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Abstract

Recent literature on semiparametric copula models focused on the situation when the
marginals are specified nonparametrically and the copula function is given a parametric
form. For example, this setup is used in Chen, Fan and Tsyrennikov (2006) [Efficient
Estimation of Semiparametric Multivariate Copula Models, JASA] who focus on efficient
estimation of copula parameters. We consider a reverse situation when the marginals are
specified parametrically and the copula function is modelled nonparametrically. This
setting is no less relevant in applications. We use the method of sieve for efficient
estimation of parameters in marginals, derive its asymptotic distribution and show that
the estimator is semiparametrically efficient. Simulations suggest that the sieve MLE can
be up to 70% more efficient relative to QMLE depending on the strength of dependence
between the marginals. An application using insurance company loss and expense data
demonstrates empirical relevance of this setting.
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1 Introduction

Consider an m-variate random variable Y with joint pdf h(y1, . . . , ym). Let f1(y1), . . . , fm(ym)

denote the corresponding marginal pdf’s. Assume that the marginals are known up to a

parameter vector β (β collects the distinct parameters of all marginals). The dependence

structure is not given. We observe an i.i.d. sample {yi}Ni=1 = {y1i, . . . , ymi}Ni=1. We are

interested in estimating β efficiently without assuming anything about the joint distribution

except for the marginals.

As a simple example consider the setting of a standard panel (small T , large N). We have

a well specified marginal for each of T cross sections (e.g., logit models, duration models,

stochastic frontier models, etc.) and we are interested in efficient estimation of the parameters

in the marginal distributions without assuming a parametric form on dependence between

them. This setting is typical for microeconomic applications. For example, the variable of

interest yt, t = 1, . . . , T , can be the duration of unemployment or the use of social services in

period t. Additional motivation for this problem comes from insurance. In particular, it arises

in models of survival of multiple lives, where the two or more durations are dependent (see,e.g.,

Frees and Valdez, 1998). In life insurance of spouses this effect is known as the “broken heart”

syndrome. In finance, a similar setting arises in the so called SCOMDY models (Chen and

Fan, 2006a,b), where interest is in estimation of individual conditional distribution parameters

and innovations of the univariate GARCH models are allowed to have arbitrary dependence.

We will use the well known representation of log-joint-density in terms of log-marginal-
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densities and the log-copula-density:

lnh(y1, . . . , ym; β) =
m∑
j=1

ln fj(yj; β) + ln c(F1(y1; β), . . . , Fm(ym; β)), (1)

where c(· · · ) is a copula density and Fi denotes the corresponding marginal CDF’s. This

decomposition is due to Sklar’s (1959) theorem which states that any continuous joint dis-

tribution can be represented by a unique copula function of the corresponding continuous

marginal CDF’s.

It is well understood that the parameters of the marginals can be consistently estimated

by maximizing the likelihood under the assumption of independence between the marginals –

this is the so called quasi maximum likelihood estimator, or QMLE. The copula term in (1)

is zero in this case. However, QMLE is not efficient if marginals are not independent. For

highly dependent marginals, the efficiency loss of QMLE relative to the full likelihood MLE

may be quite large. In the context of a two-stage estimation of parametric copula models,

Joe (2005) reports that FMLE asymptotic variance estimates for β are up to 93% smaller

than those of QMLE. Recently, Prokhorov and Schmidt (2009) investigated the conditions

for copula redundancy, that is when using the copula score does not improve efficiency over

QMLE. The redundancy conditions they derive are fairly strong so incorporating information

about dependence into the parametric estimation problem will usually bring efficiency gains.

It is also well understood that, unlike QMLE, FMLE is generally not robust to copula

misspecification. That is, the efficiency gains will come at the expense of an asymptotic

bias if the joint density is misspecified. Prokhorov and Schmidt (2009) point out that there
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are robust parametric copulas, for which the pseudo MLE (PMLE) based on an incorrectly

specified copula family leads to a consistent estimation. But a copula that is robust in one

problem may not be robust in another, and some robust copulas are robust because they are

redundant. So finding a general class of robust non-redundant parametric copulas is difficult

if at all possible.

In this paper we address the issue of robust and efficient estimation of β using a non-

parametric method. That is, we investigate whether we can obtain a consistent estimator of

the parameters of marginals, which is relatively more efficient than the QMLE, by modelling

the copula nonparametrically. The questions we ask are how to estimate β semiparamet-

rically, what is the semiparametric efficiency bound for the estimation of β, and whether

we can achieve it. To answer these questions we propose a sieve MLE (SMLE) procedure,

which estimates β and ln c simultaneously (in one-step). Even though other nonparametric

methods are available, e.g., kernel, local linear estimators, we choose the linear sieve method

because of its simplicity. In effect we are replacing the true copula term in FMLE with its

sieve approximator. Given the approximator, the problem becomes identical to the regular

parametric FMLE. Subject to an approximation error, this produces a generally robust and

usually non-redundant copula term, in the sense explained above.

The paper is related to the literature on efficient semiparametric estimation of copula

parameters with nonparametric marginals (see, e.g., Chen et al., 2006) and on efficient esti-

mation of nonparametric marginals when the copula is fully known (see, e.g., Segers et al.,

2008). More generally, it is related to the literature on sieve-based estimation of models that

contain unknown functions (see, e.g., Ai and Chen, 2003; Newey and Powell, 2003). It is
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also related to the literature on two-step semiparametric estimation (see, e.g., Newey and

McFadden, 1994; Severini and Wong, 1992) and the literature on semiparametric efficiency

bounds (see, e.g., Bickel et al., 1993; Severini and Tripathi, 2001; Newey, 1990).

The paper by Chen et al. (2006) considers a problem which is the converse of ours – a

sieve MLE estimation when the copula has a known parametric form but the marginals are

unknown. In that setting, sieves are employed to approximate univariate marginal densities.

We are employing sieves to approximate a multivariate (log-)density. So the main difficulty

of our setting is that, in high dimensions, we will suffer from the curse of dimensionality. For

low dimensional problems, simulations show efficiency gains of up to 70% over QMLE.

We present the theory of SMLE for our problem in Section 2. Section 3 contains simulation

results, while Section 4 presents an insurance application. Section 5 contains concluding

remarks.

2 Sieve MLE

Denote the true copula density by co(u), u = (u1, . . . , um), and denote the true parame-

ter vector by βo. Let co(u) belong to an infinite-dimensional space Γ = {c(u) : [0, 1]m →

[0, 1],
∫

[0,1]m
c(u)du = 1} and βo belong to B ⊂ Rp. Given a finite amount of data, optimiza-

tion over the infinite-dimensional space Γ is not feasible. The method of sieves is used to

overcome this problem. Define a sequence of approximating spaces ΓN , called sieves, such

that
⋃
N ΓN is dense in Γ. Optimization is then restricted to the sieve space. Grenander

(1981) is credited for observing that the MLE optimization, which is infeasible over an in-
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finite dimensional space, is remedied if we optimize over a subset of the parameter space,

known as the sieve space, and then allow the subset to grow with the sample size. See Chen

(2007) for a recent survey of sieve methods.

Chen (2007) suggests that a convenient finite dimensional linear sieve for approximating

a multivariate log-pdf on [0, 1]m is a tensor product of linear univariate sieves on [0, 1]:

ΓN =

{
cJN (u) = exp

{
JN∑
k=1

a1kAk(u1) · . . . ·
JN∑
k=1

amkAk(um)

}
, (2)

u ∈ [0, 1]m,

∫
[0,1]m

cJN (u)du = 1

}
, (3)

JN →∞
JN
N
→ 0, (4)

where {Ak} contains known basis functions and {ajk} contains unknown sieve coefficients.

Specific examples of the basis functions Ak(u) include power series, trigonometric polynomials,

splines, wavelets, neural networks and many others. For example, in the application we use

the trigonometric sieve basis functions:

Ak(u) = ak cos(kπu) + bk sin(kπu),

where u ∈ [0, 1] and ak, bk ∈ R. The number of sieve elements in the tensor sieve JmN is the

smoothing parameter analogous to the bandwidth in a kernel estimation – it sets the quality

of the sieve approximation. Note that for the purpose of reducing variance, it is useful in

practice to approximate the log-copula density, not the copula density itself.

Since in general there is no analytic solution for the MLE of the sieve coefficients, the
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practical implementation of tensor sieves is often complicated. As an alternative we con-

sider using Bernstein polynomials, in particular the Bernstein copula density introduced by

Sancetta and Satchell (2004):

cJN (u) = JmN

JN−1∑
v1=0

· · ·
JN−1∑
vm=0

ωv

m∏
l=1

 JN − 1

vl

uvll (1− ul)JN−vl−1, (5)

where ωv denotes parameters of the polynomial indexed by v = (v1, . . . , vm) such that 0 ≤

ωv ≤ 1 and
∑JN−1

v1=0 · · ·
∑JN−1

vm=0 ωv = 1. For the initial values of the parameters we may use

the multivariate empirical density (histogram) estimator, i.e. ωv = 1
N

∑N
i=1 I(Ui ∈ Hv), where

Ui = (F1(y1), . . . , Fm(ym)), I(·) is the indicator function and

Hv =

[
v1

Jn
,
v1 + 1

Jn

]
× · · · ×

[
vm
Jn
,
vm + 1

Jn

]
. (6)

The Bernstein polynomial sieve can be represented by a weighted sum of β-distributions.

The relation between the empirical density and the MLE solution for ω still needs to be

investigated but we found this sieve to converge faster in simulations than the tensor product

sieve. Sancetta (2007) derives rates of convergence of the Bernstein copula to the true copula.

Ghosal (2001) and references therein discuss the rate of convergence of the sieve MLE based

on the Bernstein polynomial (only for one-dimensional densities).

We can now write the sieve for Θ = B×Γ as ΘN = B×ΓN . Further, let θ = (β′, c), then

the sieve MLE can be written as

θ̂ = arg max
θ∈ΘN

N∑
i=1

lnh(yi; θ) (7)
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This estimator is easy to implement – the estimation problem is in effect a parametric likeli-

hood maximization problem once we replace Θ with ΘN .

The θ vector contains the parametric part, β, that comes from the marginals and the

nonparametric part, c, that describes the copula density. We are interested in the asymptotic

distribution of β̂, the first p elements of θ̂. By the Gramér-Wold device, this distribution is

normal if, for any λ ∈ Rp, ‖λ‖ 6= 0, the distribution of the linear combination λ′β is normal.

Note that λ′β is a functional of θ, call it ρ(θ). Its distribution given the sieve estimate θ̂ is

known to depend on smoothness of the functional ρ(θ) and on the convergence rate of the

nonparametric part of θ̂ (see, e.g., Shen, 1997). In our setting, the functional is very smooth

and this will compensate for a potentially slow convergence rate of the nonparametric part of

θ̂ so that the parametric part of θ̂ will be
√
N -consistent.

In establishing consistency and asymptotic normality we follow the standard route (see,

e.g., Ai and Chen, 2003; Chen et al., 2006; Chen and Pouzo, 2009). First, we show smoothness

of λ′β and then employ the Riesz representation theorem to show normality of
√
Nλ′(β̂− β).

In showing semiparametric efficiency of the SMLE of β we follow the standard method of

looking for the least favorable parametric submodel. A simplified version of this approach

can be found in Severini and Tripathi (2001).

We now list the standard identification and smoothness assumptions commonly used in

sieve based estimation (see, e.g., Chen, 2007; Chen et al., 2006).

Assumption 1 (identification) βo ∈int(B) ⊂ Rp, B is compact and there exists a unique θo

which maximizes E[lnh(Yi; θ)] over Θ = B × Γ.

A common smoothness assumption is to restrict the class of functions to be approximated,
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by the Hölder smoothness property (see, e.g., Shen, 1997; Ai and Chen, 2003; Chen et al.,

2006). Let g denote a real-valued, J times continuously differentiable function on [0, 1]m

whose J-th derivative satisfies the following condition for some K > 0 and r ∈ (J, J + 1]:

|DJg(x)−DJg(y)| ≤ K|x− y|r−JE , for all x, y ∈ [0, 1]m, (8)

where Dα = ∂α

∂x
α1
1 ...∂xαmm

, α = α1+. . .+αm is the differential operator, and |x|E = (x′x)1/2 is the

Euclidean norm. Then g is said to belong to the Hölder class on [0, 1]m, denoted Λr([0, 1]m).

It is also called r-smooth on [0, 1]m. Most of commonly used densities, including copulas,

belong to this class, and various linear sieves, as well as the Bernstein polynomial sieve, are

known to approximate such functions well.

Assumption 2 (smoothness) Γ = {c = exp(g) : g ∈ Λr([0, 1]m), r > 1/2,
∫
c(u)du = 1} and

ln fj(yj; β), j = 1, . . . ,m, are twice continuously differentiable w.r.t. β.

Now we introduce new notation that will be used in proofs of continuity of ρ(θ) = λ′β and

of asymptotic normality and semiparametric efficiency of
√
N(β̂ − βo). First, we define the

directional derivative of the loglikelihood in direction ν = (ν ′β, νγ)
′ ∈ V , where V is the linear

span of Θ− {θo},

l̇(θo)[ν] ≡ limt→0
lnh(y,θ+tν)−lnh(y,θ)

t

∣∣∣
θ=θo

= ∂ lnh(y,θo)
∂θ′

[ν]

=
∑m

j=1

{
∂ ln fj(yj ,βo)

∂β′ +
(

1
c(u1,...,um)

∂c(u1,...,um)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
νβ

+ 1
c(F1(y1,βo),...,Fm(ym,βo))

νγ(u1, . . . , um)
∣∣∣
uk=Fk(yk,βo)
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Similarly, define

ρ̇(θo)[ν] ≡ limt→0
ρ(θ+tν)−ρ(θ)

t

∣∣∣
θ=θo

= λ′νβ

= ρ(ν)

Then, we define the Fisher inner product 〈·, ·〉 ≡ E
[
l̇(θo)[·]l̇(θo)[·]

]
on space V and the Fisher

norm ||ν|| ≡
√
〈ν, ν〉, where expectation is with respect to the true density h. The closed

linear span of Θ− {θo} and the inner product 〈·, ·〉 form a Hilbert space, call it (V̄ , || · ||).

Since ρ(θ) = λ′β is linear on V̄ , to show smoothness of ρ(θ), we only need to establish

that it is bounded on V̄ , i.e. that sup06=θ−θo∈V̄
|ρ(θ)−ρ(θ0)|
||θ−θo|| < ∞. Also, by the results in Shen

(1997), boundedness of ρ(θ) = λ′β is necessary for ρ(θ) = λ′β to be estimable at the
√
N -

rate. Boundedness of ρ(θ) will imply that ρ(θ) is continuous. Moreover, since ρ̇(θo)[ν] = ρ(ν),

boundedness of the directional derivative of ρ(θ) is equivalent to boundedness of ρ(θ) in our

setting, i.e. sup0 6=ν∈V̄
|ρ̇(θo)[ν]|
||ν|| <∞. This will be the case if and only if supν 6=0,ν∈V̄

|λ′νβ |2
||ν||2 <∞.

So we now show when this condition holds.

Similar to Ai and Chen (2003) and Chen et al. (2006), for each component βq, q = 1, . . . , p,

we denote by g∗q the solution to

inf
gq
E

[
m∑
j=1

{
∂ ln fj(yj, βo)

∂βq
+

(
1

c(u)

∂c(u)

∂uj

)∣∣∣∣
uk=Fk(yk,βo)

∂Fj(yj, βo)

∂βq

}
(9)

+

(
1

c(u)
gq(u1, . . . , um)

)∣∣∣∣
uk=Fk(yk,βo)

]2

.
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Now let g∗ = (g∗1, . . . , g
∗
p). We find the sup by writing

supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 = supν 6=0,ν∈V̄

{
|λ′νβ|2

(
E
[
l̇(θo)[ν]2

])−1
}

= λ′
(
ESβS

′
β

)−1
λ,

(10)

where

S ′β =
∑m

j=1

{
∂ ln fj(yj ,βo)

∂β′ +
(

1
c(u)

∂c(u1,...,um)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
+
(

1
c(u)

g∗(u1, . . . , um)
)∣∣∣

uk=Fk(yk,βo)

(11)

So ρ(θ) = λ′β in bounded if and only if ESβS
′
β is finite and positive definite. This condition

can also be interpreted as a local identification condition on βo.

Assumption 3 (nonsingular information) Assume that ESβS
′
β is finite and positive definite.

Having established smoothness of ρ(θ) we can now appeal to the Riesz representation the-

orem (see, e.g., Kosorok, 2008, p. 328) to derive the asymptotic distribution of λ′β. Basically,

the theorem states that for any continuous linear functional L(ν) on a Hilbert space there

exists a vector ν∗ (the Riesz representer of that functional) such that, for any ν

L(ν) = 〈ν, ν∗〉,

and the norm of the functional defined as

||L||∗ ≡ sup
||ν||≤1

||L(ν)||
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is equal to ||ν∗||. The representer will be used in the derivation of asymptotic normality and

semiparametric efficiency of the sieve MLE.

Application of the theorem to ρ̇(θo)[ν] = ρ(ν) suggests that there exists the Riesz represen-

ter ν∗ ∈ V̄ of this functional such that λ′(β̂ − βo) = 〈θ̂ − θo, ν∗〉 and ||ν∗|| = sup||ν||≤1 ||ρ(ν)||.

The first claim implies that the distributions of β̂−βo and of 〈θ̂− θo, ν∗〉 are identical – a fact

which will be useful in the proof of asymptotic normality of
√
N(β̂ − βo). The second claim

is used in the proof of semiparametric efficiency. Both of these claims are useful for deriving

the explicit form of the representer.

In fact we already found ν∗ when we showed smoothness of ρ(θ) by finding supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 .

Since supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 = sup||ν||=1 ||ρ(ν)||2, the representer is a vector whose norm, if squared,

is equal to supν 6=0,ν∈V̄
|λ′νβ |2
||ν||2 = λ′

(
ESβS

′
β

)−1
λ. The vector is

ν∗ =
(
I, g∗

′
)′ (

ESβS
′
β

)−1
λ (12)

It is easy to verify that

||ν∗||2 = E
[
l̇(θo)[ν

∗]l̇(θo)[ν
∗]
]

= λ′
(
ESβS

′
β

)−1
λ,

so the required condition holds.

The last assumption required for asymptotic normality of
√
N(β̂ − βo) is an assumption

on the rate of convergence for the sieve MLE estimator of the unknown copula function. As

in other sieve estimation literature, we allow the sieve estimator to converge arbitrary slowly
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– smoothness of ρ(θ) compensates for that and the parametric part of the estimator is still

√
N -estimable. We also impose a boundedness condition on the second order term in the

Taylor expansion of the sieve log-likelihood function. This technical condition will usually

follow from the smoothness assumptions made in Assumption (2) but we state it separately

to simplify the proof.

Assumption 4 (convergence of sieve MLE and smoothness of higher order term in Taylor

expansion) Assume (A) that ||θ̂−θo|| = OP (δN) for (δN)w = o(N−1/2), w > 1 and there exists

ΠNν
∗ ∈ VN −{θo} such that δN ||ΠNν

∗− ν∗|| = o(N−1/2) and (B) that, for any θ : ||θ− θo|| =

Op(δN), the expected directional derivative E d l̇(θ)[ν]
dθ′

[ν] ≤ ||ν||2.

A discussion of convergence rates of different sieves is provided by Chen (2007) and ref-

erences therein; general results on convergence rates of sieve MLE can be found in Wong

and Severini (1991); Shen and Wong (1994). Basically, Assumption 4 covers all commonly

encountered sieve convergence rates. For example, for the trigonometric sieve, Shen (1997)

shows that ||θ̂ − θo|| = Op(N
−r/(2r+1)), where r is the Hölderian exponent from (8); Ghosal

(2001) provides results on convergence rates of the Bernstein sieve.

We can now state our main results.

Theorem 1 Under Assumptions 1-4,
√
N(β̂ − βo)⇒ N(0, (E[SβS

′
β])−1).

Theorem 2 Under Assumptions 1-4, ||ν∗||2 is the lower bound for semiparametric estimation

of λ′β, i.e. β̂ is semiparametrically efficient.

Given the consistent SML estimates β̂ and ĉ, g∗q ’s can be estimated consistently in a sieve
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minimization problem as follows

arg min
gq∈AN

N∑
i=1

[
m∑
j=1

{
∂ ln fj(yji, β̂)

∂βq
+

(
1

ĉ(ûi)

∂ĉ(û1i, . . . , ûmi)

∂uj

)∣∣∣∣
ûki=Fk(yki,β̂)

∂Fj(yji, β̂)

∂βq

}

+
1

ĉ(ûi)
gq(û1i, . . . , ûmi)

∣∣∣∣
ûki=Fk(yki,β̂)

]2

,

where q = 1, . . . , p and AN is one of the sieve spaces discussed above. Given consistent

estimates β̂, ĉ, and ĝ∗, a consistent estimate of E[SβS
′
β] is easy to obtain if we replace the

expectation evaluated at the the true values with a sample average evaluated at the estimates.

A simpler alternative estimator of the sieve MLE asymptotic variance is provided by

Ackerberg et al. (2009). They show that one can use the upper left p× p block of the usual

MLE covariance matrix as an estimate of (E[SβS
′
β])−1 provided that the outer-product-of-

the-score form of the covariance matrix is used.

3 Simulations

Our initial simulations with linear tensor sieves, including splines, polynomials, and trigono-

metric polynomials, exhibit slow convergence rates. In contrast, using Bernstein polynomials,

we were able to obtain the convergence within reasonable time. We therefore present the

results for the latter sieve.

One of the practical problems we face is the choice of the degree of polynomials JN in finite

samples. While some asymptotic results on the rate of convergence and its dependence on JN

are available, they are not informative in the finite sample situation. The literature on sieves

suggest using typical model selection techniques, such as BIC, AIC or data driven methods
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such as cross-validation. However, the theoretical implications of using these techniques in

the context of sieves are not explored.

The DGP we use in simulations is similar to Joe (2005) who studied asymptotic relative

efficiency (ARE) of likelihood based estimators, i.e. the ratio of asymptotic variance of Full

MLE to that of QMLE of parameters in marginals. Joe (2005) finds that the ARE depends on

the specification of marginals and copula. In particular, the higher is the dependence implied

by the copula, the lower is the ARE of the QMLE, i.e. the more efficient is FMLE compared

to QMLE. We take the case where the ARE is the lowest and investigate whether we may

improve the efficiency of the QMLE by using the semiparametric sieve MLE technique.

We consider bivariate DGP with exponential marginals in which both mean parameters

µ1 and µ2 are set to 0.5. The dependence is modelled by the Plackett copula with dependence

parameter set equal to 0.002, which implies that we are close the lower Frechet bound for

dependence. Joe (2005) reports ARE of 0.064 for QMLE of (µ1, µ2) in this specific case. In

the simulation we use correctly specified marginals up to the two parameters to be estimated,

while the copula function is modelled using the Bernstein polynomials sieve. We use the BIC

to determine the degree of elements in the sieve JN . The number of observations is N = 1, 000.

Table 1 contains simulation results. MSE is minimized at JN = 16. Thus we are estimating

256 nuisance parameters in the sieve and 2 parameters of the marginals. To overcome the

problem of large number of parameters we also considered the case where we restrict some

of the parameters of the Bernstein polynomial. The parameters of the Bernstein polynomial

are directly related to histogram density estimator. In case when the latter is equal to 0 we

restrict the parameters of the Bernstein polynomial to zero. MSE is minimized at JN = 17,
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however the effective number of parameters which needs to be estimated is about 100 (it

varies for each simulation run).

The optimization is complicated by the restrictions on sieve parameters and parameters

of the marginals. We used standard constrained maximization routine in Matlab. We used

1,000 simulation runs. We report the simulated mean of the Sieve MLE, QMLE and Full MLE

estimators, their simulated variance and mean square error (MSE), as well as the simulated

relative efficiency (RE) and relative MSE (RMSE) of the QMLE with respect to the Sieve

MLE. RE is the ratio of the SMLE simulated variance to that of QMLE. RMSE is the ratio

of the SMLE simulated MSE to that of QMLE.

Table 1: Simulated mean and variance for QMLE, SMLE, Plackett copula based FMLE
µ1 SMLE QMLE FMLE µ2 SMLE QMLE FMLE

Unrestricted sieve
JN = 16
Mean 0.494139 0.500114 0.500060 0.493562 0.499851 0.499928
Var 0.000087 0.000264 0.000017 0.000088 0.000257 0.000017
MSE 0.000121 0.000264 0.000017 0.000129 0.000257 0.000017
RE 0.329545 0.064394 0.342412 0.066148
RMSE 0.459641 0.064404 0.503645 0.066162
Restricted sieve
JN = 17
Mean 0.494509 0.500114 0.500060 0.494130 0.499851 0.499928
Var 0.000079 0.000264 0.000017 0.000082 0.000257 0.000017
MSE 0.000109 0.000264 0.000017 0.000116 0.000257 0.000017
RE 0.299242 0.064394 0.319066 0.066148
RMSE 0.413431 0.064404 0.453101 0.066162

The result suggests that in this specific situation we were able to improve the efficiency

relatively to the QMLE substantially. The efficiency gain was as high as 66-70%. It appears

that there is some evidence of downward bias in the estimates based on Sieve MLE for JN = 16.
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In the restriced sieve case with JN = 17 the bias seems to become smaller and the variance

is also improved. Note that this case corresponds to extremely high negative dependence

between the marginals. In simulations using a weaker dependence, the improvements were

not as substantial.

4 Application from insurance

We demonstrate the use of SMLE with an insurance application. We have data on 1,500

insurance claims. For each claim, we have the amount of claim payment, or loss, (Y1) and

the amount of claim-related expenses (Y2). The claim-related expenses known as ALAE

(allocated loss adjustment expense) include the insurance company expenses attributable to

an individual claim, e.g. the lawyers’ fees and claim investigation expenses. The claim amount

variable is censored – there is a dummy variable, d, which is equal to one if a given claim has

surpassed the policy limit and zero if not. For details of the data set, see Frees and Valdez

(1998).

The claim amount and ALAE are assumed to be distributed according to the Pareto

distribution with parameters (λ1, θ1) and (λ2, θ2), respectively:

Fj(Yj) = 1−
(
λj + Yj
λj

)−θj
, j = 1, 2. (13)

Interest lies in efficient estimation of the marginal distribution parameters (λ1, θ1, λ2, θ2),

making efficient use of the dependence between the claim amount and ALAE. The estimates

can be used in pricing insurance, for example.
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Additional complications arise due to censoring of Y1. The likelihood contributions will be

different depending on whether the observation is censored or not. Denote the marginal pdfs

by fj(yj), j = 1, 2. The QMLE log-likelihood contribution of an uncensored observation is

ln fj(yj). For a censored observation, the contribution is ln(1− F1(y1)) = θ1(ln(λ1)− ln(λ1 +

y1)). Thus, the QMLE log-likelihood contribution of claim i is

lQi = (1− di) ln f1(y1i) + di ln(1− F1(y1i)) + ln f2(y2i).

Now consider the joint likelihood. Let H(y1, y2) and h(y1, y2) denote the joint cdf and

pdf, respectively. The FMLE log-likelihood contribution of an uncensored observation is

lnh(y1, y2) = ln f1(y1) + ln f2(y2) + ln c(F1(y1), F2(y2)). To derive the contribution of a cen-

sored observation we follow Frees and Valdez (1998) in observing that Prob(Y1 ≥ y1, Y2 ≤

y2) = F2(y2) − H(y1, y2). So the log-likelihood contribution of a censored observation is

f2(y2) − H2(y1, y2), where H2(y1, y2) = ∂H(y1,y2)
∂y2

. But H(y1, y2) = C(F1(y1), F2(y2)) so

H2(y1, y2) = C2(F1(y1), F2(y2)) f2(y2), where C2(u1, u2) = ∂C(u1,u2)
∂u2

. Therefore the full log-

likelihood contribution for observation i can be written as

lFi = (1− di)[ln f1(y1) + ln f2(y2) + ln c(F1(y1), F2(y2))]

+di[ln f2(y2) + ln(1− C2(F1(y1), F2(y2)))].

The main difficulty imposed by censoring is that we need to evaluate an additional term

involving a copula derivative. For the SMLE, the term is approximated along with ln c.

For the FMLE, the term can be derived analytically for a given copula family or evaluated
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numerically.

The extra term will carry over to the variance problem (9) and a consistent estimate of

the SMLE variance, V̂ , will now be

arg min
gq∈AN

[
N∑
i=1

(1− di)

{
2∑
j=1

(
∂ ln fj(yji, β̂)

∂βq
+

1

ĉ(ûi)

∂ĉ(ûi)

∂uj

∂Fj(yji, β̂)

∂βq

)
+

1

ĉ(û1i, û2i)
gq(û1i, û2i)

}

+
N∑
i=1

di

{
∂ ln f2(y2i, β̂)

∂βq
− 1

1− Ĉ2(û1i, û2i)

(
2∑
j=1

∂Ĉ2(ûi)

∂uj

∂Fj(yji, β̂)

∂βq
+

∫ 1

0

gq(s, û2i) ds

)}]2

,

where β = (λ1, θ1, λ2, θ2)′, ûki = Fk(yki, β̂) and q = 1, . . . , 4. We will need to evaluate both gq

and its integral over u1.

The three estimators, QMLE, FMLE and SMLE, and their standard errors are given in

Table 2. The QMLE is an estimator based on the assumption of independence. It is known

to be robust in the sense that it is consistent even if independence is a false assumption

but to obtain the correct standard errors a “sandwich” formula for variance is needed. We

report the robust standard errors in the table. The FMLE estimator is based on a fully

specified parametric joint likelihood. We follow Frees and Valdez (1998) and assume the

Frank copula with dependence parameter α, which along with the Pareto marginals completely

parameterizes the model. Consistency of this estimator, sometimes called Pseudo-MLE, relies

on correctness of the assumed copula family. If Frank is an incorrect copula family the FMLE

results in a bias. The SMLE estimator is robust in the sense that it does not rely on a

correctly specified parametric copula family. But it is not as efficient as any fully parametric

model. So we should expect SMLE to be close to QMLE in terms of the estimates and to be

between FMLE and QMLE in terms of standard errors.
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Estimation results support this intuition. Our FMLE estimates using the Frank copula

(which turn out virtually identical to those in Frees and Valdez (1998)) provide evidence of

an estimation bias that is not present in QMLE and SMLE, both of which are very close.

This supports the robustness argument. While the FMLE standard errors are usually smaller

than those of QMLE. This indicates higher relative efficiency – a compensation for the lack

of robustness. The point we wish to stress is that the SMLE standard errors are smaller than

those of QMLE and this gain comes at no robustness cost (but at some computational cost).

To obtain the SMLE, we used the cosine sieve with three elements in the sieve (JN = 3). The

choice of JN was based on BIC.

Table 2: QMLE, SMLE, Frank copula based FMLE for insurance application with standard
errors

QML Est. SML Est. FML Est.
(Rob.St.Er.) (St.Er.) (St.Er.)

λ1 14,442.57 14,438.91 14,561.68
(2,385.31) (1,434.87) (1,392.08)

θ1 1.135 1.136 1.115
(0.127) (0.067) (0.065)

λ2 15,133.78 15,133.78 16,708.93
( 2,172.04) (1,549.66) (1,833.18)

θ2 2.223 2.223 2.312
(0.246) (0.142) (0.188)

α 3.158
(0.175)

LogL -31,950.80 -31,813.60 -31,778.41

5 Concluding Remarks

We have proposed an efficient semiparametric estimator of marginal distribution parameters.

This is a sieve maximum likelihood estimator based on a finite-dimensional approximation
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of the unspecified part of the joint distribution. As such, the estimator inherits the costs

and benefits of the multivariate sieve MLE. The major benefit permitted by sieve MLE is

the increased relative asymptotic efficiency compared to quasi-MLE. We showed that the

efficiency gains are non-trivial. In some simulations the relative efficiency with respect to

QMLE was as low as 0.3 – a 70% improvement.

The gains come at an increased computational expense. The MLE convergence is slow for

the traditional sieves we considered. We found that the Bernstein polynomial is preferred to

other sieves in simulations. The running times are greater than QMLE or full MLE assuming

a parametric copula family but they are still reasonable (at least for the two dimensional

problems we consider). Moreover, simulations reveal a downward bias in SMLE, which seems

to be caused by the sieve approximation error – it decreases as the number of sieve elements

increases.

A simple alternative to the proposed method is a fully parametric ML estimation problem.

Although simpler computationally, it imposes an assumption on the dependence structure,

which, if violated, renders the ML estimates inconsistent. In this respect, the semiparametric

approach is more robust but clearly no more efficient than any parametric alternative.
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6 Appendix

Proof of Theorem 1: Let li(θ) = lnh(yi; θ), l(θ) = 1
N

∑N
i=1 li(θ) and 0 < εN = o(N−1/2). Consider a

continuous path θ(t) = θ̂ ± tεNΠNν
∗, t ∈ [0, 1], such that θ(0) = θ̂ and θ(1) = θ̂ ± εNΠNν

∗.

Under Assumption 2, l(θ) is twice continuously differentiable w.r.t. t and

d l(θ(t))
dt

∣∣∣
t=τ

= 1
N

∑N
i=1

d li(θ(t))
dt

∣∣∣
t=τ

= 1
N

∑N
i=1

d li(θ(τ))
dθ′ [±εNΠNν

∗]

d2 l(θ(t))
dt2

∣∣∣
t=τ

= 1
N

∑N
i=1

d2 li(θ(τ))
dθ′dθ [±εNΠNν

∗,±εNΠNν
∗]

By the definition of θ̂ in (7) and the Taylor expansion,

0 ≤ l(θ̂)− l(θ̂ ± εNΠNν
∗) = l(θ(0))− l(θ(1)) = − ∂l(θ(t))

∂t

∣∣∣
t=0
− 1

2
∂2l(θ(t))
∂t2

∣∣∣
t=s

, for some s ∈ [0, 1]

= ±εN 1
N

∑N
i=1

dli(θ̂)
dθ′ [ΠNν

∗] + 1
2

1
N

∑N
i=1

d2 li(θ(s))
dθ′dθ [±εNΠNν

∗,±εNΠNν
∗]

= ±εN 1
N

∑N
i=1

dli(θ̂)
dθ′ [ΠNν

∗] + 1
2E

d2 li(θ(s))
dθ′dθ [±εNΠNν

∗,±εNΠNν
∗]

+ 1
2

{
1
N

∑N
i=1

d2 li(θ(s))
dθ′dθ [±εNΠNν

∗,±εNΠNν
∗]− E d2 li(θ(s))

dθ′dθ [±εNΠNν
∗,±εNΠNν

∗]
}

Below we show that

1

N

N∑
i=1

dli(θo)

dθ′
[ΠNν

∗ − ν∗] = op(N
−1/2) (14)

and that, uniformly over θ(s) in a neighborhood of θo with ||θ(s)− θo|| = O(δN ),

E
d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗] = ±εN 〈θ̂ − θo, ν∗〉 ± εN op(N−1/2) (15)
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and

1

N

N∑
i=1

d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗]−E d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗] = εN op(N

−1/2) (16)

It will then follow that

0 ≤ l(θ̂)− l(θ̂ ± εNΠNν
∗) = ±εN 1

N

∑N
i=1

dli(θo)
dθ′ [ν∗]± εN 〈θ̂ − θo, ν∗〉 ± εN op(N−1/2)

And, since εN = o(N−1/2) > 0, we have

√
N〈θ̂ − θo, ν∗〉 = 1√

N

(∑N
i=1

dli(θo)
dθ′ [ν∗]− E dli(θo)

dθ′ [ν∗]
)

+ oP (1)

⇒ N(0, ||ν∗||2),

where E
(
dli(θo)
dθ′ [ν∗]

)
= 0 and ||ν∗||2 = V ar

(
dli(θo)
dθ′ [ν∗]

)
. Now, since λ′(β̂− βo) = 〈θ̂− θo, ν∗〉, the conclusion

of the theorem follows by the Cramér-Wold device. What remains is to show (14)-(16).

Equation (14) holds by Assumption 4(A), since ||ΠNν
∗ − ν∗|| = o(1). To show (15), note that, under

Assumption 4(B), uniformly over θ(s) in a neighborhood of θo with ||θ(s)− θo|| = O(δN ),

E
d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗] ≤ 〈θ̂ − θo,±εNΠNν

∗〉 = ±εN 〈θ̂ − θo,ΠNν
∗〉

But, by Assumption (4)(A), 〈θ̂− θo,ΠNν
∗− ν∗〉 = op(N

−1/2). Thus, ±εN 〈θ̂− θo,ΠNν
∗〉 = ±εN 〈θ̂− θo, ν∗〉±

εNop(N
−1/2). For showing (16), recall that

d2 li(θ(s))

dθ′dθ
[±εNΠNν

∗,±εNΠNν
∗] = li(θ̂ ± εNΠNν

∗)− li(θ̂)± εN
dli(θ̂)

dθ′
[ΠNν

∗]

Now, for some θ(τ) between θ̂ and θ̂± εΠNν
∗, write li(θ̂± εNΠNν

∗)− li(θ̂) = ±εN dli(θ(τ))
dθ′ [ΠNν

∗]. Then, the
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left hand side of (16) can be written as

±εN

{
1

N

N∑
i=1

d li(θ(τ))

dθ′
[ΠNν

∗]− Ed li(θ(τ))

dθ′
[ΠNν

∗]

}
± εN

{
1

N

N∑
i=1

d li(θ̂)

dθ′
[ΠNν

∗]− Ed li(θ̂)
dθ′

[ΠNν
∗]

}
,

which is ±εNop(N−1/2).

Proof of Theorem 2: We apply the method of Severini and Tripathi (2001). To make it easier to follow

for those who know their method, we use their notation and also specify our equivalents of their objects.

For some to > 0 let θ(t) denote a curve from [0, to] into Θ such that θ(0) = θo. The curve we consider is

θ(t) = θo + tν, for any ν ∈ V . Let θ̇ denote the slope of θ(t) at t = 0, i.e. θ̇ is tangent to the set Θ at θo. For

our case, θ̇ = ν. Let T (Θ, θo) denote the collection of all such tangents θ̇′s and let T̄ (Θ, θo) denote the linear

closure of T (Θ, θo), i.e. tangent space. In our case, T̄ (Θ, θo) = V̄ .

The objective is to obtain the efficiency bound for estimating ρ(θo) = λ′βo. Stein (1956) is credited for

being first to observe that the efficiency bound is the upper bound on the asymptotic variance for estimating

any one-dimensional subproblem of the original problem. Our one-dimensional subproblem is estimation of t,

whose true value is zero. The score for estimating t = 0 is si = dli(θt)
dt

∣∣∣
t=0

= d lnh(yi;θt)
dt

∣∣∣
t=0

= d lnh(yi;θo)
dθ [θ̇].

In our notation, this is just the directional derivative l̇(θo)[ν] for observation i, call it l̇i(θo)[ν]. Then, the

Fisher information for estimating t = 0 is given by ||ν||2 = Es2
i .

We now look at those one-parameter subproblems that are informative about the feature of interest

ρ(θo), specifically, we focus on those curves θ(t) that satisfy the restriction ρ(θ(t)) = t. This means choosing

among only those θ̇′s that satisfy dρ(θ(t))
dt

∣∣∣
t=0

= 1, or equivalently, only those ν′s for which ρ̇(θo)[ν] = 1. A

simplification that applies in our case is that ρ̇(θo)[ν] = ρ(ν) = λ′νβ . Then, for any consistent estimator t̂,

AV (
√
Nρ(θ(t̂)) − ρ(θo)) = AV (

√
Nt̂) ≥ ||ν||−2. Now to obtain the semiparametric lower bound (SPLB) for

estimating ρ(θo), we look for a ν that maximizes ||ν||−2. As discussed in Severini and Tripathi (2001, p. 28),

the maximization problem can be equivalently written as

SPLB = sup
ν∈V̄ :ν 6=0,λ′νβ=1

||ν||−2 = sup
ν∈V̄ :ν 6=0

∣∣∣∣∣∣∣∣ ν

λ′νβ

∣∣∣∣∣∣∣∣−2

= sup
06=ν∈V̄

|λ′νβ |2

||ν||2
= sup
||ν||=1

|λ′νβ |2 = ||ρ̇(θo)[ν]||2∗,
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where ||L(ν)||∗ is the norm of a continuous linear functional L(ν) on the tangent space.

Calculating the norm is usually easier by appealing to the Riesz representation theorem as done in the

main text. Basically, instead we look for the representer of the functional. The Riesz representation theorem

says that ||ρ̇(θo)[ν]||∗ = ||ν∗||, where ν∗ as defined in (12). Thus, SPLB = ||ν∗||2.
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