation (8) to holds.

Lemma A.3. Let Z ∈ L∞
s , s ≤ T , and τ a stopping time. Then there exists

Pτ ∈ M sucht that Pτ |Fτ
= P0|Fτ

and

ess inf
Q∈M

(
EQ[Z|Fτ ] + αmin

τ (Q)
)

= EPτ

[Z|Fτ ] + αmin
τ (Pτ )I{s>τ}.
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Proof. In case τ ≥ s, the assertion obviously holds true by conditional cash
invariance: Both sides of the equation equal Z.

Hence, we consider the case τ < s. To show: ∃ (Pm)m ⊂ M with
Pm|Fτ

= P0|Fτ
such that

ess inf
Q∈M

(
EQ[Z|Fτ ] + αmin

τ (Q)
)

= lim
m→∞

EPm [Z|Fτ ] + αmin
τ (Pm).

= EP∞ [Z|Fτ ] + αmin
τ (P∞)

for some P∞ ∈ M by weak closeness assumption as Pm →m→∞ P∞ weakly.
Setting P∞ =: Pτ then concludes the proof.

It leaves to prove existence of a sequence (Pm)m ⊂ M with the above
properties: As in the proof of Lemma 10 in [20], Bayes rule as well as the
dependence of ατ only on the Fτ -conditional distribution allows us to restrict
attention to Q ∈ M such that Q = P0 on Ft. This is made explicit in
Corollary 2.4 in [11]. Hence, existence of the sequence is assured by Lemma
A.1 showing the set

{
EQ[Z|Fτ ] + ατ (Q) : Q ∈ M, Pτ |Fτ

= P0|Fτ

}
. to

be downward directed.

Corollary A.4 (from Lemma A.3). For all Z ∈ L∞
t+1, ∃µ∗ ∈ M|Ft+1 s.t.

ess inf
µ∈M|Ft+1

(Eµ[Z|Ft] + γt(µ)) = Eµ∗

[Z|Ft] + γt(µ
∗).

Lemma A.2 and Corollary A.4 prove Proposition 3.2:

Proof of Proposition 3.2. ad (a): Let (Mt)t∈N be a submartingale for every
Q ∈ M, i.e.

EQ[Mt+1|Ft] ≥ Mt ∀Q ∈ M

⇒ ess inf
Q∈M

{
EQ[Mt+1|Ft] + αmin

t (Q)
}

≥ ess inf
Q∈M

EQ[Mt+1|Ft] + ess inf
Q∈M

αmin
t (Q)

= ess inf
Q∈M

EQ[Mt+1|Ft] ≥ Mt.

ad (b): “⇐” Let Q∗ ∈ M be such that Mt ≥ EQ∗
[Mt+1|Ft] + αmin

t (Q∗).
Then obviously, Mt ≥ ess infQ∈M

{
EQ[Mt+1|Ft] + αmin

t (Q)
}

and hence (Mt)t∈N

is a variational supermartingale w.r.t. (αmin
t )t∈N and a Q∗-supermartingale:

Mt ≥ EQ∗
[Mt+1|Ft] + αmin

t (Q∗) ≥ EQ∗
[Mt+1|Ft].

“⇒”By making use of Corollary 2.10, we will explicitly construct a worst-
case distribution Q∗ ∈ M that satisfies

Mt ≥ ess inf
Q∈M

(
EQ[Mt+1|Ft] + αmin

t (Q)
)

= EQ∗

[Mt+1|Ft] + αmin
t (Q∗)
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for t < T , attained due to continuity from below. Let M(·|Ft) denote the
set of all distributions in M conditional on Ft. We have

Mt ≥ ess inf
P∈M

(
EP[Mt+1|Ft] + αmin

t (P)
)

= ess inf
Q|Ft+1

∈M|Ft+1




EQ|Ft+1 [πt+1(Mt+1)

︸ ︷︷ ︸

Mt+1

|Ft] + γt(Q|Ft+1(·|Ft))






by Corollary 2.10

= EQ∗|Ft+1 [Mt+1|Ft] + γt(Q
∗|Ft+1(·|Ft))

with Q∗ as achieved in Corollary A.4

= EQ∗|Ft+1 [Mt+1|Ft] + ess inf
P∈M(·|Ft+1)

αmin
t (Q∗|Ft+1(·|Ft) ⊗t+1 P)

= EQ∗|Ft+1
⊗t+1Q∗(·|Ft+1)[Mt+1|Ft] + αmin

t (Q∗|Ft+1(·|Ft) ⊗t+1 Q∗(·|Ft+1))

by Lemma A.2 and Bayes rule on the first summand

= EQ∗(·|Ft)[Mt+1|Ft] + αmin
t (Q∗(·|Ft))

= EQ∗

[Mt+1|Ft] + αmin
t (Q∗),

where Q∗(·|Ft) := Q∗|Ft+1(·|Ft)⊗t+1 Q∗(·|Ft+1) is the pasting of the Q∗|Fs
’s,

s ≥ t, and Q∗ the respective recursive pasting. The last equality makes use
of the fact that the dynamic minimal penalty only depends on conditionals –
hence justifies our intuitive notation – and that the conditional expectation
is the unconditional one with respect to the conditional distribution.

A.3 Proofs of Propositions 3.4 & 3.5

Proof of Proposition 3.4. (a) Uniqueness: Let S = M−A as in the assertion:

ess inf
Q∈M

(
EQ[St+1 − St + At+1 − At|Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ[Mt+1 − Mt|Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ[Mt+1|Ft] + αmin

t (Q)
)
− Mt = 0,

as M is assumed to be a variational martingale. By uniqueness of αmin
t , due

to the relevance assumption, and as A is assumed to be predictable, we have

At+1 = At − ess inf
Q∈M

(
EQ[St+1 − St|Ft] + αmin

t (Q)
)
.

This shows uniqueness of A and hence of M .
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(b) Existence: Define (At)t∈N by virtue of A0 = 0 and

At+1 := At − ess inf
Q∈M

(
EQ[St+1 − St|Ft] + αmin

t (Q)
)
.

Then, At+1 ∈ Ft, i.e. (At)t∈N is predictable and non-decreasing as (St)t∈N is
a variational supermartingale. Set Mt := St + At, then

ess inf
Q∈M

(
EQ[Mt+1|Ft] + αmin

t (Q)
)
− Mt

= ess inf
Q∈M

(
EQ[St+1 − St + At+1 − At|Ft] + αmin

t (Q)
)

= At+1 − At + ess inf
Q∈M

(
EQ[St+1 − St|Ft] + αmin

t (Q)
)

= 0.

Thus, (Mt)t∈N is a variational martingale with respect to (αmin
t )t∈N.

Proof of Proposition 3.5. We know from Proposition 3.2 that there exists a
worst-case distribution P∗ ∈ M such that

St ≥ EP∗

[St+1|Ft] + αmin
t (P∗).

(i) First, we show that for fixed N ∈ N a stopped “supermartingale modulo
penalty” (SN∧t)t∈N is again one such. I.e.

SN∧t ≥ EP∗

[SN∧(t+1)|Ft] + αmin
t (P∗)I{N>t}. (9)

Indeed, we have

SN∧t = S0 +
t∑

k=1

I{N≥k}(Sk − Sk−1)

≥ S0 +
t∑

k=1

I{N≥k}(Sk − Sk−1)

+I{N≥t+1}(E
P∗

[St+1 − St|Ft] + αmin
t (P∗))

= EP∗

[

S0 +
t∑

k=1

I{N≥k}(Sk − Sk−1) + I{N≥t+1}(St+1 − St)|Ft

]

+αmin
t (P∗)I{N>t}

= EP∗

[SN∧(t+1)|Ft] + αmin
t (P∗)I{N>t}.

(ii) Note: By (i), we have for a variational martingale (Mt)t∈N

EP∗

[MN∧t] = EP∗

[MN∧(t+1) + αmin
t (P∗)I{N>t}|Ft]
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and in particular

EP∗

[M0] = EP∗

[

MN∧t +
t−1∑

i=0

αmin
i (P∗)I{N>i}

]

∀N, t.

Moreover, it holds

lim
t→∞

EP∗
[MN∧t +

t−1∑

i=0

αmin
i (P∗)I{N>i}] = EP∗

[MN ] + EP∗
[
∞∑

i=0

αmin
i (P∗)I{N>i}].

Hence,

EP∗

[M0] = EP∗

[MN ] + EP∗

[
∞∑

i=0

αmin
i (P∗)I{N>i}

]

.

We set
∑∞

i=0 αmin
i (P∗)I{N>i} =:

∑N−1
i=0 αmin

i (P∗). Now, let B ∈ Fσ and define

SB := σIB + κIBC , TB := τIB + κIBC ,

where κ := sup N . Then SB and TB are stopping times. By equation (1):

EP∗

[

MσIB +
σ−1∑

i=0

αmin
i (P∗)IB

]

+ EP∗

[

MκIBc +
κ−1∑

i=0

αmin
i (P∗)IBc

]

= EP∗



MSB +
SB−1∑

i=0

αmin
i (P∗)



 = EP∗

[M0] = EP∗



MT B +
T B−1∑

i=0

αmin
i (P∗)





= EP∗

[

Mτ IB +
τ−1∑

i=0

αmin
i (P∗)IB

]

+ EP∗

[

MκIBc +
κ−1∑

i=0

αmin
i (P∗)IBc

]

,

and hence

EP∗

[MσIB] = EP∗

[

(Mτ +
τ−1∑

i=σ

αmin
i (P∗))IB

]

.

Since this holds true for all B ∈ Fσ, we have

EP∗

[Mσ|Fσ] = EP∗

[Mτ +
τ−1∑

i=σ

αmin
i (P∗)|Fσ],

i.e.

Mσ = EP∗

[

Mτ +
τ−1∑

i=σ+1

αmin
i (P∗)

∣
∣
∣
∣
∣
Fσ

]

+ αmin
σ (P∗)I{τ>σ}.
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Summing up, we have shown for τ > σ

Mσ ≥ EP∗

[Mτ |Fσ] + αmin
σ (P∗) ≥ ess inf

Q∈M

(
EQ[Mτ |Fσ] + αmin

σ (Q)
)

for a variational martingale M ; for τ = σ

Mσ = Mτ = EP∗

[Mτ |Fσ] = ess inf
Q∈M

(
EQ[Mτ |Fσ] + αmin

σ (Q)
)

as ασ is grounded and Mτ ∈ Fσ. Hence, for τ ≥ σ

Mσ ≥ EP∗

[Mτ |Fσ] + αmin
σ (P∗)I{τ>σ}

≥ ess inf
Q∈M

(
EQ[Mτ |Fσ] + αmin

σ (Q)
)
.

For (St)t∈N being a variational supermartingale, the conjecture then follows
from Proposition 3.4:

ess inf
Q∈M

(
EQ[Sτ − Sσ|Fσ] + αmin

σ (Q)
)

= ess inf
Q∈M

(
EQ[Mτ |Fσ] + αmin

σ (Q)
)
− Mσ

︸ ︷︷ ︸

≤0

+ Aσ − Aτ
︸ ︷︷ ︸

≤0

≤ 0.

Hence,

Sσ ≥ ess inf
Q∈M

(
EQ[Sτ |Fσ] + αmin

σ (Q)
)
.

Proof of Corollary 3.6. From the first part of the proof of Proposition 3.5,
we have

Sτ∧t ≥ EP∗

[Sτ∧(t+1)|Ft] + αmin
t (P∗)I{τ>t}

≥ ess inf
Q∈M

(
EQ[Sτ∧(t+1)|Ft] + αmin

t (Q)
)
.

In case τ ≤ t we have

ess inf
Q∈M

(
EQ[Sτ |Ft] + αmin

t (Q)
)

= Sτ + ess inf
Q∈M

αmin
t (Q) = Sτ .
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A.4 Proof of Theorems 4.1 & 4.2

The following proof is analog to the respective one in [20].

Proof of Theorem 4.1. ad (a): By definition we have Ut ≥ Xt, t ≤ T , and

Ut ≥ ess inf
Q∈M

(
EQ[Ut+1|Ft] + αt(Q)

)

for all t ≤ T − 1. Hence, (Ut)t≤T is a variational supermartingale with re-
spect to (αmin

t )t≤T exceeding (Xt)t≤T . Let (Zt)t≤T be another such variational
supermartingale with respect to (αmin

t )t≤T . We show (Zt)t≤T ≥ (Ut)t≤T in-
ductively: By definition ZT ≥ XT = UT . Assuming Zt+1 ≥ Ut+1, we achieve

Zt ≥ ess inf
Q∈M



EQ[Zt+1
︸︷︷︸

≥Ut+1

|Ft] + αmin
t (Q)





≥ ess inf
Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)
.

Thus, as by assumption Zt ≥ Xt, we have hence shown (a):

Zt ≥ max

{

Xt, ess inf
Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)
}

= Ut.

ad (b): We first show“≥”: By Proposition 3.5, we have for the variational
supermartingale (Ut)t≤T ≥ (Xt)t≤T and all t ≤ τ ≤ T :

Ut ≥ ess inf
Q∈M

(
EQ[Uτ |Ft] + αmin

t (Q)
)
≥ ess inf

Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
.

Hence, we have

Ut ≥ ess sup
t≤τ≤T

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= Vt.

To show “≤”, we define the stopping rule

τ ∗
t := inf{s ≥ t : Us = Xs}.

Now, fix t ≤ T . If we can show the stopped variational supermartingale
(Us∧τ∗

t
)t≤s≤T to be a variational martingale with respect to (αmin

s )t≤s≤T , we
are done: Indeed, in that case we have, as τ ∗

t ≥ t,

Ut = ess inf
Q∈M

(
EQ[Uτ∗

t
|Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ[Xτ∗

t
|Ft] + αmin

t (Q)
)

≤ ess sup
t≤τ≤T

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= Vt.
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Hence, it leaves to show the variational martingale property of the stopped
variational Snell envelope (Us∧τ∗

t
)t≤s≤T : Let t ≤ s < T .

(i) Whenever τ ∗
t ≤ s, we have U(s+1)∧τ∗

t
= Uτ∗

t
= Us∧τ∗

t
and hence

ess inf
Q∈M

(
EQ[U(s+1)∧τ∗

t
|Fs] + αmin

s (Q)
)

= ess inf
Q∈M

(
EQ[Us∧τ∗

t
|Fs] + αmin

s (Q)
)

= Us∧τ∗
t

+ ess inf
Q∈M

αmin
s (Q) = Us∧τ∗

t
.

(ii) For τ ∗
t > s, we have (by (a) and the definition of τ ∗

t ) Us > Xs and hence

Us∧τ∗
t

= Us = max

{

Xs, ess inf
Q∈M

(
EQ[Us+1|Fs] + αmin

s (Q)
)
}

= ess inf
Q∈M




EQ[ Us+1

︸︷︷︸

=U(s+1)∧τ∗
t

|Fs] + αmin
s (Q)




 .

(i) and (ii) show the stopped variational martingale property.
ad (c): Let t = 0. Then by definition

τ ∗ = τ ∗
0 = inf{s ≥ 0 : Us = Xs}

and (Us∧τ∗)s≤T is a variational martingale with respect to (αmin
s )s≤T . Hence

ess sup
0≤τ≤T

ess inf
Q∈M

(
EQ[Xτ ] + αmin

0 (Q)
)

= V0 = U0

= ess inf
Q∈M

(
EQ[Uτ∗|F0] + αmin

0 (Q)
)

= ess inf
Q∈M

(
EQ[Xτ∗ ] + αmin

0 (Q)
)
.

Hence, τ ∗ is optimal. Morover, any stopping time such that P0[τ
∗∗ < τ ∗] > 0

cannot be optimal as in that case, by definition of τ ∗ and part (b),

V0 > ess inf
Q∈M

(
EQ[Xτ∗∗ ] + αmin

0 (Q)
)
.

Proof of Theorem 4.2. “≤”: This inequality is shown in [21] for general minimax-
problems.

“≥”: By virtue of Proposition 3.2 there exists a Q∗ ∈ M such that

ess sup
T≥τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= ess sup
T≥τ≥t

(
EQ∗

[Xτ |Ft] + αmin
t (Q∗)I{τ>t}

)

≥ ess inf
Q∈M

ess sup
T≥τ≥t

(
EQ[Xτ |Ft] + αmin

t (Q)I{τ>t}

)

= ess inf
Q∈M

ess sup
T≥τ≥t

(
EQ[Xτ |Ft] + αmin

t (Q)
)
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as αmin
t is grounded, i.e. on {τ = t}, we have

ess inf
Q∈M

(
EQ[Xt|Ft] + αmin

t (Q)
)

= Xt + ess inf
Q∈M

αmin
t (Q) = Xt.

A.5 Proof of Theorem 4.5

Again, the proof follows the lines of [20].

Lemma A.5. Let (αmin
t )t∈N be a dynamic minimal penalty satisfying equation

(1). For t ∈ N, the set

{

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
∣
∣
∣
∣
τ ≥ t

}

is upward directed, i.e. for any two stopping times τ1, τ2, there exists a stop-
ping time, say, τ3 ≥ t such that

ess inf
Q∈M

(

EQ[Xτ3 |Ft] + αmin
t (Q)

)

= max

{

ess inf
Q∈M

(

EQ[Xτ1 |Ft] + αmin
t (Q)

)

; ess inf
Q∈M

(

EQ[Xτ2 |Ft] + αmin
t (Q)

)}

.

Proof. Define A ∈ Ft by

A :=

{

ess inf
Q∈M

(

EQ[Xτ1 |Ft] + αmin
t (Q)

)

> ess inf
Q∈M

(

EQ[Xτ2 |Ft] + αmin
t (Q)

)}

and the stopping time τ3 := τ1IA + τ2IAC .
“≥”: By Lemma A.3, there exists Q3 ∈ M such that

ess inf
Q∈M

(

EQ[Xτ3 |Ft] + αmin
t (Q)

)

= EQ3 [Xτ3 |Ft] + αmin
t (Q3)I{τ3>t}

= EQ3 [Xτ1 |Ft]IA + EQ3 [Xτ2 |Ft]IAC + αmin
t (Q3)I{τ3>t}∩A + αmin

t (Q3)I{τ3>t}∩Ac

=
(

EQ3 [Xτ1 |Ft] + αmin
t (Q3)I{τ1>t}

)

IA +
(

EQ3 [Xτ2 |Ft] + αmin
t (Q3)I{τ2>t}

)

IAC

≥ ess inf
Q∈M

{

EQ[Xτ1 |Ft] + αmin
t (Q)

}

IA + ess inf
Q∈M

{

EQ[Xτ2 |Ft] + αmin
t (Q)

}

IAC

= max

{

ess inf
Q∈M

{

EQ[Xτ1 |Ft] + αmin
t (Q)

}

; ess inf
Q∈M

{

EQ[Xτ2 |Ft] + αmin
t (Q)

}}

,

where the second equality follows from the local property of minimal penalty,
[11] Lemma 3.3.
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“≤”: Since

EQ[Xτ3|Ft] + αmin
t (Q)

=
(
EQ[Xτ1|Ft] + αmin

t (Q)
)

IA +
(
EQ[Xτ2 |Ft] + αmin

t (Q)
)

IAC ,

we have

ess inf
Q∈M

{

EQ[Xτ3 |Ft] + αmin
t (Q)

}

= ess inf
Q∈M

{

EQ[Xτ1 |Ft] + αmin
t (Q)

}

IA + ess inf
Q∈M

{

EQ[Xτ2 |Ft] + αmin
t (Q)

}

IAC

≤ max

{

ess inf
Q∈M

{

EQ[Xτ1 |Ft] + αmin
t (Q)

}

; ess inf
Q∈M

{

EQ[Xτ2 |Ft] + αmin
t (Q)

}}

.

Proof of Theorem 4.5. ad (b): “≥”: By Lemma A.5, there exists a sequence
(τk)k of stopping times, such that

ess inf
Q∈M

(
EQ[Xτk

|Ft+1] + αmin
t+1(Q)

)
րk Vt+1.

Hence, making use of time-consistency and continuity from below, we have

ess inf
Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)

= lim
k→∞

ess inf
Q∈M

(

EQ

[

ess inf
P∈M

(
EP[Xτk

|Ft+1] + αmin
t+1(P)

)
∣
∣
∣
∣
Ft

]

+ αmin
t (Q)

)

= lim
k→∞

ess inf
Q∈M

(
EQ[Xτk

|Ft] + αmin
t (Q)

)
≤ Vt.

Furthermore, by definition of (Vt)t∈N, we have Vt ≥ Xt and hence ∀t ≥ 0

Vt ≥ max

{

Xt, ess inf
Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)
}

.

“≤”: Given τ, t, set σ := max{τ, t+1}. Then, by conditional cash invariance,

ess inf
Q∈M

(

EQ[Xτ |Ft] + αmin
t (Q)

)

= XtI{τ≤t} + ess inf
Q∈M

(

EQ[Xσ|Ft] + αmin
t (Q)

)

I{τ≥t+1}

= XtI{τ≤t}

+ ess inf
Q∈M

(

EQ

[

ess inf
P∈M

(

EP[Xσ|Ft+1] + αmin
t+1(Q)

)
∣
∣
∣
∣
Ft

]

+ αmin
t (Q)

)

I{τ≥t+1}

≤ max

{

Xt, ess inf
Q∈M

(

EQ[Vt+1|Ft] + αmin
t (Q)

)}

,
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as ess infP∈M

(
EP[Xσ|Ft+1] + αmin

t+1(Q)
)
≤ Vt+1.

This shows “≤” since the above inequality holds for all τ ≥ t and hence
for the ess supτ≥t. Hence (b) is achieved.

ad (a): By (b) we have for all t

Vt ≥ ess inf
Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)

and Vt ≥ Xt.

Hence, (Vt)t∈N is a variational supermartingale with respect to (αmin
t )t∈N and

Vt ≥ Xt. Let (Wt)t∈N be another variational supermartingale with respect to
(αmin

t )t∈N exceeding (Xt)t∈N. By Proposition 3.5 we have for all τ ≥ t ∈ N

Wt ≥ ess inf
Q∈M

(
EQ[Wτ |Ft] + αmin

t (Q)
)
≥ ess inf

Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
,

as Wτ ≥ Xτ and, hence,

Wt ≥ ess sup
τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= Vt.

ad (c): As in the proof of Theorem 4.1, we can show (Vs∧τ∗)s∈N to be a
variational martingale. By our continuity assumption, we hence achieve

ess inf
Q∈M

(
EQ[Vτ∗|F0] + αmin

0 (Q)
)

= lim
s→∞

ess inf
Q∈M

(
EQ[Vs∧τ∗|F0] + αmin

0 (Q)
)

= V0.

ad (d): Since (Xt)t∈N is assumed to be bounded, (UT
t )t≤T is bounded,

too. Furthermore, enlarging the set of stopping times when considering the
process up to T + 1 instead of T , we have UT

t ≤ UT+1
t . Hence, the limit

U∞
t := limT→∞ UT

t is well-defined for all t. Hence, by continuity from below

U∞
t = lim

T→∞

UT
t

︷ ︸︸ ︷

max

{

Xt, ess inf
Q∈M

(
EQ[UT

t+1|Ft] + αmin
t (Q)

)
}

= max

{

Xt, ess inf
Q∈M

(
EQ[U∞

t+1|Ft] + αmin
t (Q)

)
}

.

Thus, (U∞
t )t∈N is a variational supermartingale with respect to (αmin

t )t∈N

exceeding (Xt)t∈N. We now show (Vt)t∈N = (U∞
t )t∈N, where (Vt)t∈N is the

infinite horizon problem’s value function: By (a) and (Ut)t∈N being a varia-
tional supermartingale exceeding (Xt)t∈N, we have (U∞

t )t∈N ≥ (Vt)t∈N. From
the finite horizon problem, we have for all T and t

UT
t = ess sup

t≤τ≤T

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

≤ ess sup
t≤τ≤∞

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= Vt.



REFERENCES 40

Hence, for all t, it holds

U∞
t = lim

T→∞
UT

t ≤ Vt.

This shows (Vt)t∈N = (U∞
t )t∈N and completes the proof.
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