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Abstract

In consecutive rounds, each agent in a finite population chooses an action, is randomly
matched, obtains a payoff and then observes the performance of another agent. An agent
determines future behavior based on the information she receives from the present round. She
chooses among the behavioral rules that increase expected payoffs in any specifications of the
matching scenario. The rule that outperforms all other such rules specifies to imitate the action of
an agent that performed better with probability proportional to how much better she performed.
The evolution of a large population in which each agent uses this rule can be approximated in the
short run by the replicator dynamics.

JEL classification numberC79.
Keywords:random matching, learning, imitation, replicator dynamics.



0. Introduction

Imitation is the act of copying or mimicking the actions of others, a behavior that is often
observable in the context of human decision making. Several reasons for why people might
choose to imitate can be given. We will provide a theoretical foundation for imitation based on

performance in an environment in which an agent's information is extremelyimited .

Consider an individual that is repeatedly engaged in a contest (or game) against a random
opponent. Before each contest the individual must choose some action (from a fixed set of
actions). This action together with the action chosen by her opponent determines the success
(formally, the payoff) of the individual in the contest. Between rounds the individual is able to
obtain some information for selecting future actions by observing the performance of another
individual that is confronted with the same setup.

Assume now that the individual has extremely limited knowledge and information about
the further specifications of the model. All that the she knows about the contest is an interval that
will contain her payoffs. She has no prior belief as to which actions are likely to be played by
other agents. The only prior the individual assesses to unknown events is that in any given contest
and specification of the model the individual conceives to be equally likely in her own position as
to be in the position of any of the individuals that she observes the performance of. We assume
that the individual chooses a behavioral rule that increases expected payoffs in any given round for
any given specification of the parameters of the model. Thereby the individual ignores the fact that
other agents in the population might also change their actions. Such rules will be called
improving. Thus, the focus of our analysis will be on whether under the above assumptions an
individual can extract information from her observations for future behavior in a way such that her
choice of an action does not depend on a prior belief over the unobservable parameters.

Notice that the contest might be such that the payoffs of the individual are independent of
the opponent's action. In the following these contests will be called degenerate. As a reference

point assume for a moment an alternate (admittingly uninteresting) model in which all games are

! For a justification of imitation in a different context see Banerjee [1992].
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degenerate and assume that the individual is aware of this fact. In this alternate model there is a
very intuitive improving rule referred to in the following as "imitate if better": do not change
actions unless you observe an agent who performed better in which case imitate the action of the
observed agent. It turns out that this rule is no longer improving in our model in which contests
generally are not degenerate.

We give a complete characterization of the improving rules. Especially it follows that an
individual using an improving rule will display an imitating behavior, i.e., she will never switch to
an action not observed. We derive a uniqgue most preferable improving rule that is described in the
following brief summary of the analysis.
Q: "Why imitate?"
A: "In order to increase expected payoffs under any circumstances in a model of limited
information."
Q: "And if so, how?"
A: "Imitate actions that perform better with probability proportional to how much better they

perform.”

The new aspect of this model is the search for a behavioral rule that has certain properties
in each possible configuration under limited information. Previously, individual behavior in
random matching models has only been justified in some examples of environments with rich

information (see Kandori, Mailath and Rob [1993], more about this in section 8).

We now give a more detailed description of the analysis, beginning with an introduction of
the matching and sampling scenario.

Consider a finite population that consists of an equal number of two different types of
agents, referred to in the following as type A and as type B agents (e.g., sellers and buyers). Each
agent is provided with a set of actions (or strategits) S® or S according to her type.

These agents interact in each of a sequence of rounds according to the following scenario.
In each round each agent selects an action, is then randomly matched with an agent of the
opposite type and obtains thereafter a payoff according to her action and the action of her
opponent. During the matching, an agent only learns her own payoff, neither the action nor the



payoff of her opponent.

Between matching rounds each agent receives information about the performance of
another agent of the same type. This information consists of a payoff and of the action with which
this payoff was achieved without exposing the identity of the associated agent. This so-called
sampling is independent of the matching and sampling in the previous rounds and occurs
according to an exogenous sampling procedure. We consider only sampling procedures where the
probability of 'a' sampling 'b' is the same as that of 'b' sampling 'a'.

An example of a symmetric sampling scenario is the situation in which each agent
randomly selects an agent among the agents of her type with equal probability. These specific
sampling procedures will be referred to as random sampling.

We consider an individual that is about to enter the above matching and sampling scenario
and must determine before her entry how to update her actions from round to round. The
following information will be available to the individual when she selects her action.

The individual knows her type and her set of actions. Additionally she knows that
choosing an action and being matched against an agent of the opposite type will lead to some
payoff in a closed interval (denoted By % or Fc%, depending on her type). The individual
knows that in the matching scenario she can only remember her observations from the previous
round. Therefore the action the individual selects in a given round of the matching scenario can be
characterized as a function of her previous action, the payoff she achieved in the previous round
and of the action and the payoff of the agent she sampled in the previous round. Such a function
will be called an updating rule.

Given the above considerations, the objective of the individual is reduced to selecting an
updating rule before she enters the matching and sampling séenario.

Of course there is a large variety of updating rules. An updating rule may specify to switch
to an action that was not observed. Even among the updating rules that have the imitation
property, i.e., switch only to actions whose performance was observed (in the previous round),

2 Apart from section 7 we will ignore the fact that an action must also be specified when there is
Nno previous experience, i.e., in the first round.
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there are many different ways of reacting to the observed payoffs.

For example: i) The simplest such rule is the one that specifies to choose the same action
as in the previous round regardless of the observations. ii) A very plausible rule seems to be for an
agent to adapt the action of the sampled agent if it performed better than hers did in the previous
round. This updating rule will be called "imitate if better". iii) An example for an updating rule
that incorporates the relative performance of actions is as follows. After observing an agent of the
same type that received a higher payoff than your own, adapt (imitate) the sampled agent's action
with probability proportional to the difference in the achieved payoffs. In all other cases, play the
same action again. We will refer to this updating rule as the proportional imitation rule. Notice
that this rule is uniquely determined up to a positive (proportionality) constant. This constant is
bounded by the range of payoffs that are attainable.

In the following we will specify the criteria for selecting an updating rule.

We assume that an individual does not know the size of the population. However she
knows the matching and sampling scenario, especially she knows which sampling procedure will
be used in the various population sizes. However she is restricted in the way she perceives the

situation.

(Ignorance)We assume that the individual ignores the fact that other agents might adapt. The
individual also ignores the effect her own rule has on future population distributions.

An environment will be the collection of the following specifications: the payoff function
for each type of agent where payoffs to type A (B) ar& if | (I ), the population size and the
sampling procedure that is symmetric. For a fixed environment and round, a state will be the

specification of the action each agent is playing.

(Uniform Prior) The only prior that the individual has is that she expects in any environment and
any state to be equally likely in the position of any of the agents of her owh type.

% This assumption is easily motivated by an entry and exit scenario (see section 7).
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How do the above assumptions affect the individual's calculation of the expected change in
payoffs (denoted by EIP) when using a given updating rule in a given state and environment? For
each agent 'a’ of the same type as the individual calculate the expected increase in payoffs of this
agent when using the given updating rule and when no other agent changes actions. Denote this
expression by EIP(a). Here the expectation is taken with respect to the uncertainty in the
matching and sampling only. Under the uniform prior assumption it then follows that EIP is the
average of EIP(a) over all agents in the population that have the same type as the individual that is
about to enter.

We assume that the individual does not want to choose an updating rule that performs
worse than the rule of never switching. Moreover the individual conceives each environment and
state possible and has no priors over these events. Therefore we choose a "distribution free
approach” and assume that the individual chooses a rule that does not perform worse than not
switching in any state and any environment. This leads to the following assumption.

(Improving) The individual chooses an updating rule that increases (improves) expected payoffs
(i.e., EIP-0) from one round to the next in any environment, any state and any round. Such rules

are called improving. Especially the rule "never switch" is improving.

(DominanceMoreover, the individual does not choose an improving rule that is pareto
dominated by some other improving rule. One updating rule pareto dominates another updating
rule if in any environment, any state and any round the former rule achieves a higher expected

payoff in the next round than the later.

When indifferent between updating rules the individual evaluates their posterior
"improving" abilities when the contest is degenerate, i.e., in the situation where payoffs are
independent of the actions of the opposite type. Clearly, a rule that never imitates actions that
achieved lower payoffs never decreases payoffs in a degenerate contest.

(Degenerate Improvingpiven a set of improving rules that yield the same expected improvement



in any environment, any state and any round the individual will choose one (if it exists) that never

imitates actions that achieved a lower payoff.

Given the above assumptions we proceed to search for a most preferable rule for the
individual. The main theorem of the paper contains two conditions that completely characterizes
the behavior of an agent using an improving updating rule:

i) The agent follows an imitative behavior: either she does not change actions or she adapts the
action of the agent she sampled. Especially, an agent that samples another agent using the same
action will not change her action.

The second part of the characterization is easiest formulated for the case in which two
agents sample each other:

i) An agent using an improving rule is more likely to switch if she had played the action with the
lower payoff than if she had played the one with the higher payoff. Moreover the difference of
these switching probabilities is proportional to the absolute difference in the payoffs the actions
achieved. The implicit proportionality factor is non negative and may depend on the pair of
actions.

What is the intuition behind the above result? Due to the random matching setup an agent
can never rule out that a given alternative action has a strictly lower expected payoff. Switching to
an action not observed might result in switching to an action not that is not used in the present
population. Moreover if each action used in the population achieves the same expected payoff
then this switch to an unobserved action may lead to EIP<0. Therefore condition i) must hold.

Intuition for part ii) in the above characterization is easiest to provide using the following
lemma. It can be shown that the condition of improving is equivalent to requiring the imitation
property (condition i)) together with the following: the individual switches more likely to an
action with a higher expected payoff than vice versa. Especially the improving condition does not
preclude switching to an action with a lower expected payoff. Notice that even if all the contests
were degenerate a switch to a lower payoff may occur when using an improving rule, as long as
the agent is more likely to switch to the higher payoff than if the roles of updating agent and
sampled agent are reversed. The contests in which an increase in expected payoffs is more difficult
to enforce are those in which the payoffs are a priori random because of the possibility of being



matched against different actions. The main part of the proof is to show that the linear structure of
taking expectations implies that the difference in the switching probabilities (condition ii)) must be
linear in order to ensure the improving condition in any environment and any state. Especially this
implies that the possible randomness in the payoffs associated to an action causes "imitate if

better” to fail to be improving. On the otherhand we obtain that "never switch", "always switch"

and that all proportional imitation rules are improving.

The proof of the main theorem reveals that the expected improvement of an improving
rule only depends on the proportionality factors implicit in part ii) of the characterization of
improving rules. Using the dominance assumption, the individual will therefore choose an
improving rule which yields the maximal proportional factor for each pair of actions. Such an
updating rule will be referred to as a "best" rule.

There are many "best" rules since only the difference of two switching probabilities (see
condition ii)) is uniquely determined. Moreover, in each environment, each state and each round
any two "best" rules achieve the same expected improvement. Hence the individual is a priori
indifferent between these rules and selects among them using the degenerate improving
assumption. The conclusion is that there is a unique "best" improving rule that never imitates
actions that achieved a lower payoff. This rule is a specific proportional imitation rule.

An alternative justification of this proportional imitation rule is that it minimizes the
probability of switching actions among the "best" improving rules.

Thus we have singled out a unique updating rule for the individual to use in our scenario.
Especially, the analysis of our model reveals imitative behavior as an efficient method to utilize

limited information.

It should be noted that the information about the payoff of the sampled agent is not
needed in order to construct a "best" rule. Consider the updating rule under which the individual
reviews her present action with a probability proportional to the difference between the maximal
she may obtain (upper end point®©f B (I )) and her present payoff. Once she reviews her choice,
the individual adapts the action of the agent she sampled. This rule will be referred to as the
proportional reviewing rule.??quote whom?? With an appropriate proportionality constant we



show that this rule is the unique "best" improving rule that does not depend on the sampled
agent's payoff. Hence this rule provides the answer to the question "how to imitate?" in situations
in which payoffs of sampled agents can not be observed (see also section 8).

Once we have determined what kind of updating rule each agent might choose, we are
interested in the dynamics of the population as a whole. The above analysis singles out a unique
rule for each agent (which is the same for agents of the same type). This endogenously justifies
the analysis of a population in which agents of the same type use the same rule.

Consider a population in which agents of the same type use the same "best" improving
rule, e.g., the "best" proportional imitation rule or the "best" proportional reviewing rule. Assume
that the sampling rule is random sampling. Then it is shown that in the short run with high
probability the frequencies of the various actions played in large populations evolve approximately
according to a discrete version of the continuous replicator dynamics for two type populations
(see Taylor [1979]). Especially our process and the continuous replicator dynamics move with
high probability approximately in the same direction.

The continuous replicator dynamics are derived from an evolutionary (large population)
model of reproduction based on fitness. An analysis of the (gradients of the) continuous replicator
dynamics in view of the above result becomes relevant to understanding learning behavior in our
model of adaptive agents. Moreover, instead of being a special case, the replicator dynamics are
the only relevant short run dynamic adjustment process for our model with a large population.

The rest of the paper is organized as follows. Section 1 contains the basic model. In
section 2 the condition of improving is introduced. Section 3 contains an example. In section 4 the
main characterization theorem is established. In section 5 the "best" improving rules are
characterized. In section 6 the short run population dynamics are analyzed. Section 7 contains an
entry and exit scenario to motivate the uniform prior assumption. In section 8 the assumptions of

the model together with the related literature are discussed.



1. The Matching and Sampling Scenario

For a finite set R leAR be the set of probability distributions on R. Consider the

following two person game in which the two players are denoted by A and B. Let'S.,a{A}

be the set of strategies (or actions) of player A &nd S, =§8"*} bethose of player B. Let
n°(x* x®) be the payoff that player C receives when player A dsesX and player B uses
xBeAS?, C<{AB} (so t©:AS*xAS*-R). LetI(S*,$ *,=®) denote the underlying two person
normal form game. Let| =F,{ <% such thak<{ ¢ C=A,B.

Consider a finite population W consisting of an equal number of two different types of
agents A and B. Let W and®  denote the set of all agents of type A and type B respectively in
the population and let Nw*|=|W?|. We will identify the population shares if"W an8 W with
the probability distributions iAW* andAW® that are associated with randomly selecting an
agent from W and W respectively and observing her strategy.

We will consider the following dynamic process of matching, sampling and updating in the
population W=WJWB,

In each round 1, 2, etc. each agent of type A is randomly matched with exactly one agent
of type B. Each agent of type C is endowed with a strategy in S she uses when she is matched,
C=A,B. When matched an agent of type C receives a payoff accordifidptd neither observes
the strategy nor the payoff of her opponent.

A state of the population in a given round is the description of the strategy that each agent
is using. Formally, ssWWB-S*uS? with s(cES® when eW<, Ce{A,B} is a state of the
population where s(c) is the strategy agent 'c’ plays in round t. The event that s is the state in
round t will be denoted by {s =s}¢N). Given such a state s k will denote the number of agents

in W€ playing the strategy'C anfles™ will denote the population shares of the populatién W ,

. k. . . . -
e, X.= N‘ , ki<n.. Given this notation, the expected payoff of an agent 'a’ of type A using A



(i.e., s(a)=A) in state s is“(A‘,xB):E %nA(A‘,B').

Between matching rounds each agent samples an agent of her own type and receives the
following information. When agent 'c' samples agent 'dc\&d c=d) then agent 'c' observes the
strategy 'd' used and the payoff 'd' achieved in the last round without observing the identity of 'd'.
For each agent 'c’ of type C this sampling occurs according to some exogenously given probability
distribution ze A{W 4{c}} called a sampling rule for agent :cThereby, z (d) is the probability

that agent 'c' samples agent 'd'.
The assignment of a sampling rule to each agent in the population will be called a sampling
procedure. Formally, 2z)_,1,: IS called a sampling proceifiardN® implies that z is a

sampling rule for agent 'c' of type C&f@,B}). We will call the sampling proceduresymmetric
if for any ¢,deWC the probability of 'c' sampling 'd' (this event denoteddiyis the same as vice
versa, i.e., P@l)=P(dkc).

It will be assumed that in each round both matching and sampling are independent of all

previous events.

The above conditions restrict the variety of individual sampling procedures without
specifying explicitly how the sampling rules of different agents relate to each other. A model in
which each agent is sampled at most once (due to time constraints) is equally feasible as one in
which an agent can be sampled multiple times. The sampling could be such that agents sample
independently, i.e., P4d|dsc)=P(cd) (referred to later as one-sided sampling). Similarly we
allow for a model in which agents sample from each other (referred to as two-sided sampling). In
this case & is the same event ascdor each ¢,dW® which means P¢d|dsc)=1. Notice that
two-sided sampling implies that the sampling rule is symmetric.

We will now present some examples of symmetric sampling procedures. The situation in
which each agent randomly samples an agent (with equal probability) among the agents her type
(except for herself) is a symmetric sampling procedure and will be referred to as random sampling

10



Here we have Psd):ﬁ for ¢,deW° and ed.

Another example of a symmetric sampling procedure is the following. Imagine that agents
of type A are located on a circle. Assume that agent 'a’ of type A randomly samples (one or two-
sided) with equal probability among his 2m closest neighbors (m to the left, m to the right,
m<N/2). This is a sampling rule for agent 'a'. Moreover if each agent of type A uses such a rule
and the agents of type B employ a similar rule then we obtain a symmetric sampling procedure.

11



2. Updating Rules

We now consider an individual that wants to determine a rule for updating her play
between rounds in the matching and sampling scenario introduced in the previous section. The
individual has a randomizing device available to her that generates independent events. Following
the assumptions made in the introduction such an updating rule is characterized as follows. An
updating ruldor an individual (agent) of type C is formally a (random) function
FC:SExI°x S xI- ASC where F (Cy,Cly), is the probability of playing T in the next round after
previously playing C, receiving the paygfand sampling an agent who uséd C and recdived
Ljre{d,...n.}, x.welC

One of the simplest updating rules is the rule "never switch”, formally defined by
F°(C x,C.p)=1 for C,CeS andy,yel®. A seemingly opposite updating rule is the self
explanatory rule "always switch". A more plausible rule seems to be the following rule we will
refer to as "imitate if better”, i.e.’F (G C .¢)=1 if ¢>yx and F (Cx,C ¥)=1if ¢<x. The above
rules belong to a class of updating rules that are based on imitation, i.e., either the individual does
not switch strategies or she switches to the strategy of the sampled agent. Updating rules with this
property will be called imitating. Formally, an updating rile F for type C is called imifating
F°(C'x.C ) +F°(C x,C ¥)=1 for all C,CeS" andy, pel®.

The following class of imitating rules, referred to as proportional imitation rules, will play

an important role in our analysis. Using such a rule, the agent never imitates the strategy sampled
if it achieved a lower payoff. Moreover, the imitation of a strategy that achieved a higher payoff
occurs with probability proportional to the difference in the payoffs. Formally, the updating rule

F© is called a_proportional imitation rule (with rafeif F© is imitating and

F°(C'x.C ¥)=o[¥~x]. for some 0s<1/((°-«®), where ],.=x wheny>0 and ].=0

otherwis€'

It is assumed that the individual chooses an updating rule that is expected to increase her

* A reference to agents using such a rule is given in Cabrales [1993].
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payoffs from one round to the next in any round of the matching and sampling scenario. This
should hold for any normal form gafi¢s*,$ 5*,n®) with payoffsn® in I* and=® in B, for any
population size and for any state. Moreover the expected payoffs in the next round are calculated
under the ignorance assumption and the uniform prior assumption from the introduction. Such an
updating rule with be called improving. In the following we will formalize this condition.

Fix an updating rule’F for type A. Let SSWVE-S*uS be a state of the population.
Then the probability that agent 'a’ of type A usifig F plays und t+1 given that the state at
time tis s, is determined by

PE (a)=Als=s) F ¥ p(ac)ﬁ‘; %%F’*(S(a)n’*(s(a),),A;tA(A‘,Br))j

1 fore, s(A '} B

where B, =R, if rqand K, =R 1. (1)

It follows that the expected increase of the payoffs of agent 'a’ between rounds t and t+1,
assuming that no agent of type B changes her strategy is

EIP(a)=[ g:i P& (a)=As=s)t"(Al xB) ] -mA(s(a),R ).

We are now able to evaluate the performance of the fule F for an individual of type A in
state s prior to her knowing which agent of type A th W she is associated to in s. Under the
uniform prior and ignorance assumptions her expected increase in payoffs (denotéd by EIP ) is

EIP*=1 Y EIP(a). EIPwill be called the expected improvement of type A usthg F_in state s

acW 4

We are now able to formalize the improving condition. Let{\V } be a sequence of
populations and {g 4 a sequence of symmetric sampling procedures suplthat|W,2|=N
and z, is the sampling procedure associated withuW?,,. Let G be the set of normal form
gamed(S*,$ *,7®) with payoffsa®(A',B)elC for all AeS', BeS and G{A,B}. We will call
the updating ruleF S %I ¥S %IAS®improving (for type CJCe{A,B}) if for any N, any game
(s*,3$ n*,n%)eG and any state s (SAWWWP -3 uS ) the expected improvement of type C

13



using F¥ in state s under the sampling procedure z is non negative.

Clearly the rule "never switch" is improving for either type. Our aim is to investigate
whether the individual can select among these rules given her preferences we characterized in the
introduction. In order to simplify notation we will focus whenever possible on individuals of type

A.
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3. Examples

In order to clarify the setup of the two previous sections we now consider the
performance of two seemingly plausible updating rules by means of an example. Both of these
rules will fail to be improving because they can not cope with the incomplete information implicit
in the model. For demonstration purposes we will consider the case where populations W and
W® are infinite. Consider the matching and sampling scenario of section one with random
sampling.

LetT(S*,S n*,n®) be the symmetric game witB" |=|S*|=2 and payoffs represented in
table | wherey>3 and«, 3,5,y R.

Table I: An asymmetric game with
two strategies for each type.

B! B2
Al U, o 0,pB
A2 2,y 1,6

For a given state s of the population et xS* (€A S?) be the population shares in
population W (W ).

3.1 "Imitate if Better"

In the following we will calculate the expected improvement of type A associated with the
updating rule "imitate if better". Let s be a state aneMit;doe agents such that s(a)=A , s(cj=A .
The individual - if in the position of agent 'a' - will only switch froln A fo A if she is matched
against B and then samples an agent using A . Consequeritly, P(s? ap)Ax, ¥, and

15



EIP(a)=X, %, (1+(X ¢)x®,). Similarly, were the individual in the position of agent 'c' then she
would switch to A if she samples an agent usihg A that was matched against an agent of type B
using B .Hence, P(§" (c)=As'=s)=x*®,, EIP(c)=x"x®(1+(1-y)x®) and we obtain
EIP*=x* 3, (1+(1 )X )(1-28 ).

It follows that the expected improvement when using the rule "imitate if better" is negative
if 1/(y-1)<xB,<1/2. Especially "imitate if better" is not improving. Notice that this is of course
due to the fact that the outcome of a future contest generated by a given action is not necessarily

deterministic.

3.2 The "Best Response" Rule

In order to get a feeling for how easy or difficult it is to satisfy the improving condition we
will assume in this example that the individual (of type A) knows that the game in table | is being
played. It follows that after sampling the individual implicitly has observed a random sample of
two strategies (drawn at random without replacement) played among the agents of type B: the
strategy of her own and that of the sampled agent's matched opponent.

Consider the updating rule that emerges when playing a best response to this implicit
sample in the game in table I, referred to in the following as the "best respons8inade >3

an agent will play A in the next round if and only if she implicitly obser¢es B being played twice.
It follows that P(§* (a)=A/s'=s)=(¢, ¥, P(§* (a)=As=s)=1(x%) 3 EIP(a)=(x, *(1+(X ¥)x B),
EIP(a")=[1-(x®)?](1+(1- ¢)xB) and EIP =[(R, §-x*](1+(1-¢)xB).

Despite the additional information of the individual, her expected improvement can be
negative although she uses the best response rule. This happens when there is a sufficiently large
proportion of type A agents using the best response to the mean strategy of the type B agents. Of
course if the individual could observe the exact frequencies of each strategy played among the
type B agents then playing a best response would have been improving.

16



4. Improving Rules

In the following we will show that an updating rule is improving if and only if it is
imitating and it satisfies the following condition. Consider an individual using an imitating rule
that samples an agent using a strategy that achieves a higher expected payoff in the present round.
Then the individual must be more likely to switch strategies than if the roles of the individual and
the sampled agent were reversed.

In order to be able to formalize the above statement we will need the following notation.
Given a state s:sWWB-S*uS® and i,j,&{1,..,n,}, if A'and A are being played among the type A
agents (i.e., % ‘k >0) then let (A, A) denote the probability of playfng A in the next round when
playing A and sampling an agent using A. In all other cases(i.8,, if k :AQ or k =0) then let
r(ALA) =O0.

LEMMA 1 :

Let |S?|=2, let {W,}, be a sequence of populations and Igt {z } be a sequence of
symmetric sampling procedures such thet* |=|W,2|=N and z, is used in \V =\uW,2.
Then the updating rule*F for type A is improving if and only if'i) F is imitating and ii) for any
1<ij<n, and any state s with,k k >0, H(A ,A)A A), if and only if 7 (A 3 )= (A X ).

The proof of the imitation property is quite intuitive. An agent will avoid to play a strategy
that she did not observe since it might be that the strategy observed is a duplification of her own
strategy whereas all strategies not observed lead necessarily to the worst outcome. Notice that
imitation remains necessary to ensure the improving condition even after the event of receiving
the lowest possible paya#f and sampling an agent who used the same action and also obtained
. This is because it may be that obtainifgs an unlucky event for the own strategy in the
current population but is the only outcome for any other strategy.

PROOF:
We will first show that an improving rule is imitating. Assume tiat F is improving.
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Let x,yrel®=[«*,{*] such that>«* or y>«* and let N be even. Consider a population in
which K*;=Nand K, =N/2. Assume thaitis such that*(A',BY)=y, n*(A',B)=«*, o* (A',B")=y
for all 1<r<ng, 1<j<ng, and 1<i<p . Since*(A'x®)>n (A’ x®) for i>1, all agents in W are
playing the unique best response. Therefore any change of strategy will decrease expected
payoffs. Since ¥ is improving, it follows thdt F*(AA*,{),=1.

Consider now a population in which k “sk Bk =N/2. Assume Friatsuch that
TAALBY=nAAZBY=y, TAAB)=x*, n*(Al,B"=r"(A%B")=1 for all 1<rn,, 1<j<n,, and
2<i<n,. It follows (A%, x®)=n"*(A%x®)>n"(A' xB) for i>2. Therefore any change to a strategy A
with i>2 will decrease expected payoffs. Sinte F is improving, it follows that
FA (AL 3 A% 1) +FA (AL A% ) =1

The proof fory=y=x" follows just like above when replaciggby (*. Since the above
arguments hold for any' A and A it follows thét F is imitating.

Let P* be an imitating updating rule for type A. Then for an agent 'a’ of type A,
EIP(@=Y ¥  P(ac)r(s(@).A) R (A»E)-n"(s(@).R)].

1 {cras(c)-Al}
The expected improvement hence is

EP=ly ¥ P(ac)r(ALA) [ (A E)-n" (A, 2)].
Y

Using the fact that the sampling procedure is symmetric we obtain

EIPA:[ % y ¥ P(ch)] [r(Ai,Aj)j—r(N,N)i][rcA(Al -7 (A R)]. (2)
ij {a:s(a)-A i}
{c:s(c)=Aj}

Especially the above must hold farij<n, and a state such thdt k A4tk =1. Therefore
condition ii) follows.

Moreover (2) shows that i) and ii) are sufficient fér F to be improlihg.

The following theorem constitutes the central result of this paper and gives a complete
characterization of the set of all updating rules that are improving.
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THEOREM 2:

Let the assumptions of lemma 1 hold. Then the updating fule F is improving for type A if
and only if i) P is imitating and ii) for all'A J&S", i#j there exists 80, <1/({* -¥*) such that
FA(Ai,x,N,IIJ)rF“(A a‘-|J,Ai1X)i:0ij(‘~|J_X) for all y,wef.

The intuition behind the proof of condition ii) is as follows. The individual will switch
from A" to A only when playing’'A and sampling A. From lemma 1 it follows that only the
difference between the probability of switching and this probability when the roles are reversed
influences the expected improvement. Due to the linear structure of taking expectations, it turns
out that only linear terms can be factored out to ensure the improving condition under any

circumstances.

PROOF:

We will first show that conditions i) and ii) are sufficient. L&t F be an updating rule for
type A satisfying conditions i) and ii).

For 1<i,j<n, such that% % >0 we obtain

r(Ai,Ai)j:Ef %‘;_]}FA(N,T%(A,B*),A,T%(A,B)),., 3)

qr-1

where B, =R, if rqand K, =R 1.
It easily follows with (3) and condition ii) that
r(ALA) -r(A A) =0y [n" (A ) -1 (R ®)]. (4)

From (2) and (4) we obtain

E|PA:§ [ (z); P(@0)] o,[mA(A ) - (AT (5)
c;:(Z)::j

Therefore EIP>0 and hence’F is improving.

Let P* be improving. Then lemma 1 implies tHat F is imitating. Therefore it is enough to
show the necessity of ii) in populations in which type A uses either £ or A and type B uses
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either B or B, i.e., & +k =Nandk £k =N. To simplify notation,dett”(A%,B?,
B=nA(A%BY), y=nA(ALB?, 5=n (A2B3, k"=k”, and I =K, .
For y,pel®let hiyx,)=F* (A2, A%, ), F* (A, 4,A% x),. Consider 1k”<N-1.Using

B = kB kE1 kBN-kB N-k BN-k B.1
V(k ’N)_Fﬁh(ﬁ’a)-l-FW[h(B’Y)-l-h(&’a)]-*-T N1 h(3,v), (6)

it is easily verified that
V(K% N)=r(A%AY) ;-r(ATA ), (7)

Let «>p andé>y. With u*:% it follows (with a slight abuse of notation) that
a-B+d-y

nA(AL UB M+ (1-p) BY)>n A(AZ uB+(1-p)B?) if and only if u>p*. Therefore, ﬁN—B >u* then from

lemma 1 and (7) it follows that \Ak ,NQ. This must hold for all N andR®<N. Consider a

B B
sequence {&, 4 such that@®<N and% >p* for all N anak?ﬁu* as New. It follows that

W+ (B, ) +p*(L-p*) [N (B, ¥)+N(E, ) [+(1-p*) (3, v)=0. (8)

Similarly whenk{w* then V(¥ ,Nx0. Consider now a sequencédk, } such thak®™N and

kB * kB *
Y<p for all N and?ﬁu as Nee. Then

wh(B,e)+p*(1-p)[h(B,v)+h(3,a)]+(L1-p*)h(d,v)<O0. 9)
Using (8), (9) and the definition of u* we obtain

(8-v)*h(B,e)+(a=B)(3-7)[N(B,v)+N(3,)]+(-B)*h(3,Y)=0. (10)
Whenp=5, (10) implies

(a=PB)h(B.,v)=(v-B)h(B, ). (11)

The right hand side in (11) is a polynomeyjrtherefore the left hand side is too, i.e., there
exist u@) and v@) such that h§,y)=u(p)y+v(p). Moreover, comparing the coefficientsyoit
follows that h(3,«)=u(p)(c-B). Similarly replacing U§) z+v(p) for h(3,«) in (11) we obtain
h(B,y)=u(B)(y-B). It follows that
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h(B,p)=u(B)(p-B) for allx*<p<* and*<B<{* such thaP3=p. (12)

Settingae=y in (10) it follows that - «)h(p,«)=(p- «)h(d,«). Consequently there exists
w(w) such that
h(p,a)=w(a)(p-«) for all*<p <{* and*<a<{® such that=p. (13)

From (12) and (13) we obtain that there exist$t such that h{,¢)=o(¢-x) for all
K<y <, << such that#y. (14)

Using (10) the statement in (14) can be extended to theisasand to the border values
of I1*. From (7) it now follows that
r(A2ZAY,-r(ALAY mo[n (A xD-n AA2XD)]. (15)
Finally with lemma 1 and the fact thdt F' §AA, ¢);€[-1,1] we obtain that
O<o<1/((*-«*). O

As seen above, the characterization of updating rules that are improving is independent of
the exact features of the sequence of symmetric sampling rylgs {z } . From condition ii) in
theorem 2 it follows that the boundedness of the set of feasible pdyoffs | is a necessary condition
for improving rules for type A to exist with>0 for some A AS".

The following corollary supplements the characterization of improving rules given in

theorem 2.

COROLLARY 3:

Condition ii) in theorem 2 holds if and only if the following condition holds:
ii') if i #j then eithers;=0 and F (A, A, p)=A)=F (A, A ,x)=A) for all x,yl* or there exists
0;>0 and a function,g”l k% such thatmin{x, ¢} <g (x,¥)<-max{x,v}+1/q ,

FAAL AL )=0, (g (b)) and B (Ax, AL ) =q, (I+g (u.1)) holds for all, yel.
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PROOF:
It is easy to see that ii') implies ii).
Conversely let A /S, izj and let B satisfy ii). ;=0 then
FA AL A )=F (A1 ALy); for all x, e which together with (15) implies ii).
Assume now that;>0. Let g f,)=[F*(A',x,A,¥)/q]- . It follows that
~P=<g;(x.¥)<-v+1l/o; and P (Ay,A,§) =g, (b+q (x,¥)). Together with ii) we obtain
FA N AL ) =P (A A U= oy (- 7)=0; (x+g (). This implies-x <q (x, 1) <-x+1/q
which completes the proof of condition i)l
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5. Maximal Improvement

In this section we will select among the improving rules ones with special properties.

From (5) it follows that the expected improvement of an improving rule only depends on
the valuess;, i,je{1,..,n,}, i#}. If ;=0 for some+j (i.e, P (A x,A,¥)=F (A,¢,A,x) for all
x, P el?) then the adjustment behavior when usihg A and samplingvic@versa does not
contribute to improving expected payoffs. Especially; if K, +k =N thef EIP =0. On the other
hand,s;>0 induces a strictly positive expected improvement given that agents ising A sample
ones using A with positive probability and A arid A achieve different expected payoffs.

Notice that maximizing expected improvement is equivalent to maximizing payoffs in the
next round. It follows immediately that since (5) is increasing,ithe improving rules that
perform "best" (i.e., obtain the maximal expected payoffs in the next round among the improving
rules) are precisely the ones with maximalAmong these rules we single out a unique rule. The
proportional imitation rule with appropriate adjustment rate is the unique "best" rule that never
adapts strategies that achieved lower payoffs. Therefore it is most preferred among the "best"
rules anticipating that payoffs might be deterministic (and evaluating this situation according to
the worst circumstances). An alternative justification is that it is the unique rule that minimizes the

probability of switching strategies among the "best" rules.

THEOREM 4:

Under the assumptions of lemma 1 Mebe the set of improving rules for type A with the
following property. If EM then there is no improving rule F' such that in some environment and
some state F' performs better than F, i.e., EIP(F')>EIP(F). Then
i) F*eM if and only if P is an improving rule ang=1/((*-«*) for A,A €S, i#j whereo; is
given by theorem 2.

i) the proportional imitation rule with rate IA-«*) is the unique rule iM that never imitates a
strategy that achieved a lower payoff.

iii) the proportional imitation rule with rate Z/(-«*) is the unique rule that minimizes the
probability of switching among the set of all rule$/in
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PROOF:

With I*=[x*,{*] it follows from theorem 2 that;<1/({* -«*). Moreover the proportional
imitation rule with rate 1[(*-«*) is well defined. Therefore any improving rule with
oijzll(CA—K“) maximizes the expected improvement among all improving rules.

Statements ii) and iii) follow easily from corollary 2 since the proportional imitation rule is

the unique rule i with g; (x,)=-min{y,¢}.0

In the following we will present the "best" improving rule that requires minimal
information. For 0s<1/((“-«®) consider the updating rulé'F defined By F &, )=0(¢*-x)
for all A,AleS* andy,el*. We will call P the proportional reviewing rule with rateThe

proportional reviewing rule with rate IA-«*) is used in Binmore, Gale and Samuelson [1993]
who interpret it on the basis of random aspiration levels. In each round an aspiration level is
chosen from a uniform distribution on the set of feasible paydf&']. If the individual obtains a
payoff below her current aspiration level then she samples an agents and switches to the sampled
agent's strategy.

The following theorem characterizes a unique rule for the individual to use when the
payoff of the sampled agent is not observable.

THEOREM 5:
Under the assumptions of theorem 4, the proportional reviewing rule with tAte<t)(

is the unique rule iM that is independent of the sampled agent's payoff.

PROOF:

Assume that M does not depend on the sampled agent's payoff.'Foe & Axj let
fy()=F*(A'x,Ay). From theorems 2 and 4 it follows that f (&)}=f; (y)+oy whereo=1/((*-«*).
Therefore there existg& such that;f (x)=eox. Since f (xk[0,1], c={*/({*-«"). Hence £ is
the proportional reviewing rule with rate 2Y¢«*)..0
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6. Short Run Behavior of the Population

In the previous sections we analyzed which updating rules an individual might choose in a
specific matching and sampling scenario. Especially we assumed that this choice was made
ignoring any possible decisions by other agents. As a result we obtained a unique "best" rule (see
theorem 4). Consequently, given that individuals of the same type have identical preferences,
agents of the same type would choose independently of each other the same rule. In this section
we will analyze how this individual choice of rules effects the evolution of the distribution of
strategies played in the two sub populations. Notice that the common a priori assumption that all
agents use the same rule is here justified on an individual level.

In the following we will assume that each agent uses the same "best" rule given by part i)
of theorem 4. In this context let=1/(“-«%), C=A,B. Especially the agents might be using the
proportional imitation rule singled out by theorem 4 or the proportional reviewing rule (see
theorem 5). We will analyze the short run dynamic evolution of the frequencies of the strategies
played when the population is large. There will be a strong connection to the replicator dynamics
in two type populations (see Taylor [1979]) when agents employ random sampling.

Assume that the population™M\? is in state s at time t{N). Let z be a symmetric
sampling rule. What is the expected number of agents of type C playing C in round t+1, denoted
by EK°! ? Using symmetry of sampling,
Ek®' =k + >y X P(wd)[r(C",C)-r(C',C"),], li<n,.

M e

Using (4) we obtain

Ek*'=K* +0* > X P(asc)[m* (A 8) - (A )8)], i=1,..,n,,
e

and similarly

Ek® =k +a® ¥ Y P(sd)[nB(x*,B)-nB(x*,B)], j=1,..,1; .

{rr#j}  {bs(b)-B 3}
{ds( @B T}

For the rest of this section we will consider the special case where z is a random sampling
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procedure. Letting B ' denote the expected frequency of C in rounddixh(), i.e.,
x“=EK°!/N, we obtain

ExA\ =3 +0” Nl ¥ [7A(A ) - (A @)X %, and hence

rir#i

EXA'i:)@i+oA%[nA(N,>P)—nA()(\ )X, i=1,..,n and

ExB'j:xB]. +OB% [7B(x*,B)-rB(x* ,)P)]XBJ-, j=1,..1 . (16)

Notice for a given game as the range of the payoffs for type C (measufeckbyl/c°)
increases, strategies among agents of type C are expected to change at a slower rate.
Now consider the following deterministic adjustment process in discrete time defined on
AS'XAS:
Y=y, YOy
y“"+1-=yA*-+oA[nA(Ai YO -mA A PO L0
HiEyPiren iy B)- YAy ly® =1,..n , 150,1,2,.,
where ¢ yB FAS'xAS® is the initial state. (17)

The following continuous time version of (17) was first established by Taylor [1979]. The
continuous replicator dynamics for two type populations matched to play the game
ns*,$ B B ) (see Taylor [1979]) are defined as follows:

20)=2*, £ (0)=> ,

—z A=[EMNA, 2B (2 ,2)]2,,i=1,..n and

%sz:[EB(zA,B)—EB(zA,f 12, i=1,..8 , 40 (18)

where ¢4 z® ¥AS**xAS? is the initial state“z £z @ASC is the mean strategy arfd z

the proportion of agents usingeS® among the agents of type C in the population at time t
(C=A,B).
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The continuous replicator dynamics are derived from applying a "law of large numbers"
argument to a large population random matching and reproduction scenario. It is easily shown
that the trajectories of (17) approximate the trajectories of (18) for finite time horizonsfvhen
ando® are small and € ()="n9), C=A,B.

We are interested in the relationship between our (stochastic) process and the
deterministic process given in (17), more specifically if a "law of large numbers" type of result
applies when the population is large but finite.

Given random sampling it is sufficient to specify a population state by the frequencies of
the strategies that are present. Therefore we will identify states s with the associated population
shares (X % ). Given &N let AS" ={xcAS s.t. NxeN for 1<i<n.} be the set of feasible
population shares in the populatiolf W of size N.

Let |..| be the supremums norm a8 xAS®, i.e.,
| <A %) | =max{| x|, €|, 1<is<n,, ls<j<ny}.

The following theorem states that in a sufficiently large population under random sampling
where agents of the same type use the same "best" improving rule, the frequencies of the
strategies evolve in the short run with high probability approximately according to the discrete
time version of the replicator dynamics for two type populations given in (17). Especially the
trajectories move with high probability approximately in the direction of the continuous replicator
dynamics given by (18).

THEOREM 6:

Let the assumptions of lemma 1 hold. Assume for each Nhat z is a random sampling
rule. Assume that in each populatiot W, agents of the same type use the same "best"
improving rule E (C=A,B). Then for evedp0, >0 and EN there exists an N such that for

any N>N, and anys(* x® gAS \xAS, P{(*T(N)ET(N))- (T2 T)|>8)<e,

where (X' (N),%* (N)) is the random state of the populatioA(W?®,,W ) at time t given the
initial state (8° (N),%%(N))=(x*,x®) and (y*' ') evolves according to (17) with
YOy )=(x A x ®).
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The statement of theorem 6 is graphically illustrated in figure 1 where
£(t,N)=(x ~ (t,N),& B(t,N)) is a "typical" path of the population"®\® starting in
X(0)=(x**(N),¢°(N)).

Figure 1: Graphic illustration to theorem 6.

The intuition behind the proof is as follows. We show that the variance of our process
from one round to the next is arbitrarily small for sufficiently large populations (the "law of large
numbers" effect). Therefore the state at time one will be close to the expected state at time one
(which is approximately ty By ), compare (16) and (17)). Using the fact that trajectories starting
close stay close when evolving according to (17), the state of our process at time two will
therefore also be close to the trajectory of (17) at time 2, and so on.

PROOF:

Let the assumptions of theorem 6 hold. We will first prove the statement for T=1. For
notational simplicity we will often omit N from the notation, e.g§?, x*'éx).

Fix N. For Xki<n, we will show that Var(X' ) is of the order 1/N. Fora), and
b,deW? let [a,b,c,d] be the event that 'a’ is matched against 'b’, 'c' is matched against 'd' and 'a’
samples 'c'. Let Z(a,b,c,d)=1 if [a,b,c,d] occurs and 'a’ plays A in the next round, otherwise
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Z(a,b,c,d)=0. Then™®, £ ¥  Z(ab,c,d).
a,ceW A
b,dew B

If P([a,b,c,d])=0 then VarZ(a,b,c,d)=0. If P([a,b,c,d])>0 then

EZ(a,b,c,d)= ! - U and VarZ(a,b,c,d)=EZ(a,b,c,d¥Z(a,b,c,d)] where
N(N 1)

u=P(a plays A in next roumia,b,c,d]).

Furthermore
Var(xA'li):ﬁ Y VarZ(ab,cd+l ¥ Cov(Z(ab,cd)Z(@b'c.d)) (19)
aceW 4 N *
bdew B

where the second summation (*) is over all a,c;&Y¢, and b,d,b',dW?, such that
(a,b,c,dy(a',b',c',d").

There are of order N events [a,b,c,d] and for each event the variance VarZ(a,b,c,d) is of
order 1/N . Therefore the first summation in (19) is of order 1/N and hence converges to 0 as
N- o,

We will now investigate the second summation. Since Cov(Z,Z")=EZEZ' and
EZZ'>0 we will only consider terms in (19) such that EZZ'>0. For a,e\g and b,d,b',@W?,
let A be the probability that [a,b,c,d] and [a',b",c',d"] occur simultaneously. TheplEZBnsider
the terms in (19) such that (a',b',c',d")=(c,d,a,b). There are of ofder N such pairs ahdrder
1/N3. Therefore the sum of these terms (including the factdr 1/N ) converges te-8.a8IN
other terms in the second summation are of the type {a,b{a,d¥,c',d'}=z. There are of order
N such pairs. For these terms we must give a better bound fbathe covariance.

EZZ-EZEZ'< ! 1 -1 ] which is of order 1/N . It follows that the sum
NN 121 (N 2))(N 3) NN 1)

over these pairs is also of order 1/N. We therefore have shown that the second summation in (19)
also converges to 0 as N goes-tdience Vark®, is of order 1/N for eact{1,..,n,}. Similarly it
can be shown for<j<n, that Var®?, is also of order 1/N.
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Fix e>0 andd>0. Since the above calculations were independent of the initial state
(xA,xB) there exists N such that for amA(x B, e AS*xAS® and N>N ,

Y Vandi+Y Vané?! <874 when (X0 2°)=( A xB ).
i j

From (16) and (17) it follows that there exists N, such that for any N>Nany initial
state ¢ x® ), any di<n, and kj<ng, |Ex*-y*%[<8/2 and|Ex®}-y®|<3/2 when
(XA xBO=(yA0 yBO=(x & xB). So Px 1-yA}>8)<P(|x *}-Ex*1>8/2). We now obtain using
Tschebyscheff's inequality that for any N>N
P M X3 -y yBY]>8) <X P(x*i-y*i[>8)+X P(x®i-y ®>8)
i j

<Y P(IXM-ExA[>8/2)+y P(x%5-Ex®{]>8/2) séz VarxA’%+%E Varx®!<e when
i ) 1 J

(XM xE)=(y 0yP)=(x A x ).

This concludes the proof of the theorem when T=1.

We will now show the statement for T=2. Bix0 ande>0. Let fFAS*xXAS-AS* XA S
be such that f={f 5 )Af (w)=fy o[ (A WP)-7 (W W )W, 1<i<n, and
fB(w)=w®+oc°[nB(W",B)-=® (W WP)IWP,, 1<j<n, for w=(W W AS xAS . It follows that
(y L yB=f(yALy®Y, t=0. Since f is continuous amd5*xAS® is compact, for ead™0 there
existsae(0,3/2) such thaff(w)-f(w*)|<5/2 if [w-w°|<a. Letn be such that @n)*=1-e.
Using the fact that we have proven the theorem for T=1,,let N be such that for any N>N ,
P((x**xBY-(yALy®Y| <) =1-1 when (X*° 5°)=(y*° \P°). Applying the theorem for T=1 again
we obtain
PO x*)-(y*%y®9)] <8)
>P(|(x*?xB?)-f(w) | <« for some e AS*XASE s.t.|w-(y*y®Y)| <)
>(1-n)*=1-e.

This concludes the proof of statement for T=2. Using induction it is easy to extend the

above argument to the case of T>2 and hence this part of the proof is daitted.
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7. An Entry and Exit Scenario

In this section we present an entry and exit scenario that gives additional motivation to the
assumption made in the introduction that in any round and in any state the individual expects to be
equally likely in the position of any agent of her own type, referred to as the uniform prior

assumption.

Periodically a new agent (individual) of either type emerges that replaces a randomly
selected agent (chosen with equal probability) among the agents of her own type in the
population. When entering the population the new agent learns the strategy and the payoff of the
agent she replaces. In this setup an entering agent must have besides her updating rule an initial
strategy selection rule. This rule determines the strategy the agent plays in the first matching
round she takes part in as a function of the strategy and payoff of the agent she replaced.

Given the above entry and exit scenario the decision problem of an agent can be
formulated explicitly. Before entering the population each agent must choose an initial strategy
selection rule she will use on entry and an updating rule she will use throughout the matching. At
the time of this decision she knows her own type but has no other information besides the basic
assumptions of the model. Furthermore, the agent ignores the fact that other agents might adjust
and chooses a rule that is expected to improve payoffs in each state of the population and each
feasible game. On entering the population the increase in expected payoffs is relative to the
expected payoff of the agent that is replaced.

Following the above scenario an agent enters equally likely in the position of any agent of
her own type. This immediately implies that the unique improving initial strategy selection rule is
to adapt the strategy of the replaced agent. This follows just as in lemma 1. Therefore, the
uniform prior assumption is correct in the entering agent's first matching round. Moreover, since
agents ignore the effect their own rule (and those of others) has on future population
distributions, an agent will believe a priori to entering the population that she will be equally likely
in the position of any agent of her own type in any state and in any round. This is precisely the

uniform prior assumption made in the introduction.
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8. Discussion

In this section we will discuss some assumptions made in the model and will refer to the
related literature.

At first we will go through the basic informational assumptions to show that they are
minimal to ensure that the individual strictly prefers some rule to not switching both in the general
model and in the case where all contests are degenerate.

Central to the matching and sampling setup is that an agent learns from other agents that
are in the same matching situation. In this respect, we can allow for a general class of sampling
rules. In fact the assumptions on the sampling rules can be slightly weakened. One might want to
include the case in which agents do not necessarily sample in each round. Given a sampling rule
let 6“>0 be the probability that an agent of type C makes an observation, Let {z } be a sequence
of sampling rules such th@t is independent of N. Then theorem 2 can easily be adjusted to these
more general symmetric sampling rules by adding to condition i) that an agent without a sample
does not adjust. Similarly,° must be replaced 8¢ in (17) in order for theorem 6 to hold for
these more general sampling rules.

Observing the sampled agent's payoff is necessary to find a rule that is better than "never
switch" when all contests are degenerate. Agents have minimal memory since the updating rules
only depend on the action and the payoff of the last period. Updating rules with minimal memory
are simple and therefore plausible under complexity restrictions. Additionally, changing payoffs
can make rules based solely on information from the last period plausible.

Concerning the game structure, agents have no idea about what kind of game they are
playing besides the fact that they know the set of strategies and an interval containing the payoffs.
It is necessary to assume that agents know a bounded interval that contains the payoffs (see the
note made after the proof of theorem 2). It is not even necessary to assume that the agents in our
model are aware of the fact that they are playing a game. Additionally, the "optimal" behavior
does not require that agents know the set of strategies. We only need to assume that agents can
recognize and adapt strategies of sampled agents. This can for example be applied to a model in
which new strategies (e.g., technologies) emerge exogenously in the sense that a few agents enter
using these strategies. Whether the new technology takes over or dies out in the short run can be
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analyzed with the help of the replicator dynamics (see theorem 6). A follow up paper to this one

under way will provide the long run analysis.

We make two assumptions that an agent bases her calculations on, namely that she will be
the only one to adjust (the ignorance assumption) and that she will be equally likely in the position
of any agent in any round and any state (the uniform prior assumption).

The ignorance assumption is correct with high probability if the probability of receiving
information between round is small (given the extended model mentioned above in which an
agent might not sample in each round). Only agents that receive information will adjust.
Therefore, with high probability an agent that receives information will be the only one who
received information.

The uniform prior assumption is motivated in section 7 by an entry and exit scenario. A
conceivable alternative to this assumption would be to prefer rules that maximize expected
payoffs under the worst circumstances given the current choice of strategy. However this
condition is too strong and leads to a trivial result. The individual will never change her strategy
under such a condition since the possibility that she might be playing a current best response will

deter her from ever switching.

Notice that from theorem 2 it follows that we must allow for the individual to use a
randomizing device when constructing an updating rule that is better than not switching.

A central assumption driving the results are the preferences of the individual. Maximizing
expected payoffs makes sense when the contest (game) yields a reproductive fitness. In the
context of decision theory, it may be argued that payoffs should be identified with von Neumann
Morgenstern utilities. Either framework however does not contradict the assumption that payoffs
are observable. A fitness or utility can be calculated if we assume that the individual observes the
outcome of the sampled agent's match. Of course the observability of payoffs (utilities) is not at
all necessary for our analysis. In theorem 4 we show that the proportional reviewing rule a "best"
rule although it does not depend on the payoff of the sampled agent.

Apart from the uniform prior assumption we chose a "distribution free" approach when
selecting the optimal updating rule. Any alternative (plausible) preference relation of the individual
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invariably leads to making assumptions on the individuals beliefs about the unobservable variables
in the model.

We will now refer to some of the related literature.

Kandori, Mailath and Rob [1993] justify individual behavior in some examples in order to
motivate the class of dynamics they consider in their random matching model. However the
informational assumptions in these examples are quite drastic.

In one of these scenarios an agent's knowledge of the game is limited but each agent is
matched against each agent of the opposite type as in a tournament. Kandori, Mailath and Rob
[1993] informally propose for the individual to imitate the strategy sampled if and only if it
achieved a higher payoff in the previous round. If we were to consider tournament play in our
model then this rule "imitate if better" would clearly become the most preferred rule. However, as
shown in section 3, "imitate if better" is no longer improving when agents are only matched once.

In another scenario of Kandori, Mailath and Rob [1993] matching is random but agents
know which game they are playing. Moreover, between matching rounds each agent that may
adjust observes the entire population distribution and therefore learns (given her knowledge of the
game) which strategy would have been "best" in the last round. The proposal of Kandori, Mailath
and Rob [1993] to play a best response when adjusting is in terms of our analysis the unique most
preferred rule. In section 3 we show that this rule however can fail to be improving when the best
response is taken to a sample.

Motivated by assumptions on the preferences of an individual we restrict our attention to
updating rules that increase expected payoffs under any circumstances. A slightly stronger
condition would be to a priori demand that expected payoffs improve strictly whenever possible,
i.e., if not all strategies used by agents of the same type achieve the same expected payoff. This
condition is closely related to the concept of "absolute expediency"” used by Sarin [1993].
Updating rules satisfying this strict improving condition would require additionally to the
characterization in theorem 2 fey>0 for all A,AeS*. Sarin [1993] uses absolute expediency to
axiomatize Cross' learning rule (see Cross [1973]). This rule applies to a setup in which two
players face each other and adapt their mixed action according to the action they take and the
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payoff they receive. Borgers and Sarin [1993] show that the resulting dynamics when both players
use Cross' learning rule approximate the replicator dynamics.

Although related, the general approach of Sarin [1993] is different in spirit from ours
because their axioms concern the updating behavior of a player and are not formulated in terms of
preferences.

Originally the replicator dynamics were only interesting for the biological literature. Lately
various models of individual behavior leading to the replicator dynamics have emerged. Cabrales
[1993] previously derived the replicator dynamics using the rule we call the proportional imitation
rule. They motivate the rule by idiosyncratic uniformly distributed costs of changing strategies.
Binmore, Gale and Samuelson [1993] derive the replicator dynamics (in an infinite population)
using the "best" proportional reviewing rule, interpreting it as a rule based on random aspiration
levels. Bjornerstedt and Weibull [1993] also derive the replicator dynamics with (infinitely many)
individuals on average using a proportional reviewing rule.

In the above models, the individual rules seem more or less arbitrary and thus the
replicator dynamics too. However, both in our model and in the model used in Sarin [1993] and
Borgers and Sarin [1993], the replicator dynamics result from individual behavior determined by
preferences or axioms. These papers show that the replicator dynamics have a distinguished role

in learning models.

Random matching models with very limited observations to base behavior on can be found
in Friedman [1991] in an example and in the experiment of Malawski [1989].

Malawski [1989] sets up a laboratory experiment for the same matching and sampling
model as presented in section one (they assume random sampling). There were 5-6 subjects of
each type that were randomly matched against each other to play in each of 200 rounds one of
three games. The games had disjoint strategy sets. Participants were told in each round their
current strategy set and observed the previous strategy and payoff of a randomly sampled player
of the same type. They were not aware that they were playing a game. Malawski [1989] relates
the data to two specific learning rules. One is the updating rule "imitate if better" (which he refers
to as "learning by observing"). Although a definite reaction of the participants to the sample is
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observed, imitation alone is not able to explain the data. Malawski [1989] prefers to explain the
data with a rule that determines behavior according to a constant aspiration level and independent
of the data observed in the sample.

Our model is not an attempt to explain behavior in such an experiment. Rules derived from
maximizing the outcomes in the worst cases should be understood as a tool to mix with other
rules like experimentation or just as a benchmark when the individual is able to gather more
information. None-the-less, a thorough analysis of Malawski's [1989] experiments with respect to

our findings are of interest and are currently under way.
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