Estimating a Social Accounting Matrix Using Entropy Difference Methods

Sherman Robinson
Moataz El-Said
International Food Policy Research Institute
Washington, DC

September 1997

Abstract

There is a continuing need to use recent and consistent multisectoral economic data to support policy analysis and the development of economywide models. Updating and estimating input-output tables and Social Accounting Matrices (SAMs) for a recent year is a difficult and a challenging problem. Typically, input-output data are collected at long intervals (usually five years or more), while national income and product data are available annually, but with a lag. Supporting data also come from a variety of sources; e.g., censuses of manufacturing, labor surveys, agricultural data, government accounts, international trade accounts, and household surveys. The problem in estimating a SAM for a recent year is to find an efficient (and cost-effective) way to incorporate and reconcile information from a variety of sources, including data from prior years. The traditional RAS approach requires that we start with a consistent SAM for a particular period and "update" it for a later period given new information on row and column sums. This paper extends the RAS method by proposing a flexible entropy difference approach to estimating a consistent SAM starting from inconsistent data estimated with error, a common experience in many countries. The method is flexible and powerful when dealing with scattered and inconsistent data. It allows incorporating errors in variables, inequality constraints, and prior knowledge about any part of the SAM (not just row and column sums). Since the inputoutput accounts are contained within the SAM framework, updating an input-output table can be viewed as a special case of the general SAM estimation problem. The paper presents the structure of a SAM and a mathematical description of the estimation problem. It then describes the classical RAS procedure and the entropy difference approach. An example of the entropy difference approach applied to the case of Mozambique is presented. In addition, an appendix includes a listing of the computer code in the GAMS language used in the procedure.

Paper presented at the MERRISA (Macro-Economic Reforms and Regional Integration in Southern Africa) project workshop. September 8 -12, 1997, Harare, Zimbabwe. Our thanks to George Judge, Amos Golan, Hans Löfgren, and workshop participants for helpful comments on earlier drafts

Table of Contents

Introduction 1
Structure of a Social Accounting Matrix (SAM) 1
The RAS Approach to SAM estimation 3
An Entropy Difference Approach to SAM estimation 4
Equality and Inequality Constraints 5
Incorporating Measurement Error 6
An Example: Mozambique 8
Conclusion 9
References 12
Appendix A: Mathematical Representation 13
Appendix B: GAMS Code 15

Introduction

There is a continuing need to use recent and consistent multisectoral economic data to support policy analysis and the development of economywide models. A Social Accounting Matrix (SAM) provides the underlying data framework for this type of model and analysis. A SAM includes both input-output and national income and product accounts in a consistent framework. Input-output data are usually prepared only every five years or so, while national income and product data are produced annually, but with a lag. To produce a more disaggregated SAM for detailed policy analysis, data are often supplemented by other information from a variety of sources; e.g., censuses of manufacturing, labor surveys, agricultural data, government accounts, international trade accounts, and household surveys. The problem in estimating a disaggregated SAM for a recent year is to find an efficient (and cost-effective) way to incorporate and reconcile information from a variety of sources, including data from prior years.

Estimating a SAM for a recent year is a difficult and challenging problem. A standard approach is to start with a consistent SAM for a particular prior period and "update" it for a later period, given new information on row and column totals, but no information on the flows within the SAM. The traditional RAS approach, discussed below, addresses this case. However, one often starts from an inconsistent SAM, with incomplete knowledge about both row and column sums and flows within the SAM. Inconsistencies can arise from measurement errors, incompatible data sources, or lack of data. What is needed is an approach to estimating a consistent set of accounts that not only uses the existing information efficiently, but also is flexible enough to incorporate information about various parts of the SAM.

In this paper, we propose a flexible entropy difference approach to estimating a consistent SAM starting from inconsistent data estimated with error. The method is very flexible, incorporating errors in variables, inequality constraints, and prior knowledge about any part of the SAM (not just row and column sums). The next section presents the structure of a SAM and a mathematical description of the estimation problem. The following section describes the classical RAS procedure, followed by a discussion of the entropy difference approach. Next we present an example of the entropy difference approach applied to the case of Mozambique. An appendix presents the computer software used in the procedure.

Structure of a Social Accounting Matrix (SAM)

A SAM is a square matrix whose corresponding columns and rows present the expenditure and receipt accounts of economic actors. Each cell represents a payment from a column account (actor) to a row account. Define T as the matrix of SAM transactions, where $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ is a payment from column account j to row account i. Following the conventions of double-entry bookkeeping, the total receipts (income) and expenditure of each actor must balance. That is, for a SAM, every row sum must equal the corresponding column sum:

$$
\begin{equation*}
y_{i}=\sum_{j} T_{i, j}=\sum_{j} T_{j, i} \tag{1}
\end{equation*}
$$

where y_{i} is total income and expenditure of account i.
A SAM coefficient matrix, A, is constructed from T by dividing the cells in each column of T by the column sums:

$$
\begin{equation*}
A_{i, j}=\frac{T_{i, j}}{y_{j}} \tag{2}
\end{equation*}
$$

By definition, all the column sums of A must equal one, so the matrix is singular. Since column sums must equal row sums, it also follows that (in matrix notation):

$$
\begin{equation*}
y=A y \tag{3}
\end{equation*}
$$

A typical national SAM includes accounts for production (activities), commodities, factors of production, and various actors ("institutions") which receive income and demand goods. The structure of a simple SAM is given in Table 1. Activities pay for intermediate inputs and factors of production and receive payments for exports and sales to the domestic market. The commodity account buys goods from activities (producers) and the rest of the world (imports) and sells commodities to activities (intermediate inputs) and final demanders (households, government, and investment). In this simple SAM, tariffs, indirect taxes, and subsidies are left out. Gross domestic product (GDP) at factor cost (payments by activities to factors of production) equals gross domestic income and also equals GDP at market prices (consumption plus investment plus government demand plus exports minus imports).

The matrix of column coefficients, A, from such a SAM provide raw material for much economic analysis and modeling. For example, the intermediate-input coefficients (known as the "use" matrix) correspond to Leontief input-output coefficients. The coefficients for primary factors are "value added" coefficients and give the factor distribution of income. Column coefficients for the commodity accounts represent domestic and import shares, while those for the various final demanders provide expenditure shares. There is a long tradition of work which starts from the assumption that these various coefficients are fixed, and then develops various linear multiplier models. They also provide the starting point for estimating parameters of nonlinear, neoclassical production functions, factor-demand functions, and household expenditure functions.

In principle, it is possible to have negative transactions, and hence coefficients, in a SAM. Such negative entries, however, can cause problems in some of the estimation techniques described below and also may cause problems of interpretation in the coefficients. A simple

Table 1. A national SAM

Receipts	Expenditure				
	Activity	Commodity	Factors	Institutions	World
Activity		Domestic sales			exports
Commodity	Intermediate Inputs			Final demand	
Factors	Value added (wages/rentals)				
Institutions			Factor Income		Capital inflow
World		Imports			
Totals	Total costs	Total absorption	Total factor income	Gross domestic income	Foreign exchange inflow

approach to dealing with this issue is simply to treat a negative expenditure as a positive receipt and a negative receipt as a positive expenditure. For example, if a tax is negative, treat it as a subsidy. That is, if $T_{i, j}$ is negative, we simply set the entry to zero and add the value to $T_{j, i}$. This "flipping" procedure will change row and column sums, but they will still be equal.

The RAS Approach to SAM estimation

The classic problem in SAM estimation is the problem of "updating" an input-output matrix when we have new information on the row and column sums, but do not have new information on the input-output flows. The generalization to a full SAM, rather than just the input-output table, is the following problem. Find a new SAM coefficient matrix, A^{*}, that is in some sense "close" to an existing coefficient matrix, \bar{A} but yields a SAM transactions matrix, T^{*}, with the new row and column sums. That is:

$$
\begin{gather*}
T_{i, j}^{*}=A_{i, j}^{*} y_{j}^{*} \tag{4}\\
\sum_{j} T_{i, j}^{*}=\sum_{j} T_{j, i}^{*}=y_{i}^{*} \tag{5}
\end{gather*}
$$

where y^{*} are known new row and column sums.

A classic approach to solving this problem is to generate a new matrix A^{*} from the old matrix A by means of "biproportional" row and column operations:

$$
\begin{equation*}
A_{i, j}^{*}=R_{i} \bar{A}_{i, j} S_{j} \tag{6}
\end{equation*}
$$

or, in matrix terms:

$$
\begin{equation*}
A^{*}=\hat{R} \bar{A} \hat{S} \tag{7}
\end{equation*}
$$

where the hat indicates a diagonal matrix of elements of R and S. Bacharach (1970) shows that this "RAS" method works in that a unique set of positive multipliers (normalized) exists that satisfy the biproportionality condition and that the elements of R and S can be found by a simple iterative procedure. ${ }^{1}$

Note that it is easy to generalize the RAS procedure to work with rectangular matrices that are not SAMs. That is, the method can be adapted to work with any matrix with known row and column sums: for example, an input-output matrix that includes final demand columns (and is hence rectangular). In this case, the column coefficients for the final demand accounts represent expenditure shares and the new data are final demand aggregates.

An Entropy Difference Approach to SAM estimation

The fundamental estimation problem is that, for an n-by-n SAM, we seek to identify n^{2} unknown non-negative parameters (the cells of T or A), but have only $2 \mathrm{n}-1$ independent row and column adding-up restrictions. The RAS procedure imposes the biproportionality condition, so the problem reduces to finding $2 \mathrm{n}-1 \mathrm{R}$ and S coefficients (one being set by normalization), yielding a unique solution. In a recent book, Golan, Judge, and Miller (1996) suggest a variety of Bayesian estimation techniques using what they describe as "maximum entropy econometrics". Golan, Judge, and Robinson (1994) apply this approach to estimating a new input-output table given knowledge about row and column sums of the transactions matrix - the classic RAS problem discussed above. In this section, we extend this methodology to situations where there are different kinds of prior information than knowledge of row and column sums.

Golan, Judge, and Robinson (1994) use an entropy difference formulation, and set up the problem as finding a new set of A coefficients which minimizes the entropy distance between the prior \bar{A} and the new estimated coefficient matrix

[^0]\[

$$
\begin{align*}
& \min \left[\sum_{i} \sum_{j} A_{i, j} \ln \frac{A_{i, j}}{\bar{A}_{i, j}}\right] \tag{8}\\
= & \min \left[\sum_{i} \sum_{j} A_{i, j} \ln A_{i, j}-\sum_{i} \sum_{j} A_{i, j} \ln \bar{A}_{i, j}\right]
\end{align*}
$$
\]

subject to:

$$
\begin{equation*}
\sum_{j} A_{i, j} y_{j}^{*}=y_{i}^{*} \tag{9}
\end{equation*}
$$

Which implies that

$$
\begin{equation*}
\sum_{j} A_{j, i}=1 \tag{10}
\end{equation*}
$$

Bacharach (1970, pp. 83-85) shows that, for a particular scaling of the coefficients, the solution A^{*} for this problem is a biproportional estimate - that is, the solution of the RAS method satisfies the first order conditions for minimizing the entropy distance. ${ }^{2}$

In using the entropy difference approach, we generalize the RAS method in four areas: (1) add additional linear constraints on the new T matrix in addition to knowledge of row and column sums; (2) specify constraints on T as inequalities rather than equalities; (3) assume that row and column sums are not fixed parameters but involve errors in measurement; and (4) assume that the initial estimate, \bar{A}, is not based on a balanced SAM.

Equality and Inequality Constraints

In addition to row and column sums, one often has additional knowledge about the new SAM. For example, aggregate national accounts data may be available for various macro aggregates such as value added, consumption, investment, government, exports, and imports. There also may be information about some of the SAM accounts such as government receipts and expenditures. This information can be summarized as additional linear adding-up constraints on various elements of the SAM. Define an n-by-n aggregator matrix, G, which has ones for cells in the aggregate and zeros otherwise. Assume that there are k such aggregation constraints, which are given by:

[^1]\[

$$
\begin{equation*}
\sum_{i} \sum_{j} G_{i, j}^{(k)} T_{i, j}=\gamma^{(k)} \tag{11}
\end{equation*}
$$

\]

where γ is the value of the aggregate. These conditions are simply added to the constraint set in the entropy difference formulation.

While one may not have exact knowledge about values for various aggregates, including row and column sums, it may be possible to put bounds on some of these aggregates. Such bounds are easily incorporated by specifying inequality constraints in equation (11). It is also feasible to specify an error structure, either on equations or on variables, which can be interpreted as arising from either measurement error or some "noise" in the equation system.

Incorporating Measurement Error

There are two general ways to incorporate noise into the system. One is to assume an "errors in equations" formulation where the process is assumed to include random noise and, second, an "errors in variables" formulation where the variables are assumed to be measured with noise. We will follow the errors-in-variables approach here, since the SAM is not viewed as a model but as a statistical framework where the issue is not in specifying an error generating process but as a problem of measurement. ${ }^{3}$

Rewrite the SAM equation as:

$$
\begin{align*}
& y=A[\bar{x}+e]=A \bar{x}+A e \tag{12}\\
& y=\bar{x}+e
\end{align*}
$$

where y is the vector of row sums and x, measured with error e, is the initial known vector of column sums. Following Golan, Judge, and Miller (1994, chapter 6), we write the errors as a weighted average of known constants as follows:

$$
\begin{equation*}
e_{i}=\sum_{j w t} W_{i, j w t} \bar{v}_{i, j w t} \tag{13}
\end{equation*}
$$

subject to the weights summing to one:
${ }^{3}$ The problem is analogous to the distinction between errors in equations and errors in variables in standard regression analysis. See, for example, Judge et al. (1985). Golan and Vogel (1997) describe an errors in equations approach to the SAM estimation problem.

$$
\begin{equation*}
\sum_{j w t} W_{i, j w t}=1 \tag{14}
\end{equation*}
$$

where $j w t$ is the set of weights, w. In the estimation, the weights are treated as variables bounded between zero and one subject to (14). The constants, v, are usually chosen to yield a symmetric distribution with moments depending on the number of elements in the set jwt. For example, if the error distribution is assumed to be rectangular and symmetric around zero, with known upper and lower bounds, the error equation becomes:

$$
\begin{equation*}
e_{i}=w_{i} \bar{v}_{i}-\left(1-w_{i}\right) \bar{v}_{i} \tag{15}
\end{equation*}
$$

In general, one can add more v 's to incorporate more information about the error distribution (e.g., more moments, including variance and kurtosis).

The procedure is simple. Given knowledge about the error bounds, equation (13) and (14) are added to the constraint set and equation (12) replaces the SAM equation. The problem is messier in that the SAM equation is now nonlinear, involving the product of A and e. The minimization problem is to find a set of A 's and w 's that minimize the entropy difference including a term in the errors:

$$
\begin{equation*}
\min \left[\sum_{i} \sum_{j} A_{i, j} \ln A_{i, j}-\sum_{i} \sum_{j} A_{i, j} \ln \bar{A}_{i, j}+\sum_{i} \sum_{j w t} W_{i, j w t} \ln W_{i, j w t}\right] \tag{16}
\end{equation*}
$$

subject to the constraint equations on column and row sums being equal, that the w 's fall between zero and one, and any other linear aggregation inequalities or equalities. Note that if the distribution is symmetric, then when all the w 's are equal, which is the default prior, all the errors are zero. ${ }^{4}$

Another source of measurement error may arise such that the initial SAM, \bar{A}, may not itself be a balanced SAM. That is, its corresponding rows and columns may not be equal. This

[^2]situation does not change the entropy difference estimation procedure, but implies that it is not possible to achieve an entropy difference measure of zero because the prior is not feasible. The idea is to find a new feasible SAM that is entropy-close to the infeasible prior.

An Example: Mozambique

To illustrate the use of the proposed entropy difference procedure, we apply it to a 1994 macro SAM for Mozambique. ${ }^{5}$ We start from an inconsistent SAM in which some row and column sums are not equal. We assume that the row sums are measured with error, and apply the entropy difference method discussed above. The estimation and balancing procedures were implemented using the GAMS programming language. Appendix A shows the model equations in standard algebra notation and the GAMS code is given in Appendix B. Inequality constraints include upper and lower bounds on the coefficient matrix $A\left(0<A_{i, j}<1\right)$ and bounds on the error variables (within the range of plus or minus the difference between column and row totals). The model also includes equality constraints on various cells of the SAM, including GDP at factor cost, GDP at market prices, and the government revenue row (tax receipts).

The prior unbalanced SAM for Mozambique in millions of 1994 meticais is presented in Table 2. Tables 3 and 4 present the estimated balanced SAM and the cell-by-cell percent deviation of the estimated from the initial (inconsistent) SAM. The largest changes occur in the savings-investment and international trade accounts. The initial row-column sum deviations were largest in the activity, commodity, household, and capital (savings-investment) accounts. In the model, the solution was achieved with essentially zero error variables. In this case, using an errors in variables specification does no damage since the constraints are simply not binding. That is, in a Bayesian approach, imposing non-binding constraints requires no additional updating of the prior.

We also did some sensitivity analysis, perturbing the initial SAM until the solution was infeasible. Using the errors in variables approach resulted in a feasible (and robust) solution in which the errors in variables were not zero. In the perturbed problem, some of the percent deviations in individual cells changed a lot and the solution tended to generate wide variations in cell entries. Of course, in the perturbed model, the entropy difference was taken with respect to the initial unbalanced SAM, and the solution deviated a lot from the earlier unperturbed SAM. In this case, the inconsistent prior had to be adjusted a lot. It is clearly useful to impose appropriate constraints - a general result in econometrics that certainly also applies to this essentially Bayesian method.

[^3]
Conclusion

The entropy difference approach provides a flexible and powerful method for estimating a social accounting matrix (SAM) when dealing with scattered and inconsistent data. The method represents a considerable extension of the standard RAS method, which assumes that one starts from a consistent prior SAM and has knowledge only about row and column totals. The entropy difference framework allows a wide range of prior knowledge to be used efficiently in estimation. The prior knowledge can be in a variety of forms, including linear and nonlinear inequalities, equalities, errors in equations, and errors in variables. One also need not start from a balanced or consistent SAM.

Table 2. Prior unbalanced 1994 Macro SAM for Mozambique (millions of 1994 meticais)										
Receipts	Expenditure									
	activities	Commodities	factors	enterprise	households	Rec. govt.*	govt. invest	priv. invest	world	Totals
activities	0.0	14827.4	0.0	0.0	2101.0	0.0	0.0	0.0	1488.2	18416.6
commodities	7917.5	0.0	0.0	0.0	6753.3	1764.5	2118.5	2197.8	0.0	20751.6
factors	9805.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9805.4
enterprises	0.0	0.0	3699.7	0.0	0.0	33.0	0.0	0.0	0.0	3732.7
households	0.0	0.0	6031.3	3417.5	0.0	29.6	0.0	0.0	209.5	9687.9
Rec. govt.	733.9	357.4	74.4	165.2	139.5	0.0	0.0	356.7	0.0	1827.1
govt. invest	0.0	0.0	0.0	0.0	0.0	0.0	0.0	406.2	1712.3	2118.5
priv. invest	0.0	0.0	0.0	150.0	649.2	0.0	0.0	0.0	2163.9	2963.0
world	0.0	5573.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5573.8
Totals	18456.5	20758.6	9805.4	3732.7	9643.0	1827.1	2118.5	2960.7	5573.8	

Expenditure										
Receipts	activities	Commodities	factors	enterprise	households	Rec. govt.	govt. invest	priv. invest	World	Totals
activities	0.0	14823.9	0.0	0.0	2110.4	0.0	0.0	0.0	1502.4	18436.7
commodities	7897.4	0.0	0.0	0.0	6774.2	1766.0	2118.5	2199.0	0.0	20755.1
factors	9805.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9805.4
enterprises	0.0	0.0	3700.5	0.0	0.0	32.2	0.0	0.0	0.0	3732.7
households	0.0	0.0	6030.5	3410.7	0.0	28.9	0.0	0.0	195.4	9665.5
Rec. govt.	733.9	357.4	74.4	165.2	139.5	0.0	0.0	356.7	0.0	1827.1
govt. invest	0.0	0.0	0.0	0.0	0.0	0.0	0.0	406.2	1712.3	2118.5
priv. invest	0.0	0.0	0.0	156.8	641.3	0.0	0.0	0.0	2163.7	2961.8
world	0.0	5573.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5573.8
Totals	18436.7	20755.1	9805.4	3732.7	9665.5	1827.1	2118.5	2961.8	5573.8	

Table 4. Differences between the estimated and the original unbalanced 1994 Macro SAM for Mozambique								(\%)		
Receipts	Expenditure									
	activities	Commodities	factors	enterprise	households	Rec. govt.	govt. invest	priv. invest	world	Totals
activities		-0.02			0.45				0.96	0.11
commodities	-0.25				0.31	0.09	0.00	0.05		0.02
factors	0.00									0.00
enterprises			0.02			-2.44				0.00
households			-0.01	-0.20		-2.44			-6.71	-0.23
Rec. govt.	0.00	0.00	0.00	0.00	0.00					0.00
govt. invest									0.00	0.00
priv. invest				4.55	-1.21				-0.01	-0.04
world		0.00								0.00
Totals	-0.11	-0.02	0.00	0.00	0.23	0.00	0.00	0.04	0.00	

References

Arndt, C., A. Cruz, H. Jensen, S. Robinson, and F. Tarp (1997). "A Social Accounting Matrix for Mozambique: Base Year 1994." Institute of Economics, University of Copenhagen.

Bacharach, Michael (1970). Biproportional Matrices and Input-Output Change. Cambridge University Press. University of Cambridge, Department of Applied Economics.

Brooke, A., D. Kendrick, and A. Meeraus (1988). GAMS a User's Guide, the Scientific Press, San Francisco.

Golan, Amos, George Judge, and Douglas Miller (1996). Maximum Entropy Econometrics, Robust Estimation with Limited Data. John Wiley \& Sons.

Golan, Amos, George Judge, and Sherman Robinson (1994). "Recovering Information from Incomplete or Partial Multisectoral Economic Data." Review of Economics and Statistics 76, 541-9.

Golan, Amos, and Stephen J. Vogel (1997). "Estimation of Stationary and Non-Stationary Accounting Matrix Coefficients With Structural and Supply-Side Information." ERS/USDA. Unpublished.

Pindyck, R. S., and Daniel L. Rubinfeld (1991). Econometric Models \& Economic Forecasts. McGraw Hill.

Judge, George G. et al. (1985). The Theory and Practice of Econometrics. John Wiley \& Sons.
Thissen, Mark, and Hans Löfgren (1997). "A New Approach to SAM updating with an application to Egypt". Forthcoming in Environment and Planning A.

Appendix A: Mathematical Representation

Table A.1: Entropy Difference Equations

$\#$	Equation	Description
1	$T_{i, j}=A_{i, j}\left(X_{i}+e_{i}\right)$	SAM equation
2	$Y_{i}=X_{i}+e_{i}$	Row/column sum consistency
3	$e_{i}=\sum_{j w t} W_{i, j w t} \bar{v}_{i, j w t}$	Error definition
4	$\sum_{j w t} W_{i, j w t}=1$	Sum of weights
5	$H=\left[\sum_{i} \sum_{j} A_{i, j} \ln A_{i, j}-\sum_{i} \sum_{j} A_{i, j} \ln \bar{A}_{i, j}+\sum_{i} \sum_{j w t} W_{i, j w t} \ln W_{i, j w t}\right]$	Entropy Difference
6	$\sum_{j} T_{i, j}=X_{i}+e_{i}$	Row sum
7	$\sum_{i} T_{i, j}=Y_{j}$	Column sum
8	$\sum_{i} \sum_{j} G_{i, j}^{(k)} T_{i, j}=\gamma^{(k)}$	Additional Constraints

Inequalities

$0<A_{i, j}<1$
$0<W_{i}<1$

Notation

Set
i and j SAM accounts
jwt weights on errors in variables

Variables	
$A_{i, j}$	SAM coefficient matrix
e_{i}	Error variable
H	Entropy Difference (objective)
$T_{i, j}$	Transactions SAM
X_{i}	Column sum
$W_{i, j w t}$	Error weights
Y_{i}	Row sum

Parameters

$\bar{A}_{i, j}$	Prior SAM coefficient matrix
$G_{i, j}^{(k)}$	k'th aggregator matrix
$\gamma^{(k)}$	k'th control total
$\bar{v}_{i, j w t}$	Error bounds

Appendix B: GAMS Code

Appendix B: GAMS code

What follows is a listing of the GAMS program used in illustrating the entropy difference method discussed above. A quick list of some of GAMS features are listed below. For additional information about GAMS syntax see Brooke, Kendrick, and Meeraus (1988).

In the GAMS language:

- Parameters are treated as constants in the model and are defined in separate "PARAMETER" statements.
- "SUM" is the summation operator, sigma.
- "\$" introduces a conditional "if" statement.
- The suffix ".FX" indicates a fixed variable.
- The suffix ".L" indicates the level or solution value of a variable.
- The suffix ".LO" and ".UP" indicate the lower and upper bounds, respectively of a variable.
- An asterisk "*" in the first column indicates a comment. Alternative treatments in the model Code are shown commented out.
- An "ALIAS" statement is used to give another name to a previously declared set.
- A semicolon (;) terminates a GAMS statement.
- Items between slashes (/) are data or set elements.
\$TITLE Entropy Difference. Mozambique Macro SAM \$OFFSYMLIST OFFSYMXREF OFFUPPER
*\# \#\#\#\#\#\#\#\#\#\#\#
\star
\star
\star
* MOZAM2 balances a Mozambique macro SAM assuming that the initial data
* are measured with error and that the initial SAM is not balanced.
* Some macro control totals are assumed known, including some cells in
* the SAM. Row and column totals are assumed known only with error.
* The error is specified by a rectangular distribution with known
* bounds.
* Programmed by Sherman Robinson and Moataz El-Said, August 1997.
* Trade and Macroeconomics Division
* International Food Policy Research Institute (IFPRI)
* 1200 Seventeenth Street, N.W.
* Washington, DC 20036-3006 USA
* Email: S.Robinson@CGNET.COM
* M.El-Said@CGNET.COM
*
* Method described in S. Robinson and M. El Said, "Estimating a Social
* Accounting Matrix Using Entropy Difference Methods." September 1997.
* See also A. Golan, G. Judge, and D. Miller, Maximum Entropy * Econometrics, John Wiley \& Sons, 1996.
*
* Based on program used in C. Arndt, A. S. Cruz, H. T. Jensen,
* S. Robinson, and F. Tarp, "A Social Accounting Matrix for Mozambique:
* Base Year 1994." Institute of Economics, University of Copenhagen,
* March 1997.
*
* Original version programmed by Sherman Robinson and Andrea Cattaneo.
*

*\# \#\#\#\#\#\#\#\#\#\#\#

```
sam accounts / ACT Activities
COM Commodities
FAC Factors
ENT Enterprises
HOU Households
GRE Govt recurrent expenditures
GIN Govt investment
CAP Capital account
ROW Rest of world
TOTAL /
```

ii(i) all acounts in i except TOTAL

* For a uniform distribution, set jwt to only two entries. Error * range set below with the vbar parameter.


```
ii(i)
\(=\mathrm{YES}\);
il(Iota1") = NO;
```

ALIAS (i,j), (ii,jj);
*\# SAM DATABASE

\#

ABLE SAM(i,j) social accounting matrix COM
$0.0 \quad 14827.4240$
0.0
0.0
0.0
0.0
0.0
0.0

ENT
0.0

HOU
3417.5060
GRE
165.2000
GIN
0.0
150.0000

ROW
Tota
3732.706

+	HOU	GRE	GIN
CAP			
ACT	2101.0490	-0.3270	0.0
0.0			
COM	6753.3320	1764.5000	2118.5000
2197.7980			
* COM	6953.3320	1564.5000	2518.5000
2597.7980			
FAC	0.0	0.0	0.0
0.0			
ENT	0.0	33.0000	0.0
0.0			
HOU	0.0	29.6000	0.0
0.0			
GRE	139.5000	0.0	0.0
0.0			
GIN	0.0	0.0	0.0
0.0			
CAP	649.1560	-356.6730	-406.2000
0.0			
ROW	0.0	0.0	0.0
0.0			
Total	9643.037	1470.1	1712.3
2197.798			
+	ROW	Total	
ACT	1488.1570	18416.303	
COM	0.0	20751.634	
FAC	0.0	9805.414	
ENT	0.0	3732.706	
HOU	209.5010	9687.915	
GRE	0.0	1470.1	
GIN	1712.3000	1712.3	
CAP	2163.8570	2200.14	
ROW	0.0	5573.815	
Total	5573.815		
;			

*\# Parameters and Scalars
 \#
 PARAMETER

$\operatorname{SAMO}(i, j)$
$T 0(i, j)$
T0 (i,j)
Base SAM transactions matrix

T1 (i,j) Matrix of SAM transactions (flow matrix)
negative coefficients
Abar0 (i, j)
Prior SAM coefficient matrix

Abar1 (i,j) Adjusted prior SAM coefficient matrix for negative coefficients
Target0(i) Targets for macro SAM column totals Vbar(i,jwt) Error bounds DELTA Tolerance to allow zero entries in new SAM

sumtarg0	sum of targets
gdp0	base GDP
gdp00	GDP from final SAM
gdpfc0	GDP at factor cost
;	
*\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#	Initializing Parameters
SAM ("TOTAL", jj)	= sum(ii, SAM(ii,jj));
SAM (ii, "TOTAL")	$=\operatorname{sum}(j j, ~ S A M(i i, j j))$;
sam0(i,j)	$=\operatorname{sam}(\mathrm{i}, \mathrm{j})$;

$\operatorname{sam0}(i, j) \quad=\operatorname{sam}(i, j) ;$
*\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# Divide SAM entries by 1000 for better scaling $\operatorname{sam}(i, j) \quad=\operatorname{sam}(i, j) / 1000$;

Abar0(ii,jj) \$SAM(ii,jj) = SAM(ii,jj)/SAM("TOTAL",jj) ;
T0(ii,jj)
T0("TOTAL",jj)
T0 (ii,"TOTAL")
$=\operatorname{SAM}(i i, j j) ;$
(i, SAM(ii,jj))

DELTA $=.000001$;
Display T0, Abar0 ;

*\# CROSS ENTROPY

 \#*\# RED ALERT!!! \#

* The ENTROPY DIFFERENCE procedure uses LOGARITHMS: negative flows in
* the SAM are NOT GOOD!!!
*
* The option used here is to detect any negative flows and net them out
* of their respective symmetric cells, e.g
negative flow ACT ---> GRE is set to zero
* and ADDED to GRE ---> ACT as a positive number.
* The entropy difference method can then be implemented.
* After balancing, the negative SAM values are returned to their
* original cells for printing.

SET
red(i,j) Set of negative SAM flows
;
Parameter
redsam(i,j)
rtot(i)
ctot(i)
Row total
Column total
;

rtot (ii)	= sum(jj, TO(ii,jj));
ctot(jj)	= sum(ii, T0(ii,jj));
red(ii,jj) \$(T0 (ii, jj) LT 0)	= yes ;
redsam(ii,jj)	= 0;
redsam(ii, jj) \$red(ii, jj)	= T0 (ii, jj) ;
redsam(jj,ii) \$red(ii,jj)	= T0 (ii, jj) ;

*Note that redsam includes each entry twice, in corresponding row
*and column. So, redsam need only be subtracted from TO .
T1(ii,jj)
$=T 0(i i, j j)-$
redsam(ii,jj);
T1("Total",jj)
= sum(ii, T1(ii,jj));
T1(ii,"Total")
$=$ sum(jj, T1(ii, jj));
redsam("total",jj)
redsam(ii,jj));
redsam(ii,"total")
$=$ sum(ii,
redsam(ii,jj));

```
sam(ii,"total")
sam("total",jj)
rtot(ii)
ctot(jj)
Abar1(ii,jj)
```

T1(ii,jj)/sam("total",jj);
display "NON-NEGATIVE SAM" ;

display redsam, T1, Abar0, Abar1, rtot, ctot ;

*\#\#\#\#\# Initializing Parameters after accounting for negative values \#\#\#\#\#\#\#
*SR Note that target column sums are being set to average of initial

* row and column sums. Initial column sums could have been used instead,
* depending on data quality and prior knowledge.

target0 (ii)	= (sam(ii,"total") + sam("total",ii))/2
sumtarg0	= sum(ii, sam(ii,"total")) ;
gdpfc0	= T1("fac", "act") ;
gdp0	= T1("fac","act") + T1("gre", "act")
	- T1("act", "gre") + T1("gre", "com")

Display gdpfc0, gdp0;

*\# VARIABLES

\#

VARIABLES
A(i,j)
TSAM (i,j)
Y(i)
X(i)
ERR(i)
W (i, jwt)
DENTROPY
GDPFC
GDP
Post SAM coefficient matrix Post matrix of SAM transactions row sum of SAM
column sum of SAM Error value Error weight Entropy difference (objective) GDP at factor cost GDP at market prices
;
*\# INITIALIZE VARIABLES \#

A.L(ii, jj)	= Abar1 (ii,jj)
TSAM.l(ii,jj)	= T1 (ii, jj) ;
Y.L(ii)	= target0(ii) ;
X.L(ii)	= target0 (ii) ;
ERR.L(ii)	$=0.0$;
W.L(ii, jwt)	= 1/card(jwt) ;
DENTROPY.L	= 0;
GDPFC.L	= gdpfc0;
GDP.L	= gdp0;

*\#\#\#\#\#\#\#\#\#\#\#\# CORE EQUATIONS
EQUATIONS
SAMEQ(i) row and column sum constraint

SAMMAKE (i,j) ERROREQ(i)
make SAM flows
SUMW (i) Sum of weight
ENTROPY
ROWSUM(i)
COLSUM(j)
Entropy difference definition
row target
column target
*\#\#\#\#\#\#\#\#\#\#\#\# EQUATIONS IMPOSING KNOWN INFORMATION

GDPFCDEF | define GDP at factor cost |
| :--- |
| GDPDEF |
| ; |

*CORE
EQUATIONS=================================

EQUA

=

GDPDEF..
=E= TSAM("fac","act") + TSAM("gre","act")
- TSAM("act","gre") +

TSAM("gre","com") ;
*\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# Defining bounds for cell values \#
A.LO (ii, jj) \$ABAR1 (ii, jj)
$=0$;
A.UP (ii, jj) \$ABAR1 (ii, jj)
$=0$;
A.FX(i,j) \$(NOT Abar1(i,j))
= 0 ;
TSAM.lo(ii,jj)
$=0.0$;
TSAM.up(ii,jj)
= +inf ;

TSAM.FX(ii,jj)\$(NOT Abar1(ii,jj)) = 0
*\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# Fix other known cell values \#

```
SET fixrow(i) /act, com, fac, ent, hou /
    fixrow2(i) /act, com, fac, ent / ;
TSAM.fx("gre",fixrow) = T1("gre",fixrow) ;
TSAM.fx("gre","cap") = T1("gre","cap") ;
ISAM.fx("gin","cap") = T1("gin","cap") ;
\begin{tabular}{ll} 
GDP.FX & \(=G D P 0 ;\) \\
GDPFC.FX & \(=G D P F C 0 ;\)
\end{tabular}
```

*\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# Define variables bounds on errors \#

* VBAR parameter defines upper and lower bounds on rectangular error
* distribution on variable X. Here they are set at the difference between
* the min and max column and row sums.
*vbar(ii,"1") = .01*target0(ii)
*vbar(ii,"3") $=-.01 * t a r g e t 0(i i)$;
vbar(ii,"1")
$=0.5 * a b s(r t o t(i i)-c t o t(i i))$;
vbar(ii,"3")
$=-0.5 * a b s(r t o t(i i)-c t o t(i i))$;
*SR to use only two weights, delete set element "2" in jwt and *comment out next statement.
vbar(ii,"2")
$=0.0$;
W.LO(ii, jwt)
$=0$;
W.UP (ii, jwt)
$=1$;
*SR fix errors to zero by fixing weights at 1/3.
*W.FX(ii, jwt) $=1 / c a r d(j w t)$;
*Set target column sums, X.
X.FX(ii) = TARGETO(ii) ;

Display vbar ;
*\# DEFINE MODEL
\#
MODEL SAMENTROP / ALL /
*\# SOLVE MODEL
\#

```
OPTION ITERLIM = 5000;
OPTION LIMROW \(=0\), LIMCOL \(=0\);
OPTION SOLPRINT = ON;
```

* SAMENTROP.holdfixed = 1 ;
* SAMENTROP.optfile = 1 ;
option NLP $\quad=$ MINOS5 ;
* OPTION NLP = CONOPT;
* SAMENTROP.WORKSPACE $=25.0$;

*\# Solve statenment \#

SOLVE SAMENTROP using nlp minimizing dentropy ;

*\#

 \#\#\#\#\#\#\#\#\#\#\#\#\#\#Parameters
Macsam1 (i,j)
entropy diff
Macsam2 (i,j)
x 1000
SEM
percent1(i,j)
original SAM
PosUnbal (i,j)
PosBalan (i, $j)$
Diffrnce(i,j)
Final SAM in
NormEntrop
uncertainty

Parameters for reporting results
Assigned new balanced SAM flows from
Balanced SAM flows from entropy diff
Squared Error Measure
percent change of new SAM from
Positive unbalanced SAM
Positive balanced SAM
Differnce between original SAM and
values
Normalized Entropy a measure of total
;
macsam1(ii,jJ)
macsam1("total",jj)
macsam1(ii,"total") $\operatorname{macsam} 2(i, j)$
SEM
Abar1(ii,jj))) /
$S Q R(9)$
$\operatorname{percent1}(i, j) \$(T 1(i, j))=100^{*}(\operatorname{macsam1}(i, j)-T 1(i, j)) / T 1(i, j) ;$
PosUnbal (i,j)
PosBalan(i,j)
Diffrnce (i,j)
NormEntrop
LOG
;
display macsam1, macsam2, percent1, sem, dentropy.l, PosUnbal, PosBalan;
display NormEntrop, Diffrnce ;
*\#\#\#\#\#\#\#\#\#\#\#\# Return negative flows to initial cell position \#\#\#\#\#\#\#\#\#\#\#\#\#\#
macsam1 (ii,jj) = macsam1 (ii,jj) + redsam(ii,jj) ;
macsam1("total",jj)
macsam1(ii,"total")
macsam2(i,j)
gdp00
macsam1("gre", "act")
= SUM(ii, macsam1 (ii,jj)) ;
$=\operatorname{SUM}(j j, \operatorname{macsam} 1(i i, j j))$;
$=\operatorname{macsam} 1(i, j) * 1000$;
= macsam1("fac","act") +

- macsam1("act","gre") +
macsam1("gre","com") ;
display macsam1, macsam2 ;
display gdp0, gdp00, gdp.l, gdpfc0, gdpfc.l ;

*\#\#\#\#\#\#

\$ontext
*\#\#\#\#\#\#\# Export Imbalanced \& balanced SAM to a lotus spreadsheet
\#\#\#\#\#\#\#\#\#\#\#\#

* The libinclude statement requires additional gams programs written
* by Tom Rutherford. See webpage:
http://www.gams.com/contrib/sslink/ssdoc.htm
\$LIBINCLUDE SSDUMP Posunbal
\$LIBINCLUDE SSDUMP Posbalan
\$LIBINCLUDE SSDUMP percent1
sam0.WK1 B1..B1
macsam2.WK1 B1..B1 percent1.WK1 B1..B1
\$offtext
*\#\#\#\#\#\#\#
*SR print some stuff
A.L("total",jj) = SUM(ii, A.L(ii, jj)) ;
A.L(ii,"total") = SUM(jj, A.L(ii, jj)) ;

ABAR1 ("total",jj) = SUM(ii, ABAR1 (ii, jj)) ;
ABAR1(ii,"total") = SUM(jj, ABAR1 (ii, jj)) ;
Display A.L, ABAR1 ;
\#\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#* THE END
\#\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*\#*

[^0]: ${ }^{1}$ "Generally" exists because there are situations where the method fails. For example, a column or row of zeros cannot be proportionately adjusted to sum to a non-zero number. For the method to work, the matrix must be "connected", which is a generalization of the notion of "indecomposable" [Bacharach (1970, p. 47)].

[^1]: ${ }^{2}$ Thissen and Löfgren (1997) also note this result

[^2]: ${ }^{4}$ When the error distribution is assumed to be rectangular between the upper and lower bounds, and is symmetric around zero (that is two $w \mathrm{~s}$), equation (16) is written as follows:

 $$
 \min \left[\sum_{i} \sum_{j} A_{i, j} \ln A_{i, j}-\sum_{i} \sum_{j} A_{i, j} \ln \bar{A}_{i, j}+\sum_{i}\left[W_{i} \ln W_{i}+\left(1-W_{i}\right) \ln \left(1-W_{i}\right)\right]\right]
 $$

[^3]: ${ }^{5}$ Arndt, Cruz, Jensen, Robinson, and Tarp (1997) describe the Mozambique SAM in detail and the use of the entropy difference approach to estimate it.

