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Abstract

We deal with the valuation and hedging of non path-dependent European options on

one or several underlyings in a model of an international economy which allows for both
interest rate and exchange rate risk. Using martingale theory we provide a uni�ed and
easily applicable approach to pricing and hedging Black-Scholes type options on stocks,
bonds, forwards, futures and exchange rates. We also cover the pricing and hedging of
options to exchange two Black-Scholes type options for one another. The contingent

claims may pay o� in arbitrary currencies.

JEL Classi�cation: G12 G13 G15
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1 Introduction

The present paper deals with the valuation and hedging of non- path-dependent Eu-

ropean options on one or several underlyings in a model of an international economy

which allows for both, interest rate and exchange rate risk. We study options on stocks,

bonds, forwards, futures interest rates and exchange rates; their payo� may be in any

currency and a relatively complex function of one or several underlyings.

There exists meanwhile a huge number of di�erent contracts on various underlying

assets, and it is easy to construct new payo�s by simply combining in a di�erent manner

the elements that make up a certain contract. Hence a case by case analysis as has been

carried out previously is no longer appropriate. This lead Kat and Roozen (1994) to

develop a uni�ed method for the pricing and hedging of non-path-dependent European

stock options. They restrict themselves to a model with deterministic interest rates,

which allows them to use a partial di�erential equation (PDE) as main tool of their
analysis.

We believe an extension of their study to a framework with stochastic interest rates
to be important for a number of reasons. To begin with, introducing interest rate risk
opens the possibility to treat a huge number of payo�s not amenable to the analysis of
Kat and Roozen. For instance we deal with guaranteed-exchange-rate options on bonds,

options on the di�erence of two LIBOR rates in di�erent countries or with options on
the spread between the rate of return on a stock and a LIBOR rate, possibly in di�erent
countries. In the last years these and similar payo�s have witnessed a strongly increasing
importance in practice. Moreover, is well known that there is a close interaction between
currency markets and �xed income markets. Hence a good model for the pricing of

derivatives in an international economy setting should be rich enough to incorporate a
wide range of di�erent correlations between these assets. Necessarily such a model must
allow for stochastic interest rates.

We have therefore chosen an international economy model similar to the one introduced

by Amin and Jarrow (1991) as the framework of our analysis. Their model combines a
fully developed stochastic theory of the term structure of interest rates in the sense of
Heath, Jarrow, and Morton (1992) with models for the valuation of exchange rate and

stock options. However, following the approach of El Karoui and Rochet (1989) and
El Karoui, Myneni, and Viswanathan (1992a), we use bond prices instead of forward

rates as primitives for the modelling of interest rate risk. The main tools of our analysis
are stochastic methods and in particular the change of numeraire technique as introduced

among others in (El Karoui and Rochet 1989) and (Jamshidian 1990). This enables us
to give a uni�ed treatment of all international economy models in the sense of Amin and

Jarrow (1991), the only restriction being that the volatility of the underlying assets is
deterministic. The PDE-approach of Kat and Roozen works less well in our framework,

because under stochastic interest rates the precise form of the PDE for derivative prices

depends on the factor structure of the term structure model used in the analysis which
in turn depends on the precise form of the bond price volatilities. Moreover, including

the possibility of stochastic interest rates means enlarging the state space of the pricing
PDE, which renders di�cult a numerical treatment of the equation in cases where the

boundary conditions are such that an explicit solution cannot be found.
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Starting from the concept of a lognormal claim | which includes among others stocks,

bonds, forwards, futures and exchange rates | we derive a generic option pricing formula

for options to exchange two lognormal claims. To make this result operational also

for options on relatively complex lognormal claims we provide a systematic procedure

for calculating the input parameters needed in the generic valuation formula. Since

pricing formulas are of little practical use without knowledge of the corresponding hedge

portfolio we present a systematic approach to computing hedging strategies. In order

to illustrate the 
exibility of our method we derive explicit formulas for prices and

hedge portfolios for a wide range of examples containing among others currency options,

guaranteed-exchange-rate options, options on futures or options on the spread of two

LIBOR rates.

We then go on to study the pricing of what we term compound exchange options. This

latter class of derivatives contains for instance spread-options. As it is well known from

the case of deterministic interest rates there are in general no explicit valuation formulas

for these contracts. However, by using the change of numeraire technique we are able to
reduce the problem of pricing such contracts to the computation of the probability of a
well-speci�ed domain in IRd under certain multivariate normal distributions. Moreover,
we demonstrate that the hedge portfolio can be expressed in terms of these probabilities.
This is remarkable, since it shows that even in the absence of explicit pricing formulas

we are able to compute hedge portfolios without resorting to numerical di�erentiation.
In order to illustrate how these results can be applied we study some concrete examples
and sketch along the way some numerical techniques for the evaluation of the proba-
bilities that enter our formulas. This discussion will also show that our approach is far
more e�cient than direct Monte Carlo simulation. This stems from the fact that with
stochastic interest rates the latter technique requires the simulation of whole trajectories

even for the pricing of path-independent payo�s.

The pricing of certain types of options belonging to the class of derivatives considered
here, and the development of arbitrage free models of international economies have pre-
viously been adressed in the literature. Among the early work on correlation dependent
options are the papers by Margrabe (1978), Stulz (1982) and Johnson (1987), who all

work in the classical Black-Scholes model. A collection of their results can be found
in the work of Rubinstein (1990) on Exotic Opions. Papers on currency options are

due to Garman and Kohlhagen (1983) and (Grabbe 1983). More recently Amin and
Jarrow (1991) have developed the above mentioned arbitrage free model of an interna-

tional economy. Our treatment of interest rate risk follows (El Karoui, Myneni, and
Viswanathan 1992a) and (El Karoui, Myneni, and Viswanathan 1992b).

Besides the already mentioned work of Kat and Roozen the papers (Jamshidian 1993)
and (Jamshidian 1994) are most closely related to our analysis. In (Jamshidian 1993)
valuation formulas for certain options which fall within the class of options to exchange

two lognormal claims are derived. The paper lacks however a general procedure for

applying the main valuation result to derivatives which are in principle within the scope

of the analysis. The related work (Jamshidian 1994) gives hedge portfolios for certain
correlation-dependent securities including Quanto futures, but it does not provide a

systematic approach to the computation of such portfolios, which would allow one to

deal also with contracts which are not explicitely considered. Moreover, none of the
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two papers treats the pricing and hedging of options on several underlyings such as our

compound exchange options.

The paper is organized as follows:

In Section 2 we present the general N-country model of �nancial markets and introduce

the concept of a lognormal claim. Section 3 contains the results on pricing and hedging

exchange options on lognormal claims. In Section 4 we discuss compound exchange

options. Section 5 �nally concludes.

Notation:

Throughout the paper we denote the inner product of two vectorsX; Y 2 IRd byX �Y :=P
d

i=1 xiyi; the norm of a vector will be denoted by jXj := (X �X)
1

2 .

2 The Model

In this section we introduce an arbitrage-free model of an international economy that
incorporates stochastic interest and exchange rates. This model will serve as our
framework for the valuation of derivatives. We consider N countries indexed by

n 2 f0; : : : ; Ng. Country 0 will be the domestic country. The exchange rate between
country 0 and country n 2 f1; : : : ; Ng will be denoted by e

n, that is en units of the
domestic currency can be exchanged for one unit of the foreign currency. When working
with only two countries we simply talk about the domestic and the foreign country and
index them with d and f . The choice of the domestic country is arbitrary and depends

on the particular pricing and hedging problem under consideration. We call an asset a
domestic asset if its payo�s are denominated in the domestic currency. Notice that every
asset whose payo�s are not originally denominated in this currency can be transformed
into a domestic asset by translating its payo�s into the domestic currency using the
corresponding exchange rate.

We assume that in all countries zero coupon bonds of all maturities T 2 [0; TF ] are
traded. The zero coupon bond in country n with maturity date T shall be denoted by

B
n(t; T ) for t 2 [0; T ]. By assumption B

n(T; T ) � 1 8T; n. The short rate in country

n, rn, is given by

r
n

t
= �

@

@T

���
T = t

lnBn(t; T ) : (1)

For an explicit formula deduced from (1) see for instance (El Karoui, Myneni, and
Viswanathan 1992a). By �n

t;T
:= exp(

R
T

t
r
n

s
ds) we denote the savings-account of country

n. Apart from zero coupon bonds we consider other primitive assets such as dividend
free stocks. They are denoted by Sn;j; 0 � n � N; 0 � j � in where S

n;j is the price of

asset j in country n.

We now introduce our model of asset price dynamics. When modelling asset price
processes one usually starts from assumptions on their dynamics under the so-called

historical probabilities which govern the actual evolution of asset prices. Since we are

only interested in the pricing of derivatives by no-arbitrage arguments it is legitimate to
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model the asset price dynamics directly under a domestic risk-neutral measure P . Under

such a measure all non-dividend paying domestic assets are martingales after discounting

with the domestic savings account. This implies that their mean instantaneous growth

rate | in the sequel simply referred to as their drift | is equal to r0.

Assumption 2.1 Let there be given a �ltered probability space (
;F ; P ); (Ft)t2[0;TF ]
supporting a d-dimensional Brownian Motion W = (Wt)0�t�Tf . We work with the fol-

lowing assumptions on asset price dynamics: We put for the domestic assets

dB
0(t; T ) = r

0
t
B

0(t; T )dt+ �
0(t; T )B0(t; T )dWt

dS
0;j
t = r

0
t
S
0;j
t dt+ �

0;j(t)S0;j
t dWt ;

(2)

and for the foreign assets

dB
n(t; T ) = (rn

t
� �

n(t; T ) � �e
n

(t))Bn(t; T )dt+ �
n(t; T )Bn(t; T )dWt

dS
n;j

t = (rn
t
� �

n;j(t) � �e
n

(t))Sn;jt dt+ �
n;j(t)Sn;jt dWt :

(3)

Finally the dynamics of the exchange rates are given by

de
n(t) = (r0

t
� r

n

t
)en(t)dt+ �

e
n

(t)en(t)dWt : (4)

Here �n(t; T ); �n;j(t); �e
n

(t) : [0; TF ]! IRd are deterministic square integrable functions
of time. For the bonds we require moreover that �n(t; T ) = 08t � T and that �n(t; T ) is
smooth in the second argument.

Remarks: The assumption of deterministic dispersion coe�cients is essential as we
want to obtain explicit pricing formulas.

The dynamics of asset prices and exchange rates given in Assumption 2.1 actually specify

an arbitrage-free model of an international economy with P representing a domestic
risk-neutral measure. The drift terms of the exchange rate and the foreign assets are

determined by absence of arbitrage considerations. As an example we derive the drift

of en
t
. Consider the domestic asset Y := e

n
�
n

0;�. By absence of arbitrage its drift must

equal r0. Using Itô's Lemma to compute the dynamics of Y it is immediate that the
drift of Y equals r0 if and only if the drift of the exchange rate equals the interest rate

di�erential. For a more detailed derivation see e.g. (Amin and Jarrow 1991).

The volatility of asset Sn;j is given by �n;j(t) := j�n;j(t)j. The instantaneous correlations
between the assets in our economy are given by

�(Sn1;j1 ; Sn2;j2) :=
�
n1;j1 � �n2;j2

�n1;j1�n2;j2
:
1

Only volatilities and instantaneous correlations matter for the pricing of derivatives,

since they determine the law of the asset prices under the domestic risk neutral measure.

1Of course similar formulas hold for bonds and exchange rates.
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In our analysis this is re
ected by the fact that only inner products of the dispersion co-

e�cients � and hence instantaneous covariances enter the pricing formulas. Nonetheless

we decided to start with independent Brownian motions and to model correlations by

means of the dispersion coe�cients � because this faciliates the use of stochastic calcu-

lus. To compute these coe�cients from the estimated instantaneous variance-covariance

matrix of the processes one may use the Cholesky decomposition of this matrix as ex-

plained for instance in (Hamilton 1994). The calibration of Gaussian term structure

models to market data is for instance discussed in (Brace and Musiela 1994); the meth-

ods developed in this article are applicable to our model, too.

Finally we note that the price process of a discounted foreign asset is not a martingale

under the domestic risk-neutral measure as can be seen from (3); hence this measure

must not be used for the valuation of derivatives paying o� in foreign currencies.

For our pricing theory we need to assume that the markets in our economy are complete.

Assumption 2.2 There are d traded domestic assets such that for all t 2 [0; TF ] the
instantaneous variance-covariance matrix of these assets is strictly positive de�nite.

This assumption guarantees that every contingent claim adapted to the �ltration gener-
ated by the asset prices can be replicated by a dynamic trading strategy in the d assets
and the domestic savings-account, see for instance (Du�e 1992, section 6.I). Hence the
domestic risk neutral measure is unique and the price at time t of every domestic con-

tingent claim H with single FT measurable and integrable payo� HT at time T is given
by

Ht := E
P

��
�
0
t;T

��1
�HT

��� Ft

�
; (5)

see e.g. (Harrison and Pliska 1981). This equation is the exact probabilistic analogue
of equation (6) of (Kat and Roozen 1994); it will be the starting point for our valuation
results in the next sections.

We now introduce the class of admissible underlyings for the derivative contracts con-
sidered in the paper. A typical example of the kind of options we want to analyze is the

guaranteed exchange rate call. This contract is de�ned by its terminal payo� [�eSf
T
�K]+,

where Sf
T
is some primitive foreign asset and �e is a guaranteed exchange rate which will

be applied at time T to convert the price of the foreign asset into domestic currency.

Now, �eSf
T
is not the time T value of a traded domestic asset. However, it de�nes a

domestic contingent claim X whose price process Xt = E
P [(�t;T)

�1�eSf
T
jFt] is given by

Xt = X0 exp

�Z
t

0
�
X

s
dWs �

1

2

Z
t

0
j�X
s
j2ds+

Z
t

0
r
d

s
ds

�
with X0 = E

P
h
(�0;T )

�1
XT

i

and �X
s
a deterministic IRd-valued function of time. We will see in section 3.2 below that

this structure is found in many ostensibly complex option contracts. This motivates the

following de�nition.
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De�nition 2.3 A domestic contingent-claim X with a single payo� XT at a certain

date T is called a lognormal claim2 if its price process

Xt := E
P

��
�
d

t;T

��1
�XT j Ft

�

admits a representation of the form

Xt = X0 � exp
�Z

t

0
�
X

s
dWs �

1

2

Z
t

0
j�X
s
j2ds +

Z
t

0
r
d

s
ds

�
(6)

with some constant X0 and with deterministic dispersion coe�cients �X : [0; T ]! IRd.

Remarks: The main restriction made in the de�nition of a lognormal claim is the

assumption of �X being deterministic. In fact, whenever XT is strictly positive,

Xt := E
P

��
�
d

t;T

��1
�XT j Ft

�

is always of the form (6) with possibly stochastic \volatility" �X , as can easily be shown
by means of the martingale representation theorem. Note that the solution of the SDE

dXt = r
0
t
Xtdt+ �

X

t
XtdWt is given by

Xt := X0 � exp
�Z

t

0
�
X

s
dWs � 1=2

Z
t

0
j�X
s
j2ds+

Z
t

0
r
0
s
ds

�
:

Hence under our assumption on asset price dynamics every primitive domestic asset,
interpreted as contingent claim with payo� equal to the asset's price at time T , is a
lognormal claim. However, the class of contingent claims that satisfy De�nition 2.3 is
much larger. For instance products and quotients of lognormal claims remain lognormal
claims.

The next proposition gives a method for computing the initial value and the volatility

coe�cients of a lognormal claim also in certain cases where these parameters cannot be
read o� directly from the asset price dynamics. For an application of this proposition
we refer the reader to the examples considered in section 3.2.

Proposition 2.4 Assume that the payo� XT of a domestic contingent claim X is given

by

XT = 

X � exp

 Z
T

0

NX
n=0

�
n;X

r
n

s
ds +

Z
T

0
�
X

s
ds+

Z
T

0
v
X

s
dWs

!

where 

X 2 IR+, �

n;X 2 ZZ 8n, and where �
X : [0; T ] ! IR, vx : [0; T ] ! IRd are

deterministic functions. Then there is a X0 2 IR+ and a deterministic function �
X :

[0; T ]! IRd de�ned in the proof below such that XT admits a representation of the form

XT = X0 � exp

 Z
T

0
�
X

s
dWs �

1

2

Z
T

0
j�X
s
j2ds +

Z
T

0
r
0
s
ds

!
:

In particular X is a lognormal claim.

2This name is motivated by the fact that XT is lognormally distributed. This is immediate if one

writes XT = XT=B
0(T; T ) and then expresses the right hand side using (6) and the corresponding

expression for B0(�; T ).
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Proof: Since Bn(T; T ) = 1 we get

XT = XT �B
0(T; T ) �

NY
n=0

B
n(T; T )��

n;X

= 

X �B0(T; T ) �

NY
n=0

B
n(0; T )��

n;X

� exp

" Z
T

0
r
0
s
ds+

Z
T

0

 
�
X

s
+
1

2

NX
n=0

�
n;X

�
j�n(s; T )j2 + �

n(s; T ) � �e
n

(s)
�

�
1

2
j�0(s; T )j2

�
ds+

Z
T

0

�
v
X

s
�

NX
n=0

�
n;X

�
n(s; T ) + �

0(s; T )
�
dWs

#

If we now de�ne

�
X

s
:= v

X

s
�

NX
n=0

�
n;X

�
n(s; T ) + �

0(s; T ) (7)

X0 := 

X

NY
n=0

B
n(0; T )��

n;X

B
0(0; T ) � exp

 Z
T

0
�
X

s
(8)

+
1

2

NX
n=0

�
n;X

�
j�n(s; T )j2 + �

n(s; T ) � �e
n

(s)
�
j �

1

2
j�0(s; T )j2 +

1

2
j�X
s
j2 ds

!
(9)

we get XT = X0 � exp
�R

T

0

�
r
0
s
� 1

2
j�X
s
j2
�
ds+

R
T

0 �
X

s
dWs

�
. From this representation it is

immediate that X is a lognormal claim whose value at time t is given by (8) but with
B
n(t; T ) replacing Bn(0; T ) and with t as lower bound of the integral in the argument

of the exponential term. 2.

3 Exchange Options on Lognormal Claims

3.1 The Theoretical Result

In this section we give a rather general theorem which leads to a uni�ed treatment of the
pricing of European options on various underlyings such as foreign and domestic zero

coupon bonds, foreign or domestic stocks or forward and future contracts on foreign and
domestic assets. It is similar in spirit to a result by Jamshidian (1993); however, we feel

that our theorem is more easily applicable.

Theorem 3.1 Let X;Y be lognormal claims. Consider an option to exchange X for Y
at the maturity date T , i.e. a European option with payo� [XT � YT ]

+.

1. The price process C = (Ct)0�t�T of this option is given by

Ct = C(t;Xt; Yt) := XtN (d1
t
)� YtN (d2

t
)
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where N denotes the one-dimensional standard normal distribution function, and where

d
1
t
and d2

t
are given by

d
1
t
=

ln (Xt=Yt) +
1

2

R
T

t
j�X
s
� �

Y

s
j2dsqR

T

t
j�X
s
� �Y

s
j2ds

; d
2
t
= d

1
t
�

sZ
T

t

j�X
s
� �Y

s
j2ds :

2. The hedge portfolio PC = (PC

t
)0�t�T for this option in terms of the lognormal claims

X and Y is given by

�
C

X
(t) := N (d1

t
) units of X and �C

Y
(t) := �N (d2

t
) units of Y :

Proof: The main tool in the proof is the change of numeraire technique developed

among others in (El Karoui, Geman, and Rochet 1995). We now recall a few facts from

this theory. De�ne for a lognormal claim X a new equivalent probability measure QX

on FT by

dQ
X

dP
=

XT �
�
�
d

0;T

��1
X0

:

Then for every domestic asset Z whose discounted price process is a martingale under
P | that is for every asset that pays no dividends in [0; T ) | the process Z=X is a
martingale under QX, i.e. QX is the martingale measure corresponding to the numeraire

X. Moreover we have the transition formula

E
P

��
�
d

t;T

��1
�XT � ZT jFt

�
= Xt � E

Q
X

[ZT jFt] (10)

Remark: If X = B
d(�; T ) the measure QX is just the forward risk adjusted measure

associated with Bd(�; T ). This measure is well known in the interest rate literature.

In our setup it is easy to determine the law of the asset price processes by means
of the Girsanov theorem. Applying this theorem to dQ

X
=dP immediately yields that

W
X

t
:=Wt �

R
t

0 �
X

s
ds is a new Brownian Motion under QX.

Now it is easy to proof the �rst part of the theorem. According to (5) the price of the
option is given by

Ct = E
P

��
�
d

t;T

��1
[XT � YT ]

+
��� Ft

�

= E
P

��
�
d

t;T

��1
XT � 1fYT =XT<1g

��� Ft

�
� E

P

��
�
d

t;T

��1
YT � 1fXT =YT>1g

��� Ft

�

= Xt � E
Q
X
h
1fYT =XT<1g

��� Ft

i
� Yt � E

Q
Y
h
1fXT =YT>1g

��� Ft

i

The last line follows from (10) if we take once X and once Y as numeraire. Now we get

under QX for YT=XT

YT

XT

=
Yt

Xt

� exp

 Z
T

t

(�Y
s
� �

X

s
)dWX

s
�

1

2

Z
T

t

j�Y
s
� �

X

s
j2ds

!
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Hence

Q
X

�
YT

XT

< 1
��� Ft

�
= Q

X [lnYT � lnXT < 0 j Ft]

= Q
X

2
4R Tt (�Ys � �

X

s
)dWX

sqR
T

t
j�Y
s
� �X

s
j2ds

<
lnXT � lnYT +

1

2

R
T

t
j�Y
s
� �

X

s
j2dsqR

T

t
j�Y
s
� �X

s
j2ds

3
5

Since �X and �
Y are deterministic,

R
T

t
(�Y
s
� �

X

s
)dWX

s
=

qR
T

t
j�Y
s
� �X

s
j2ds is a standard

normally distributed random variable so that

Q
X

�
YT

XT

< 1
��� Ft

�
= N (d1

t
) :

Analogously we get QY [XT=YT > 1 j Ft] = N (d2
t
) ; and the �rst part of the theorem

follows.

To prove the second claim we note that the proposed hedge portfolio duplicates a con-
tingent claim if the martingale part of the portfolio's value process is the same as that
of the contingent claim and if the value of the portfolio equals that of the contingent
claim for all 0 � t � T . We now check these two conditions.

(i) Let (Z)M denote the (uniquely determined) martingale part of a continuous semi-
martingale Z. As Ct is a function only of Xt and Yt we get from Itô's Lemma

d (C)
M

t
=
@C

@x
(t;Xt; Yt)d (X)

M

t
+
@C

@y
(t;Xt; Yt)d (Y )

M

t
:

Now following El Karoui, Myneni, and Viswanathan (1992b) wemay compute the deriva-
tives of the option:

@C

@x
(t;Xt; Yt) = E

P

t

"
@

@Xt

��
�
d

t;T

��1
[XT � YT ]

+
�#

= E
P

t

"�
�
d

t;T

��1
1fXT�YT g

@XT

@Xt

#

=
1

Xt

E
P

t

��
�
d

t;T

��1
1fXT�YT gXT

�

As shown in the �rst part of the proof this expression equals N (d1
t
). Similarly we get

@C=@y(t;Xt; Yt) = �N (d2
t
) :

Remark: While unnecessary in the present proof where explicit pricing formulas are
available this technique of exchanging di�erentiation and expectation will prove very
helpful in the absence of explicit pricing formulas in Section 4.

On the other hand we get from the sel�nancing condition and from
�
�
d

0; �

�M
t
= 0 for the

value process V of the hedge portfolio

d (V )
M

t
= N (d1

t
)d(X)M

t
�N (d2

t
)d(Y )M

t
and hence d (V )

M

t
= d (C)

M

t
:
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(ii) By Euler's Theorem we get from the linear homogeneity of C in Xt and Yt

Ct =
@C

@x
(t;Xt; Yt) �Xt +

@C

@y
(t;Xt; Yt) � Yt = N (d1

t
)Xt �N (d2

t
)Yt ;

which shows that also the second condition is satis�ed. 2

Whenever the lognormal derivatives X and Y are assets for which liquid markets exist,

Theorem 3.1 is su�cient for the construction of a hedge portfolio. Otherwise we must

go on and duplicate X and Y by a dynamic hedging strategy. The existence of such

a strategy is guaranteed by Assumption 2.2; it can be computed as in the proof of

Theorem 3.1. The following observation then shows how to construct hedging strategies

for C from the hedge portfolios for X and Y . Suppose that the hedge portfolios for

X and Y in terms of assets HX

i
and H

Y

i
for which we assume the existence of liquid

markets are given by

P
X

t
=

L
XX

i=1

�
X

i
(t)HX

i
and P

Y

t
=

L
YX

i=1

�
Y

i
(t)HY

i
:

Then the hedge portfolio for the exchange option on X and Y in terms of HX

i
and HY

i

is given by

Pt =
LXX
i=1

N (d1
t
) � �X

i
(t)HX

i
�

LYX
i=1

N (d2
t
) � �Y

i
(t)HY

i
:

The application of this principle is illustrated in certain examples presented below.

3.2 Examples

Now we want to consider a number of examples which illustrate 
exibility and generality

of Theorem 3.1.

Currency Options: The payo� of a plain vanilla currency option equals [eT �K]+.

De�ne the domestic assets X := e � Bf(�; T ) and Y := KB
d(�; T ); the parameters of

their price processes can be read o� from the asset price dynamics and are given by
X0 = e0B

f(0; T ), �X(t) = �
e(t) + �

f (t; T ) and Y0 = KB
d(0; T ), �Y (t) = �

d(t; T ),

respectively. Since Bd(T; T ) = B
f(T; T ) = 1 the option's payo� equals [XT �YT ]

+, and

its price can be computed by means of Theorem 3.1. Since we assume Bf and Bd to be
traded assets we can use directly Theorem 3.1 to compute a feasible hedge portfolio.3

Currency Converted Options: There are two types of currency converted options.

The payo� of a Foreign Asset/ Domestic Strike Option equals [eTS
f

T
�K]+. To deal with

this claim we set X := eS
f and notice that this is a lognormal claim with Xt = etS

f

t

and �X = �
e+�

S
f

. Next set Y := K �Bd(�; T ). Theorem 3.1 can now be directly applied

to give the price and the hedging strategy of this contract. Similarly for a Domestic

3In practice liquid markets for zero coupon bonds of arbitrary maturity usually do not exist. How-

ever, at least in a one-factor term structure model it is possible to duplicate a zero coupon bond by a

dynamic trading strategy in a futures contract on some coupon bond and cash. Details are for instance

given in (Frey and Sommer 1995).
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Asset/ Foreign Strike Option with payo� [Sd
T
� eTK]+, where K is in foreign currency

we use the lognormal claims X := S
d and Y = KeB

f(�; T ).

Guaranteed-Exchange-Rate Options: The payo� of this derivative equals

[�eSf
T
� �eK]+, where S

f is a foreign asset and �e some predetermined exchange rate.

This contract can be interpreted as an option to exchange the lognormal claims X and

Y with payo� XT = �eS
f

T
and YT := �eK. Whereas YT equals the time T value of K � �e

units of Bf(�; T ), there is no traded asset whose value at T is equal to XT . To price and

hedge the option we therefore have to compute the parameters of X using Proposition

2.4. We have X
i

�
i;X
r
i

s
= r

f

s
; �

X

s
= �

1

2
j�S

f

s
j2; v

X

s
= �

S
f

s
:

Applying Proposition 2.4 yields

X0 = �eSf0
B
d(0; T )

Bf (0; T )
exp

( Z
T

0
j�f (s; T )j2+ �

S
f

(s) � �d(s; T ) + �
e(s) � �f (s; T )�

�
S
f

(s) � �f (s; T )� �
f(s; T ) � �d(s; T )� �

S
f

(s) � �e(s)ds

)

�
X

s
= �

S
f

(s) + �
d(s; T )� �

f (s; T )

The price of the option can now be computed by plugging these parameters into the
pricing formula of Theorem 3.1. Next we want to determine the hedge portfolio for the

option. As XT is not the terminal value of a traded asset we have to go through the
procedure outlined after the proof of Theorem 3.1. To replicateXT by a dynamic trading
strategy we �rst note that Xt is given by a function ~X of Sft , B

d(t; T ) and B
f(t; T )

with derivatives @ ~X=@St = ~X=St, @ ~X=@B
f(t; T ) = � ~X=B

f (t; T ) and @ ~X=@B
d(t; T ) =

~X=B
d(t; T ). As ~X is linear homogenous in the prices of these assets, an argument similar

to the proof of the second part of Theorem 3.1 shows that the hedge portfolio for X
equals

�
X

e1�S1(t) =
Xt

e
1
t � S

1
t

; �
X

e2�S2(t) =
Xt

e
2
t � S

2
t

; �
X

Bd(t) = �
Xt

Bd(t; T )
:

Remark: Our formula contains the pricing formula of (Kat and Roozen 1994) as a

special case. To derive their formula one simply has to set all the bond volatilities

to zero. It is of interest to analyze the e�ect of the additional correlations that enter

the pricing formula if interest-rate risk is taken into account. We see that allowing for
interest-rate risk does not necessarily raise the price of a GER Option over that of a

GER Option in a model with deterministic interest rates, since e.g. �e ��f , the covariance
between exchange rate and foreign bonds will typically be negative, while �S

f

��f , that is
the covariance between foreign bonds and stocks, will typically be positive. Both e�ects

lead to a reduction in the option price, while the direct e�ect of stochastic interest rates,
namely j�f j2 unambiguously raises the option price.

Options on Futures: Let ( ~Xt)0�t� �T be the price process of a lognormal claim. It is

well known that the futures price at time t of a futures contract on ~X with maturity

date T2 equals ~Xf

t := E
P [ ~XT2

j Ft]. A European option on this futures contract with

12



maturity date T1 < T2 and strike K has payo� [ ~Xf

T1
� K]+. We now show that the

contingent claim X with payo� XT1
= ~X

f

T1
is a lognormal claim.

~X
f

T1
= E

P
h
~XT2

��� FT1

i
= E

P

�
~XT2

�
�
B
d(T2; T2)

��1 ��� FT1

�

= E
P

"
~X0

Bd(0; T2)
� exp

 
�
1

2

Z
T2

0
j�

~Xj2 � j�d(t; T2)j
2
dt+

Z
T2

0
�

~X � �
d(t; T2)dWt

! ���FT1

#

=
~X0

Bd(0; T2)
exp

 Z
T2

0
j�d(t; T2)j

2 � �
~X � �d(t; T2)dt

!
| {z }

=: 
X

� exp

 Z
T1

0
�

~X � �
d(t; T2)dWt �

1

2

Z
T1

0
j�

~X � �
d(t; T2)j

2
dt

!

To compute the parameters of X we may now apply Proposition 2.4 with �X
t
:= �1

2
j�

~X�

�
d(t; T2)j2, vX := �

~X � �
d(t; T2) and 


X as above. We leave the computations to the
reader. To duplicate X by dynamic trading in the future and in the domestic zero
coupon bond with maturity T1 one has to hold the following hedge portfolio.

�
X

futures(t) =
Xt

~Xf

t

; �
X

Bd(�;T1)
(t) =

Xt

Bd(t; T1)
:

Options on Interest Rates: We are mainly interested in contracts where one of the
underlyings is a foreign or domestic LIBOR rate. For a �xed � > 0 (in practice usually
� = 0:25 or � = 0:5) the LIBOR rate Ln(t; �) prevailing in country n over the period

[t; t+ �] is de�ned by the equation

(1 + � � Ln(t; �))Bn(t; t+ �) = 1 ;

that is Ln(t; �) = �
�1(1=Bn(t; t+ �)� 1).

Caps: Perhaps the most important LIBOR derivatives are caps and 
oors. A cap is a

portfolio of caplets. The payo� of a caplet with face value V , underlying interest rate
process Ld(t; �), level K and maturity date T + � equals

V � � � [Ld(T; �)�K]+ = V �

"
1

Bd(T; T + �)
� (�K + 1)

#+

As the payo� of this caplet is known already at T we may compute its present value at
T which equals V [1� (�K +1) �Bd(T; T +�)]+. From this we see that price and hedge
portfolio for caplets can be inferred directly from Theorem 3.1 if we use the lognormal

claims X = B
d(�; T ) and Y = (�K + 1) � B(�; T + �). Of course this choice of X and

Y re
ects the well-known fact that caplets can be considered as options on zero coupon

bonds.

LIBOR spreads: Next we want to consider an option on the spread between a domestic

and a foreign LIBOR rate. The payo� (in domestic currency) in T + � of this option is

given by V �[Ld(T; �)� L
f (T; �)]+, i.e. �V units of the positive di�erence between the

13



domestic and the foreign LIBOR rate. Using the de�nition of the LIBOR rate we see

that the present value at T of this payo� equals V [1�B
d(T; T +�)=Bf (T; T +�)]+. To

value this contract we have to compute the parameters of the lognormal claim Y with

payo� YT = B
d(T; T + �)=Bf (T; T + �). Applying Proposition 2.4 we get

Y0 =
B
d(0; T + �)Bf(0; T )

Bf(0; T + �)

� exp

" Z
T

0
j�f(s; T + �)j2 + �

d(s; T + �) � �f (s; T )� �
f(s; T + �) � �f(s; T )

� �
f (s; T + �) � �d(s; T + �)� �

e(s) � (�f(s; T )� �
f (s; T + �)) ds

#

The hedge portfolio for Y can be computed as in the case of the guaranteed exchange

rate option.

Remark: The valuation of interest rate derivatives in a Gaussian framework is some-

what problematic because of the occurrence of negative interest rates. However for
reasonable parameter values and not too long times to maturity these problems are
rather minor; see e.g. (Rogers 1995).

4 Pricing and Hedging Compound Exchange Op-

tions and Related Payo�s

We de�ne compound exchange options as European options with payo� given by

h
[X1

T
� Y

1
T
]+ � [X2

T
� Y

2
T
]+
i+

; (11)

where X i and Y
i, i = 1; 2 are lognormal claims. While the payo� is interesting in its

own right it can, if combined with ordinary exchange options and lognormal claims, also

serve as a building block to construct a great number of other payo�s. These include
options on the maximum or the minimum of two lognormal claims, currency optimized
options, spread options and dual strike options. In Appendix A we explain how the

payo�s of these options are related to equation (11).

We shall �rst state a general theorem on the pricing and hedging of the payo� in equation
(11) and explain then how this theorem can be applied. We have

Theorem 4.1 Let (X i

t
)0�t�T , (Y

i

t
)0�t�T , i = 1; 2 be lognormal claims. Let Ct be the

value at time t of a compound exchange option with payo� as in (11).

1. We have the following near explicit pricing formula

Ct = C(t;X1
t
; Y

1
t
;X

2
t
; Y

2
t
) := X

1
t
N2

�
d
1
t
; d

2
t
; �t

�
� Y

1
t
N2

�
d
3
t
; d

4
t
; �t

�
+X1

t
Q
X

1

t
[A] + Y

2
t
Q
Y
2

t
[A]�

�
X

2
t
Q
X

2

t
[A] + Y

1
t
Q
Y
1

t
[A]
�
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where the arguments of the normal distributions4 are as de�ned in equations (13), (14),

(15) below and where the set A is given by

A =
n
! 2 
 j X2

T
� Y

2
T
^X

1
T
� Y

1
T
� X

2
T
� Y

2
T

o
: (12)

The probability measures QX
i

t
; i = 1; 2 and QY

i

t
; i = 1; 2 are as de�ned in the proof of

Theorem 3.1.

2. The exercise probabilities QX
i

t
[A] and QY

i

t
[A] are given by the measure of the domain

~A � IR4 de�ned by

~A =
n
(x1; : : : ; x4) 2 IR4 j exp(x3) � exp(x4) ^ exp(x1)� exp(x2) � exp(x3)� exp(x4)

o

under a | possibly degenerate | four-dimensional normal distribution whose mean and

covariance matrix depend smoothly on t, X i

t
; Y

i

t
and the volatility coe�cients �X

i

and
�
Y
i

of the lognormal claims.5

3. The hedge portfolio (Pt) in terms of the lognormal derivatives X i and Y i is given by

�
C

X1(t) = N2

�
d
1
t
; d

2
t
; �t

�
+Q

X
1

t
[A] ; �

C

X2(t) = �QX
2

t
[A]

�
C

Y 1(t) = �
�
N2

�
d
3
t
; d

4
t
; �t

�
+Q

Y
1

t
[A]
�
; �

C

Y 2(t) = Q
Y
2

t
[A] :

Remark: This theorem shows that even under stochastic interest rates the valuation
of a compound exchange option can be reduced to an integration with respect to the
joint conditional terminal distribution of the underlying claims and hence to a problem
of numerical integration in IR4. We will see below that there are numerical techniques

for the evaluation of the exercise probabilities that are far more e�cient than a direct
evaluation of the option's price by Monte Carlo simulation. Another advantage of our
approach is that we are able to obtain the price and the hedge portfolio in one single
step and with equal precision. No numerical di�erentiation is necessary.

Proof: We consider �rst the pricing problem. A suitable decomposition of the payo�
in (11) is given by:

�h
X

1
T
� Y

1
T

i+
�
h
X

2
T
� Y

2
T

i+�+
=

�
X

1
T
� Y

1
T

�
1fX1

T
�Y 1

T g
1fX2

T
�Y 2

T g
+
�
X

1
T
� Y

1
T
�X

2
T
+ Y

2
T

�
1fX2

T
�Y 2

T g
1fX1

T
�Y 1

T
�X2

T
�Y 2

T g

Proceeding as in the proof of Theorem 3.1 we get for the �rst expression

E
P

t

��
�
d

t;T

��1
X

1
T
1fX1

T
�Y 1

T g
1fX2

T
�Y 2

T g

�
= X

1
t
�QX1

t

"(
ln

Y
1
T

X
1
T

� 0

)
\

(
ln
X

2
T

Y
2
T

� 0

)#
:

4By N2

�
d1; d2; �

�
we denote the probability of the rectangle (�1; d1]� �(1; d2] � IR2 under the

centered bivariate normal distribution with covariance matrix (�i;j)1�i;j�2 given by �1;1 = �2;2 = 1,

�1;2 = �2;1 = �.
5In concrete examples these parameters can easily be computed from the parameters of the lognormal

claims involved, see Example 1 below.
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Now under QX
1

t
the random variables ln

Y
1

T

X
1

T

and ln
X

2

T

Y
2

T

are jointly normally distributed

with correlation �t given by

�t =

R
T

t

�
�
Y
1

s
� �

X
1

s

�
�
�
�
X

2

s
� �

Y
2

s

�
q
(
R
T

t
j�Y 1

s
� �X

1

s
j2ds) � (

R
T

t
j�X2

s
� �Y

2

s
j2ds)

: (13)

Hence this expectation equals X1
t
N2 (d

1
t
; d

2
t
; �t), where d

1
t
and d

2
t
are given by

d
1
t

=
ln
�
X

1

t

Y
1

t

�
+ 1

2

R
T

t
j�X

1

s
� �

Y
1

s
j2dsqR

T

t
j�X1

s
� �Y

1

s
j2ds

d
2
t

=
ln
�
Y
2

t

X
2

t

�
+ 1

2

R
T

t
j�X

2

s
j2 � 2

�
�
X

2

s
� �

Y
2

s

�
�
X

1

s
� j�Y

2

s
j2dsqR

T

t
j�X2

s
� �Y

2

s
j2ds

:

(14)

Similarly we get

E
P

t

��
�
d

t;T

��1
Y

1
T
� 1fX1

T
�Y 1

T g
1fX2

T
�Y 2

T g

�
= Y

1
t
N2

�
d
3
t
; d

4
t
; �t

�

with �t as before and with

d
3
t

=
ln
�
X1

t

Y 1

t

�
� 1

2

R
T

t
j�X

1

s
� �

Y
1

s
j2dsqR

T

t
j�X1

s
� �Y

1

s
j2ds

d
4
t

=
ln
�
Y
2

t

X
2

t

�
+ 1

2

R
T

t
j�X

2

s
j2 � 2

�
�
X

2

s
� �

Y
2

s

�
�
Y
1

s
� j�Y

2

s
j2dsqR

T

t
j�X2

s
� �Y

2

s
j2ds

:

(15)

For the remaining four expectations for i = 1; 2 we immediately get using the appropriate
probability measures

E
P

t

��
�
d

t;T

��1
X

i

T
1fAg

�
= X

i

t
Q
X
i

t
[A] and E

P

t

��
�
d

t;T

��1
Y
i

T
1fAg

�
= Y

i

t
Q
Y
i

t
[A] :

Now observe that under each of the four probability measures the four random variables

(lnX1
T
, lnY 1

T
, lnX2

T
, lnY 2

T
), obey a four-dimensional normal distribution. The mean

�(QX
i

) or �(QY
i

) of this distribution | which depends on the particular probability
measure | is a smooth function of time and the initial values X i

t
; i = 1; 2 and Y

i

t
; i =

1; 2, whereas �, the covariance matrix6 of this normal distribution, depends only on time

and the instantaneous volatilities and correlations of the four assets under consideration.
Hence QX1

t
[A] is given by the measure of the set ~A de�ned in the theorem under the

four dimensional normal distribution with mean �(QX
1

) 2 IR4 and covariance matrix �.

6� is the same for all probability measures. We remark that the distribution might be degenerate,

i.e. � might not have full rank. A concrete example for the computation of � is given in Example 1

below.
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A similar result holds for the other exercise probabilities which proves the second part

of the theorem.

Finally we deal with the hedging problem. By Itô's Lemma we have for the martingale

part of Ct

d (C)
M

t
=

2X
i=1

@C

@xi
(t;X1

t
; Y

1
t
;X

2
t
; Y

2
t
)d
�
X

i
�
M

t
+

2X
i=1

@C

@yi
(t;X1

t
; Y

1
t
;X

2
t
; Y

2
t
)d
�
Y
i
�
M

t

Now we get for the partial derivatives

@C

@x1
(t;X1

t
; Y

1
t
;X

2
t
; Y

2
t
) =

@

@X
1
t

E
P

t

��
�
d

t;T

��1 h
X

1
T
� Y

1
T

i+
1fX2

T
�Y 2

T g

�

+
@

@X
1
t

E
P

t

��
�
d

t;T

��1 h
X

1
T
� Y

1
T
�
�
X

2
T
� Y

2
T

�i+
1fX2

T
�Y 2

T g

�

Now by arguments similar to those in the proof of part 2 of Theorem 3.1 this equals

E
P

t

"�
�
d

t;T

��1 X1
T

X
1
t

� 1fX1

T
�Y 1

T g
1fX2

T
�Y 2

T g

#
+EP

t

"�
�
d

t;T

��1 X1
T

X
1
t

� 1fX1

T
�Y 1

T
>X2

T
�Y 2

T g
1fX2

T
>Y 2

T g

#
:

By the same argument as in the the �rst part of the proof this equals N2 (d
1
t
; d

2
t
; �t) +

Q
X

1

t
[A]. Similarly it is easy to show that

@C

@y1
= �

�
N2

�
d
3
t
; d

4
t
; �t

�
+Q

Y
1

t
[A]
�
;

@C

@x2
= �QX

2

t
[A] and

@C

@y2
= Q

Y
2

t
[A] :

Notice that C(t; x1; y1; x2; y2) is linear homogeneous in its last four arguments, since the

payo� of our option is linear homogeneous in the terminal values X i

T
and Y i

T
, and since

X
i

T
and Y

i

T
are linear functions of the initial values X i

t
and Y

i

t
. The remainder of the

argument is, therefore, as in the proof of Theorem 3.1 2

Inspection of the set A in equation (12) shows that in general one will not be able to price

a compound exchange option explicitely in the framework of our model. This is simply

due to the fact that the distribution of a linear combination of lognormal distributed
random variables is not known analytically.

There are, however, a number of numerical procedures that can be used to evaluate

the respective integrals. In some special cases there are even closed form solutions. In
the sequel we shall discuss examples and sketch di�erent numerical procedures for the

evaluation of the integrals. Finally, we shall also consider an example where the set A
is such that a closed form solution for the option price and the hedge portfolio can be

obtained.

Example 1: Consider pricing and hedging an option on the spread between the rate

of return over a certain period in the stock market and the �xed income market in a
foreign country. Assume that the payo� is received in the currency of another country,

the domestic country. As an example think of the following construction: The maturity

date of the option is nine month from now. The option is written on the di�erence

between the realization of three months LIBOR on French Francs six months from
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the present and the annualized rate of return on the CAC40 index over the last three

months of the lifetime of the option. The payo� of the entire derivative is received in

Deutschmarks.

To be precise for � > 0 let 1

�

�
S
f

T+�=S
f

T
� 1

�
be the annualized rate of return on the

stock index in the foreign country over the period from T to T + �. As in Section

3.2 the LIBOR rate in the foreign country for the period from T to T + � is given by
1

�

�
1=Bf (T; T + �) � 1

�
. Hence the payo� of our option equals

V

"
S
f

T+�

S
f

T

�
1

Bf (T; T + �)
�K

#+
= V

2
4
"
S
f

T+�

S
f

T

�
1

Bf (T; T + �)

#+
� [K � 0]

+

3
5
+

for some K > 0. To apply Theorem 4.1 we de�ne the lognormal claims X1
T+� :=

S
f

T+�=S
f

T
, Y 1

T+� := 1=Bf (T; T + �) and X
2 = K � Bd(�; T + �). As a �rst step we

need to determine the price process (X1
t
)
0�t�T+� and (Y 1

t
)
0�t�T+� under P . Applying

Proposition 2.4 we have

X
1
t
= X

1
0 exp

8<
:

tZ
0

r
d

s
ds �

1

2

tZ
0

j�X
1

s
j2ds+

tZ
0

�
X

1

s
dWs

9=
; ; (16)

where

X
1
0 =

B
f (0; T )

Bf(0; T + �)
B
d(0; T + �) exp

(
�
1

2

Z
T+�

0

�
j�f(s; T )1fs�Tgj

2

+ j�S
f

s
1fs>Tgj

2 � j�f(s; T + �)j2j�d(s; T + �)j2
�
ds

�
Z
T+�

0

�
�
f(s; T )1fs�Tg+�

S
f

s
1fs�Tg � �

f (s; T + �)
�
�
e

s
+
1

2
j�X

1

s
j2ds

)

�
X1

s
= �

f(s; T )1fs�Tg + �
Sf

s
1fs>Tg � �

f (s; T + �) + �
d(s; T + �) :

(17)

The corresponding formulas for Y 1 are easily obtained from those for X1 by simply

replacing �S
f

s
by �

f(s; T + �). The next step is to determine the joint distribution of
(lnX1

T+�; (lnY
1
T+�; lnX

2
T+�). Since X2

T+� is constant and equal to K this distribution

is a bivariate normal distribution. Again the mean of this distribution depends on the
measure while the covariance matrix does not. The parameters �(QX

1

), �(QY
1

), �(QX
2

)

and � are given in Appendix B. With this information at hand there are now several
possibilities for evaluating the option pricing formula.

First one might evaluate the integral by a simple Monte-Carlo simulation. To obtain one
simulated value we �rst make a draw from two independent standard normal variates,
denoted by (z1; z2). We then transform the result as follows

�
~x1(z1; z2)

~x2(z1; z2)

�
= �(Qx

1

) + ~�

�
z1

z2

�
(18)

where ~�~�
T

= �. We then check, if the vector (~x1(z1; z2); ~y
1(z1; z2)) belongs to ~A which

in our case reduces to the set f(~x1; ~x2) 2 IR2 j exp(~x1)� exp(~x2) � Kg. If so we denote
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a 1, otherwise we denote a 0. Summing the ones over all simulations and deviding

by the total number of simulations gives an estimate of QX
1

[A]. Analogously we can

use the simulated values (z1; z2) to obtain estimates for QY
1

[A] and Q
X

2

[A] and hence

obtain a simulation of all four exercise probabilities from one draw of (z1; z2). Of course

variance reduction methods like the antithetic variable technique and modern Monte

Carlo methods using quasi random numbers may be used to improve the accuracy of

the method. For an account of these techniques see for instance (Boyle, Broadie, and

Glasserman 1995).

Alternatively we could conduct a regular grid search. Starting from the observation

that the density of the normal distribution is approximately zero outside the inter-

vall I := [�3; 3] one partitions I into n sub-intervalls. One may consider di�erent

ways of partitioning, e.g. such that the n sub-intervals have equal length or such

that the n sub-intervals have equal mass under the standard normal distribution. Let

M(n) = fm(1); : : : ;m(n)g denote the set of the midpoints of the n sub{intervals of I
under one of the two partitioning schemes mentioned. Then a two{dimensional grid
is de�ned by (M(n))2 := M(n) �M(n). Further denote by �(n) = f�(1); : : : ; �(n)g
the set of increments of the standard normal distribution function over the n sub{
intervals generated by one of the partitions. Then we associate with every element
m = (m(j1);m(j2)) belonging to (M(n))2 the weight �(m) := �(j1) � �(j2). We now
transform the elements m 2 (M(n))2 as in (18) and de�ne

s
1 : (M(n))2 ! f0; 1g ; m 7! s

1(m)

by s1(m) := 1 if the vector (~x1(m(j1);m(j2)); ~x
2(m(j1);m(j2))) belongs to ~A, s1(m) := 0

otherweise. The approximation for Q1[A] is then given by

Q
X

1

[A] =
X

m2(M(n))2

s
1(m)�(m) :

Of course to compute the exercise probabilities under the measures corresponding to

the numeraires Y 1 and X
2 one can proceed analogously.

As to a comparison of the two methods we found that for problems where the rank of
the covariance matrix � exceeds 3 the Monte Carlo approach seems more favourable

whereas for rank (�) � 3 a grid search approach seems to be advantageous. This is

due to the fact that the number of grid points and hence the number of computations
increases exponentially with the rank of � whereas using a Monte Carlo approach the

number of computations grows only linearly with the rank of �.

Example 2: As an example of an option whose price and hedge portfolio can be

calculated explicitely consider a put option on the maximum of the rates of the �xed

income market and the stock market, i.e.

V �

"
K �max

(
1

�

 
1

Bf(T; T + �)
� 1

!
;
1

�

 
S
f

T+�

ST

� 1

!)#+
=

V �

2
4"K �

1

�

 
1

Bf(T; T + �)
� 1

!#+
�

1

�

"
S
f

T+�

ST
�

1

Bf (T; T + �)

#35
+

=
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V

2
4
"
~K �

1

Bf(T; T + �)

#+
�

"
S
f

T+�

ST
�

1

Bf(T; T + �)

#3
5
+

;

where ~K = �K � 1. Again the payo� is assumed to be in domestic currency. The

interpretation of this payo� is simple. If both, the �xed income and the stock market

in country 1 underperform over the period from T to T + � with respect to a certain

predetermined minimum rate of return this option bails out the portfolio manager.

To develop this example further we introduce the following notation:

X
1 := ~KB

d(�; T + �), X2 is the same as the process X1 in Example 1, and Y is the

same process as Y 1 in Example 1. Using this notation the payo� of the above option

can be rewritten as follows

V

�h
X

1
T+� � YT+�

i+
�
h
X

2
T+� � YT+�

i+�+
:

From this formula we immediately get that the set A de�ned in (12) is given by

A = f! 2 
 j (X1
T+� > YT+�) \ (X1

T+� > (X2
T+�)g

Since this expression does not contain any di�erences of lognormal claims, the exercise

probabilities can be computed explicitely. We remark, however, that the formula ob-
tained in this way contains unnecessarily many bivariate normal distributions. A more
e�cient decomposition of the payo� is given in (Frey and Sommer 1995).

5 Conclusion

The paper treats the valuation and hedging of non-pathdependent European options
on several underlyings with interest rate risk. Using martingale techniques in many
cases we are able to provide general closed form solutions together with a procedure for

applying these general solutions to some speci�c payo� at hand. In cases where explicit

solutions do not exist we give near explicit solutions for both pricing and hedging.

The main restriction of our approach is the assumption of deterministic volatilities which

is particularly bothersome in the case of bonds. However, it is known from the interest

rate literature that it is di�cult to relax this hypothesis if one is interested in explicit

solutions.
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6 Appendix

A Payo�pro�les

Options on the maximum of two lognormal claims: We have

h
maxfX1

T
;X

2
T
g �K

i+
=

�h
X

1
T
�K

i+
�
h
X

2
T
�K

i+�+
+
h
X

2
T
�K

i+
Options on the minimum of two lognormal claims:
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T
;X
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g �K
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=
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1
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�K

i+
�
�h
X
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h
X

2
T
�K

i+�+

Spread options: We distinguish two cases. First consider a positive strike price K:

h
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1
T
�X

2
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�K
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�KT
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�
h
X

2
T
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Next consider a negative strike price K: De�ne ~K := �K. The payo� of the option is
now h

X
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T
�X

2
T
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Dual strike options: Again we have two cases.
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:

B Example 1: Distributions

From equation (16) we have for X1
T+�

X
1
T+� =

X
i

0

Bd(0; T + �)
exp

(
�
1

2
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)
:

A similar equation holds for Y 1
T+� if we replace �X

1

by �Y
1

. Hence we see that 
lnX1

T+�

lnY 1
T+�

!
� N2 (�(�); �) ;

where N2 (�(�);�) is now a bivariate normal distibution. For � we obtain
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For �(�) we obtain
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