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Abstract

J.M. Grandmont claims in his paper "Transformations of the Com-
modity Space, Behavioral Heterogeneity, and the Aggregation Problem"
(1992) to model "behavioral heterogeneity". By a speci�c parametrization
he de�nes a subset of all demand functions and assumes that the distri-
bution of the parameters is getting more dispersed (increasing 
atness of
the density function). This increasing dispersedness of the parameters is
interpreted as "increasing heterogeneity" of the population of households
described by the distribution of demand functions. But, due to the spe-
ci�c parametrization, increasing dispersedness of the parameters leads to
an increasing concentration of the demand functions. Therefore, roughly
speaking, Grandmont rather models increasing "behavioral similarity".

JEL Classi�cation System: D 11, D 30, D41, E 10

Keywords: Aggregate Demand, Aggregation, Behavioral Heterogeneity



1 Introduction

Behavior of a consumer is described by his demand function, which associates
with each price-income situation a demand vector. Given a probability measure
� on the set F of all demand functions, the mean demand of a population of
consumers with identical income yet di�erent demand functions is de�ned by

�f(p;w) =
Z
F
f(p;w)d�:

One would tend to speak of \behavioral heterogeneity", if the support of the
distribution � contains \many di�erent" demand functions and, furthermore,
the distribution � is not concentrated on a \small subset". Hence, in this view,
a sequence (�n) does not display increasing behavioral heterogeneity if with in-
creasing n more and more weight is concentrated on a \small subset" of F . This
is not a de�nition of \behavioral heterogeneity", yet it excludes situations that
qualify as \behavioral heterogeneity".

Since the space F of demand functions is an in�nite dimensional function
space, it is di�cult to give a precise meaning of a \small subset" in F . To avoid
this conceptional mathematical di�culty many authors therefore consider the
following set-up: let C � IRn denote a �nite dimensional parameter space and
let T be a mapping of C in F . Thus, T de�nes a parametrization of demand
functions. A probability measure � on C then induces a probability measure �
on F that is de�ned as the image measure of � under the mapping T .

Obviously, a parameter distribution � that is dispersed - a concept which is
well de�ned since � is a distribution on IRn - does not necessarily imply that the
induced distribution � on F models \behavioral heterogeneity". Indeed, whether
a sequence (�n) on C , which is increasingly dispersed, models \increasing het-
erogeneity" in the above sense, depends entirely on the chosen parametrization
T . It might well happen that the sequence (�n) is increasingly dispersed yet the
induced sequence (�n) on F is increasingly concentrated, that is to say, more and
more weight is given to a very small subset of F . This is exactly what happens
in Grandmont's model.

The intention of this paper is to show, by using Grandmont's well-known
model as an example, that every ad hoc parametrization of demand functions
contains an inherent danger of misinterpretation. Easily interpretable assump-
tions on the parameter distribution � might imply quite unintentional properties
of the induced distribution � of demand functions. This remark, of course, is
obvious, yet, it seems that it has been overlooked in the literature on behavioral
heterogeneity.
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2 Grandmont's Model

Behavior of a consumer is described by his demand function, which is

f : IP l � IP ! IRl
+ with

pf(p;w) = w and f(�p; �w) = f(p;w) for all p 2 IP l; w 2 IP ; � 2 IP

where IP denotes the set of positive numbers and l is the number of commodities.

The set of all continuous demand functions is denoted by F and is endowed
with the topology of uniform convergence on compact subsets.

Grandmont gives the following two equivalent parametrizations, where 

denotes the componentwise product of two vectors, and exp(�) is applied com-
ponentwise. Given a �xed demand function f , called the generating function

1. the parameter set is IP l and T (v)(p;w) := v 
 f(v 
 p;w); v 2 IP l

2. the parameter set is IRl and T (�)(p;w) := exp(�)
f(exp(�)
p;w); � 2 IRl:

The demand functions T (v); T (�) are called the transformed functions and, to
shorten the notation, are written as fv; f� - the latin, greek letter decides which
transformation has to be used.

The distribution � on the �-parameter space IRl is assumed to be given by
a continuously di�erentiable density function �:

Clearly, for each measure � on IRl there is by the mapping exp(�) the corre-
sponding image measure � on IP l: To each such pair of measures (�; �) belongs
an image measure � on F by the mappings T (v); T (�): Whether a sequence
(�n) or (�n) of measures on the parameter space IRl or IP l models increasing be-
havioral heterogeneity can only be decided by considering the sequence (�n) of
measures on F: Grandmont's increasing 
atness condition is a condition on the
sequence (�n): His condition means increasing dispersedness of the parameter
� and can be interpreted as increasing heterogeneity of the �-parameters. But
this does not necessarily imply that also the sequence (�n) of distributions of
demand functions models \increasing behavioral heterogeneity". In fact, we will
show that Grandmont's increasing 
atness condition implies increasing concen-
tration of the measures �n; which can be interpreted as \increasing behavioral
similarity".

Grandmont considers a set A of \types" of consumers and therefore for each
a 2 A a generating demand function f(a; �; �) and a density function �(a; �)
getting 
at. Obviously, this more general set-up is not essential for the point to
be made in the following two sections.
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3 An Example

In this section we choose an example where all calculations can be made explicit.
We consider the case of 2 commodities, the distribution of the �-parameters is
the 2-dimensional, uncorrelated, symmetric normal distribution, i.e.,

�(�1; �2) =
1

2�s2
exp

 
��2

1 + �2
2

2s2

!
; s2 > 0; (1)

and the generating demand function f has the following properties

f is linear in income, i.e., f(p; �w) = �f(p;w); � > 0 (2)

and


1 := lim
p1!0

p1f1(p1; 1; 1) and 
2 := lim
p2!0

p2f(1; p2; 1) exist: (3)

The normal distribution is chosen only to allow explicit calculations - in
the next section we consider the general case. Clearly, Grandmont's increasing

atness condition, i.e.,

m(�n) := max
h=1;2

Z
IR2

j@�n
@�h

(�)jd� ���!
n!1

0

then is equivalent with
s2 �!1:

The assumption of linearity in income is restrictive, but simpli�es this exam-
ple and will be dropped in the next section.

The existence of the limits in (3) means a mild restriction on the boundary
behavior of f . The case lim inf

p1!0
p1f1(p1; 1; 1) < lim sup

p1!0
p1f1(p1; 1; 1) would mean

that f1(p1; 1; 1) would tend to in�nity on a \hysteric-like" path.

Proposition 1: Assume (1), (2) and (3) and de�ne the two demand functions

g1(p;w) :=

 

1
p1
;
1� 
1
p2

!
� w and g2(p;w) :=

 
1� 
2
p1

;

2
p2

!
� w :

Then, for every neighborhood U1 of g1 and U2 of g2, respectively, with respect
to the topology1 of uniform convergence on compact subsets,

lim
s2!1

�s(f�jf� 2 U1 [ U2g) = 1;

1One could also use the topology of uniform convergence on compact subsets of the func-

tionvalues and the derivative.
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where �s denotes the probability measure belonging to the density �s:

If U1 \ U2 = ;, hence g1 6= g2, then

lim
s2!1

�s (f�jf� 2 U1g) = lim
s2!1

�s (f�jf� 2 U2g) = 1

2
:

Corollary 1: The image measures �s, generated by the mapping � 7! f�, on
the set F of all continuous demand functions, converge with respect to the weak
topology to a probability measure �1 on F; given by

�1(fg1g) = �1(fg2g) = 1

2
if g1 6= g2

�1(fg1g) = 1 if g1 = g2 :

Corollary 2: The limit mean demand function exists and is given by

�f1(p;w) := lim
s2!1

Z
IR2

f�(p;w)�s(�)d� =

 

1 + (1 � 
2)

2p1
;
(1 � 
1) + 
2

2p2

!
� w :

Corollary 3: If f is a CES-demand function, i.e.,

f(p;w) =
(a�p��1 ; (1� a)�p��2 )

a�p1��1 + (1� a)�p1��2

� w 0 < a < 1 ; � > 0;

then

�f1(p;w) =

8>>>>><>>>>>:

 
a

p1
;
(1� a)

p2

!
� w if � = 1

 
1

2p1
;
1

2p2

!
� w if � 6= 1 :

First we discuss the above results, then we will show in Lemma 1 and 2 the
facts which lie behind. Then the proofs of Proposition 1 and its Corollaries will
be straightforward.

Since �s(�) > 0 for all �2IR2; s22IP , the support of �s is equal to IR2: Hence,
the set of demand functions which in
uence the integral

R
IR2 f�(p;w)�s(�)d�

does not depend on s2. Increasing 
atness of �s, i.e. s2 ! 1, means that
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the distribution of the �-parameters becomes more dispersed, but, according to
Corollary 1, the distribution of the demand functions f� becomes more con-
centrated around the two (or one) Cobb-Douglas demand functions g1 and g2.
Hence

Conclusion: Increasing 
atness of �, i.e. increasing dispersedness of the �-
parameters, induce increasing concentration of the demand functions f�, i.e.
increasing behavioral similarity.

The situation becomes clearer, if one changes the parametrization. Note, �
enters in the mapping � 7! f� only as v = exp(�) 2 IP l. Hence
v 7! fv; v 2 IP l, is the \natural", or \intrinsic", parametrization. We will
see that increasing dispersedness of the �-parameters induces increasing concen-
tration of the v-parameters, and this leads to increasing concentration of the
considered demand functions.

Using the transformation v = exp(�) we replace the �-parameter space IR2

by the strictly positive orthant IP 2, the v-parameter space. The probability
measure � on IR2 and the transformation v = exp(�) generates a probability
measure � on IP 2. The connection of the two parameter spaces are illustrated
in Figures 1 and 2.

A
G

G1

2

δ

δ

δ

1

log

log(1-   ) 1

1δ

A’
G’1

G’2

0

2

1

A’

A’
A2

A0

(1-   )

Figure 1: �-space Figure 2: v-space

The lines G1; G2 correspond to the (open) rays G0
1; G

0
2; the areas A1 (above

G1), A0 (between G1 and G2); A2 (below G2) correspond to A0
1 (\triangle" be-

tween the 2-axes and G0
1), A

0
0 (\triangle" between G0

1 and G0
2), A

0
2 (\triangle"

between G0
2 and the 1-axes), and the hyperbel-like graph f(log �; log(1��)) j 0 <

� < 1g corresponds to the open unit simplex. De�ning the distance between the
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two lines G1 and G2 as 2�; one obtains

� = j log(�)� log(1� �)j=
p
2:

One obtains �(A1) by a 45� anticlockwise rotation, i.e. A1 becomes the strip
f(�1; �2)j�1 � ��g, and then integrating over �2. Hence

�(A1) =
Z �=��

�=�1

1p
2�s2

exp

 
� �2

2s2

!
d�

and �(A0); �(A1) when setting the interval of integration to [��;+�]; [�;+1);
respectively. Since the integrant is the density of the one-dimensional normal
distribution it follows the

Lemma 1: Given 0 < � < 1
2 , then

�s(A0
1) = �s(A1) ! 1

2

�s(A0
0) = �s(A0) ! 0

�s(A0
2) = �s(A2) ! 1

2

9>>>=>>>; for s2 !1 :

In other words, Lemma 1 states, that increasing 
atness of �, i.e. increas-
ing dispersedness of the �-parameters, means that the v-parameters are getting
more and more concentrated near the axes, in the sense that most v-vectors are
contained in two \triangles" which have arbitrarily small chosen angle.

Next we ask, what does the fv look like for v 2 A0
1 [ A0

2; when A0
1; A

0
2 are

becoming small, i.e. �! 0: Because we have assumed that f is linear in income,
hence f�v = fv; � > 0, we have only to compute the limits

lim
�!0

f (�;1��) and lim
�!0

f (1��;�) :

We obtain the pointwise convergence

f
(�;1��)
1 (p;w) = �f1(�p1; (1 � �)p2; w) = �f1

 
�p1

(1 � �)p2
; 1;

w

(1� �)p2

!

=
w

p1
� �p1
(1� �)p2

f1

 
�p1

(1 � �)p2
; 1; 1

!
��!
�!0


1w

p1

and, analogously,

f
(1��;�)
2 (p;w) ��!

�!0


2w

p2
:
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Obviously, this pointwise convergence is uniform, if p and w are contained in
compact sets. Hence, we have shown

Lemma 2:

lim
�!0

f (�;1��) = g1 and lim
�!0

f1��;� = g2

with

g1(p;w) =

 

1w

p1
;
(1 � 
1)w

p2

!
and g2(p;w) =

 
(1 � 
2)w

p1
;

2w

p2

!
:

Now we can give the

Proof of Proposition 1: Using f�v = fv; � > 0; we get from Lemma 2 that
for every neighborhood U1 of g1 and U2 of g2, respectively, there exists a � > 0
such that

fv 2 U1 if v1=v2 < � and fv 2 U2 if v2=v1 < �:

With Lemma 1 follows the claimed convergence

lim
s2!1

� (f�jf� 2 U1 [ U2g) = 1:

The remaining part of Proposition 1 is obvious in the case of a symmetric dis-
tribution.

Q.E.D.

Corollaries 1 and 2 follow immediately from the proposition. To prove Corol-
lary 3, one only has to compute the two limit values 
1 and 
2.

4 The General Case

In this section we do not assume a functional form of the density function �;
and the generating demand function f can be any demand function. We shift
all proofs to the end of this section.

For � 2 IR with 0 < � < 1=l we de�ne the following subsets of the open unit
simplex

S := fv 2 IRl j v� 0;
X

vh = 1g
B� := fv 2 S j minvh < �g
I� := fv 2 S j minvh � �g:
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Given a vector of direction r, i.e.
P
r2h = 1; the probability distribution � on

IRl; generated by the density function �, de�nes (according to the Theorem of
Fubini) on the one-dimensional subspace hri a marginal measure with density.

'r(��) =
Z
hri?

�r(��; x
0)dx0;

where �r denotes the function � written in the transformed coordinates � and
x0 with respect to the subspaces hri and hri?, respectively. But note, without
further arguments, we can not exclude the case that 'r(��) =1 for a nul-set of
��-values.

Denote by
@�

@r
:= r grad(�) the partial derivative of � in direction r.

Lemma 3:

(i) If m(�) := max
h

Z
j @�
@�h

(�)jd� <1

then m(�; r) :=
Z �����@�@r (�)

����� d� � p
l �m(�)

(ii) If m(�; r) :=
Z �����@�@r (�)

����� d� <1

then jj'rjj := supf'r(�)j� 2 IRg � 1

2
m(�; r):

Grandmont's increasing 
atness condition means that m(�) ! 0: What is
actually used is jj'rjj ! 0; a somewhat weaker property.

Proposition 2: For every number � with 0 < � < 1=l and every vector of
direction r; which is orthogonal to the diagonal, i.e.,

P
rh = 0;

� (f�v j v 2 I�; � > 0g) � 2
p
l j log �j � k'rk;

where � denotes the image measure of � by the transformation v = exp(�).

If �n is a sequence of densities with k'r;nk ! 0 then for every 0 < � < 1=l

lim
n!1

�n (f�v j v 2 I�; � > 0g) = 0

lim
n!1

�n (f�v j v 2 B�; � > 0g) = 1:
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Hence, the integral
R
fv(p;w)d�n(v) =

R
f�(p;w)d�n(�) depends more and

more on those fv; for which v=
P
vh gets to the boundary. How those fv are

determined shows the following

Proposition 3: For every compact subset K of IP l, there exists a � > 0, such
that

�v 
 p =2 K for all � > 0 ; v 2 B� ; p 2 K:

If f and g are two demand functions with f(p;w) = g(p;w) for all p =2 K, w > 0,
then

f�v(p;w) = g�v(p;w) for all � > 0 ; v 2 B� ; p 2 K ; w > 0:

In other words, although the generating demand function is arbitrarily changed
on a compact set of prices, for these prices the transformed demand function fv

remains unchanged, if v=
P
vh is close enough to the boundary. On the other

hand, according to Proposition 2, only those fv contribute substantially to the
integral when a sequence of �'s with increasing 
atness is considered. Roughly
speaking, it is the boundary behavior of the generating demand function which
determines the aggregate demand function. To assume that demand for a com-
modity tends to in�nity when its relative price tends to zero, is a useful technical
assumption. But to base a theory on the speed, i.e. whether demand runs to
in�nity slower, faster or with equal speed as the price runs to zero, is not ac-
ceptable. In fact, Grandmont \almost" assumes the boundary behavior of a
Cobb-Douglas function (p. 18, Assumption (2e)).

If the generating demand function f is linear in income, then the relevant
parameter distribution is the measure �� on the unit simplex, de�ned by

��(A) := � (fv + �1jv 2 A \ Sg) ; A � � := fv 2 IRl
+j
X

vn = 1g:

If m(�n) ! 0; then the sequence (�n) does not converge and the sequence (�n)
typically does not converge, but for the sequence (��n ) we have

Proposition 4: If m(�n)! 0 then for every neighborhood U of the edge-points
of the simplex �

lim��n (U) = 1:

Every subsequence of (��n ) has a convergent subsequence whose limit ��1 ful�lls

��1(f edge-points of �g) = 1:
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Proof of Lemma 3: Using
@�

@r
= r � grad� and maxfP jrij j P r2i = 1g = p

l

we obtain (i) byZ
j@�
@r
j =

Z
jX rh

@�

@�h

j �
Z X jrh @�

@�h

j =
Z X jrhj � j @�

@�h

j

=
X 

jrhj
Z
j @�
@�h

j
!
�
�X jrhj

�
�max

h

Z
j @�
@�h

j �
p
l m(�) :

Now we prove (ii). If we would know that for every �� there are an " > 0 and
integrable functions g; g1 : IRl�1 ! IR+ with

j�r(�; x0)j � g(x0) and

�����@�r@r
(�; x0)

����� � g1(x
0)

for all � 2 [�� � "; �� + "] and x0 2 IRl�1

then we would obtain (Dieudonn�e (1970), Th. 13.8.6) that 'r is continuously
di�erentiable and

'0r(
��) =

Z
hri?

@�r
@�

(��; x0)dx0:

Clearly, the needed condition is ful�lled if � is a product measure with respect to
the subspaces hri and hri?: But in general we have to be more explicit. De�ne
for every natural number k the function

�rk(�; x
0) :=

(
�r(�; x0) if x0 2 [�k; k]l�1
0 otherwise

Clearly, for �rk the above stated condition is ful�lled, while the discontinuity of
�rk(�; �) on the boundary of the cube [�k; k]l�1 doesn't matter.

Since
R
'rk � 1, there exist sequences �

n
! �1 and ��n ! +1 with

'rk(�n)! 0 and 'rk(��n)! 0 and therefore

'rk(��) =
Z ��

�1
'0rk(�)d� = �

Z 1

��
'0rk(�)d�:

Hence,

0 =
Z 1

�1
'0rk(�)d� =

Z +1

�1

Z
hri?

@�rk
@�

(�; x0) dx0d� =
Z
IRl

@�k
@r

(�)d�

=
Z
@�

@r
(�)�0

@�k
@r

(�)d� +
Z
@�

@r
(�)�0

@�k
@r

(�)d�:
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Therefore we obtain

m(�k; r) =
Z
IRl
j@�k
@r

(�)jd�

=
Z
@�
@r

(�)�0

@�k
@r

(�)d� �
Z
@�
@r

(�)�0

@�k
@r

(�)d� = 2
Z
@�
@r

(�)�0

@�k
@r

(�)d�:

Hence

'rk(��) =
Z ��

�1
'0rk(�)d� �

Z
'0
rk
(�)�0

'0rk(�)d�

�
Z 1

�1

Z
@�r
@�

(�;x0)�0

@�rk
@�

(�; x0)dx0d� � m(�; r)

2
:

Hence, we have shown

'rk(��) � m(�; r)

2
for all k and ��:

Since �rk; k = 1; 2; : : : ; is pointwise increasing, we obtain with the Theorem of
Lebesque

'r(��) = lim
k!1

'rk(��) � m(�; r)

2
:

Q.E.D.

Proof of Proposition 2: The set A0
� := f�vjv 2 I�; � > 0g is the image of

A� := flog v + � � 1 j v 2 I�; � 2 IRg by the transformation v = exp(�); and 1

denotes the vector with all components equal to one. Therefore we have to show
that �(A�) � 2

p
lj log �j � k'rk:

Clearly, the set A� remains unchanged if we replace log v by the projection

of log v on the hyperplane 1?: Setting C� := flog v�
P

log vh
l

1 j v 2 I�g we have
A� = f� + �1 j � 2 C�; � 2 IRg:

Since C� � projhriC� � hri? and 1 2 hri?, we have

A� � eA� := f� + �0 j � 2 projhriC� ; �
0 2 hri?g:

Hence

�(A�) � �( eA�) =
Z
proj<r>C�

'r(�)d�

� k'rk length(projhriC�):
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For � 2 C� the coordinate of projhri� with respect to the space hri is r ��. With

jr�j = jX rh(log vh �
P
log vi
l

)j = jX rh log vh � (
X

rh)

P
log vh
l

j
= jX rh log vhj �

X jrhjj log vhj �
X jrhj � j log �j

�
p
lj log �j

it follows length(projhriC�) � 2
p
lj log �j. Hence, the �rst part of Proposition 2

is proved; the second part is an immediate consequence of the �rst part.
Q.E.D.

Proof of Proposition 3: Since K is assumed to be a compact subset of IP l;
we have

0 < �1 := minfphjp 2 Kg and �2 := maxfphjp 2 Kg <1:

We will show that every � with

�

1 � �
<

�2
1

�2
2(l� 1)

has the required properties. For this we have to show that

min
h
(�v 
 p)h < �1 or max

h
(�v 
 p)h > �2 for all � > 0 ; v 2 B� ; p 2 K:

Since min
h
(�v 
 p)h � � �minvh �maxph � �� � �2 the assertion is proved, if by

luck ���2 < �1. Otherwise we have � � �1
��2

, and therefore we obtain

max
h

(�v 
 p)h � �max vh �minph � �
1 � �

l � 1
� �1 � �2

1

�2
� 1� �

�(l� 1)
> �2:

Q.E.D.

Proof of Proposition 4: Denote

V �
ij := fv 2 Sjvi; vj � �g ; i 6= j; � > 0:

With respect to the direction r de�ned by ri = 1=
p
2; rj = �1=p2; rh = 0

for h 6= i; j; the set V �
ij has a �nite diameter. Hence by Lemma 3

lim
n!1

��n (V
�
ij) = 0;

12



and therefore
lim
n!1

��n
�
{ [i6=j V

�
ij

�
= 1;

where { denotes the complement.
Obviously, for the given neighborhood U there exists a �� > 0 such that

{ [i6=j V
��
ij � U;

which proves the �rst part of Proposition 4. The second part is just an applica-
tion of the weak topology of measures.

5 Discontinuity, Indeterminateness, Types of

Consumers

For the example, given in Section 2, we have shown in Corollary 2, that the limit
aggregate demand function �f1 exists. But, according to Corollary 3, the limit
function �f1 does not depend continuously on the generating demand function:
with respect to the topology of uniform convergence on compact sets of the
function values and the derivative, the CES-demand function f(�; �; a; �) depends
continuously on 0 < a < 1, � > 0, but the limit function �f1(�; �) does not
depend continuously on a and � when a 6= 1

2
and � = 1. This discontinuity is a

consequence of the following two facts:

1. The topology of uniform convergence on compact subsets does not re
ect
how fast a function runs to in�nity at the boundary. Therefore the function
x��; x 2 IP ; converges to the function x�1; x 2 IP; for � ! 1: This means,
that a CES-function converges to a Cobb-Douglas function if � ! 1.

2. According to Proposition 3, the aggregation process depends only on the
boundary behavior of the generating function f .

In general, the limit aggregate demand function �f1 may not exist. First we
consider an example.

Let be (�n) a sequence of densities on IR2 with m(�n)! 0 and such that for
even/odd n the second/fourth quadrant has full measure; such a sequence can
be easily constructed. As the generating demand function choose

f(p;w) = �

 
w

2p1
;
w

2p2

!
+ (1� �)

�
a�p��1 ; (1� a)�p��2

�
a�p1��1 + (1� a)�p1��2

� w

with 0 < � < 1; a 6= 1
2 ; � 6= 1. This function f ful�lls Grandmont's boundary

condition (Assumption (2e), p. 18).
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Now the sequence �fn(p;w) :=
R
f(p;w)�n(�) d� has two accumulation points,

which are

(p;w) 7! �

 
w

2p1
;
w

2p2

!
+ (1� �)

8<: ( w
p1
; 0)

(0; w
p2
)
:

Although, there are two limit functions, there is no contradiction to Grandmont's
result (Theorem 2.3, p. 19), because the derivative of both limit functions is a
diagonal matrix with strictly negative diagonal.

Now we consider the general case. For a sequence (�n) of densities with
m(�n) ! 0, the sequence of measures (�n) on IRl does not converge; total mass
vanishes to in�nity, i.e. lim�n(A) = 0 for every bounded A. Also the image
measures (�n) on the v-parameter space IP l typically does not converge; some
mass moves to the origin and some mass vanishes to in�nity. But the measures
��n on the unit simplex converge or have several accumulation points. If the
generating demand function is linear in income, then �n can be replaced by
��n , and hence, one expects one or several limit functions. But these functions
depend on the boundary behavior of the generating demand function and on the
manner how total mass vanishes to in�nity by the measures �n.

Up to now, we have only considered one generating demand function f and
density �. Grandmont considers a set A of \types" of consumers and therefore
for each a 2 A a generating demand function f(a; �; �) and a density function
�(a; �) getting 
at. Does this help? No, it makes the story even worse!

Because of Grandmont's independence assumption (p. 18, Assumption (2d)),
we can compute the overall aggregate demand function by �rst integrating over
the parameter � with respect to a measure � which does not depend on a, and
then integrating over A; i.e.Z

a2A

�Z
IRl
f�(a; p; w)d�

�
da:

As we have seen, the inner integral depends, with increasing 
atness, more and
more on the boundary behavior of f(a; �; �). If the family ff(a; �; �) j a 2 Ag
would display, \in some sense", behavioral heterogeneity, but with the same
boundary behavior, then this heterogeneity would be lost by increasing 
atness
of �(a; �). Hence, increasing 
atness of the density � can only destroy, but not
generate behavioral heterogeneity. Nevertheless, Grandmont's model has been
used by many scienti�c authors.
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