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Abstract

Consider a large population of individuals that are repeatedly randomly
matched to play a cyclic 2 X 2 game such as Matching Pennies with fixed
roles assigned in the game. Some learn by sampling previous play of a
finite number of other individuals in the same role. We analyze popula-
tion dynamics under optimal boundedly rational behavior (in the sense of
Schlag, 1998¢). We find that long run play is close to the Nash equilibrium
(when few individuals receive information) if and only if the sample size is

greater than one.
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1 Introduction

Evolutionary Game Theory has provided dynamic models of replication, imita-
tion and learning for analyzing change of play in games. The interpretation of a
mixed strategy as polymorphic population state in which each individual chooses
a pure strategy is particularly appealing. However, in multi-population models
where individuals do not interact with their kin, mixed population states are
rarely stable. This phenomenon first appeared when Selten (1980) showed that
ESS of truly asymmetric contests can not be mixed. With increasing interest in
learning and imitation, models of individual behavior have been developed that
induce the replicator dynamic known from population biology (Bjérnerstedt and
Weibull, 1995; Bérgers and Sarin, 1997; Gale et al., 1995; Posch, 1997; Schlag,
1998¢). With this connection, features known for the replicator dynamic can be
used to predict behavior among interacting and learning individuals. However,
the derivations mentioned lead to the so-called standard replicator dynamic (Tay-
lor, 1979) where mixed strategies fail to be asymptotically stable (Hofbauer and
Sigmund, 1988). The alternative adjusted version due to Maynard Smith (1982)
for which asymptotically stable states can be interior (such as in Matching Pen-
nies) is motivated from replicators. The only individual learning model known
that generates this dynamic (Bjornerstedt and Weibull, 1996) requires individual
knowledge of population averages.! The instability of interior equilibria under the
standard replicator dynamic has biased predictions of learning models towards
pure strategies and set-valued solution concepts (Ritzberger and Weibull, 1995,
Proposition 5; Oechssler and Schlag, 1997, Proposition 2%). Up to now, only
models of learning that heavily utilize information (e.g., best response dynamics,
Hofbauer, 1995; imitation based on current population averages, Bjornerstedt
and Weibull, 1996) or memory (fictitious play, Brown, 1951) have been able to
stabilize interior equilibria (e.g. in Matching Pennies). Of course, stability of
interior equilibria or even convergence of learning processes should not generally
be expected in all games (Shapley, 1964; Gaunersdorfer and Hofbauer, 1995).
However, when play cycles in simple games such as Matching Pennies, then an

individual has an incentive to invest in more information or more memory. Hence,

ISpecifically, the individual imitation rule is a function of the average payoff of each strategy

present among the (infinitly many) individuals belonging to the same player role.
2See also the conclusion of our paper.



convergence to (or approximating behavior of) the Nash equilibrium in Matching
Pennies remains a test for the sophistication of individual behavioral rules.

Schlag (1998¢) has analyzed optimal boundedly rational learning when an
individual observes previous play of one other individual in the same player role
(single sampling). Here optimal behavior is imitative and leads to the standard
replicator dynamic. Recently, Schlag (1998b) extended this approach to samples
of size two (double sampling) where optimal individual behavior is again imitative,
now leading to an aggregate monotone dynamic (Samuelson and Zhang, 1992).
More specific properties of the resulting dynamic have not been considered as of
yet. In this paper, we extend the optimal behavioral rule found under double
sampling to general sample sizes and then analyze population dynamics in cyclic
2 x 2 games (L.e., generalized Matching Pennies). In particular, we analyze the
discrete dynamic directly instead of making the common shortcut of reverting to
a continuous time approximation. Our results summarized in section 3 show a
discontinuous jump in results between single sampling and sample sizes greater
than one. We find long run states situated close to the interior mixed Nash
equilibrium if and only if the sample size is larger than one. On the side we
obtain that population dynamics are approximated by the adjusted replicator
dynamic of Maynard Smith (1982) when the sample size is large.

Thus we find that mixed strategies can be stabilized after all in learning
models based on limited information provided play of at least two individuals in
the same role is observable and individual behavior is imitative and sufficiently

sophisticated.

2 Sophisticated imitation

Consider a two person normal form (or bimatriz) game I' in which player k chooses
a pure strategy from S* and play (i,7) € S' x S? yields independent stochastic
payoffs for player k£ contained in a bounded interval [ak,wk} . Let 7" (7, j) denote
the expected payoff to player k when player one chooses pure strategy 7 and player
two pure strategy j. Let A (Sk> denote the set of mixed strategies of player k
and let 7 (p,q) = ZZ] 7 (1, 7) pig; denote the expected payoff of player k when
player 1 chooses the mixed strategy p € A (S') and player 2 the mixed strategy
qgeA(S?).



In the following we describe a model of boundedly rational individuals learning
how to play this game. The model and results in this section for sample sizes one
and two are taken from (Schlag , 1998b, 1998c). Assume that individuals have
fixed roles in the game I'. They belong to two countably infinite populations, one
corresponding to each player in the game. In a sequence of rounds, individuals
from each population are randomly matched to play the game.

Between rounds, a fixed proportion v, of individuals belonging to population
k are given the opportunity to receive some information about the play of others.
An individual receives information by sampling n individuals at random from the
same population and observes the last strategy used and payoff attained in the
previous round by each individual in this sample (n € N, 0 <, < 1, k = 1,2).
The case n = 1 is called single sampling, n = 2 double sampling. After each
round, each individual uses a behavioral rule (that is a function of his knowledge
and previous experience and information) to determine which strategy to play in
the next round. A state (p,q) € A(S') x A (S?) describes the proportions of
pure strategies used in each population. Thus, the average payoff in population
k is equal to 7" (p,q) in state (p,q). Individual behavior induces a population
as a function of the initial population state (p°, q°) where

dynamic (p°, qt)t:O,l,Q,..

ptt = pi i (phd)

¢ = ¢+, 9 (P d)
for appropriately chosen continuous maps fi,g; : A (S1) x A(S?) — Lo (S?) x
Lo(S?) (i € S, j € 8?), with Lo(S*) = {(§)iesr 1 & € R, D iest & = 0}

Schlag (1998¢) develops a theory of optimal behavior for individuals that are
boundedly rational in the following sense. Initially an individual only knows the
own strategy set together with the bounded interval containing his payoffs. After
each round an individual forgets all occurrences before this round. In round
0 there is an arbitrary initial state (p® q°) in the interior of A (S1) x A (5?).
It is assumed that individuals belonging to the same population use the same
behavioral rule. This generates a population dynamic (pt,qt)t:m’z“. Then a
behavioral rule for individuals in population k is called strictly improving if the
average payoff in this population increases over time whenever play in the other
population does not change, this increase being strict whenever not all strategies
played in population k achieve the same expected payoff. When ‘Sk‘ = 2 then

this means that the proportion of individuals in population k£ playing a best
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response to the population state of the last round always increases. Motivated by
the assumption that the individual has no information about the specific payoff
distributions generated in I' other than the payoff interval [ozk, wk} this condition
must hold in any such game. Formally, the conditions for a rule to be used in
population one to be strictly improving are that, in any game I' with strategy

sets S1 and S? that generates stochastic payoffs for player one in [al,wl],

() > 7 (p'q) forall (p' q) €A (SY) x A(S?)
where > holds if @' (i,q") > 7' (p*,q") for some i with p} > 0. (1)

In the following we use a simple algorithm to construct a strictly improving
behavioral rule for general sample sizes n. Consider first single sampling. Due to
the limitations on individual memory, the behavioral rule of an individual who

observed a sample of size one can be described as a map
F: S x [ 0] x §% x [ab,w*] — A (%)

where I (i,z, j,y), is the probability of playing strategy = in the next round after
playing strategy i and receiving payoff x and observing an individual who used
strategy 7 and attained payoff y. We will assume that individuals that do not
receive additional information through a sample do not change their strategy.?

The Proportional Observation Rule F() (POR, Schlag, 1998b) is defined by

y—a”

Wk — ak
FO(i,z,4,y), = 1=FO(,25,y);,i # .

FO Gz jy), =

Notice that POR is an imitation rule since it either prescribes to switch to a
strategy sampled or not to switch at all. POR specifies to imitate the observed
individual with a probability that is proportional to the payoff of the sampled
individual and independent of own payoff. When both populations use the re-
spective POR the population state changes according to (a discrete version of)
the replicator dynamics of Taylor (1979) (with stepsizes 4, see Schlag, 1998c¢):

P = plt = [ (i) — 7 (0 d)] -

" = gt s [0 () - (0 )] (2)

31n fact, it can be shown that strictly improving rules must have this property.



When concerned with larger samples we will limit attention to behavioral
rules that can be constructed from a single sampling rule F' using the following
simple procedure. Apply the rule I in sequence to each individual in the sample,
replacing own strategy and payoff by observed strategy and payoff whenever the
rule F' prescribes to switch strategies. The strategy left with after applying this
procedure to each individual in the sample is the strategy to be played in the
next round. This generates a behavioral rule for sample size n we will refer to
as sequentially evaluating the single sampling rule F. In the following we will
demonstrate this procedure and the resulting dynamic equations in more detail
for POR. Sequentially evaluating POR when n = 2 leads to a double sampling
rule F®). Tt follows, for |{i,7,7}| = 3, that*

y—af Wb —z

) (. . o

F (Z,%,j,y,T,Z)j - wk_akwk_ak
k

@) (i - _ T

F (z,x,j,y,r,z)r - wk —Oék

F(2) (i,aﬁ,j,y,r,z)i = 1- F(2) (iua”.ujuyuruz)j - F(2) (i,x,j,y,r,z)r.

This leads to the dynamic (Schlag, 1998b)

1 1 (et ot
P = pl =T <1+w r <p’q)>W(@?qt)—ﬂl(P?qtﬂpf

wl wl — al

w” — T

2 2 (f of
V2 14+ (Pp.q )> [WQ <pt7j> _ 2 <pt7qt>} q; ‘

t+1
w2 — o2

q; = q§'+

w2 — 2

(3)

The trick simplifying the calculations is to consider switching behavior even
when an individual observes someone using the same strategy. Then the addi-

tional term .

w -7 (pha) _ S <1 (g —Oél>

wl _ Oél wl _ Oél
icS1

as compared to the single sampling case (2) is the probability that an individual
does not switch after evaluating POR to the first individual in the sample.

4 2 - - » "1 » » »
F® (i,2,7,y,7, 2), is the probability of playing strategy v in the next round after playing
strategy ¢ and receiving payofl x and sequentially evaluating POR first to an individual who
used strategy j and attained payofl ¥ and then to one who used strategy r and attained payoff

2 in the last round.



For general n, if each individual uses the rule derived by sequentially evaluat-

ing POR (which we will call SPOR,,) we obtain the following dynamic

1 1/t ot 1 1/t oty 1]
Y wr =71 {pP,q wr =71 {p,q
Pl -po= 111 I+ 1 <1 )+"'+< 1 <1 )>
w! — w! — wl — o
7t (i9') =7 (Pha")] - P
g e | @=mehd) (W= (0 ) i
9; 4G = w2 — o2 w2 — o2 w? — a2
7 (P g) =77 (P d)] -4 (4)
Thus,
(P q) — 7 (P q") = Ysem (B —pl) 7t (i,q") — 7' (', q")]

ol ol ol _od ol ol

n—1
_ 14 w177r1(pt’qt) I <w1ﬂ.1£pt’qt2> ]
Yies [ (a) — 7' (0,09l 2 0.
which leads to the following result (see also Schlag, 1998b, 1998¢ for n =1, 2).

Proposition 1 SPOR,, generates a strictly improving rule for any sample size

n.

In the limit n — oo, (4) converges to (a discretization of) the version of the

replicator dynamic introduced by Maynard Smith (1982, Appendix J):°

Y .
Pt o= P+ Wl(pt7q1t) —pi - [ (i.d') == (p".q')]
¢t = ¢+ 12 ¢ [7 (p'j) — = (p',q")] (5)

©(p',q') — a2
2.1 Optimality of SPOR,,

SPOR,, defines an imitation rule that is strictly improving. In fact, any strictly
improving rule is imitating.® Moreover, SPOR,, has unique optimality properties

among the strictly improving rules as we will see below. Consider two behavioral

®We note that any of the maps (p’,q’) — (pt+1,qt+1) given by (2, 3, 4, 5) defines a map
from A (Sl) x A (52) into itself. Thus, these expressions generate what we know from their

derivation, namely, a well defined dynamics on A (Sl) x A (52) .
5The proof for n = 1,2 contained in (Schlag, 1998b) extends immediately to general sample

sizes n.



rules F' and (G for player one. We say that F' dominates G if the terms in (1) are

always larger under I’ than under (G, with strict inequality in some cases, 1.e., if

7_[_1 <pt+1 (F) 7qt> Z 7_[_1 <pt+1 (G) 7qt>

for any payoff distributions in I' and any state (p*,q’) in round ¢, and not “=”,
where p**! (H) describes the proportions used in round ¢ 4+ 1 in population one
when all individuals in population one use rule H. Notice that a rule ' dominates
the rule “never switch strategies” if and only if F'is strictly improving. The notion
of domination is a very stringent condition and hence only defines a partial order
on the set of behavioral rules. In the following we will point out some rules that
are best according to dominance in a given set of rules. We will say that F' is
undominated in the set of rules D if ' € D and if there is no rule G € D that
dominates I

The properties of SPOR,, for single (Schlag, 1998c¢) and double (1998b) sam-
pling, stated in terms of dominance, are as follows.

(Single sampling) SPOR; =POR is undominated among the strictly improv-
ing single sampling behavioral rules. Any other single sampling rule with this
property” induces the same population adjustment (2) as POR.

(Double sampling) SPOR, is the unique rule that is undominated among the
sequentially evaluated single sampling rules. SPOR; dominates POR. In fact,
in 2 X 2 games, SPORy is undominated among the double sampling rules that
dominate POR. Any other double sampling rule with this property leads to the
same population adjustment (3) as SPOR,.

Some notes are in place. The bounded rationality assumptions underlying
this model make it natural to restrict attention to simple rules of behavior such
as through sequential evaluation of a single sampling rule. Two questions arise.

Why use POR in this construction? The fact that POR prescribes to forget
own previous payoff i1s counterintuitive. However, reformulating the uniqueness
statement for double sampling made above, any other single sampling rule either
does not generate a strictly improving double sampling rule under sequential
evaluation or is dominated by SPOR,.

Can alternative, possibly more complicated, methods for constructing a dou-

ble sampling rule outperform SPOR,7 Strictly improving double sampling rules

"such as the Proportional Imitation Rule and the Proportional Reviewing Rule (Schlag,

1998c).



that are not dominated by SPOR, exist (Schlag, 1998b). However, such rules do
not dominate POR (or any other single sampling rule that is undominated among
the strictly improving single sampling rules). Restricting attention to rules that
dominate POR reflects the condition that optimal behavior under multiple sam-
pling should outperform optimal behavior under single sampling. In this class,
SPORy performs best.

As for behavioral rules based on sample sizes n > 2 general results on opti-
mality have not been derived. Of course, in want of one procedure that works
well for all sample sizes, it is natural to employ SPOR,,. Notice that, following
(1), SPOR,, performs better the larger the sample size. Formally,

Proposition 2 SPOR,, dominates SPOR,, for alln >m > 1.

3 Cyclic games and summary of main results

We call the bimatrix game I' with |S1| = |S?| = 2 a cyclic 2 x 2 game if it has
a unique Nash equilibrium F where E is in the interior of A (S1) x A (S?). Ex-
amples include the buyer-seller game by Friedman (1991, see also Schlag, 1998a),
Dawkins’ battle of the sexes game (see Maynard Smith, 1982, or Hofbauer and
Sigmund, 1988) and generalized Matching Pennies, the latter given by the fol-
lowing normal form
1 2

L ovp pv (6)

2 pv vp
where pp # v and F = ((%, %) , (%, %)) . Cyclic games are a simple testing ground
for whether bounded rational learning rules such as SPOR,, that we derived from
local criteria can lead large populations (close) to a completely mixed Nash equi-
librium.

In the following we will summarize our results (described in detail in Section

5) on the dynamics induced by SPOR,, in cyclic 2 X 2 games. Foundations for
these results are derived for general aggregate monotone dynamics in Section 4.
Under single sampling, trajectories spiral out to the boundary which means that
individuals in the same population are playing the same pure (non-equilibrium)
strategy most of the time. While the Nash equilibrium F remains unstable for

larger sample sizes, results now also depend on the proportion 7, of individuals
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in each population receiving information. For a given sample size n, if too many
individuals receive information then the boundary remains attracting. However,
if v, < 1/4 then the boundary is repelling in all cyclic 2 x 2 games. Moreover,
when 7y, is sufficiently small then the long run states form a limit cycle which is

close to E. Simulations are added in Section 5 to exemplify the specific relations.

4 Aggregate monotone dynamics (discrete time)

for cyclic 2 x 2 games

Consider now a general aggregate monotone dynamics in discrete time for a two

person game:

it = pl+ @' q) -7 (p'a)e (7' (', q"))]
¢t = gL+ @ ) — (Pl d))¢* (7 (P, d))] (7)

with

() = Y 70, )i
(2%]

the payoff function for player k = 1,2, ¢" : R — R, the (continuous, positive-
valued) multiplier functions and 0 < 7y, < 1 the step sizes. As v =y, — 0, (7)

turns into the differential equation

pi = pi(r'(i,q) — 7' (p,q))¢' (7' (p,q))
g = q;(7*(p,J) — 7*(p,q))¢*(7*(p,q)). (8)

Such game dynamics have been called aggregate monotone (Samuelson and Zhang
(1992), Weibull (1995)). The first such dynamics, besides the standard replicator
dynamics of Taylor (1979), for which the factors ¢" are identical 1, was suggested
by Maynard Smith (1982, Appendix J), with

1

k —

(9)

the Cj, being positive constants (standing for background fitness). However, no
convincing derivation has been given for this choice. As seen in section 2, this

choilce arises now from the imitation rule SPOR,, in the limit n — oo.
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4.1 Behavior near the boundary

At F;; the eigenvalue in direction k for player 1 (= geometric rate of in(de-)crease
of strategy k) is given by

41
by
t
Py

py =LA@ (k) — 7' (1,0)¢" (7' (i, ) = Nijs (10)

and in direction [ for player 2 by

t+1
4
t
4,

Fy =1 Yo (72 (i,1) — 72, ) (72 (1, 5)) = Nijat (11)

Consider now a cyclic 2 X 2 bimatrix game as defined in Section 3. Assume

that the best reply cycle runs clockwise as
Iy — g — Fyy — Iy — . (12>

Then the boundary of the unit square is invariant under the dynamics (7) and
forms a heteroclinic cycle, i.e., a closed loop of stable/unstable manifolds of saddle

points. The stability of this heteroclinic cycle is determined by the quantity

P = P11-12P12-22P22-21P21-11 (13)
with (o, 3 denoting pairs of pure strategies)

10g )\aﬂg

—_—, 14
Tog A o] (14)

pOL*}B =

Note that p is the product of logs of ‘outgoing’ eigenvalues divided by the product
of logs of ‘incoming’ eigenvalues around the cycle (12). The following is a discrete

time version of a related result for differential equations, see e.g. Hofbauer and

Sigmund (1988, p. 213f).

Lemma 3 If p > 1 (resp. p < 1) then the boundary of the square is repelling
(resp. attracting) for the dynamics (7).

Applying this stability criterion to (7) yields

Proposition 4 Let ¢v*(z) := 1/¢"(x), and suppose that % > . holds in
the payoff range of player k for k = 1,2. Then p > 1 and the boundary of the
square is repelling: There exists 6 > 0 such that for each completely mixed initial
condition (p,q) € (0,1)%, there exists to such that p;(t) > & and ¢;(t) > & for
1=1,2 and t > t9.
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This means that each pure strategy will be used with a certain positive prob-
ability 6 > 0 after time .

Proof. We show that pys 49 > 1, the other three factors in (13) being analo-
gous. Inserting (10) into (14) we obtain

p _ log(1 47 (7'(2,2) — 7'(1,2))¢' (7'(1, 2)))
P log(L 4 (rH(1,2) — 71 (2,2))¢ (71(2,2)))]

Denote a := 7(2,2)—7'(1,2) > 0 and b := 7'(1, 2). Then the inequality pys 99 >

(15)

1 can be equivalently reformulated as

log(1 +7,a¢' (b))

Promm =7 log(1 — v,a¢' (b4 a)) ! (16)
log(1 +va¢' (b)) > —log(l — v,a¢'(b+ a)) (17)

(1+ 710" (0))(1 = 1109 (b +a)) > 1 (18)
¢'(0) —¢'(b+a) > 709 (b)¢'(b+a) (19)

P b+a) —i(b) > va (20)

By the mean value theorem, this last inequality holds whenever (1/)1)’ (x) > 7, for
all z in the payoff range. [

A similar calculation shows:

.rs dyp* (x) . —
Proposition 5 If == < v, holds in the payoff range of player k for k = 1,2
then p < 1 and the boundary of the square is locally asymptotically stable.

4.2 Behavior near the interior equilibrium

Linearizing (7) at an interior equilibrium F leads to a matrix of the form [ +
~vJ with I the identity matrix, v = diag(vy,7,), and J the linearization of the
corresponding differential equation (8) at E. Because of the bipartite structure
of bimatrix games, the latter takes the form (see Hofbauer and Sigmund, pp. 142

and 274)
0 C

D o (21)

and hence its eigenvalues occur in pairs +A. In particular, for the equilibrium

E = (p,q) of a cyclic 2 x 2 game, (8) can be written in the form

p=(q—-¢clp,9) §=(P—plalp,q) (22)
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with ¢; > 0, and the eigenvalues of its linearization turn out to be d=i,/cicy,
in agreement with the oscillatory behavior of the solutions near FE. Hence the
cigenvalues of the discrete model (7) near F are given by 1 + iy/V172C1C2. Since
their absolute value is larger than 1, F is a spiral repeller for (7) for every choice
of the multiplier functions ¢* and step sizes v, > 0.

If the multipliers ¢* are decreasing functions, as in all imitation models in
section 2, more can be said. It was shown in Hofbauer and Sigmund (1988, p. 282),
that for Maynard Smith’s choice (9), the flow generated by (8) decreases a certain
volume form. The same proof actually applies to strictly decreasing ® multiplier
functions ¢’. For cyclic 2 x 2 games this result shows the global asymptotic
stability of the mixed equilibrium F for (22). Using a perturbation argument
from numerical dynamics, namely the upper-semicontinuity of an asymptotically
stable set, see e.g. Stuart (1994), the global attractor of the discrete time model
(7), with strictly decreasing #", converges’ to E, as v — 0. In other words, for
small 7., the attractor is close to the equilibrium F. Actually it follows from
the investigation in Hofbauer and Iooss (1984) that for small ~y, this attractor of
(7) consists of a stable ‘limit cycle’, i.e., a closed invariant curve surrounding the

equilibrium (most likely with an irrational rotation-like dynamics on it).

5 Application to the SPOR,, imitation dynamics

Now we apply the above results to the imitation models introduced in section 2. In
the case n = 1, i.e., for (2), the multipliers are simply constants OF = (wF—ak)~L.
Hence ¢ = 0 and proposition (5) implies that the boundary is attracting. In fact
it 1s globally attracting:

Theorem 6 For cyclic 2 x 2 game all orbits (except the equilibrium) of the dis-

crete version of the replicator dynamics (2) converge to the boundary (for every
Tx S (07 1])

#Compare also the proof of proposition 5 in Ritzberger and Weibull (1995, p. 1396) for an

opposite result for increasing multiplier functions.
®One has to take care also that no invariant set bifurcates from the boundary. This can be

shown in a similar way as Lemma 1, using average Liapunov functions. One can construct a
uniform zone of repulsion near the boundary for small v. However, the details of this proof are

beyond the scope of this paper.
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Proof. The standard continuous time replicator dynamics has a constant of
motion for cyclic 2 X 2 games of the form pfl p§2 qf:"qg * (with 8, > 0), see Hofbauer
and Sigmund (1988). Since this function is concave, and the map (2) points into
the same direction as the vector field (R),!? it decreases monotonically along orbits
of (2) and tends to 0. This shows that the boundary is a global attractor for (2).
0J

In the case n = 2, lLe., for (3), the multipliers " are given by ¢k(aﬁ) =
L (1 4wt ) . Hence 9(x) = (W —ot)” D' Since W is

/ _ (WP—aP)
wk—ak wk—ak 2wk —ak gz and ,L/} <aj) T (Quk-ak-gx)2"

convex, 1 attains its minimum and maximum value at the ends of its domain,

l.e., @ and w resp. Hence i <y'(z) <1

More generally, for finite n > 2, a longer calculation shows "2—;1 <'(z) < 1.1

In the limiting case n — oo, for the map (5) we have ¢(x) = (x—a¥) !, hence
Y'(z) = 1. Then proposition (4) shows that the boundary is repelling for every
<1

Summarizing, we obtain the following results for the dynamics (4) resulting
under the use of SPOR,, for given n:!*

Theorem 7 1. The Nash equilibrium is unstable for every cyclic 2 X 2 game.

2. For v, = v, =1 the boundary is attracting for every cyclic 2 x 2 game and
for every n. The same holds forn =1 and 0 < v, < 1.

3. For v, < "2—;1 the boundary is repelling for every cyclic 2 X 2 game.

4. For any given cyclic 2x 2 game, and any n, there is a value y(n) € ["Q;Tll, 1)
with y(n) — 1 as n — oo such that for 0 < v, < v(n), the boundary is repelling,
while for y(n) < 7y, <1, the boundary is attracting.

5. For 0 < 7, < v(n), the global attractor is a closed, annulus—shaped set,
disjoint from E and the boundary. If v, = e, (with ¢y positive constants) then

for small v > 0, this attractor is a smooth closed invariant curve close to E.

WFor this we have to incorporate the factors w_’lkﬁ—k into the payoff functions 7*.

%k can be attained by

' Notice that the lower bound converges to 1/2 as n — oo. If the value a
the payoff function %, then the above estimate for ¢'(x) is best possible. However if there is
an € > 0 such that 7% > o* + ¢ then the lower bound converges instead to 1, as n — oco. For a
typical behavior see (23). The reason for this decrepancy is the non-uniformity of convergence

k — &% in the limit n — oo.

of the multiplier functions near w
12Under continuous dynamics (8) obtained through taking the limit v, = v, — 0, trajectories
cycle in closed orbits around F when n = 1 whereas E is globally attracting for n > 2, as we

have seen in section 4.2.
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Statement 4 follows from the monotone dependence of (13, 14, 15) on the
stepsize v and the fact that ¥'(z) — 1 as n — oo uniformly on each compact
subinterval of the open interval (o,w). Statement 5 follows from the discussion
at the end of section 4.2.

Following Theorem 7, when 7y, < 7(n) then all long run outcomes will be
bounded away both from F and from the boundary. General results for the lo-
cation and the form of this attracting set are not known. Only for sufficiently
small v there are rigorous results: In this case it is a smooth curve surrounding
FE, and the distance of this ‘limit cycle’ from the equilibrium behaves like a con-
stant (depending on n) times /7, so it increases faster than linear (see Hofbauer
and Iooss (1984) for details). Numerical simulations suggest that the attractor
remains a smooth curve for larger values of v until it merges the boundary hete-
roclinic cycle. No ‘fat’ annuli have been observed in these simulations. Figure 2
shows the behavior of the distance of these curves from the equilibrium.

For a Matching Pennies game (6) with payofls ;1 < v in the interval (o, w),

the critical values 7 (n) follow from the calculation in (16):

n :1/’71(’/)_1/%(#): 1 v-oa o oo
7 (n) p— vy = gy mer (23)

Figure 1 shows a plot of these values y(n) against n = 1,...,10 for (p,v) =
(1,2) and payoff range [, w] = [0, 3]. The figure indicates that for n > 2 the range
of values 7y below the curve (for which there exists a limit cycle) is substantial
and quickly grows towards 1.

Figure 2: For Matching Pennies with (¢, v) = (1,2) and payoff range [a, w] =
[0, 3] we plot the distance of the attracting limit cycle from the Nash equilibrium
against the stepsize . In the left diagram we use n = 2, for which the boundary
is reached for v &~ .4 '* while the right diagram shows the graph for the limit case

n = oo, for which the boundary is reached only at v = 1.

13This value is taken from numerical simulations, while the precise value follows from (23)

as % = 0.45. This discrepancy reflects the extremely quick approach to the boundary: the

distance of the limit cycle to the boundary seems to be a flat function (all derivatives 0) at the

critical value of +.
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Figure 1: The critical value 7 (n) as a function of sample size n for Matching

Pennies with (g, v) = (1,2) and [a,w] = [0, 3].

0 0

0 0.5 1

Figure 2: Distance from F as a Tanction of Yin Matciling Pennies with
(e, v) = (1,2)and [o,w] = [0, 3]; left: n =2, right: n = co.

6 Conclusion

There is a basic difference in the long run dynamics of POR = SPOR; on the
one hand and SPOR,, for n > 2 on the other hand in cyclic 2 X 2 games. The
dynamics resulting from single sampling diverges to the boundary, leading to
a strange aperiodic oscillatory behavior, with geometrically increasing sojourn
times near the pure states, similar to the behavior of fictitious play in Shapley’s
example. In practical terms this would mean that almost surely one of these pure
(non-equilibrium) states is reached and the population is stuck there because it
is an absorbing state for imitators. It would need some best reply players to get

away again.
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In contrast, if two or more individuals are sampled, and the 7, are not too
large, then the population dynamics runs into a limit cycle repeating behavior
in a periodic or quasi-periodic fashion. Moreover, this limit cycle shrinks to the
Nash equilibrium when the proportion 7, of individuals receiving information
between rounds of playing the game goes to zero.

In this sense Nash equilibrium (for Matching Pennies like games) can still be
justified by evolutionary arguments based on the SPOR,, model for n > 2, while
it cannot for n = 1.

SPOR,, is a sophisticated imitation rule. Here, sophistication is in the sense
that the probabilities of switching of POR are chosen in a particular way to ensure
the strictly improving condition. Strictly improving requires “nice” behavior in a
large variety of environments and one might wonder which alternative behavior
selected specifically for a given cyclic game might stabilize the Nash equilibrium
too. In the following we argue that both sample sizes larger than one and proba-
bilistic strategy selection remain necessary ingredients. Indeed, divergence under
single sampling is more general than appears at first sight. Schlag (1998a) shows
that trajectories converge to the boundary under single sampling (as in Theorem
6) whenever the conditions on strictly improving stated in (1) hold in the given
cyclic 2 x 2 game. The popular, simple, and seemingly more intuitive, imitation
rules Imitate The Best (Axelrod, 1984) and Imitate Best Average (Ellison and
Fudenberg, 1993) generally perform worse than SPOR,, in cyclic 2 X 2 games. For
these deterministic behavioral rules it is easily shown that the Nash equilibrium
even fails to be a rest point for almost all cyclic 2 X 2 games. This is due to
the insensitivity of these rules to small payoff changes. This result and intuition
also applies when individuals play a best response to a finite sample of previous
strategies among their potential opponents (see also Schlag, 1998b, 1998a).

Some sophistication on part of the players is required to lead them away from
unreasonable behavior and bring them closer to Nash equilibrium. It may be
worth pointing out another case, where sophistication has a stabilizing effect:
In biology, (2) and related (discrete time) models are based on the not always
realistic assumption of haploid, asexual individuals which reproduce by cloning.
Taking account of the genetic structure, namely diploidity, again leads to a stable

14

limit cycle in the games ** considered here, see Maynard Smith and Hofbauer

M Cyelic 2 x 2 games arise in biology as the ‘battle of the sexes’ game introduced by Dawkins
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(1987), or Hofbauer and Sigmund (1988, p. 312 {I).

Finally, notice that the stabilizing behavior of double (or more) sampling
in cyclic 2 X 2 games also has an important impact on the following “larger”
game. Oechssler and Schlag (1997) find for a simple extensive-form game that
the backwards induction outcome ceases to be stable under (single sampling)
sophisticated imitation once observations are imperfect. Our analysis can be

used to show that stability is recovered under double (or more) sampling.
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