
Estimating a Social Accounting Matrix
Using Entropy Difference Methods

Sherman Robinson

Moataz El-Said

International Food Policy Research Institute
Washington, DC

September 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6333086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

There is a continuing need to use recent and consistent multisectoral economic
data to support policy analysis and the development of economywide models. Updating and
estimating input-output tables and Social Accounting Matrices (SAMs) for a recent year is a
difficult and a challenging problem. Typically, input-output data are collected at long intervals
(usually five years or more), while national income and product data are available annually, but
with a lag. Supporting data also come from a variety of sources; e.g., censuses of manufacturing,
labor surveys, agricultural data, government accounts, international trade accounts, and
household surveys. The problem in estimating a SAM for a recent year is to find an efficient (and
cost-effective) way to incorporate and reconcile information from a variety of sources, including
data from prior years. The traditional RAS approach requires that we start with a consistent SAM
for a particular period and “update” it for a later period given new information on row and
column sums. This paper extends the RAS method by proposing a flexible entropy difference
approach to estimating a consistent SAM starting from inconsistent data estimated with error, a
common experience in many countries. The method is flexible and powerful when dealing with
scattered and inconsistent data. It allows incorporating errors in variables, inequality constraints,
and prior knowledge about any part of the SAM (not just row and column sums). Since the input-
output accounts are contained within the SAM framework, updating an input-output table can be
viewed as a special case of the general SAM estimation problem. The paper presents the
structure of a SAM and a mathematical description of the estimation problem. It then describes
the classical RAS procedure and the entropy difference approach. An example of the entropy
difference approach applied to the case of Mozambique is presented. In addition, an appendix
includes a listing of the computer code in the GAMS language used in the procedure. 

Paper presented at the MERRISA (Macro-Economic Reforms and Regional
Integration in Southern Africa) project workshop. September 8 -12, 1997, 
Harare, Zimbabwe. Our thanks to George Judge, Amos Golan, Hans Löfgren,
and workshop participants for helpful comments on earlier drafts 
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Introduction

There is a continuing need to use recent and consistent multisectoral economic data to
support policy analysis and the development of economywide models. A Social Accounting
Matrix (SAM) provides the underlying data framework for this type of model and analysis. A
SAM includes both input-output and national income and product accounts in a consistent
framework. Input-output data are usually prepared only every five years or so, while national
income and product data are produced annually, but with a lag. To produce a more disaggregated
SAM for detailed policy analysis, data are often supplemented by other information from a
variety of sources; e.g., censuses of manufacturing, labor surveys, agricultural data, government
accounts, international trade accounts, and household surveys. The problem in estimating a
disaggregated SAM for a recent year is to find an efficient (and cost-effective) way to incorporate
and reconcile information from a variety of sources, including data from prior years. 

Estimating a SAM for a recent year is a difficult and challenging problem. A standard
approach is to start with a consistent SAM for a particular prior period and “update” it for a later
period, given new information on  row and column totals, but no information on the flows within
the SAM. The traditional RAS approach, discussed below, addresses this case. However, one
often starts from an inconsistent SAM, with incomplete knowledge about both row and column
sums and flows within the SAM. Inconsistencies can arise from measurement errors,
incompatible data sources, or lack of data. What is needed is an approach to estimating a
consistent set of accounts that not only uses the existing information efficiently, but also is
flexible enough to incorporate information about various parts of the SAM. 

In this paper, we propose a flexible entropy difference approach to estimating a consistent
SAM starting from inconsistent data estimated with error. The method is very flexible,
incorporating errors in variables, inequality constraints, and prior knowledge about any part of
the SAM (not just row and column sums). The next section presents the structure of a SAM and a
mathematical description of the estimation problem. The following section describes the classical
RAS procedure, followed by a discussion of the entropy difference approach. Next we present an
example of the entropy difference approach applied to the case of Mozambique. An appendix
presents the computer software used in the procedure. 

Structure of a Social Accounting Matrix (SAM)

A SAM is a square matrix whose corresponding columns and rows present the
expenditure and receipt accounts of economic actors. Each cell represents a payment from a
column account (actor) to a row account. Define T as the matrix of SAM transactions, where Ti,j

is a payment from column account j to row account i. Following the conventions of double-entry
bookkeeping, the total receipts (income) and expenditure of each actor must balance. That is, for
a SAM, every row sum must equal the corresponding column sum: 



yi ' j
j

Ti,j ' j
j

Tj,i

Ai,j '
Ti,j

yj

y ' Ay
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(1)

(2)

(3)

where y  is total income and expenditure of account i. i

A SAM coefficient matrix, A,  is constructed from T by dividing the cells in each column
of T by the column sums:

By definition, all the column sums of A must equal one, so the matrix is singular. Since column
sums must equal row sums, it also follows that (in matrix notation):

A typical national SAM includes accounts for production (activities), commodities,
factors of production, and various actors (“institutions”) which receive income and demand
goods. The structure of a simple SAM is given in Table 1. Activities pay for intermediate inputs
and factors of production and receive payments for exports and sales to the domestic market. The
commodity account buys goods from activities (producers) and the rest of the world (imports)
and sells commodities to activities (intermediate inputs) and final demanders (households,
government, and investment). In this simple SAM, tariffs, indirect taxes, and subsidies are left
out. Gross domestic product (GDP) at factor cost (payments by activities to factors of
production) equals gross domestic income and also equals GDP at market prices (consumption
plus investment plus government demand plus exports minus imports). 

The matrix of column coefficients, A, from such a SAM provide raw material for much
economic analysis and modeling. For example, the intermediate-input coefficients (known as the
“use” matrix) correspond to Leontief input-output coefficients. The coefficients for primary
factors are “value added” coefficients and give the factor distribution of income. Column
coefficients for the commodity accounts represent domestic and import shares, while those for
the various final demanders provide expenditure shares. There is a long tradition of work which
starts from the assumption that these various coefficients are fixed, and then develops various
linear multiplier models. They also provide the starting point for estimating parameters of
nonlinear, neoclassical production functions, factor-demand functions,  and household
expenditure functions. 

In principle, it is possible to have negative transactions, and hence coefficients, in a SAM. 
Such negative entries, however, can cause problems in some of the estimation techniques
described below and also may cause problems of interpretation in the coefficients. A simple 
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Table 1. A national SAM

Expenditure

Receipts Activity Commodity Factors Institutions World

Activity Domestic sales exports

Commodity Intermediate Final 
Inputs demand

Factors Value added
(wages/rentals)

Institutions Factor Capital
Income  inflow

World Imports

Totals Total costs Total absorption Total factor Gross domestic Foreign
income income exchange

inflow

approach to dealing with this issue is simply to treat a negative expenditure as a positive receipt
and a negative receipt as a positive expenditure. For example, if a tax is negative, treat it as a
subsidy.  That is, if  is negative, we simply set the entry to zero and add the value to . This
“flipping” procedure will change row and column sums, but they will still be equal.

The RAS Approach to SAM estimation

The classic problem in SAM estimation is the problem of “updating” an input-output
matrix when we have new information on the row and column sums, but do not have new
information on the input-output flows. The generalization to a full SAM, rather than just the
input-output table, is the following problem. Find a new SAM coefficient matrix,  A*, that is in
some sense “close” to an existing coefficient matrix,  but yields a SAM transactions matrix,

, with the new row and column sums. That is: 

where y* are known new row and column sums. 



A (

i,j ' Ri Āi,j Sj

A ( ' R̂ Ā Ŝ

Ā

“Generally” exists because there are situations where the method fails. For example, a1

column or row of zeros cannot be proportionately adjusted to sum to a non-zero number.  For the
method to work, the matrix must be “connected”, which is a generalization of the notion of
“indecomposable” [Bacharach (1970, p. 47)]. 
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(6)
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A classic approach to solving this problem is to generate a new matrix A* from the old
matrix A by means of “biproportional” row and column operations:

or, in matrix terms:

where the hat indicates a diagonal matrix of elements of R and S.  Bacharach (1970) shows that
this “RAS” method works in that a unique set of positive multipliers (normalized) exists that
satisfy the biproportionality condition and that the elements of R and S can be found by a simple
iterative procedure.  1

Note that it is easy to generalize the RAS procedure to work with rectangular matrices
that are not SAMs. That is, the method can be adapted to work with any matrix with known row
and column sums: for example, an input-output matrix that includes final demand columns (and
is hence rectangular). In this case, the column coefficients for the final demand accounts
represent expenditure shares and the new data are final demand aggregates. 

An Entropy Difference Approach to SAM estimation

The fundamental estimation problem is that, for an n-by-n SAM, we seek to identify n2

unknown non-negative parameters (the cells of T or A), but have only 2n–1 independent row and
column adding-up restrictions. The RAS procedure imposes the biproportionality condition, so
the problem reduces to finding 2n–1 R and S coefficients (one being set by normalization),
yielding a unique solution. In a recent book, Golan, Judge, and Miller (1996) suggest a variety of
Bayesian estimation techniques using what they describe as “maximum entropy econometrics”.
Golan, Judge, and Robinson (1994) apply this approach to estimating a new input-output table
given knowledge about row and column sums of the transactions matrix – the classic RAS
problem discussed above. In this section, we extend this methodology to situations where there
are different kinds of prior information than knowledge of row and column sums. 

Golan, Judge, and Robinson (1994) use an entropy difference formulation, and set up the
problem as finding a new set of A coefficients which minimizes the entropy distance between the
prior  and the new estimated coefficient matrix
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Ā

Thissen and Löfgren (1997) also note this result2
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(9)

(10)

subject to:

Which implies that

Bacharach (1970, pp. 83-85) shows that, for a particular scaling of the coefficients, the solution
A* for this problem is a biproportional estimate – that is, the solution of the RAS method
satisfies the first order conditions for minimizing the entropy distance.  2

In using the entropy difference approach, we generalize the RAS method in four areas: (1)
add additional linear constraints on the new T matrix in addition to knowledge of row and
column sums; (2) specify constraints on T as inequalities rather than equalities;  (3) assume that
row and column sums are not fixed parameters but involve errors in measurement; and (4)
assume that the initial estimate, , is not based on a balanced SAM. 

Equality and Inequality Constraints

In addition to row and column sums, one often has additional knowledge about the new
SAM. For example, aggregate national accounts data may be available for various macro
aggregates such as value added, consumption, investment, government, exports, and imports. 
There also may be information about some of the SAM accounts such as government receipts
and expenditures. This information can be summarized as additional linear adding-up constraints
on various elements of the SAM. Define an n-by-n aggregator matrix, G, which has ones for cells
in the aggregate and zeros otherwise. Assume that there are k such aggregation constraints, which
are given by:



j
i
j

j
G (k)

i,j Ti,j ' ((k)

y ' A x̄ % e ' Ax̄ % Ae

y ' x̄ % e

ei ' j
jwt

Wi,jwt v̄i,jwt

The problem is analogous to the distinction between errors in equations and errors in3

variables in standard regression analysis. See, for example, Judge et al. (1985). Golan and Vogel
(1997) describe an errors in equations approach to the SAM estimation problem. 
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(11)

(12)

(13)

where ( is the value of the aggregate. These conditions are simply added to the constraint set in
the entropy difference formulation. 

While one may not have exact knowledge about values for various aggregates, including
row and column sums, it may be possible to put bounds on some of these aggregates. Such
bounds are easily incorporated by specifying inequality constraints in equation (11). It is also
feasible to specify an error structure, either on equations or on variables, which can be interpreted
as arising from either measurement error or some “noise” in the equation system. 

Incorporating Measurement Error

There are two general ways to incorporate noise into the system. One is to assume an
“errors in equations” formulation where the process is assumed to include random noise and,
second, an “errors in variables” formulation where the variables are assumed to be measured with
noise. We will follow the errors-in-variables approach here, since the SAM is not viewed as a
model but as a statistical framework where the issue is not in specifying an error generating
process but as a problem of measurement.  3

Rewrite the SAM equation as: 

where y is the vector of row sums and x, measured with error e, is the initial known vector of
column sums. Following Golan, Judge, and Miller (1994, chapter 6), we write the errors as a
weighted average of known constants as follows: 

subject to the weights summing to one:
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When the error distribution is assumed to be rectangular between the upper and lower4

bounds, and is symmetric around zero (that is two w’s), equation (16) is written as follows:
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(14)

(15)

(16)

where jwt is the set of weights, w.  In the estimation, the weights are treated as variables bounded
between zero and one subject to  (14). The constants, v,  are usually chosen to yield a symmetric
distribution with moments depending on the number of elements in the set jwt. For example, if
the error distribution is assumed to be rectangular and symmetric around zero, with known upper
and lower bounds, the error equation becomes:

In general, one can add more v’s to incorporate more information about the error distribution 
(e.g., more moments, including variance and kurtosis). 

The procedure is simple. Given knowledge about the error bounds, equation (13) and (14)
are added to the constraint set and equation (12) replaces the SAM equation. The problem is
messier in that the SAM equation is now nonlinear, involving the product of A and e. The
minimization problem is to find a set of A’s and w’s that minimize the entropy difference
including a term in the errors:

subject to the constraint equations on column and row sums being equal, that the w’s fall
between zero and one, and any other linear aggregation inequalities or equalities. Note that if the
distribution is symmetric, then when all the w’s are equal, which is the default prior, all the errors
are zero.  4

Another source of measurement error may arise such that the initial SAM, , may not
itself be a balanced SAM. That is, its corresponding rows and columns may not be equal. This



Arndt, Cruz, Jensen, Robinson, and Tarp (1997) describe the Mozambique SAM in5

detail and the use of the entropy difference approach to estimate it. 
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situation does not change the entropy difference estimation procedure, but implies that it is not
possible to achieve an entropy difference measure of zero because the prior is not feasible. The
idea is to find a new feasible SAM that is entropy-close to the infeasible prior. 

An Example: Mozambique  

To illustrate the use of the proposed entropy difference procedure, we apply it to a 1994
macro SAM for Mozambique.  We start from an inconsistent SAM in which some row and5

column sums are not equal. We assume that the row sums are measured with error, and apply the
entropy difference method discussed above. The estimation and balancing procedures were
implemented using the GAMS programming language. Appendix A shows the model equations
in standard algebra notation and the GAMS code is given in Appendix B. Inequality constraints
include upper and lower bounds on the coefficient matrix  A (0 < A  < 1) and bounds on the errori,j

variables (within the range of plus or minus the difference between column and row totals).  The
model also includes equality constraints on various cells of the SAM, including GDP at factor
cost, GDP at market prices, and the government revenue row (tax receipts). 

The prior unbalanced SAM for Mozambique in millions of 1994 meticais is presented in
Table 2. Tables 3 and 4 present the estimated balanced SAM and the cell-by-cell percent
deviation of the estimated from the initial (inconsistent) SAM. The largest changes occur in the
savings-investment and international trade accounts. The initial row-column sum deviations were
largest in the activity, commodity, household, and capital (savings-investment) accounts. In the
model, the solution was achieved with essentially zero error variables. In this case, using an
errors in variables specification does no damage since the constraints are simply not binding.
That is, in a Bayesian approach, imposing non-binding constraints requires no additional
updating of the prior. 

We also did some sensitivity analysis, perturbing the initial SAM until the solution was
infeasible. Using the errors in variables approach resulted in a feasible (and robust) solution in
which the errors in variables were not zero. In the perturbed problem, some of the percent
deviations in individual cells changed a lot and the solution tended to generate wide variations in
cell entries. Of course, in the perturbed model, the entropy difference was taken with respect to
the initial unbalanced SAM, and the solution deviated a lot from the earlier unperturbed SAM. In
this case, the inconsistent prior had to be adjusted a lot. It is clearly useful to impose appropriate
constraints – a general result in econometrics that certainly also applies to this essentially
Bayesian method. 
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Conclusion

The entropy difference approach provides a flexible and powerful method for estimating a
social accounting matrix (SAM) when dealing with scattered and inconsistent data. The method
represents a considerable extension of the standard RAS method, which assumes that one starts
from a consistent prior SAM and has knowledge only about row and column totals. The entropy
difference framework allows a wide range of prior knowledge to be used efficiently in
estimation. The prior knowledge can be in a variety of forms, including linear and nonlinear
inequalities, equalities, errors in equations, and errors in variables. One also need not start from a
balanced or consistent SAM.
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     Table 2. Prior unbalanced 1994 Macro SAM for Mozambique (millions of 1994 meticais)

Expenditure

Receipts activities Commodities factors enterprise households Rec. govt.* govt. invest priv. invest world Totals

activities 0.0 14827.4 0.0 0.0 2101.0 0.0 0.0 0.0 1488.2 18416.6

commodities 7917.5 0.0 0.0 0.0 6753.3 1764.5 2118.5 2197.8 0.0 20751.6

factors 9805.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9805.4

enterprises 0.0 0.0 3699.7 0.0 0.0 33.0 0.0 0.0 0.0 3732.7

households 0.0 0.0 6031.3 3417.5 0.0 29.6 0.0 0.0 209.5 9687.9

Rec. govt. 733.9 357.4 74.4 165.2 139.5 0.0 0.0 356.7 0.0 1827.1

govt. invest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 406.2 1712.3 2118.5

priv. invest 0.0 0.0 0.0 150.0 649.2 0.0 0.0 0.0 2163.9 2963.0

world 0.0 5573.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5573.8

Totals 18456.5 20758.6 9805.4 3732.7 9643.0 1827.1 2118.5 2960.7 5573.8

      Source: Arndt, C. et al., 1997.
      * Recurrent government expenditures 
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         Table 3. Estimated balanced 1994 Macro SAM for Mozambique (millions of 1994 meticais)

Expenditure

Receipts activities Commodities factors enterprise households Rec. govt. govt. invest priv. invest World Totals

activities 0.0 14823.9 0.0 0.0 2110.4 0.0 0.0 0.0 1502.4 18436.7

commodities 7897.4 0.0 0.0 0.0 6774.2 1766.0 2118.5 2199.0 0.0 20755.1

factors 9805.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9805.4

enterprises 0.0 0.0 3700.5 0.0 0.0 32.2 0.0 0.0 0.0 3732.7

households 0.0 0.0 6030.5 3410.7 0.0 28.9 0.0 0.0 195.4 9665.5

Rec. govt. 733.9 357.4 74.4 165.2 139.5 0.0 0.0 356.7 0.0 1827.1

govt. invest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 406.2 1712.3 2118.5

priv. invest 0.0 0.0 0.0 156.8 641.3 0.0 0.0 0.0 2163.7 2961.8

world 0.0 5573.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5573.8

Totals 18436.7 20755.1 9805.4 3732.7 9665.5 1827.1 2118.5 2961.8 5573.8  

     Table 4. Differences between the estimated and the original unbalanced 1994 Macro SAM for Mozambique (%)

Expenditure

Receipts activities Commodities factors enterprise households Rec. govt. govt. invest priv. invest world Totals

activities  -0.02   0.45   0.96 0.11

commodities -0.25    0.31 0.09 0.00 0.05  0.02

factors 0.00         0.00

enterprises   0.02   -2.44    0.00

households   -0.01 -0.20  -2.44   -6.71 -0.23

Rec. govt. 0.00 0.00 0.00 0.00 0.00     0.00

govt. invest         0.00 0.00

priv. invest    4.55 -1.21  -0.01 -0.04

world  0.00        0.00

Totals -0.11 -0.02 0.00 0.00 0.23 0.00 0.00 0.04 0.00  
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Appendix A: Mathematical Representation
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Table A.1: Entropy Difference Equations

# Equation Description

1 SAM equation

2 Row/column sum consistency

3 Error definition

4 Sum of weights

5 Entropy Difference

6 Row sum

7 Column sum

8 Additional Constraints

Inequalities
0 < A   < 1i,j

0 < W  < 1i

Notation
Set
i and j SAM accounts
jwt weights on errors in variables

Variables
A SAM coefficient matrixi,j

e Error variablei

H Entropy Difference (objective)
T Transactions SAMi,j

X Column sumi

W Error weightsi, jwt

Y Row sumi

Parameters

 Prior SAM coefficient matrix

k’th aggregator matrix

k’th control total

 Error bounds



Appendix B: GAMS Code
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Appendix B: GAMS code

What follows is a listing of the GAMS program used in illustrating the entropy
difference method discussed above. A quick list of some of GAMS features are listed below. For
additional information about GAMS syntax see Brooke, Kendrick, and Meeraus (1988). 

In the GAMS language:
- Parameters are treated as constants in the model and are defined in separate
   "PARAMETER" statements.
- "SUM" is the summation operator, sigma.
- "$" introduces a conditional "if" statement.
- The suffix ".FX" indicates a fixed variable.
- The suffix ".L" indicates the level or solution value of a variable.
- The suffix ".LO" and ".UP"  indicate the lower and upper bounds, respectively
   of a variable.
- An asterisk "*" in the first column indicates a comment. Alternative treatments
   in the model Code are shown commented out.
- An "ALIAS" statement is used to give another name to a previously declared set. 
- A semicolon (;) terminates a GAMS statement.
- Items between slashes (/) are data or set elements.
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$TITLE Entropy Difference. Mozambique Macro SAM i      sam accounts    / ACT     Activities
$OFFSYMLIST OFFSYMXREF OFFUPPER                          COM     Commodities
*############################################################                          FAC     Factors
###########                          ENT     Enterprises
*                          HOU     Households
*                          GRE     Govt recurrent expenditures
* MOZAM2 balances a Mozambique macro SAM assuming that the                          GIN     Govt investment
initial data                          CAP     Capital account
* are measured with error and that the initial SAM is not                          ROW     Rest of world
balanced.                          TOTAL /
* Some macro control totals are assumed known, including some
cells in ii(i)   all acounts in i except TOTAL  
* the SAM. Row and column totals are assumed known only with
error. * For a uniform distribution, set jwt to only two entries. Error
* The error is specified by a rectangular distribution with * range set below with the vbar parameter.
known
* bounds. jwt     weights on errors in variables
*                        / 1*3 / ;
* Programmed by Sherman Robinson and Moataz El-Said, August
1997. ii(i)       = YES; 
* Trade and Macroeconomics Division ii("Total") = NO; 
* International Food Policy Research Institute (IFPRI)
* 1200 Seventeenth Street, N.W. ALIAS (i,j), (ii,jj);
* Washington, DC 20036-3006 USA
* Email: S.Robinson@CGNET.COM *########################    SAM DATABASE      
*        M.El-Said@CGNET.COM ######################
* TABLE SAM(i,j)  social accounting matrix
* Method described in S. Robinson and M. El Said, "Estimating                        ACT            COM            FAC           
a Social ENT
* Accounting Matrix Using Entropy Difference Methods." ACT                    0.0     14827.4240            0.0           
September 1997. 0.0
* See also A. Golan, G. Judge, and D. Miller, Maximum Entropy COM              7917.5040            0.0            0.0           
* Econometrics, John Wiley & Sons, 1996. 0.0
* FAC              9805.4140            0.0            0.0           
* Based on program used in C. Arndt, A. S. Cruz, H. T. 0.0
Jensen, ENT                    0.0            0.0      3699.7060           
* S. Robinson, and F. Tarp, "A Social Accounting Matrix for 0.0
Mozambique: HOU                    0.0            0.0      6031.3080     
* Base Year 1994." Institute of Economics, University of 3417.5060
Copenhagen, GRE               733.6000       357.4000        74.4000      
* March 1997. 165.2000
* GIN                    0.0            0.0            0.0           
* Original version programmed by Sherman Robinson and Andrea 0.0
Cattaneo. CAP                    0.0            0.0            0.0      
* 150.0000
*############################################################ ROW                    0.0      5573.8150            0.0           
########### 0.0

SETS 3732.706
Total           18456.5180      20758.639       9805.414      
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                                   Abar1(i,j)       Adjusted prior SAM coefficient matrix for
  +                    HOU            GRE            GIN      negative coefficients
     CAP  Target0(i)       Targets for macro SAM column totals
ACT              2101.0490        -0.3270            0.0       Vbar(i,jwt)      Error bounds 
     0.0  DELTA            Tolerance to allow zero entries in new SAM
COM              6753.3320      1764.5000      2118.5000     ;
2197.7980
*COM              6953.3320      1564.5000      2518.5000     SCALARS
2597.7980
FAC                    0.0            0.0            0.0       sumtarg0         sum of targets
     0.0  gdp0             base GDP
ENT                    0.0        33.0000            0.0       gdp00            GDP from final SAM
     0.0  gdpfc0           GDP at factor cost
HOU                    0.0        29.6000            0.0      ;
     0.0
GRE               139.5000            0.0            0.0      *################# Initializing Parameters
     0.0  SAM("TOTAL",jj)          = sum(ii, SAM(ii,jj));
GIN                    0.0            0.0            0.0       SAM(ii,"TOTAL")          = sum(jj, SAM(ii,jj));
     0.0
CAP               649.1560      -356.6730      -406.2000       sam0(i,j)                = sam(i,j);
     0.0
ROW                    0.0            0.0            0.0      *#################  Divide SAM entries by 1000 for better scaling
     0.0  sam(i,j)                 = sam(i,j)/1000;
Total             9643.037         1470.1         1712.3      
2197.798  Abar0(ii,jj)$SAM(ii,jj)  = SAM(ii,jj)/SAM("TOTAL",jj) ;

  +                    ROW      Total  T0(ii,jj)                = SAM(ii,jj);
ACT              1488.1570      18416.303  T0("TOTAL",jj)           = sum(ii, SAM(ii,jj));
COM                    0.0      20751.634  T0(ii,"TOTAL")           = sum(jj, SAM(ii,jj));
FAC                    0.0       9805.414
ENT                    0.0       3732.706  DELTA                    = .000001;
HOU               209.5010       9687.915
GRE                    0.0         1470.1  Display T0, Abar0 ;
GIN              1712.3000         1712.3
CAP              2163.8570        2200.14 *########################  CROSS ENTROPY 
ROW                    0.0       5573.815 ###############################
Total             5573.815 
     ;

*############################  Parameters and Scalars
########################### * The ENTROPY DIFFERENCE procedure uses LOGARITHMS: negative flows
PARAMETER in

 SAM0(i,j)        Base SAM transactions matrix *
 T0(i,j)          Matrix of SAM transactions (flow matrix) * The option used here is to detect any negative flows and net them
 T1(i,j)          Adjusted matrix of SAM transactions for out
negative coefficients * of their respective symmetric cells, e.g.
 Abar0(i,j)       Prior SAM coefficient matrix *           negative flow ACT ---> GRE is set to zero

*########################  RED ALERT!!!  
###############################

* the SAM are NOT GOOD!!!
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*           and ADDED  to GRE ---> ACT as a positive number.  display redsam, T1, Abar0, Abar1, rtot, ctot ;
* The entropy difference method can then be implemented.
* After balancing, the negative SAM values are returned to
their *##### Initializing Parameters after accounting for negative values
* original cells for printing. #######

SET *   row and column sums. Initial column sums could have been used
 red(i,j)           Set of negative SAM flows    instead,
; *   depending on data quality and prior knowledge. 

Parameter  target0(ii)         = (sam(ii,"total") +  sam("total",ii))/2 ;
 redsam(i,j)        Negative SAM values only  sumtarg0            = sum(ii, sam(ii,"total") );
 rtot(i)            Row total  gdpfc0              = T1("fac","act");
 ctot(i)            Column total  gdp0                = T1("fac","act") + T1("gre","act") 

; Display gdpfc0, gdp0;

 rtot(ii)                            = sum(jj, T0(ii,jj)); *###################### VARIABLES
 ctot(jj)                            = sum(ii, T0(ii,jj)); #########################################

 red(ii,jj)$(T0(ii,jj) LT 0)         = yes ;  A(i,j)         Post SAM coefficient matrix
 redsam(ii,jj)                       = 0;  TSAM(i,j)      Post matrix of SAM transactions
 redsam(ii,jj)$red(ii,jj)            = T0(ii,jj);  Y(i)           row sum of SAM
 redsam(jj,ii)$red(ii,jj)            = T0(ii,jj);  X(i)           column sum of SAM

*Note that redsam includes each entry twice, in corresponding  W(i,jwt)       Error weight
row  DENTROPY       Entropy difference (objective)    
*and column. So, redsam need only be subtracted from T0.   GDPFC          GDP at factor cost
 T1(ii,jj)                           = T0(ii,jj) -  GDP            GDP at market prices
redsam(ii,jj);   ;
 T1("Total",jj)                      = sum(ii, T1(ii,jj));
 T1(ii,"Total")                      = sum(jj, T1(ii,jj)); *########################## INITIALIZE VARIABLES
 ##########################
 redsam("total",jj)                  = sum(ii,
redsam(ii,jj));  A.L(ii,jj)          = Abar1(ii,jj) ;
 redsam(ii,"total")                  = sum(jj,  TSAM.l(ii,jj)       = T1(ii,jj);
redsam(ii,jj));  Y.L(ii)             = target0(ii) ;
  X.L(ii)             = target0(ii) ;
 sam(ii,"total")                     = sum(jj, T1(ii,jj));  ERR.L(ii)           = 0.0 ;
 sam("total",jj)                     = sum(ii, T1(ii,jj));  W.L(ii,jwt)         = 1/card(jwt) ;
                                  DENTROPY.L          = 0;
 rtot(ii)                            = sum(jj, T1(ii,jj));  GDPFC.L             = gdpfc0;
 ctot(jj)                            = sum(ii, T1(ii,jj));  GDP.L               = gdp0;

 Abar1(ii,jj)                        = *############ CORE EQUATIONS 
T1(ii,jj)/sam("total",jj);  EQUATIONS 

 display "NON-NEGATIVE SAM" ;  SAMEQ(i)       row and column sum constraint

*SR Note that target column sums are being set to average of
initial

                       - T1("act","gre") + T1("gre","com") ;

VARIABLES

 ERR(i)         Error value
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 SAMMAKE(i,j)   make SAM flows  GDPDEF..          GDP   =E= TSAM("fac","act") + TSAM("gre","act")
 ERROREQ(i)     definition of error term                              - TSAM("act","gre") +
 SUMW(i)        Sum of weights TSAM("gre","com") ;
 ENTROPY        Entropy difference definition
 ROWSUM(i)      row target *################  Defining bounds for cell values 
 COLSUM(j)      column target ########################

*############ EQUATIONS IMPOSING KNOWN INFORMATION  A.UP(ii,jj)$ABAR1(ii,jj)          = 1 ;

 GDPFCDEF       define GDP at factor cost  
 GDPDEF         define GDP  TSAM.lo(ii,jj)                    = 0.0 ;
 ;  TSAM.up(ii,jj)                    = +inf ;

*CORE
EQUATIONS==================================================== *###############  Fix other known cell values
== ##############################

 SAMEQ(ii)..      Y(ii)       =E= X(ii) + ERR(ii) ;      fixrow2(i) /act, com, fac, ent / ;

 SAMMAKE(ii,jj)$(Abar1(ii,jj))..  TSAM.fx("gre",fixrow) = T1("gre",fixrow) ;
                  TSAM(ii,jj) =E= A(ii,jj) * (X(jj) +  TSAM.fx("gre","cap")  = T1("gre","cap") ;
ERR(jj)) ;  TSAM.fx("gin","cap")  = T1("gin","cap") ;

 ERROREQ(ii)..    ERR(ii)     =E= SUM(jwt,  GDP.FX                = GDP0 ;
W(ii,jwt)*vbar(ii,jwt)) ;  GDPFC.FX              = GDPFC0 ;
   
 SUMW(ii)..       SUM(jwt, W(ii,jwt)) =E= 1 ; *###############  Define variables bounds on errors

 ENTROPY..        DENTROPY    =E= SUM((ii,jj)$(Abar1(ii,jj)), * VBAR parameter defines upper and lower bounds on rectangular
                                  A(ii,jj)*(LOG(A(ii,jj) + error
delta) * distribution on variable X. Here they are set at the difference
                                  - LOG(Abar1(ii,jj) + between
delta))) * the min and max column and row sums. 
                                  + SUM((ii,jwt),
W(ii,jwt)*LOG(W(ii,jwt) + *vbar(ii,"1")          =  .01*target0(ii) ;

 delta)) ; *vbar(ii,"3")          = -.01*target0(ii) ;

 ROWSUM(ii)..     SUM(jj, TSAM(ii,jj)) =E=  Y(ii);  vbar(ii,"3")          = -0.5*abs(rtot(ii)-ctot(ii)) ;
   
 COLSUM(jj)..     SUM(ii, TSAM(ii,jj)) =E= (X(jj) + ERR(jj)) *SR to use only two weights, delete set element "2" in jwt and 
; *comment out next statement. 

*ADDITIONAL MACRO CONTROL-TOTAL  W.LO(ii,jwt)          = 0 ;
EQUATIONS===========================  W.UP(ii,jwt)          = 1 ; 

 GDPFCDEF..        GDPFC =E= TSAM("fac","act") ; *SR fix errors to zero by fixing weights at 1/3. 

 A.LO(ii,jj)$ABAR1(ii,jj)          = 0 ;

 A.FX(i,j)$(NOT Abar1(i,j))        = 0;

 TSAM.FX(ii,jj)$(NOT Abar1(ii,jj)) = 0 ;

 SET fixrow(i)  /act, com, fac, ent, hou / 

 

 

#######################

 vbar(ii,"1")          =  0.5*abs(rtot(ii)-ctot(ii)) ;

 vbar(ii,"2")          = 0.0 ;

*W.FX(ii,jwt)          = 1/card(jwt) ; 
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*Set target column sums, X.  macsam1(ii,jj)         = TSAM.l(ii,jj);
 X.FX(ii)              = TARGET0(ii) ;  macsam1("total",jj)    = SUM(ii, macsam1(ii,jj)) ;
  macsam1(ii,"total")    = SUM(jj, macsam1(ii,jj)) ;
 Display vbar ;  macsam2(i,j)           = macsam1(i,j) * 1000 ;
*######################## DEFINE MODEL  SEM                    = Sum((ii,jj), SQR(A.L(ii,jj) -
############################ Abar1(ii,jj))) /

 MODEL SAMENTROP / ALL /  percent1(i,j)$(T1(i,j))= 100*(macsam1(i,j)-T1(i,j))/T1(i,j);

*######################## SOLVE MODEL  PosBalan(i,j)          = macsam2(i,j);
#############################  Diffrnce(i,j)          = PosBalan(i,j) - PosUnbal(i,j);

 OPTION ITERLIM = 5000; LOG
 OPTION LIMROW  = 0, LIMCOL = 0;      (A.L(ii,jj))) / SUM((ii,jj)$(Abar1(ii,jj)),
 OPTION SOLPRINT = ON;      Abar1(ii,jj)* LOG (Abar1(ii,jj)))

* SAMENTROP.holdfixed = 1 ;  display macsam1, macsam2, percent1, sem, dentropy.l, PosUnbal,
* SAMENTROP.optfile   = 1 ; PosBalan;
  option NLP          = MINOS5 ;  display NormEntrop, Diffrnce ;
* OPTION NLP          = CONOPT;
* SAMENTROP.WORKSPACE = 25.0; *############ Return negative flows to initial cell position

*########################### Solve statenment  macsam1(ii,jj)         = macsam1(ii,jj) + redsam(ii,jj) ;
#############################  macsam1("total",jj)    = SUM(ii, macsam1(ii,jj)) ;

 SOLVE SAMENTROP using nlp minimizing dentropy ;  macsam2(i,j)           = macsam1(i,j) * 1000 ;

*############################################################  gdp00                  = macsam1("fac","act") +
############## macsam1("gre","act") 

*---------------- Parameters for reporting results macsam1("gre","com") ;
Parameters
 Macsam1(i,j)           Assigned new balanced SAM flows from  display macsam1, macsam2 ;
entropy diff  display gdp0, gdp00, gdp.l, gdpfc0, gdpfc.l ;
 Macsam2(i,j)           Balanced SAM flows from entropy diff
x 1000
 SEM                    Squared Error Measure *######
 percent1(i,j)          percent change of new SAM from $ontext
original SAM *#######  Export Imbalanced & balanced SAM to a lotus spreadsheet
 PosUnbal(i,j)          Positive unbalanced SAM ############
 PosBalan(i,j)          Positive balanced SAM * The libinclude statement requires additional gams programs
 Diffrnce(i,j)          Differnce between original SAM and written
Final SAM in * by Tom Rutherford. See webpage:

   values http://www.gams.com/contrib/sslink/ssdoc.htm
 NormEntrop             Normalized Entropy a measure of total
uncertainty $LIBINCLUDE SSDUMP Posunbal          sam0.WK1 B1..B1
 ; $LIBINCLUDE SSDUMP Posbalan       macsam2.WK1 B1..B1

     SQR(9) ;

 PosUnbal(i,j)          = T1(i,j) * 1000;

 NormEntrop             = SUM((ii,jj)$(Abar1(ii,jj)), A.L(ii,jj)*

 ;

##############

 macsam1(ii,"total")    = SUM(jj, macsam1(ii,jj)) ;

                          - macsam1("act","gre") +

$LIBINCLUDE SSDUMP percent1      percent1.WK1 B1..B1
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$LIBINCLUDE SSDUMP Diffrnce      Diffrnce.WK1 B1..B1

$offtext
*#######

*SR print some stuff
 A.L("total",jj)   = SUM(ii, A.L(ii,jj)) ;
 A.L(ii,"total")   = SUM(jj, A.L(ii,jj)) ;

 ABAR1("total",jj) = SUM(ii, ABAR1(ii,jj)) ;
 ABAR1(ii,"total") = SUM(jj, ABAR1(ii,jj)) ;

 Display A.L, ABAR1 ;
 

*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#* THE END
*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*


