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Abstract

In consecutive rounds, each agent in a finite population chooses an action, is randomly

matched, obtains a payoff and then observes the performance of another agent. An agent

determines future behavior based on the information she receives from the present round. She

chooses among the behavioral rules that increase expected payoffs in any specifications of the

matching scenario. The rule that outperforms all other such rules specifies to imitate the action of

an agent that performed better with probability proportional to how much better she performed.

The evolution of a large population in which each agent uses this rule can be approximated in the

short run by the replicator dynamics. 

JEL classification number: C79.

Keywords: random matching, learning, imitation, replicator dynamics.



 For a justification of imitation in a different context see Banerjee [1992].1

1

0. Introduction

Imitation is the act of copying or mimicking the actions of others, a behavior that is often

observable in the context of human decision making. Several reasons for why people might

choose to imitate can be given. We will provide a theoretical foundation for imitation based on

performance in an environment in which an agent's information is extremely limited .1

Consider an individual that is repeatedly engaged in a contest (or game) against a random

opponent. Before each contest the individual must choose some action (from a fixed set of

actions). This action together with the action chosen by her opponent determines the success

(formally, the payoff) of the individual in the contest. Between rounds the individual is able to

obtain some information for selecting future actions by observing the performance of another

individual that is confronted with the same setup.

Assume now that the individual has extremely limited knowledge and information about

the further specifications of the model. All that the she knows about the contest is an interval that

will contain her payoffs. She has no prior belief as to which actions are likely to be played by

other agents. The only prior the individual assesses to unknown events is that in any given contest

and specification of the model the individual conceives to be equally likely in her own position as

to be in the position of any of the individuals that she observes the performance of. We assume

that the individual chooses a behavioral rule that increases expected payoffs in any given round for

any given specification of the parameters of the model. Thereby the individual ignores the fact that

other agents in the population might also change their actions. Such rules will be called

improving. Thus, the focus of our analysis will be on whether under the above assumptions an

individual can extract information from her observations for future behavior in a way such that her

choice of an action does not depend on a prior belief over the unobservable parameters. 

Notice that the contest might be such that the payoffs of the individual are independent of

the opponent's action. In the following these contests will be called degenerate. As a reference

point assume for a moment an alternate (admittingly uninteresting) model in which all games are
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degenerate and assume that the individual is aware of this fact. In this alternate model there is a

very intuitive improving rule referred to in the following as "imitate if better": do not change

actions unless you observe an agent who performed better in which case imitate the action of the

observed agent. It turns out that this rule is no longer improving in our model in which contests

generally are not degenerate. 

We give a complete characterization of the improving rules. Especially it follows that an

individual using an improving rule will display an imitating behavior, i.e., she will never switch to

an action not observed. We derive a unique most preferable improving rule that is described in the

following brief summary of the analysis.

Q: "Why imitate?"

A: "In order to increase expected payoffs under any circumstances in a model of limited

information."

Q: "And if so, how?" 

A: "Imitate actions that perform better with probability proportional to how much better they

perform."

The new aspect of this model is the search for a behavioral rule that has certain properties

in each possible configuration under limited information. Previously, individual behavior in

random matching models has only been justified  in some examples of environments with rich

information (see Kandori, Mailath and Rob [1993], more about this in section 8). 

We now give a more detailed description of the analysis, beginning with an introduction of

the matching and sampling scenario. 

Consider a finite population that consists of an equal number of two different types of

agents, referred to in the following as type A and as type B agents (e.g., sellers and buyers). Each

agent is provided with a set of actions (or strategies) S  or S  according to her type. A B

These agents interact in each of a sequence of rounds according to the following scenario.

In each round each agent selects an action, is then randomly matched with an agent of the

opposite type and obtains thereafter a payoff according to her action and the action of her

opponent. During the matching, an agent only learns her own payoff, neither the action nor the



 Apart from section 7 we will ignore the fact that an action must also be specified when there is2

no previous experience, i.e., in the first round.
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payoff of her opponent. 

Between matching rounds each agent receives information about the performance of

another agent of the same type. This information consists of a payoff and of the action with which

this payoff was achieved without exposing the identity of the associated agent. This so-called

sampling is independent of the matching and sampling in the previous rounds and occurs

according to an exogenous sampling procedure. We consider only sampling procedures where the

probability of 'a' sampling 'b' is the same as that of 'b' sampling 'a'.

An example of a symmetric sampling scenario is the situation in which each agent

randomly selects an agent among the agents of her type with equal probability. These specific

sampling procedures will be referred to as random sampling.

We consider an individual that is about to enter the above matching and sampling scenario

and must determine before her entry how to update her actions from round to round. The

following information will be available to the individual when she selects her action.

The individual knows her type and her set of actions. Additionally she knows that

choosing an action and being matched against an agent of the opposite type will lead to some

payoff in a closed interval (denoted by IfU or I fU, depending on her type). The individualA B

knows that in the matching scenario she can only remember her observations from the previous

round. Therefore the action the individual selects in a given round of the matching scenario can be

characterized as a function of her previous action, the payoff she achieved in the previous round

and of the action and the payoff of the agent she sampled in the previous round. Such a function

will be called an updating rule. 

Given the above considerations, the objective of the individual is reduced to selecting an

updating rule before she enters the matching and sampling scenario.  2

Of course there is a large variety of updating rules. An updating rule may specify to switch

to an action that was not observed. Even among the updating rules that have the imitation

property, i.e., switch only to actions whose performance was observed (in the previous round),



 This assumption is easily motivated by an entry and exit scenario (see section 7).3
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there are many different ways of reacting to the observed payoffs. 

For example: i) The simplest such rule is the one that specifies to choose the same action

as in the previous round regardless of the observations. ii) A very plausible rule seems to be for an

agent to adapt the action of the sampled agent if it performed better than hers did in the previous

round. This updating rule will be called "imitate if better". iii) An example for an updating rule

that incorporates the relative performance of actions is as follows. After observing an agent of the

same type that received a higher payoff than your own, adapt (imitate) the sampled agent's action

with probability proportional to the difference in the achieved payoffs. In all other cases, play the

same action again. We will refer to this updating rule as the proportional imitation rule. Notice

that this rule is uniquely determined up to a positive (proportionality) constant. This constant is

bounded by the range of payoffs that are attainable.

In the following we will specify the criteria for selecting an updating rule.

We assume that an individual does not know the size of the population. However she

knows the matching and sampling scenario, especially she knows which sampling procedure will

be used in the various population sizes. However she is restricted in the way she perceives the

situation. 

(Ignorance) We assume that the individual ignores the fact that other agents might adapt. The

individual also ignores the effect her own rule has on future population distributions. 

An environment will be the collection of the following specifications: the payoff function

for each type of agent where payoffs to type A (B) are in I  (I ), the population size and theA B

sampling procedure that is symmetric. For a fixed environment and round, a state will be the

specification of the action each agent is playing.

(Uniform Prior) The only prior that the individual has is that she expects in any environment and

any state to be equally likely in the position of any of the agents of her own type.  3
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How do the above assumptions affect the individual's calculation of the expected change in

payoffs (denoted by EIP) when using a given updating rule in a given state and environment? For

each agent 'a' of  the same type as the individual calculate the expected increase in payoffs of this

agent when using the given updating rule and when no other agent changes actions. Denote this

expression by EIP(a). Here the expectation is taken with respect to the uncertainty in the

matching and sampling only. Under the uniform prior assumption it then follows that EIP is the

average of EIP(a) over all agents in the population that have the same type as the individual that is

about to enter.

We assume that the individual does not want to choose an updating rule that performs

worse than the rule of never switching. Moreover the individual conceives each environment and

state possible and has no priors over these events. Therefore we choose a "distribution free

approach" and assume that the individual chooses a rule that does not perform worse than not

switching in any state and any environment. This leads to the following assumption.

(Improving) The individual chooses an updating rule that increases (improves) expected payoffs

(i.e., EIP$0) from one round to the next in any environment, any state and any round. Such rules

are called improving. Especially the rule "never switch" is improving.

(Dominance) Moreover, the individual does not choose an improving rule that is pareto

dominated by some other improving rule. One updating rule pareto dominates another updating

rule if in any environment, any state and any round the former rule achieves a higher expected

payoff in the next round than the later.

When indifferent between updating rules the individual evaluates their posterior

"improving" abilities when the contest is degenerate, i.e., in the situation where payoffs are

independent of the actions of the opposite type. Clearly, a rule that never imitates actions that

achieved lower payoffs never decreases payoffs in a degenerate contest. 

(Degenerate Improving) Given a set of improving rules that yield the same expected improvement
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in any environment, any state and any round the individual will choose one (if it exists) that never

imitates actions that achieved a lower payoff.

Given the above assumptions we proceed to search for a most preferable rule for the

individual. The main theorem of the paper contains two conditions that completely characterizes

the behavior of an agent using an improving updating rule:

i) The agent follows an imitative behavior: either she does not change actions or she adapts the

action of the agent she sampled. Especially, an agent that samples another agent using the same

action will not change her action.

The second part of the characterization is easiest formulated for the case in which two

agents sample each other:

ii) An agent using an improving rule is more likely to switch if she had played the action with the

lower payoff than if she had played the one with the higher payoff. Moreover the difference of

these switching probabilities is proportional to the absolute difference in the payoffs the actions

achieved. The implicit proportionality factor is non negative and may depend on the pair of

actions. 

What is the intuition behind the above result? Due to the random matching setup an agent

can never rule out that a given alternative action has a strictly lower expected payoff. Switching to

an action not observed might result in switching to an action not that is not used in the present

population. Moreover if each action used in the population achieves the same expected payoff

then this switch to an unobserved action may lead to EIP<0. Therefore condition i) must hold.

Intuition for part ii) in the above characterization is easiest to provide using the following

lemma. It can be shown that the condition of improving is equivalent to requiring the imitation

property (condition i)) together with the following: the individual switches more likely to an

action with a higher expected payoff than vice versa. Especially the improving condition does not

preclude switching to an action with a lower expected payoff. Notice that even if all the contests

were degenerate a switch to a lower payoff may occur when using an improving rule, as long as

the agent is more likely to switch to the higher payoff than if the roles of updating agent and

sampled agent are reversed. The contests in which an increase in expected payoffs is more difficult

to enforce are those in which the payoffs are a priori random because of the possibility of being
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matched against different actions. The main part of the proof is to show that the linear structure of

taking expectations implies that the difference in the switching probabilities (condition ii)) must be

linear in order to ensure the improving condition in any environment and any state. Especially this

implies that the possible randomness in the payoffs associated to an action causes "imitate if

better" to fail to be improving. On the otherhand we obtain that "never switch", "always switch"

and that all proportional imitation rules are improving.

The proof of the main theorem reveals that the expected improvement of an improving

rule only depends on the proportionality factors implicit in part ii) of the characterization of

improving rules. Using the dominance assumption, the individual will therefore choose an

improving rule which yields the maximal proportional factor for each pair of actions. Such an

updating rule will be referred to as a "best" rule.

There are many "best" rules since only the difference of two switching probabilities (see

condition ii)) is uniquely determined. Moreover, in each environment, each state and each round

any two "best" rules achieve the same expected improvement. Hence the individual is a priori

indifferent between these rules and selects among them using the degenerate improving

assumption. The conclusion is that there is a unique "best" improving rule that never imitates

actions that achieved a lower payoff. This rule is a specific proportional imitation rule.

An alternative justification of this proportional imitation rule is that it minimizes the

probability of switching actions among the "best" improving rules. 

Thus we have singled out a unique updating rule for the individual to use in our scenario.

Especially, the analysis of our model reveals imitative behavior as an efficient method to utilize

limited information. 

It should be noted that the information about the payoff of the sampled agent is not

needed in order to construct a "best" rule. Consider the updating rule under which the individual

reviews her present action with a probability proportional to the difference between the maximal

she may obtain (upper end point of I  (I )) and her present payoff. Once she reviews her choice,A B

the individual adapts the action of the agent she sampled. This rule will be referred to as the

proportional reviewing rule.??quote whom?? With an appropriate proportionality constant we
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show that this rule is the unique "best" improving rule that does not depend on the sampled

agent's payoff. Hence this rule provides the answer to the question "how to imitate?" in situations

in which payoffs of sampled agents can not be observed (see also section 8). 

Once we have determined what kind of updating rule each agent might choose, we are

interested in the dynamics of the population as a whole. The above analysis singles out a unique

rule for each agent (which is the same for agents of the same type). This endogenously justifies

the analysis of a population in which agents of the same type use the same rule. 

Consider a population in which agents of the same type use the same "best" improving

rule, e.g., the "best" proportional imitation rule or the "best" proportional reviewing rule. Assume

that the sampling rule is random sampling. Then it is shown that in the short run with high

probability the frequencies of the various actions played in large populations evolve approximately

according to a discrete version of the continuous replicator dynamics for two type populations

(see Taylor [1979]). Especially our process and the continuous replicator dynamics move with

high probability approximately in the same direction. 

The continuous replicator dynamics are derived from an evolutionary (large population)

model of reproduction based on fitness. An analysis of the (gradients of the) continuous replicator

dynamics in view of the above result becomes relevant to understanding learning behavior in our

model of adaptive agents. Moreover, instead of being a special case, the replicator dynamics are

the only relevant short run dynamic adjustment process for our model with a large population.

The rest of the paper is organized as follows. Section 1 contains the basic model. In

section 2 the condition of improving is introduced. Section 3 contains an example. In section 4 the

main characterization theorem is established. In section 5 the "best" improving rules are

characterized. In section 6 the short run population dynamics are analyzed. Section 7 contains an

entry and exit scenario to motivate the uniform prior assumption. In section 8 the assumptions of

the model together with the related literature are discussed.
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1. The Matching and Sampling Scenario

For a finite set R let )R be the set of probability distributions on R. Consider the

following two person game in which the two players are denoted by A and B. Let S ={A,.., }A 1

be the set of strategies (or actions) of player A and S ={B,.., } be those of player B. LetB 1

B (x ,x ) be the payoff that player C receives when player A uses x0)S  and player B usesC A B A A

x 0)S , C0{A,B} (so B :)S ×)S 6U). Let '(S ,S ,B ,B ) denote the underlying two personB B C A B A B A B

normal form game. Let I =[6 ,. ]fU such that 6 <. , C=A,B.C C C C C

Consider a finite population W consisting of an equal number of two different types of

agents A and B. Let W  and W  denote the set of all agents of type A and type B respectively inA B

the population and let N=*W *=*W *. We will identify the population shares in W  and W  withA B A B

the probability distributions in )W  and )W  that are associated with randomly selecting anA B

agent from W  and W  respectively and observing her strategy. A B

We will consider the following dynamic process of matching, sampling and updating in the

population W=WcW . A B

In each round 1, 2, etc. each agent of type A is randomly matched with exactly one agent

of type B. Each agent of type C is endowed with a strategy in S  she uses when she is matched,C

C=A,B. When matched an agent of type C receives a payoff according to B  but neither observesC

the strategy nor the payoff of her opponent.

A state of the population in a given round is the description of the strategy that each agent

is using. Formally, s:WcW 6S cS  with s(c)0S  when c0W , C0{A,B} is a state of theA B A B C C

population where s(c) is the strategy agent 'c' plays in round t. The event that s is the state in

round t will be denoted by {s =s} (t0ù). Given such a state s, k  will denote the number of agentst C
i

in W  playing the strategy C  and x0  will denote the population shares of the population W ,C i C C

i.e., x = , 1#i#n . Given this notation, the expected payoff of an agent 'a' of type A using AC i
i C
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(i.e., s(a)=A ) in state s is B (A ,x )= B (A ,B ).i A i B A i j

Between matching rounds each agent samples an agent of her own type and receives the

following information. When agent 'c' samples agent 'd' (c,d0W , c�d) then agent 'c' observes theC

strategy 'd' used and the payoff 'd' achieved in the last round without observing the identity of 'd'.

For each agent 'c' of type C this sampling occurs according to some exogenously given probability

distribution z0){W \{c}} called a sampling rule for agent 'c'. Thereby, z (d) is the probabilityc c
C

that agent 'c' samples agent 'd'. 

The assignment of a sampling rule to each agent in the population will be called a sampling

procedure. Formally, z=  is called a sampling procedure if c0W  implies that z  is aC
c

sampling rule for agent 'c' of type C (C0{A,B}). We will call the sampling procedure z symmetric

if for any c,d0W  the probability of 'c' sampling 'd' (this event denoted by csd) is the same as viceC

versa, i.e., P(csd)=P(dsc). 

It will be assumed that in each round both matching and sampling are independent of all

previous events.

The above conditions restrict the variety of individual sampling procedures without

specifying explicitly how the sampling rules of different agents relate to each other. A model in

which each agent is sampled at most once (due to time constraints) is equally feasible as one in

which an agent can be sampled multiple times. The sampling could be such that agents sample

independently, i.e., P(csd*dsc)=P(csd) (referred to later as one-sided sampling). Similarly we

allow for a model in which agents sample from each other (referred to as two-sided sampling). In

this case csd is the same event as dsc for each c,d0W  which means P(csd*dsc)=1. Notice thatC

two-sided sampling implies that the sampling rule is symmetric.

We will now present some examples of symmetric sampling procedures. The situation in

which each agent randomly samples an agent (with equal probability) among the agents her type

(except for herself) is a symmetric sampling procedure and will be referred to as random sampling.
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Here we have P(csd)=  for c,d0W  and c�d. C

Another example of a symmetric sampling procedure is the following. Imagine that agents

of type A are located on a circle. Assume that agent 'a' of type A randomly samples (one or two-

sided) with equal probability among his 2m closest neighbors (m to the left, m to the right,

m<N/2). This is a sampling rule for agent 'a'. Moreover if each agent of type A uses such a rule

and the agents of type B employ a similar rule then we obtain a symmetric sampling procedure.



      A reference to agents using such a rule is given in Cabrales [1993].4
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2. Updating Rules

We now consider an individual that wants to determine a rule for updating her play

between rounds in the matching and sampling scenario introduced in the previous section. The

individual has a randomizing device available to her that generates independent events. Following

the assumptions made in the introduction such an updating rule is characterized as follows. An

updating rule for an individual (agent) of type C is formally a (random) function

F :S ×I ×S ×I 6)S  where F (C ,P,C ,R)  is the probability of playing C  in the next round afterC C C C C C C i j r
r

previously playing C , receiving the payoff P and sampling an agent who used C  and received R,i j

i,j,r0{1,..,n }, P,R0I .C
C

One of the simplest updating rules is the rule "never switch", formally defined by

F (C ,P,C ,R) =1 for C ,C0S  and P,R0I . A seemingly opposite updating rule is the selfC i j i j C C
i

explanatory rule "always switch". A more plausible rule seems to be the following rule we will

refer to as "imitate if better", i.e., F (C ,P,C ,R) =1 if R>P and F (C ,P,C ,R) =1 if R#P. The aboveC i j C i j
j i

rules belong to a class of updating rules that are based on imitation, i.e., either the individual does

not switch strategies or she switches to the strategy of the sampled agent. Updating rules with this

property will be called imitating. Formally, an updating rule F  for type C is called imitating ifC

F (C ,P,C ,R) +F (C ,P,C ,R) =1 for all C ,C0S  and P,R0I . C i j C i j i j C C
j i

The following class of imitating rules, referred to as proportional imitation rules, will play

an important role in our analysis. Using such a rule, the agent never imitates the strategy sampled

if it achieved a lower payoff. Moreover, the imitation of a strategy that achieved a higher payoff

occurs with probability proportional to the difference in the payoffs. Formally, the updating rule

F  is called a  proportional imitation rule (with rate F) if F  is imitating andC C

F (C ,P,C ,R) =F[R!P]  for some 0<F#1/(. !6 ), where [P] =P when P>0 and [P] =0C i j C C
j + + +

otherwise.  4

It is assumed that the individual chooses an updating rule that is expected to increase her



13

payoffs from one round to the next in any round of the matching and sampling scenario. This

should hold for any normal form game '(S ,S ,B ,B ) with payoffs B  in I  and B  in I , for anyA B A B A A B B

population size and for any state. Moreover the expected payoffs in the next round are calculated

under the ignorance assumption and the uniform prior assumption from the introduction. Such an

updating rule with be called improving. In the following we will formalize this condition. 

Fix an updating rule F  for type A. Let s:WcW 6S cS  be a state of the population.A A B A B

Then the probability that agent 'a' of type A using F  plays A  in round t+1 given that the state atA j

time t is s, is determined by 

P(s (a)=A*s =s) = P(asc) F (s(a),B (s(a),B ),A ,B (A ,B ))t+1 j t A A q i A i r
j

where k =k  if r�q and k =k !1. (1)B B B B
rq r qq q

It follows that the expected increase of the payoffs of agent 'a' between rounds t and t+1,

assuming that no agent of type B changes her strategy is

EIP(a)= P(s (a)=A*s =s)B (A ,x ) !B (s(a),x ).t+1 j t A j B A B

We are now able to evaluate the performance of the rule F  for an individual of type A inA

state s prior to her knowing which agent of type A in W  she is associated to in s. Under theA

uniform prior and ignorance assumptions her expected increase in payoffs (denoted by EIP ) isA

EIP = EIP(a). EIP  will be called the expected improvement of type A using F  in state s.A A A

We are now able to formalize the improving condition. Let {W }  be a sequence ofN N

populations and {z }  a sequence of symmetric sampling procedures such that *W *=*W *=NN N N N
A B

and z  is the sampling procedure associated with WcW . Let G be the set of normal formN N N
A B

games '(S ,S ,B ,B ) with payoffs B (A ,B )0I  for all A0S , B0S  and C0{A,B}. We will callA B A B C i j C i A j B

the updating rule F :S ×I ×S ×I6)S  improving (for type C) (C0{A,B}) if for any N, any gameC C C C C C

'(S ,S ,B ,B )0G and any state s (s:WcW 6S cS ) the expected improvement of type CA B A B A B A B
N N
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using F  in state s under the sampling procedure z  is non negative.C
N

Clearly the rule "never switch" is improving for either type. Our aim is to investigate

whether the individual can select among these rules given her preferences we characterized in the

introduction. In order to simplify notation we will focus whenever possible on individuals of type

A.
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B1 B2

A1 R, " 0, $

A2 2, ( 1, *

Table I: An asymmetric game with
two strategies for each type.

3. Examples

In order to clarify the setup of the two previous sections we now consider the

performance of two seemingly plausible updating rules by means of an example. Both of these

rules will fail to be improving because they can not cope with the incomplete information implicit

in the model. For demonstration purposes we will consider the case where populations W  andA

W  are infinite. Consider the matching and sampling scenario of section one with randomB

sampling.

Let '(S ,S ,B ,B ) be the symmetric game with *S *=*S *=2 and payoffs represented inA B A B A B

table I where R>3 and ",$,*,(0U.

For a given state s of the population let x0)S  (x 0)S ) be the population shares inA A B B

population W  (W ).A B

3.1 "Imitate if Better"

In the following we will calculate the expected improvement of type A associated with the

updating rule "imitate if better". Let s be a state and a,c0W  be agents such that s(a)=A , s(c)=A .A 1 2

The individual - if in the position of agent 'a' - will only switch from A  to A  if she is matched1 2

against B  and then samples an agent using A . Consequently, P(s (a)=A*s =s)=x x  and2 2 t+1 2 t A B
2 2
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EIP(a)=x x (1+(1!R)x ). Similarly, were the individual in the position of agent 'c' then sheA B B
2 2 1

would switch to A  if she samples an agent using A  that was matched against an agent of type B1 1

using B . Hence, P(s (c)=A*s =s)=x x ,  EIP(c)=!x x (1+(1!R)x ) and we obtain1 t+1 1 t A B A B B
1 1 1 1 1

EIP =x x (1+(1!R)x )(1!2x ).A A A B B
1 2 1 1

It follows that the expected improvement when using the rule "imitate if better" is negative

if 1/(R!1)<x <1/2. Especially "imitate if better" is not improving. Notice that this is of courseB
1

due to the fact that the outcome of a future contest generated by a given action is not necessarily

deterministic.

3.2 The "Best Response" Rule

In order to get a feeling for how easy or difficult it is to satisfy the improving condition we

will assume in this example that the individual (of type A) knows that the game in table I is being

played. It follows that after sampling the individual implicitly has observed a random sample of

two strategies (drawn at random without replacement) played among the agents of type B: the

strategy of her own and that of the sampled agent's matched opponent. 

Consider the updating rule that emerges when playing a best response to this implicit

sample in the game in table I, referred to in the following as the "best response" rule. Since R>3

an agent will play A  in the next round if and only if she implicitly observes B  being played twice.2 2

It follows that P(s (a)=A*s =s)=(x ) , P(s (a')=A*s =s)=1!(x ) , EIP(a)=(x ) (1+(1!R)x ),t+1 2 t B 2 t+1 1 t B 2 B 2 B
2 2 2 1

EIP(a')=![1!(x ) ](1+(1!R)x ) and EIP =[(x )!x ](1+(1!R)x ).B 2 B A B 2 A B
2 1 2 2 1

Despite the additional information of the individual, her expected improvement can be

negative although she uses the best response rule. This happens when there is a sufficiently large

proportion of type A agents using the best response to the mean strategy of the type B agents. Of

course if the individual could observe the exact frequencies of each strategy played among the

type B agents then playing a best response would have been improving.
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4. Improving Rules

In the following we will show that an updating rule is improving if and only if it is

imitating and it satisfies the following condition. Consider an individual using an imitating rule

that samples an agent using a strategy that achieves a higher expected payoff in the present round.

Then the individual must be more likely to switch strategies than if the roles of the individual and

the sampled agent were reversed. 

In order to be able to formalize the above statement we will need the following notation.

Given a state s:WcW 6S cS  and i,j,q0{1,..,n }, if A  and A  are being played among the type AA B A B i j
A

agents (i.e., k k >0) then let r(A ,A )  denote the probability of playing A  in the next round whenA A i j q
i j q

playing A  and sampling an agent using A . In all other cases(i.e., if k =0 or k =0) then leti j A A
i j

r(A ,A ) =0. i j
q

LEMMA 1 : 

Let *S *$2, let {W }  be a sequence of populations and let {z }  be a sequence ofB
N N N N

symmetric sampling procedures such that *W *=*W *=N and z  is used in W =WcW .N N N N N N
A B A B

Then the updating rule F  for type A is improving if and only if i) F  is imitating and ii) for anyA A

1#i,j#n  and any state s with k k >0, r(A ,A )$r(A ,A )  if and only if B (A ,x )$B (A ,x ).A i j j i
A A i j j i A j B A i B

The proof of the imitation property is quite intuitive. An agent will avoid to play a strategy

that she did not observe since it might be that the strategy observed is a duplification of her own

strategy whereas all strategies not observed lead necessarily to the worst outcome. Notice that

imitation remains necessary to ensure the improving condition even after the event of receiving

the lowest possible payoff 6  and sampling an agent who used the same action and also obtainedA

6 . This is because it may be that obtaining 6  is an unlucky event for the own strategy in theA A

current population but is the only outcome for any other strategy.

PROOF:

We will first show that an improving rule is imitating. Assume that F  is improving.A
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Let P,R0I =[6 ,. ] such that P>6  or R>6  and let N be even. Consider a population inA A A A A

which k =N and k =N/2. Assume that ' is such that B (A ,B )=P, B (A ,B )=6 , B (A ,B )=RA B A 1 1 A i j A A 1 r
1 1

for all 1<r#n , 1#j#n , and 1<i<n . Since B (A ,x )>B (A ,x ) for i>1, all agents in W  areB B A
A 1 B A i B A

playing the unique best response. Therefore any change of strategy will decrease expected

payoffs. Since F  is improving, it follows that F (A ,P,A ,R) =1. A A 1 1
1

Consider now a population in which k =k =k =N/2. Assume that ' is such thatA A B
1 2 1

B (A ,B )=B (A ,B )=P, B (A ,B )=6 , B (A ,B )=B (A ,B )=R for all 1<r#n , 1#j#n , andA 1 1 A 2 1 A i j A A 1 r A 2 r
B B

2<i#n . It follows B (A ,x )=B (A ,x )>B (A ,x ) for i>2. Therefore any change to a strategy AA
A 1 B A 2 B A i B i

with i>2 will decrease expected payoffs. Since F  is improving, it follows thatA

F (A ,P,A ,R) +F (A ,P,A ,R) =1.A 1 2 A 1 2
1 2

The proof for P=R=6  follows just like above when replacing R by . . Since the aboveA A

arguments hold for any A  and A  it follows that F  is imitating.i j A

Let F  be an imitating updating rule for type A. Then for an agent 'a' of type A,A

EIP(a)= P(asc)r(s(a),A ) [B (A ,x )!B (s(a),x )]. i A i B A B
i

The expected improvement hence is 

EIP = P(asc)r(A ,A ) [B (A ,x )!B (A ,x )].A i j A j B A i B
j

Using the fact that the sampling procedure is symmetric we obtain

EIP = P(asc) [r(A ,A ) !r(A ,A ) ][B (A ,x )!B (A ,x )]. (2)A i j j i A j B A i B
j i

Especially the above must hold for 1#i,j#n  and a state such that k +k =1. ThereforeA i j
A A

condition ii) follows.

Moreover (2) shows that i) and ii) are sufficient for F  to be improving. G
A

The following theorem constitutes the central result of this paper and gives a complete

characterization of the set of all updating rules that are improving.  
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THEOREM 2:

Let the assumptions of lemma 1 hold. Then the updating rule F  is improving for type A ifA

and only if i) F  is imitating and ii) for all A ,A0S , i�j there exists 0#F #1/(. !6 ) such thatA i j A A A
ij

F (A ,P,A ,R)!F (A ,R,A ,P) =F (R!P) for all P,R0I .A i j A j i A
j i ij

The intuition behind the proof of condition ii) is as follows. The individual will switch

from A  to A  only when playing A  and sampling A . From lemma 1 it follows that only thei j i j

difference between the probability of switching and this probability when the roles are reversed

influences the expected improvement. Due to the linear structure of taking expectations, it turns

out that only linear terms can be factored out to ensure the improving condition under any

circumstances. 

PROOF:

We will first show that conditions i) and ii) are sufficient. Let F  be an updating rule forA

type A satisfying conditions i) and ii). 

For 1#i,j#n  such that k k >0 we obtainA i j
A A

r(A ,A ) = F (A ,B (A ,B ),A ,B (A ,B )) , (3)i j A i A i q j A j r
j j

where k =k  if r�q and k =k !1.B B B B
rq r qq q

It easily follows with (3) and condition ii) that

r(A ,A ) !r(A ,A ) =F [B (A ,x )!B (A ,x )]. (4)i j j i A j B A i B
j i ij

From (2) and (4) we obtain

EIP = P(asc) F [B (A ,x )!B (A ,x )] . (5)A A j B A i B 2
ij

Therefore EIP$0 and hence F  is improving.A A

Let F  be improving. Then lemma 1 implies that F  is imitating. Therefore it is enough toA A

show the necessity of ii) in populations in which type A uses either A  or A  and type B uses1 2
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either B  or B , i.e., k +k =N and k +k =N. To simplify notation, let "=B (A ,B ),1 2 A A B B A 1 1
1 2 1 2

$=B (A ,B ), (=B (A ,B ), *=B (A ,B ), k =k  and k =k .A 2 1 A 1 2 A 2 2 A A B B
1 1

For P,R0I  let h(P,R)=F (A ,P,A ,R) !F (A ,R,A ,P) . Consider 1#k #N!1.UsingA A 2 1 A 1 2 A
1 2

V(k ,N)= h($,")+ [h($,()+h(*,")]+ h(*,(), (6)B

it is easily verified that

V(k ,N)=r(A ,A ) !r(A ,A ) . (7)B 2 1 1 2
1 2

Let ">$ and *>(. With µ*=  it follows (with a slight abuse of notation) that

B (A ,µB +(1!µ)B )>B (A ,µB +(1!µ)B ) if and only if µ>µ*. Therefore, if >µ* then fromA 1 1 2 A 2 1 2

lemma 1 and (7) it follows that V(k ,N)$0. This must hold for all N and 0#k #N. Consider aB B

sequence {k }  such that 0#k #N and >µ* for all N and 6µ* as N64. It follows that B B
N N

µ* h($,")+µ*(1!µ*)[h($,()+h(*,")]+(1!µ*) h(*,()$0. (8)2 2

Similarly when <µ* then V(k ,N)#0. Consider now a sequence {k }  such that 0#k #N andB B B
N N

<µ* for all N and 6µ* as N64. Then

µ* h($,")+µ*(1!µ*)[h($,()+h(*,")]+(1!µ*) h(*,()#0. (9)2 2

Using (8), (9) and the definition of µ* we obtain

(*!() h($,")+("!$)(*!()[h($,()+h(*,")]+("!$) h(*,()=0. (10)2 2

When $=*, (10) implies

("!$)h($,()=((!$)h($,"). (11)

The right hand side in (11) is a polynome in (, therefore the left hand side is too, i.e., there

exist u($) and v($) such that h($,()=u($)(+v($). Moreover, comparing the coefficients of ( it

follows that h($,")=u($)("!$). Similarly replacing u($)"+v($) for h($,") in (11) we obtain

h($,()=u($)((!$). It follows that 
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h($,D)=u($)(D!$) for all 6 #D#.  and 6 <$<.  such that $�D. (12)A A A A

Setting "=( in (10) it follows that (*!")h($,")=($!")h(*,"). Consequently there exists

w(") such that 

h(D,")=w(")(D!") for all 6 #D#.  and 6 <"<.  such that "�D. (13)A A A A

From (12) and (13) we obtain that there exists F0U such that h(P,R)=F(R!P) for all

6 <P<. , 6 <R<.  such that P�R. (14)A A A A

Using (10) the statement in (14) can be extended to the case P=R and to the border values

of I . From (7) it now follows that A

r(A ,A ) !r(A ,A ) =F[B (A ,x )!B (A ,x )]. (15)2 1 1 2 A 1 B A 2 B
1 2

Finally with lemma 1 and the fact that F (A ,P,A ,R)0[-1,1] we obtain thatA i j
j

0#F#1/(. !6 ). GA A

As seen above, the characterization of updating rules that are improving is independent of

the exact features of the sequence of symmetric sampling rules {z } . From condition ii) inN N

theorem 2 it follows that the boundedness of the set of feasible payoffs I  is a necessary conditionA

for improving rules for type A to exist with F >0 for some A ,A0S . ij
i j A

The following corollary supplements the characterization of improving rules given in

theorem 2.

COROLLARY 3:  

Condition ii) in theorem 2 holds if and only if the following condition holds:

ii') if i �j then either F =0 and F (A ,P,A ,R)=A )=F (A ,R,A ,P)=A ) for all P,R0I  or there existsij
A i j j A j i i A

F >0 and a function g :I ×I6U such that !min{P,R}#g (P,R)#!max{P,R}+1/F ,ij ij ij ij
A A

F (A ,P,A ,R) =F (R+g (P,R)) and F (A ,P,A ,R) =F (R+g (R,P)) holds for all P,R0I .A i j A j i A
j ij ij i ij ij
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PROOF:

It is easy to see that ii') implies ii). 

Conversely let A ,A0S , i�j and let F  satisfy ii). If F =0 theni j A A
ij

F (A ,P,A ,R) =F (A ,R,A ,P)  for all P,R0I  which together with (15) implies ii').A i j A j i A
j i

Assume now that F >0. Let g (P,R)=[F (A ,P,A ,R) /F ]!R. It follows thatij ij j ij
A i j

!R#g (P,R)#!R+1/F  and F (A ,P,A ,R) =F (R+g (P,R)). Together with ii) we obtainij ij j ij ij
A i j

F (A ,R,A ,P) =F (A ,P,A ,R)!F (R!P)=F (P+g (P,R)). This implies !P#g (P,R)#!P+1/FA j i A i j
i j ij ij ij ij ij

which completes the proof of condition ii'). G
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5. Maximal Improvement

In this section we will select among the improving rules ones with special properties. 

From (5) it follows that the expected improvement of an improving rule only depends on

the values F , i,j0{1,..,n }, i�j. If F =0 for some i�j (i.e, F (A ,P,A ,R) =F (A ,R,A ,P)  for allij A ij j i
A i j A j i

P,R0I ) then the adjustment behavior when using A  and sampling A  or vice versa does notA i j

contribute to improving expected payoffs. Especially, if k +k =N then EIP =0. On the otherA A A
i j

hand, F >0 induces a strictly positive expected improvement given that agents using A  sampleij
i

ones using A  with positive probability and A  and A  achieve different expected payoffs. j i j

Notice that maximizing expected improvement is equivalent to maximizing payoffs in the

next round. It follows immediately that since (5) is increasing in F , the improving rules thatij

perform "best" (i.e., obtain the maximal expected payoffs in the next round among the improving

rules) are precisely the ones with maximal F . Among these rules we single out a unique rule. Theij

proportional imitation rule with appropriate adjustment rate is the unique "best" rule that never

adapts strategies that achieved lower payoffs. Therefore it is most preferred among the "best"

rules anticipating that payoffs might be deterministic (and evaluating this situation according to

the worst circumstances). An alternative justification is that it is the unique rule that minimizes the

probability of switching strategies among the "best" rules. 

THEOREM 4:

Under the assumptions of lemma 1, let M be the set of improving rules for type A with the

following property. If F0M then there is no improving rule F' such that in some environment and

some state F' performs better than F, i.e., EIP(F')>EIP(F). Then 

i) F 0M if and only if F  is an improving rule and F =1/(. !6 ) for A ,A 0S , i�j where F  isA A A A i j A
ij ij

given by theorem 2.

ii) the proportional imitation rule with rate 1/(. !6 ) is the unique rule in M that never imitates aA A

strategy that achieved a lower payoff. 

iii) the proportional imitation rule with rate 1/(. !6 ) is the unique rule that minimizes theA A

probability of switching among the set of all rules in M.
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PROOF:

With I =[6 ,. ] it follows from theorem 2 that F #1/(. !6 ). Moreover the proportionalA A A A A
ij

imitation rule with rate 1/(. !6 ) is well defined. Therefore any improving rule withA A

F =1/(. !6 ) maximizes the expected improvement among all improving rules.ij
A A

Statements ii) and iii) follow easily from corollary 2 since the proportional imitation rule is

the unique rule in M with g (P,R)=!min{P,R}.Gij

In the following we will present the "best" improving rule that requires minimal

information. For 0<F#1/(. !6 ) consider the updating rule F  defined by F (A ,P,A ,R) =F(. !P)C C A A i j A
j

for all A ,A0S  and P,R0I . We will call F  the proportional reviewing rule with rate F. Thei j A A A

proportional reviewing rule with rate 1/(. !6 ) is used in Binmore, Gale and Samuelson [1993]A A

who interpret it on the basis of random aspiration levels. In each round an aspiration level is

chosen from a uniform distribution on the set of feasible payoffs [6 ,. ]. If the individual obtains aA A

payoff below her current aspiration level then she samples an agents and switches to the sampled

agent's strategy.

The following theorem characterizes a unique rule for the individual to use when the

payoff of the sampled agent is not observable.

THEOREM 5:

Under the assumptions of theorem 4, the proportional reviewing rule with rate 1/(. !6 )A A

is the unique rule in M that is independent of the sampled agent's payoff.

PROOF:

Assume that F0M does not depend on the sampled agent's payoff. For A ,A0S , i�j letA i j A

f (x)=F (A ,x,A ,y). From theorems 2 and 4 it follows that f (x)+Fx=f (y)+Fy where F=1/(. !6 ).ij ij ji
A i j A A

Therefore there exists c0U such that f (x)=c!Fx. Since f (x)0[0,1], c=. /(. !6 ). Hence F  isij ij
A A A A

the proportional reviewing rule with rate 1/(. !6 ).GA A



25

6. Short Run Behavior of the Population

In the previous sections we analyzed which updating rules an individual might choose in a

specific matching and sampling scenario. Especially we assumed that this choice was made

ignoring any possible decisions by other agents. As a result we obtained a unique "best" rule (see

theorem 4). Consequently, given that individuals of the same type have identical preferences,

agents of the same type would choose independently of each other the same rule. In this section

we will analyze how this individual choice of rules effects the evolution of the distribution of

strategies played in the two sub populations. Notice that the common a priori assumption that all

agents use the same rule is here justified on an individual level.

In the following we will assume that each agent uses the same "best" rule given by part i)

of theorem 4. In this context let F =1/(. !6 ), C=A,B. Especially the agents might be using theC C C

proportional imitation rule singled out by theorem 4 or the proportional reviewing rule (see

theorem 5). We will analyze the short run dynamic evolution of the frequencies of the strategies

played when the population is large. There will be a strong connection to the replicator dynamics

in two type populations (see Taylor [1979]) when agents employ random sampling.

Assume that the population WcW  is in state s at time t (t0ù). Let z be a symmetricA B

sampling rule. What is the expected number of agents of type C playing C  in round t+1, denotedi

by Ek '? Using symmetry of sampling, C
i

Ek '=k + P(csd)[r(C ,C )!r(C ,C ) ], 1#i#n .C C u i i u
i i i u A

Using (4) we obtain

Ek '=k +F P(asc)[B (A ,x )!B (A ,x )], i=1,..,n ,A A A A i B A u B
i i A

and similarly

Ek ' =k +F P(bsd)[B (x ,B )!B (x ,B )], j=1,..,n .B B B B A j B A r
j j B

For the rest of this section we will consider the special case where z is a random sampling
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procedure. Letting Ex '  denote the expected frequency of C  in round t+1 (1#i#n ), i.e.,C i
i C

Ex '=Ek ' /N, we obtain C C
i i

Ex '=x +F [B (A ,x )!B (A ,x )]x x  and hence A A A A i B A r B A A
i i i r

Ex '=x +F [B (A ,x )!B (x ,x )]x , i=1,..,n  andA A A A i B A A B A
i i i A

Ex ' =x +F [B (x ,B )!B (x ,x )]x , j=1,..,n . (16)B B B B A j B A B B
j j j B

Notice for a given game as the range of the payoffs for type C (measured by . !6 =1/F )C C C

increases, strategies among agents of type C are expected to change at a slower rate. 

Now consider the following deterministic adjustment process in discrete time defined on

)S ×)S :A B

y = , y = ,A,0 B,0

y =y +F [B (A ,y )!B (y ,y )]y , i=1,..,n ,A,t+1 A,t A A i B,t A A,t B,t A,t
i i i A

y =y +F [B (y ,B )!B (y ,y )]y , j=1,..,n , t=0,1,2,..,B,t+1 B,t B B A,t j B A,t B,t B,t
j j j B

where ( , )0)S ×)S  is the initial state. (17)A B

The following continuous time version of (17) was first established by Taylor [1979]. The

continuous replicator dynamics for two type populations matched to play the game

'(S ,S ,E ,E ) (see Taylor [1979]) are defined as follows:A B A B

z (0)= , z (0)= ,A B

z =[E (A ,z )!E (z ,z )]z , i=1,..,n  and A A i B A A B A
i i A

z =[E (z ,B )!E (z ,z )]z , j=1,..,n , t$0  (18)B B A j B A B B
j j B

where ( , )0)S ×)S  is the initial state, z =z (t)0)S  is the mean strategy and z  isA B C C C C
i

the proportion of agents using C0S  among the agents of type C in the population at time ti C

(C=A,B). 
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The continuous replicator dynamics are derived from applying a "law of large numbers"

argument to a large population random matching and reproduction scenario. It is easily shown

that the trajectories of (17) approximate the trajectories of (18) for finite time horizons when FA

and F  are small and E ()=F B (), C=A,B. B C C C

We are interested in the relationship between our (stochastic) process and the

deterministic process given in (17), more specifically if a "law of large numbers" type of result

applies when the population is large but finite.

Given random sampling it is sufficient to specify a population state by the frequencies of

the strategies that are present. Therefore we will identify states s with the associated population

shares (x ,x ). Given N0ù let )S ={x0)S  s.t. Nx0ù for 1#i#n } be the set of feasibleA B C C
N i C

population shares in the population W  of size N.C

Let 5..5 be the supremums norm on )S ×)S , i.e.,A B

5(x ,x )5=max{*x *,*x *, 1#i#n , 1#j#n }. A B A B
i j A B

The following theorem states that in a sufficiently large population under random sampling

where agents of the same type use the same "best" improving rule, the frequencies of the

strategies evolve in the short run with high probability approximately according to the discrete

time version of the replicator dynamics for two type populations given in (17). Especially the

trajectories move with high probability approximately in the direction of the continuous replicator

dynamics given by (18).

THEOREM 6:  

Let the assumptions of lemma 1 hold. Assume for each N that z  is a random samplingN

rule. Assume that in each population WcW  agents of the same type use the same "best"A B
N N

improving rule F  (C=A,B). Then for every *>0, ,>0 and T0ù there exists an N  such that forC
0

any N>N  and any ( , )0)S ×)S , P(5(x (N),x (N))!(y ,y )5>*)<,,0 N N
A B A,T B,T A,T B,T

where (x (N),x (N)) is the random state of the population (W ,W ) at time t given theA,t B,t A B
N N

initial state (x (N),x (N))=( , ) and (y ,y ) evolves according to (17) withA,0 B,0 A,t B,t

(y ,y )=( , ).A,0 B,0
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Figure 1: Graphic illustration to theorem 6.

The statement of theorem 6 is graphically illustrated in figure 1 where

(t,N)=( (t,N), (t,N)) is a "typical" path of the population WcW  starting inA B

x(0)=(x (N),x (N)).A,0 B,0

The intuition behind the proof is as follows. We show that the variance of our process

from one round to the next is arbitrarily small for sufficiently large populations (the "law of large

numbers" effect). Therefore the state at time one will be close to the expected state at time one

(which is approximately (y ,y ), compare (16) and (17)). Using the fact that trajectories startingA,1 B,1

close stay close when evolving according to (17), the state of our process at time two will

therefore also be close to the trajectory of (17) at time 2, and so on.

PROOF:

Let the assumptions of theorem 6 hold. We will first prove the statement for T=1. For

notational simplicity we will often omit N from the notation, e.g., x =x(N).A,t A,t

Fix N. For 1#i#n  we will show that Var(x ) is of the order 1/N. For a,c0W  andA i N
A,1 A

b,d0W  let [a,b,c,d] be the event that 'a' is matched against 'b', 'c' is matched against 'd' and 'a'B
N

samples 'c'. Let Z(a,b,c,d)=1 if [a,b,c,d] occurs and 'a' plays A  in the next round, otherwisei
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Z(a,b,c,d)=0. Then x = Z(a,b,c,d). A,1
i

If P([a,b,c,d])=0 then VarZ(a,b,c,d)=0. If P([a,b,c,d])>0 then

EZ(a,b,c,d)= µ and VarZ(a,b,c,d)=EZ(a,b,c,d)[1!EZ(a,b,c,d)] where

µ=P(a plays A  in next round*[a,b,c,d]). i

Furthermore

Var(x )= VarZ(a,b,c,d)+ Cov(Z(a,b,c,d),Z(a',b',c',d')) (19)A,1
i

where the second summation (*) is over all a,c,a',c'0W  and b,d,b',d'0W  such thatA B
N N

(a,b,c,d)�(a',b',c',d').

There are of order N  events [a,b,c,d] and for each event the variance VarZ(a,b,c,d) is of4

order 1/N . Therefore the first summation in (19) is of order 1/N and hence converges to 0 as3

N64. 

We will now investigate the second summation. Since Cov(Z,Z')=EZZ'!EZEZ' and

EZZ'$0 we will only consider terms in (19) such that EZZ'>0. For a,c,a',c'0W  and b,d,b',d'0WA B
N N

let 8 be the probability that [a,b,c,d] and [a',b',c',d'] occur simultaneously. Then EZZ'#8. Consider

the terms in (19) such that (a',b',c',d')=(c,d,a,b). There are of order N  such pairs and 8 is of order4

1/N . Therefore the sum of these terms (including the factor 1/N ) converges to 0 as N64. All3 2

other terms in the second summation are of the type {a,b,c,d}1{a',b',c',d'}=i. There are of order

N  such pairs. For these terms we must give a better bound than 8 for the covariance.8

EZZ'!EZEZ'# !  which is of order 1/N . It follows that the sum7

over these pairs is also of order 1/N. We therefore have shown that the second summation in (19)

also converges to 0 as N goes to 4. Hence Varx  is of order 1/N for each i0{1,..,n }. Similarly itA,1
i A

can be shown for 1#j#n  that Varx  is also of order 1/N. B j
B,1
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Fix ,>0 and *>0. Since the above calculations were independent of the initial state

( , ) there exists N  such that for any ( , )0)S ×)S  and N>N ,0 0
A B

Varx + Varx <,* /4 when (x ,x )=( , ).A,1 B,1 2 A,0 B,0
i j

From (16) and (17) it follows that there exists N$N  such that for any N>N , any initial1 0 1

state ( , ), any 1#i#n  and 1#j#n , *Ex !y *<*/2 and *Ex !y *<*/2 whenA B i i j j
A,1 A,1 B,1 B,1

(x ,x )=(y ,y )=( , ). So P(*x !y *>*)#P(*x !Ex *>*/2). We now obtain usingA,0 B,0 A,0 B,0 A,1 A,1 A,1 A,1
i i i i

Tschebyscheff's inequality that for any N>N ,1

P(5(x ,x )!(y ,y )5>*) # P(*x !y *>*)+ P(*x !y *>*)A,1 B,1 A,1 B,1 A,1 A,1 B,1 B,1
i i j j

# P(*x !Ex *>*/2)+ P(*x !Ex *>*/2) # Varx + Varx <, whenA,1 A,1 B,1 B,1 A,1 B,1
i i j j i j

(x ,x )=(y ,y )=( , ).A,0 B,0 A,0 B,0

This concludes the proof of the theorem when T=1.

We will now show the statement for T=2. Fix *>0 and ,>0. Let f:)S ×)S 6)S ×)SA B A B

be such that f=(f ,f ), f (w)=w +F [B (A ,w )!B (w ,w )]w , 1#i#n  andA B A A A A i B A A B A
i i i A

f (w)=w +F [B (w ,B )!B (w ,w )]w , 1#j#n  for w=(w ,w )0)S ×)S . It follows thatB B B B A j B A B B A B A B
j j j B

(y ,y )=f(y ,y ), t$0. Since f is continuous and )S ×)S  is compact, for each *>0 thereA,t+1 B,t+1 A,t B,t A B

exists "0(0,*/2) such that 5f(w)!f(wE)5<*/2 if 5w!wE5<". Let 0 be such that (1!0) =1!,.2

Using the fact that we have proven the theorem for T=1, let N  be such that for any N>N ,0 0

P(5(x ,x )!(y ,y )5#")$1!0 when (x ,x )=(y ,y ). Applying the theorem for T=1 againA,1 B,1 A,1 B,1 A,0 B,0 A,0 B,0

we obtain

P(5(x ,x )!(y ,y )5#*)A,2 B,2 A,2 B,2

$P(5(x ,x )!f(w)5#" for some w0)S ×)S  s.t. 5w!(y ,y )5#")A,2 B,2 A B A,1 B,1

$(1!0) =1!,.2

This concludes the proof of statement for T=2. Using induction it is easy to extend the

above argument to the case of T>2 and hence this part of the proof is omitted. G
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7. An Entry and Exit Scenario

In this section we present an entry and exit scenario that gives additional motivation to the

assumption made in the introduction that in any round and in any state the individual expects to be

equally likely in the position of any agent of her own type, referred to as the uniform prior

assumption. 

Periodically a new agent (individual) of either type emerges that replaces a randomly

selected agent (chosen with equal probability) among the agents of her own type in the

population. When entering the population the new agent learns the strategy and the payoff of the

agent she replaces. In this setup an entering agent must have besides her updating rule an initial

strategy selection rule. This rule determines the strategy the agent plays in the first matching

round she takes part in as a function of the strategy and payoff of the agent she replaced.

Given the above entry and exit scenario the decision problem of an agent can be

formulated explicitly. Before entering the population each agent must choose an initial strategy

selection rule she will use on entry and an updating rule she will use throughout the matching. At

the time of this decision she knows her own type but has no other information besides the basic

assumptions of the model. Furthermore, the agent ignores the fact that other agents might adjust

and chooses a rule that is expected to improve payoffs in each state of the population and each

feasible game. On entering the population the increase in expected payoffs is relative to the

expected payoff of the agent that is replaced. 

Following the above scenario an agent enters equally likely in the position of any agent of

her own type. This immediately implies that the unique improving initial strategy selection rule is

to adapt the strategy of the replaced agent. This follows just as in lemma 1. Therefore, the

uniform prior assumption is correct in the entering agent's first matching round. Moreover, since

agents ignore the effect their own rule (and those of others) has on future population

distributions, an agent will believe a priori to entering the population that she will be equally likely

in the position of any agent of her own type in any state and in any round. This is precisely the

uniform prior assumption made in the introduction.
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8. Discussion

In this section we will discuss some assumptions made in the model and will refer to the

related literature.

At first we will go through the basic informational assumptions to show that they are

minimal to ensure that the individual strictly prefers some rule to not switching both in the general

model and in the case where all contests are degenerate. 

Central to the matching and sampling setup is that an agent learns from other agents that

are in the same matching situation. In this respect, we can allow for a general class of sampling

rules. In fact the assumptions on the sampling rules can be slightly weakened. One might want to

include the case in which agents do not necessarily sample in each round. Given a sampling rule

let 2 >0 be the probability that an agent of type C makes an observation. Let {z }  be a sequenceC
N N

of sampling rules such that 2  is independent of N. Then theorem 2 can easily be adjusted to theseC

more general symmetric sampling rules by adding to condition i) that an agent without a sample

does not adjust. Similarly, F  must be replaced by 2 F  in (17) in order for theorem 6 to hold forC C C

these more general sampling rules.

Observing the sampled agent's payoff is necessary to find a rule that is better than "never

switch" when all contests are degenerate. Agents have minimal memory since the updating rules

only depend on the action and the payoff of the last period. Updating rules with minimal memory

are simple and therefore plausible under complexity restrictions. Additionally, changing payoffs

can make rules based solely on information from the last period plausible.

Concerning the game structure, agents have no idea about what kind of game they are

playing besides the fact that they know the set of strategies and an interval containing the payoffs.

It is necessary to assume that agents know a bounded interval that contains the payoffs (see the

note made after the proof of theorem 2). It is not even necessary to assume that the agents in our

model are aware of the fact that they are playing a game. Additionally, the "optimal" behavior

does not require that agents know the set of strategies. We only need to assume that agents can

recognize and adapt strategies of sampled agents. This can for example be applied to a model in

which new strategies (e.g., technologies) emerge exogenously in the sense that a few agents enter

using these strategies. Whether the new technology takes over or dies out in the short run can be
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analyzed with the help of the replicator dynamics (see theorem 6). A follow up paper to this one

under way will provide the long run analysis.

We make two assumptions that an agent bases her calculations on, namely that she will be

the only one to adjust (the ignorance assumption) and that she will be equally likely in the position

of any agent in any round and any state (the uniform prior assumption).

The ignorance assumption is correct with high probability if the probability of receiving

information between rounds 2  is small (given the extended model mentioned above in which anC

agent might not sample in each round). Only agents that receive information will adjust.

Therefore, with high probability an agent that receives information will be the only one who

received information.

The uniform prior assumption is motivated in section 7 by an entry and exit scenario. A

conceivable alternative to this assumption would be to prefer rules that maximize expected

payoffs under the worst circumstances given the current choice of strategy. However this

condition is too strong and leads to a trivial result. The individual will never change her strategy

under such a condition since the possibility that she might be playing a current best response will

deter her from ever switching. 

Notice that from theorem 2 it follows that we must allow for the individual to use a

randomizing device when constructing an updating rule that is better than not switching. 

A central assumption driving the results are the preferences of the individual. Maximizing

expected payoffs makes sense when the contest (game) yields a reproductive fitness. In the

context of decision theory, it may be argued that payoffs should be identified with von Neumann

Morgenstern utilities. Either framework however does not contradict the assumption that payoffs

are observable. A fitness or utility can be calculated if we assume that the individual observes the

outcome of the sampled agent's match. Of course the observability of payoffs (utilities) is not at

all necessary for our analysis. In theorem 4 we show that the proportional reviewing rule a "best"

rule although it does not depend on the payoff of the sampled agent.

Apart from the uniform prior assumption we chose a "distribution free" approach when

selecting the optimal updating rule. Any alternative (plausible) preference relation of the individual
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invariably leads to making assumptions on the individuals beliefs about the unobservable variables

in the model. 

We will now refer to some of the related literature. 

Kandori, Mailath and Rob [1993] justify individual behavior in some examples in order to

motivate the class of dynamics they consider in their random matching model. However the

informational assumptions in these examples are quite drastic. 

In one of these scenarios an agent's knowledge of the game is limited but each agent is

matched against each agent of the opposite type as in a tournament. Kandori, Mailath and Rob

[1993] informally propose for the individual to imitate the strategy sampled if and only if it

achieved a higher payoff in the previous round. If we were to consider tournament play in our

model then this rule "imitate if better" would clearly become the most preferred rule. However, as

shown in section 3, "imitate if better" is no longer improving when agents are only matched once.

In another scenario of Kandori, Mailath and Rob [1993] matching is random but agents

know which game they are playing. Moreover, between matching rounds each agent that may

adjust observes the entire population distribution and therefore learns (given her knowledge of the

game) which strategy would have been "best" in the last round. The proposal of Kandori, Mailath

and Rob [1993] to play a best response when adjusting is in terms of our analysis the unique most

preferred rule. In section 3 we show that this rule however can fail to be improving when the best

response is taken to a sample. 

Motivated by assumptions on the preferences of an individual we restrict our attention to

updating rules that increase expected payoffs under any circumstances. A slightly stronger

condition would be to a priori demand that expected payoffs improve strictly whenever possible,

i.e., if not all strategies used by agents of the same type achieve the same expected payoff. This

condition is closely related to the concept of "absolute expediency" used by Sarin [1993].

Updating rules satisfying this strict improving condition would require additionally to the

characterization in theorem 2 for F >0 for all A ,A0S . Sarin [1993] uses absolute expediency toij
i j A

axiomatize Cross' learning rule (see Cross [1973]). This rule applies to a setup in which two

players face each other and adapt their mixed action according to the action they take and the
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payoff they receive. Börgers and Sarin [1993] show that the resulting dynamics when both players

use Cross' learning rule approximate the replicator dynamics. 

Although related, the general approach of Sarin [1993] is different in spirit from ours

because their axioms concern the updating behavior of a player and are not formulated in terms of

preferences. 

Originally the replicator dynamics were only interesting for the biological literature. Lately

various models of individual behavior leading to the replicator dynamics have emerged. Cabrales

[1993] previously derived the replicator dynamics using the rule we call the proportional imitation

rule. They motivate the rule by idiosyncratic uniformly distributed costs of changing strategies.

Binmore, Gale and Samuelson [1993] derive the replicator dynamics (in an infinite population)

using the "best" proportional reviewing rule, interpreting it as a rule based on random aspiration

levels. Björnerstedt and Weibull [1993] also derive the replicator dynamics with (infinitely many)

individuals on average using a proportional reviewing rule. 

In the above models, the individual rules seem more or less arbitrary and thus the

replicator dynamics too. However, both in our model and in the model used in Sarin [1993] and

Börgers and Sarin [1993], the replicator dynamics result from individual behavior determined by

preferences or axioms. These papers show that the replicator dynamics have a distinguished role

in learning models.

Random matching models with very limited observations to base behavior on can be found

in Friedman [1991] in an example and in the experiment of Malawski [1989]. 

Malawski [1989] sets up a laboratory experiment for the same matching and sampling

model as presented in section one (they assume random sampling). There were 5-6 subjects of

each type that were randomly matched against each other to play in each of 200 rounds one of

three games. The games had disjoint strategy sets. Participants were told in each round their

current strategy set and observed the previous strategy and payoff of a randomly sampled player

of the same type. They were not aware that they were playing a game. Malawski [1989] relates

the data to two specific learning rules. One is the updating rule "imitate if better" (which he refers

to as "learning by observing"). Although a definite reaction of the participants to the sample is
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observed, imitation alone is not able to explain the data. Malawski [1989] prefers to explain the

data with a rule that determines behavior according to a constant aspiration level and independent

of the data observed in the sample.

Our model is not an attempt to explain behavior in such an experiment. Rules derived from

maximizing the outcomes in the worst cases should be understood as a tool to mix with other

rules like experimentation or just as a benchmark when the individual is able to gather more

information. None-the-less, a thorough analysis of Malawski's [1989] experiments with respect to

our findings are of interest and are currently under way.



37

References:

Banerjee, A. V. (1992). "A Simple Model of Herd Behavior," Quart. J. Econ. 107, 797-818.

Binmore, K. G., Gale, J., Samuelson, L. (1993). "Learning to be Imperfect: the Ultimatum

Game," forthcoming in Games Econ. Beh.. 

Börgers, T., Sarin, R. (1993). "Learning Through Reinforcement and Replicator Dynamics," Disc.

Paper No. 93-19, University College of London.

Björnerstedt, J., Weibull, J. (1994). "Nash Equilibrium and Evolution by Imitation," The Industrial

Institute for Economic and Social Research, WP 407.

Cabrales, A. (1993). "Stochastic Replicator Dynamics," mimeo, University of California, San

Diego.

Cross, J. G. (1973). "A Stochastic Learning Model of Economic Behavior," Quart. J. Econ. 87,

239-266.

Friedman, D. (1991). "Evolutionary Games in Economics," Econometrica 59, 637-666.

Kandori, M., Mailath, G., Rob, R. (1993). "Learning, Mutation and Long Run Equilibria in

Games," Econometrica 61, 29-56.

Malawski, M. (1989). Some Learning Processes in Population Games, Inaugural-Dissertation,

University of Bonn.

Sarin, R. (1993). "An Axiomatization of the Cross Learning Dynamic," Mimeo, University of

California, San Diego.

Taylor, P. (1979). "Evolutionarily Stable Strategies With Two Types of Players," J. Applied

Prob. 16, 76-83.


