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Abstract

There is a continuing need to use recent and consistent multisectoral economic
data to support policy analysis and the development of economywide models. Updating and
estimating input-output tables and Social Accounting Matrices (SAMS) for arecent year isa
difficult and a challenging problem. Typically, input-output data are collected at long intervals
(usually five years or more), while national income and product data are available annualy, but
with alag. Supporting data also come from a variety of sources, e.g., censuses of manufacturing,
labor surveys, agricultural data, government accounts, international trade accounts, and
household surveys. The problem in estimating a SAM for arecent year isto find an efficient (and
cost-effective) way to incorporate and reconcile information from a variety of sources, including
data from prior years. The traditional RAS approach requires that we start with a consistent SAM
for a particular period and “update’ it for alater period given new information on row and
column sums. This paper extends the RAS method by proposing a flexible entropy difference
approach to estimating a consistent SAM starting from inconsistent data estimated with error, a
common experience in many countries. The method is flexible and powerful when dealing with
scattered and inconsistent data. It allows incorporating errors in variables, inequality constraints,
and prior knowledge about any part of the SAM (not just row and column sums). Since the input-
output accounts are contained within the SAM framework, updating an input-output table can be
viewed as a specia case of the general SAM estimation problem. The paper presents the
structure of a SAM and a mathematical description of the estimation problem. It then describes
the classical RAS procedure and the entropy difference approach. An example of the entropy
difference approach applied to the case of Mozambique is presented. In addition, an appendix
includes alisting of the computer code in the GAMS language used in the procedure.

Paper presented at the MERRISA (Macro-Economic Reforms and Regional
Integration in Southern Africa) project workshop. September 8 -12, 1997,
Harare, Zimbabwe. Our thanks to George Judge, Amos Golan, Hans Lofgren,
and workshop participants for helpful comments on earlier drafts
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Introduction

There is a continuing need to use recent and consistent multisectoral economic data to
support policy analysis and the development of economywide models. A Social Accounting
Matrix (SAM) provides the underlying data framework for this type of model and analysis. A
SAM includes both input-output and national income and product accounts in a consistent
framework. Input-output data are usually prepared only every five years or so, while national
income and product data are produced annually, but with alag. To produce a more disaggregated
SAM for detailed policy analysis, data are often supplemented by other information from a
variety of sources; e.g., censuses of manufacturing, labor surveys, agricultural data, government
accounts, international trade accounts, and household surveys. The problem in estimating a
disaggregated SAM for arecent year is to find an efficient (and cost-effective) way to incorporate
and reconcile information from a variety of sources, including data from prior years.

Estimating a SAM for arecent year is a difficult and challenging problem. A standard
approach isto start with a consistent SAM for a particular prior period and “update’ it for a later
period, given new information on row and column totals, but no information on the flows within
the SAM. The traditional RAS approach, discussed below, addresses this case. However, one
often starts from an inconsistent SAM, with incomplete knowledge about both row and column
sums and flows within the SAM. Inconsistencies can arise from measurement errors,
incompatible data sources, or lack of data. What is heeded is an approach to estimating a
consistent set of accounts that not only uses the existing information efficiently, but also is
flexible enough to incorporate information about various parts of the SAM.

In this paper, we propose a flexible entropy difference approach to estimating a consistent
SAM starting from inconsistent data estimated with error. The method is very flexible,
incorporating errors in variables, inequality constraints, and prior knowledge about any part of
the SAM (not just row and column sums). The next section presents the structure of a SAM and a
mathematical description of the estimation problem. The following section describes the classical
RAS procedure, followed by a discussion of the entropy difference approach. Next we present an
example of the entropy difference approach applied to the case of Mozambique. An appendix
presents the computer software used in the procedure.

Structure of a Social Accounting Matrix (SAM)

A SAM is asguare matrix whose corresponding columns and rows present the
expenditure and receipt accounts of economic actors. Each cell represents a payment from a
column account (actor) to arow account. Define T as the matrix of SAM transactions, where T
is a payment from column account j to row account i. Following the conventions of double-entry
bookkeeping, the total receipts (income) and expenditure of each actor must balance. That is, for
aSAM, every row sum must equal the corresponding column sum:
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wherey, istotal income and expenditure of account i.

A SAM coefficient matrix, 4, isconstructed from T by dividing the cells in each column
of T by the column sums:

4, =Ly
= 2
i )

By definition, al the column sums of 4 must equal one, so the matrix is singular. Since column
sums must equal row sums, it also follows that (in matrix notation):

y =4Ady 3

A typical national SAM includes accounts for production (activities), commodities,
factors of production, and various actors (“institutions”) which receive income and demand
goods. The structure of asimple SAM isgiven in Table 1. Activities pay for intermediate inputs
and factors of production and receive payments for exports and sales to the domestic market. The
commodity account buys goods from activities (producers) and the rest of the world (imports)
and sells commodities to activities (intermediate inputs) and final demanders (households,
government, and investment). In thisssimple SAM, tariffs, indirect taxes, and subsidies are | eft
out. Gross domestic product (GDP) at factor cost (payments by activities to factors of
production) equals gross domestic income and aso equals GDP at market prices (consumption
plus investment plus government demand plus exports minus imports).

The matrix of column coefficients, 4, from such a SAM provide raw material for much
economic analysis and modeling. For example, the intermediate-input coefficients (known as the
“use” matrix) correspond to Leontief input-output coefficients. The coefficients for primary
factors are “value added” coefficients and give the factor distribution of income. Column
coefficients for the commaodity accounts represent domestic and import shares, while those for
the various fina demanders provide expenditure shares. Thereis along tradition of work which
starts from the assumption that these various coefficients are fixed, and then develops various
linear multiplier models. They also provide the starting point for estimating parameters of
nonlinear, neoclassical production functions, factor-demand functions, and household
expenditure functions.

In principle, it is possible to have negative transactions, and hence coefficients, in a SAM.
Such negative entries, however, can cause problemsin some of the estimation techniques
described below and also may cause problems of interpretation in the coefficients. A simple



Table 1. A national SAM

Expenditure

Receipts Activity Commodity Factors Ingtitutions World

Activity Domestic sales exports

Commodity Intermediate Final

Inputs demand
Factors Value added
(wages/rentals)

Ingtitutions Factor Capital
Income inflow

World Imports

Totals Total costs Total absorption Total factor Gross domestic Foreign
income income exchange

inflow

approach to dealing with thisissue is smply to treat a negative expenditure as a positive receipt
and a negative receipt as a positive expenditure. For example, if atax is negative, treat it asa
subsidy. That is, if T, is negative, we smply set the entry to zero and add the value to T, This
“flipping” procedure will change row and column sums, but they will still be equal.

The RAS Approach to SAM estimation

The classic problem in SAM estimation is the problem of “updating” an input-output
matrix when we have new information on the row and column sums, but do not have new
information on the input-output flows. The generdization to afull SAM, rather than just the
input-output table, is the following problem. Find anew SAM coefficient matrix, 4*, thatisin
some sense “close” to an existing coefficient matrix, 4 but yields a SAM transactions matrix,
T, with the new row and column sums. That is:

1

Y1, =T,
J J

where y* are known new row and column sums.

Ty =4,y

= yi*
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A classic approach to solving this problem is to generate a new matrix 4* from the old
matrix A by means of “biproportional” row and column operations:

A5 = RA,S, (6)

[

or, in matrix terms:

A" = RA. (7

where the hat indicates a diagonal matrix of elements of R and S. Bacharach (1970) shows that
this“RAS’ method works in that a unique set of positive multipliers (normalized) exists that
satisfy the biproportionality condition and that the elements of R and S can be found by asimple
iterative procedure.!

Note that it is easy to generalize the RAS procedure to work with rectangular matrices
that are not SAMs. That is, the method can be adapted to work with any matrix with known row
and column sums: for example, an input-output matrix that includes final demand columns (and
is hence rectangular). In this case, the column coefficients for the final demand accounts
represent expenditure shares and the new data are final demand aggregates.

An Entropy Difference Approach to SAM estimation

The fundamental estimation problem isthat, for an n-by-n SAM, we seek to identify n?
unknown non-negative parameters (the cellsof T or A), but have only 2n-1 independent row and
column adding-up restrictions. The RAS procedure imposes the biproportionality condition, so
the problem reduces to finding 2n—1 R and S coefficients (one being set by normalization),
yielding a unigue solution. In arecent book, Golan, Judge, and Miller (1996) suggest a variety of
Bayesian estimation techniques using what they describe as “maximum entropy econometrics’.
Golan, Judge, and Robinson (1994) apply this approach to estimating a new input-output table
given knowledge about row and column sums of the transactions matrix — the classc RAS
problem discussed above. In this section, we extend this methodol ogy to situations where there
are different kinds of prior information than knowledge of row and column sums.

Golan, Judge, and Robinson (1994) use an entropy difference formulation, and set up the
problem as finding a new set of A coefficients which minimizes the entropy distance between the
prior A and the new estimated coefficient matrix

“Generally” exists because there are situations where the method fails. For example, a
column or row of zeros cannot be proportionately adjusted to sum to a non-zero number. For the
method to work, the matrix must be “connected”, which is a generalization of the notion of
“indecomposable” [Bacharach (1970, p. 47)].
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Bacharach (1970, pp. 83-85) shows that, for a particular scaling of the coefficients, the solution
A* for this problem is a biproportional estimate — that is, the solution of the RAS method
satisfies the first order conditions for minimizing the entropy distance.?

In using the entropy difference approach, we generalize the RAS method in four areas. (1)
add additional linear constraints on the new T matrix in addition to knowledge of row and
column sums; (2) specify constraintson T as inequalities rather than equalities; (3) assume that
row and column sums are not fixed parameters but involve errors in measurement; and (4)
assume that the initial estimate, 4, is not based on a balanced SAM.

Equality and Inequality Constraints

In addition to row and column sums, one often has additional knowledge about the new
SAM. For example, aggregate national accounts data may be available for various macro
aggregates such as value added, consumption, investment, government, exports, and imports.
There a'so may be information about some of the SAM accounts such as government receipts
and expenditures. This information can be summarized as additional linear adding-up constraints
on various elements of the SAM. Define an n-by-n aggregator matrix, G, which has ones for cells
in the aggregate and zeros otherwise. Assume that there are k such aggregation constraints, which
are given by:

*Thissen and L6fgren (1997) aso note this result
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where vy isthe value of the aggregate. These conditions are simply added to the constraint set in
the entropy difference formulation.

While one may not have exact knowledge about values for various aggregates, including
row and column sums, it may be possible to put bounds on some of these aggregates. Such
bounds are easily incorporated by specifying inequality constraints in equation (11). It isalso
feasible to specify an error structure, either on equations or on variables, which can be interpreted
as arising from either measurement error or some “noise’ in the equation system.

Incorporating Measurement Error

There are two general ways to incorporate noise into the system. One isto assume an
“errorsin equations’ formulation where the process is assumed to include random noise and,
second, an “errorsin variables’ formulation where the variables are assumed to be measured with
noise. We will follow the errors-in-variables approach here, since the SAM is not viewed as a
model but as a statistical framework where the issue is not in specifying an error generating
process but as a problem of measurement.®

Rewrite the SAM equation as:

I
N
el
+
oL
I
'
=|
+
N
Q

4 (12)

Il
=
+
Q

y

where y is the vector of row sums and x, measured with error ¢, isthe initial known vector of
column sums. Following Golan, Judge, and Miller (1994, chapter 6), we write the errors as a
weighted average of known constants as follows:

€ = Z szwt Vi jwe 13)

Jwt

subject to the weights summing to one:

*The problem is analogous to the distinction between errors in equations and errorsin
variablesin standard regression anaysis. See, for example, Judge et al. (1985). Golan and Vogel
(1997) describe an errors in equations approach to the SAM estimation problem.
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where jwr is the set of weights, w. In the estimation, the weights are treated as variables bounded
between zero and one subject to (14). The constants, v, are usually chosen to yield a symmetric
distribution with moments depending on the number of elementsin the set jwz. For example, if
the error distribution is assumed to be rectangular and symmetric around zero, with known upper
and lower bounds, the error equation becomes:

1 1

e,=w, v, - (1 -w)v, 15)

In general, one can add more v’ s to incorporate more information about the error distribution
(e.g., more moments, including variance and kurtoss).

The procedure is simple. Given knowledge about the error bounds, equation (13) and (14)
are added to the constraint set and equation (12) replaces the SAM equation. The problem is
messier in that the SAM equation is now nonlinear, involving the product of 4 and e. The
minimization problem isto find a set of 4’sand w's that minimize the entropy difference
including aterm in the errors:

min ZZ Ai,j InAi,j B ZZ Ai,j InA—i,j * ZZ VVi,jwtln Wi,jwt (16)
i i

i jwt

subject to the constraint equations on column and row sums being equal, that the w's fdll
between zero and one, and any other linear aggregation inequalities or equalities. Note that if the
distribution is symmetric, then when al the w's are equal, which is the default prior, al the errors
are zero.*

Another source of measurement error may arise such that the initial SAM, A, may not
itself be abalanced SAM. That is, its corresponding rows and columns may not be equal. This

“When the error distribution is assumed to be rectangular between the upper and lower
bounds, and is symmetric around zero (that is two w S), equation (16) is written as follows:

min Y Y 4, Ind, - Y 4 Ind, « X[ WInw, + (1-W)In(L-W)]
i i i



situation does not change the entropy difference estimation procedure, but implies that it is not
possible to achieve an entropy difference measure of zero because the prior is not feasible. The
ideaisto find anew feasible SAM that is entropy-close to the infeasible prior.

An Example: Mozambique

To illustrate the use of the proposed entropy difference procedure, we apply it to a 1994
macro SAM for Mozambique.®> We start from an inconsistent SAM in which some row and
column sums are not equal. We assume that the row sums are measured with error, and apply the
entropy difference method discussed above. The estimation and balancing procedures were
implemented using the GAMS programming language. Appendix A shows the model equations
in standard algebra notation and the GAMS code is given in Appendix B. Inequality constraints
include upper and lower bounds on the coefficient matrix 4 (0 < 4;; < 1) and bounds on the error
variables (within the range of plus or minus the difference between column and row totals). The
model also includes equality constraints on various cells of the SAM, including GDP at factor
cost, GDP at market prices, and the government revenue row (tax receipts).

The prior unbalanced SAM for Mozambique in millions of 1994 meticaisis presented in
Table 2. Tables 3 and 4 present the estimated balanced SAM and the cell-by-cell percent
deviation of the estimated from the initial (inconsistent) SAM. The largest changes occur in the
savings-investment and international trade accounts. The initia row-column sum deviations were
largest in the activity, commodity, household, and capital (savings-investment) accounts. In the
model, the solution was achieved with essentially zero error variables. In this case, using an
errorsin variables specification does no damage since the constraints are simply not binding.
That is, in a Bayesian approach, imposing non-binding constraints requires no additional
updating of the prior.

We also did some sengitivity analysis, perturbing the initial SAM until the solution was
infeasible. Using the errorsin variables approach resulted in afeasible (and robust) solution in
which the errors in variables were not zero. In the perturbed problem, some of the percent
deviationsin individual cells changed alot and the solution tended to generate wide variationsin
cell entries. Of course, in the perturbed model, the entropy difference was taken with respect to
the initial unbalanced SAM, and the solution deviated a lot from the earlier unperturbed SAM. In
this case, the inconsistent prior had to be adjusted alot. It is clearly useful to impose appropriate
constraints — a general result in econometrics that certainly also applies to this essentialy
Bayesian method.

*Arndt, Cruz, Jensen, Robinson, and Tarp (1997) describe the Mozambique SAM in
detail and the use of the entropy difference approach to estimate it.
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Conclusion

The entropy difference approach provides aflexible and powerful method for estimating a
socia accounting matrix (SAM) when dealing with scattered and inconsistent data. The method
represents a considerable extension of the standard RAS method, which assumes that one starts
from a consistent prior SAM and has knowledge only about row and column totals. The entropy
difference framework allows awide range of prior knowledge to be used efficiently in
estimation. The prior knowledge can be in avariety of forms, including linear and nonlinear
inequalities, equalities, errors in equations, and errors in variables. One also need not start from a
balanced or consistent SAM.



Table 2. Prior unbalanced 1994 Macro SAM for Mozambique (millions of 1994 meticais)

Expenditure

Receipts activities Commodities factors  enterprise households  Rec. govt.* govt. invest priv. invest world Totals
activities 0.0 14827.4 0.0 0.0 2101.0 0.0 0.0 0.0 1488.2 18416.6
commodities 79175 0.0 0.0 0.0 6753.3 1764.5 21185 2197.8 0.0 20751.6
factors 9805.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9805.4
enterprises 0.0 0.0 3699.7 0.0 0.0 33.0 0.0 0.0 0.0 3732.7
households 0.0 0.0 6031.3 3417.5 0.0 29.6 0.0 0.0 209.5 9687.9
Rec. govt. 733.9 357.4 74.4 165.2 139.5 0.0 0.0 356.7 0.0 1827.1
govt. invest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 406.2 1712.3 21185
priv. invest 0.0 0.0 0.0 150.0 649.2 0.0 0.0 0.0 2163.9 2963.0
world 0.0 5573.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5573.8
Totals 18456.5 20758.6 9805.4 3732.7 9643.0 1827.1 21185 2960.7 5573.8

Source: Arndt, C. et al., 1997.
* Recurrent government expenditures
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Table 3. Estimated balanced 1994 Macro SAM for Mozambique (millions of 1994 meticais)

Expenditure
Receipts activities Commodities factors  enterprise households Rec. govt. govt. invest priv. invest World Totals
activities 0.0 14823.9 0.0 0.0 21104 0.0 0.0 0.0 1502.4 18436.7
commodities 7897.4 0.0 0.0 0.0 6774.2 1766.0 21185 2199.0 0.0 20755.1
factors 9805.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9805.4
enterprises 0.0 0.0 3700.5 0.0 0.0 32.2 0.0 0.0 0.0 3732.7
households 0.0 0.0 6030.5 3410.7 0.0 28.9 0.0 0.0 195.4 9665.5
Rec. govt. 733.9 357.4 74.4 165.2 139.5 0.0 0.0 356.7 0.0 1827.1
govt. invest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 406.2 1712.3 21185
priv. invest 0.0 0.0 0.0 156.8 641.3 0.0 0.0 0.0 2163.7 2961.8
world 0.0 5573.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5573.8
Totals 18436.7 20755.1 9805.4 3732.7 9665.5 1827.1 21185 2961.8 5573.8
Table 4. Differences between the estimated and the origina unbalanced 1994 Macro SAM for Mozambique (%)
Expenditure

Receipts activities Commodities factors  enterprise households Rec. govt. govt. invest priv. invest world Totals
activities -0.02 0.45 0.96 0.11
commodities -0.25 0.31 0.09 0.00 0.05 0.02
factors 0.00 0.00
enterprises 0.02 -2.44 0.00
households -0.01 -0.20 -2.44 -6.71 -0.23
Rec. govt. 0.00 0.00 0.00 0.00 0.00 0.00
govt. invest 0.00 0.00
priv. invest 455 -1.21 -0.01 -0.04
world 0.00 0.00
Totals -0.11 -0.02 0.00 0.00 0.23 0.00 0.00 0.04 0.00
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Table A.1: Entropy Difference Equations

# | Equation Description
1| 7, =4, (X +¢) SAM equation
21 Y, =X + e Row/column sum consistency
3| ¢%- j%; Wi jut Vijur Error definition
4 j%; Wijwe = 1 Sum of weights
5| H - E E 4,,In4,; - E E 4,1 ,le + E 2; W, Entropy Difference
1 J 1 J 1 Jwi
6 . Ty=%+¢ Row sum
7| < Ty =Y Column sum
gl XX Gy T, = v Additional Constraints
i
Inequalities
0<4, <1
o<w<1
Notation
Set
i and]j SAM accounts
jwit weights on errorsin variables
Variables
A, SAM coefficient matrix
e; Error variable
H Entropy Difference (objective)
T, Transactions SAM
X, Column sum
W, i Error weights
Y. Row sum
Parameters
ATU. Prior SAM coefficient matrix
Gl.(f) k’th aggregator matrix
y® k’th control total
Vi it Error bounds

14




Appendix B: GAMS Code



Appendix B: GAMS code

What followsis alisting of the GAMS program used in illustrating the entropy
difference method discussed above. A quick list of some of GAMS features are listed below. For
additional information about GAMS syntax see Brooke, Kendrick, and Meeraus (1988).

In the GAMS language:

- Parameters are treated as constants in the model and are defined in separate
"PARAMETER" statements.

- "SUM" is the summation operator, Sgma.

- "$" introduces a conditional "if" statement.

- The suffix ".FX" indicates a fixed variable.

- The suffix ".L" indicates the level or solution value of a variable.

- The suffix ".LO" and ".UP" indicate the lower and upper bounds, respectively
of avariable.

- An asterisk "*" in the first column indicates a comment. Alternative treatments
in the model Code are shown commented out.

- An"ALIAS" statement is used to give another name to a previously declared set.

- A semicolon (;) terminates a GAMS statement.

- Items between dashes (/) are data or set elements.
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ENT 0.0 33. 0000 0.0 gdp00 GP fromfinal SAM
0.0 gdpf cO GDP at factor cost
HOU 0.0 29. 6000 0.0 ;
0.0
GRE 139. 5000 0.0 0.0 * g TR I nitial i zi ng Paraneters
0.0 SAM " TOTAL", jj) = sum(ii, SAMii,jj));
G N 0.0 0.0 0.0 SAMi i, " TOTAL") =sum(jj, SAMii,jj));
0.0
CAP 649. 1560 -356.6730 -406. 2000 sanD(i,j) = sam(i,j);
0.0
ROW 0.0 0.0 0.0 * g TS Divide SAM entries by 1000 for better scaling
0.0 san(i,j) = san(i,j)/1000;
Tot al 9643. 037 1470.1 1712. 3
2197. 798 AbarO(ii,jj)$SAMii,jj) = SAMii,jj)/SAM"TOTAL",jj) ;
+ ROW Tot al TO(ii,jj) = SAMii,jj);
ACT 1488. 1570 18416. 303 TO("TOTAL",jj) = sum(ii, SAMii,jj));
com 0.0 20751. 634 TO(ii,"TOTAL") =sum(jj, SAMii,jj));
FAC 0.0 9805. 414
ENT 0.0 3732. 706 DELTA = .000001;
HOU 209. 5010 9687. 915
GRE 0.0 1470.1 Di spl ay TO, AbarO ;
G N 1712. 3000 1712. 3
CAP 2163. 8570 2200. 14 * HHHHHHHHHHHHAH A A A AH - CROSS ENTROPY
ROW 0.0 5573. 815 B R AR R AR R A R
Tot al 5573. 815
* #HH BT H R H A AR AR HE RED ALERT! 1]
B R AR R AR R A R
* HHHHHHHHHHHHAHH A AH## Paramet ers and Scal ars
BRI R R * The ENTROPY DI FFERENCE procedure uses LOGARI THVS: negative flows
PARAMVETER in
* the SAM are NOT GOOD!!!
SAMD(i , ) Base SAM transactions matrix *
TO(i,j) Matrix of SAMtransactions (flow matrix) * The option used here is to detect any negative flows and net them
T1(i,j) Adjusted matri x of SAMtransactions for out
negative coefficients * of their respective symmetric cells, e.g.
Abar 0(i,j) Prior SAM coefficient matrix * negative flow ACT ---> GRE is set to zero
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* and ADDED

to GRE ---> ACT as a positive nunber.

* The entropy difference nethod can then be inpl ement ed.

* After bal anci ng,
their

the negative SAM val ues are returned to

* original cells for printing.

SET

red(i,j) Set of negative SAM fl ows

Par amet er

redsan(i,j) Negati ve SAM val ues only

rtot(i) Row t ot al

ctot(i) Col um total

rtot(ii) =sunm(jj, TO(ii,jj));
ctot(jj) = sun(ii, TO(ii,jj));
red(ii,jj)$(TO(ii,jj) LT 0) = yes ;
redsan(ii,jj) = 0;
redsam(ii,jj)$red(ii,jj) = T0(ii,jj);
redsam(jj,ii)$red(ii,jj) = TO(ii,jj);

*Note that redsami
row

*and col um. So,
TL(ii,j))
redsan(ii,jj);
T1("Total ",jj)
T1(ii,"Total ")

redsan("total",jj)
redsanm(ii,jj));

redsan(ii,"total")
redsam(ii,jj));
san(ii,"total")
san("total",jj)
rtot(ii)

ctot(jj)

Abar 1(ii,jj)

ncl udes each entry twice, in correspondi ng

redsam need only be subtracted from TO.

= TO(ii,jj) -
=sun(ii, Ti(ii,jj));
= sum(jj, TL(ii,jj));
= sun(ii,

= sun(jj,

= sum(jj, Ti(ii,jj));
:SurT(ii, Tl(ll,]])),
= sum(jj, TL(ii,jj));
=sun(ii, Ti(ii,jj));

Ti(ii,jj)/sam"total",jj);

di spl ay " NON- NEGATI VE SAM' ;
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di splay redsam T1, Abar0O, Abarl, rtot, ctot ;

*#####H Initializing Paraneters after accounting for negative val ues
HHEH AR

*SR Note that target columm suns are being set to average of
initial

* row and columm sums. Initial colum sums could have been used
i nst ead,

* dependi ng on data quality and prior know edge.

targetO(ii) = (sam(ii,"total") + sam("total",ii))/2 ;
sunt ar g0 = sunm(ii, san(ii,"total") );

gdpf cO = T1("fac","act");

gdp0 = Ti("fac","act") + T1("gre","act")

- Tl(ll aCt", " gr ell) + Tl(ll gr ell’ Ilcoml) ;
Di spl ay gdpfcO, gdpO;

* HRHHHHH AR AR AR VAR ABLES
BHHBHHHBHHBHHHBHHBHH AR H AR H AR H AR H AR

VARI ABLES

A(i L) Post SAM coefficient matrix
TSAMi,j) Post matrix of SAMtransactions
Y(i) row sum of SAM

X(i) col um sum of SAM

ERR(i) Error val ue

Wi, jw) Error wei ght

DENTROPY Entropy difference (objective)
GDPFC GDP at factor cost

GoP GDP at market prices

M e e e s e e
BHHBHHHBHHARHHBHHARHHBRHHAR

I NI TI ALI ZE VARI ABLES

AL(ii,jj) = Abar1(ii,jj) ;
TSAM I (ii,j]) = TL(ii,jj);

Y. L(ii) = targetO(ii) ;
XoL(ii) = targetO(ii) ;
ERR L(ii) = 0.0 ;
WL(ii,jw) = 1/card(jw) ;
DENTROPY. L = 0;

GDPFC. L = gdpf cO;

GDP. L = gdpO;

* g pHH##HHAH CORE EQUATI ONS

EQUATI ONS

SAMEQ(i ) row and col um sum constrai nt



SAMMAKE(i ,j)  make SAM flows GDPDEF. . GP =E= TSAM"fac","act") + TSAM"gre", "act")

ERROREQ(i ) definition of error term - TSAM"act","gre") +
SUMN(i ) Sum of wei ghts TSAM "gre", "cont') ;
ENTROPY Entropy difference definition
RONBUM i ) row target * g HH## - Defi ning bounds for cell val ues
COLSUM | ) col umm tar get HHHH
A LQ(ii,jj)SABARL(Ii,j]) =0 ;
* R EQUATI ONS | MPOSI NG KNOAN | NFORVATI ON A UP(ii,jj)SABARL(ii,j]) =1;
A FX(i,j)$(NOT Abar 1(i,j)) = 0;
GDPFCDEF define GDP at factor cost
GDPDEF define GDP TSAM lo(ii,jj) =0.0;
; TSAM up(ii,jj) = +inf ;
TSAM FX(ii,jj)$(NOT Abar1(ii,jj)) =0 ;
* CORE
EQUATI ONS * fHHpH AR Fi x ot her known cel |l val ues
== HHE R AR A A A AR
SET fixrowmi) /act, com fac, ent, hou /
SAMVEQ(ii). . Y(ii) =E= X(ii) + ERR(ii) ; fixrow2(i) /act, com fac, ent / ;
SAMVAKE(ii,jj)$(Abarl(ii,jj)).. TSAM f x("gre", fixrow) = Ti("gre",fixrow) ;
TSAMii,jj) =E= A(ii,jj) * (X(jj) + TSAM fx("gre", "cap") = T1("gre","cap")
ERR(jj)) ; TSAM fx("gin","cap") = T1("gin","cap")
ERROREQ(i i) . . ERR(ii) =E= SUMj wt, GDP. FX = CGDPO ;
Wii,jw)*vbar(ii,jw)) ; GDPFC. FX = GDPFQO ;
SUMN(i i) .. SUMijwt, Wii,jw)) =E=1 ; * g #HH# Define vari abl es bounds on errors
HHH R AR R AR R
ENTROPY. . DENTROPY =E= SUM (ii,jj)$(Abarl(ii,jj)), * VBAR paraneter defines upper and | ower bounds on rectangul ar
ACii,jj)*(LO(A(TT,jj) + error
del t a) * distribution on variable X Here they are set at the difference
- LOZ Abar1(ii,jj) + bet ween
delta))) * the mn and max col um and row suns.
+ SUM(ii,jw),
Wi, jw)*LOG(Wii,jw) + *vbar (ii,"1") = .01l*targetO(ii) ;
delta)) ; *vbar (ii,"3") = -.01*targetO(ii) ;
vbar (ii,"1") = 0.5*abs(rtot(ii)-ctot(ii)) ;
RONBUMi i) . . SUMjj, TSAMii,jj)) =E= Y(ii); vbar (ii,"3") = -0.5*abs(rtot(ii)-ctot(ii)) ;
COLSUMjj) - - SUMii, TSAMii,jj)) =E= (X(jj) + ERR(jj)) *SR to use only two weights, delete set element "2" in jw and
; *comment out next statenent.
vbar (ii,"2") = 0.0 ;
* ADDI TI ONAL MACRO CONTROL- TOTAL WLQ(ii,jw) =0 ;
EQUATI ONS W UP(ii,jw) =1;
GDPFCDEF. . GDPFC =E= TSAM "fac","act") ; *SR fix errors to zero by fixing weights at 1/3.
*WEX(ii,jw) = 1/card(jw) ;
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*Set target colum sums, X
X BX(ii) = TARGETO(ii) ;

Di spl ay vbar ;
* #HH R H R AR R #RHH DEFI NE MODEL
BHE AR R AR A AR

MODEL SAMENTROP / ALL /

* HRHHHHH AR AR AAH SOLVE MODEL
BHHBHHHBHHBHHABHHBHHHBHHRRH AR

OPTION | TERLI M = 5000;
OPTION LI MROW = 0, LIMCOL = O;
OPTI ON SOLPRINT = ON,

* SAMENTROP. hol dfi xed = 1 ;

* SAMENTROP. optfile =1 ;
option NLP = M NGS5 ;

* OPTION NLP = CONOPT;

*  SAMVENTROP. WORKSPACE = 25.0;

* HHHHHHHHHHHHHHHH A Sol ve st at enment
BHHBHHHBHHBHHABHHBHHHBHHBRH AR

SOLVE SAMENTROP using nlp nminimzing dentropy ;

* AR AR R AR R AR R AR R AR R AR R AR A AR
BHHBHHHRHHARHHA

e R Parameters for reporting results
Par anet er s

Macsamil(i,j) Assi gned new bal anced SAM fl ows from
entropy diff

Macsan2(i,j) Bal anced SAM fl ows from entropy diff
x 1000

SEM Squared Error Measure

percent 1(i,j) percent change of new SAM from
ori gi nal SAM

Posi ti ve unbal anced SAM
Posi tive bal anced SAM

PosUnbal (i,j)
PosBal an(i,j)

Diffrnce(i,j) Di ffernce between original SAM and
Final SAMin

val ues
Nor nEnt r op Normal i zed Entropy a neasure of total

uncertainty
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macsami(ii,jj) TSAM I (ii,jj);

macsanil("total ",jj) = SUMii, macsaml(ii,jj)) ;
macsanil(ii,"total") = SUMjj, macsaml(ii,jj)) ;
macsan®(i,j) = macsaml(i,j) * 1000 ;
SEM = Sum((ii,jj), SQR(A L(ii,jj) -
Abar 1(ii,jj))) /

SQR(9) ;

percent 1(i,j)$(TL(i,j))
PosUnbal (i,j)

PosBal an(i,j)
Diffrnce(i,j)

Nor mEnt r op

LOG

100* (macsanmtl(i,j)-T1(i,j))/ T1(i,j);
Ti(i,j) * 1000;

macsan2(i,j);

PosBal an(i,j) - PosUnbal (i,j);

SUM (ii,jj)$(Abarl(ii,jj)), AL(ii,jj)*

(ALCiT,jj))) / SUM(ii,jj)$(Abarl(ii,jj)),
Abar1(ii,jj)* LOG (Abari(ii,jj)))

di spl ay macsanl, macsan?, percentl, sem dentropy.l, PosUnbal,
PosBal an;

di splay NornEntrop, Diffrnce ;
* g Return negative flows to initial
HHAFH R AT AR

cell position

macsantl(ii,jj) macsantl(ii,jj) + redsan(ii,jj) ;

macsanil("total",jj) = SUMii, macsaml(ii,jj)) ;
macsanil(ii,"total") = SUMjj, macsaml(ii,jj)) ;
macsan®(i,j) = macsaml(i,j) * 1000 ;
gdp00 = macsaml("fac","act") +

macsanll("gre","act")
- macsaml("act","gre") +
macsanil("gre", "cont') ;

di spl ay macsanl, macsan? ;

di spl ay gdpO, gdp00, gdp.l, gdpfcO, gdpfc.I| ;

* fHH A

$ont ext

*#pf#HH# Export | nbal anced & bal anced SAMto a | otus spreadsheet
HHE R AR TR

* The |ibinclude statement requires additional gans prograns
witten

* by Tom Rut herford. See webpage:
http://ww. gans. com contri b/ sslink/ssdoc. htm

$LI Bl NCLUDE SSDUMP Posunbal
$LI Bl NCLUDE SSDUMP Posbal an
$LI Bl NCLUDE SSDUWP per cent 1

sanD. WK1 B1..Bl1
macsan®. VK1 Bl1.. Bl
percent 1. WK1 B1..B1



$LI BI NCLUDE SSDUMP Di ffrnce Diffrnce. WK1 B1..

$of f t ext
* HitHH R

*SR print some stuff
A L("total",jj)
A L(ii,"total™)

SUMGii, AL(ii.jj)) ;
SUMGj, AL(ii,jj)) ;
UMii, ABARL(ii,jj)) ;
i)

ABARL("total",jj)
) UMjj, ABARL(ii,]]

ABARL(ii,"total"

I n
[92N0))]

Display A L, ABARIL ;

FHYHER R AR A THE END
* #* #* #* #* #* #* #* #* #* #* #* #* #* #* #* #* #*

B1
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