
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No. 2010–60 
 
  

ITEMISED DEDUCTIONS: A DEVICE TO REDUCE TAX 
EVASION 

 

 

By Amedeo Piolatto 
 
 
 

June 2010 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6332766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


useless line to increase top margin

Itemised deductions: a device to reduce

tax evasion
∗

Amedeo Piolatto ∗∗

Instituto de Economia de Barcelona

Draft version: 14th June 2010

Abstract

Direct incentives and punishments are the most common instruments to
fight tax evasion. The theoretical literature disregarded indirect schemes,
such as itemised deductions, in which an agent has an interest in that other
agents declare their revenue. Itemised deductions provide an incentive for
consumers to declare their purchases, and this forces sellers to do the same. I
show that, for any level of taxation, it is possible to increase tax proceeds by
choosing the proper level of itemised deduction; the cost for the government
on the consumers’ side is more than compensated by the extra proceeds on
the sellers’ side.
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“When there is an income tax, the just man will pay more and the unjust less

on the same amount of income” (Plato (nd))

1 Introduction

For most countries tax evasion is a major issue and tax proceeds are strongly af-

fected. By its nature, it is hard to estimate tax evasion. Franzoni (1999) estimates

that the US federal tax gap1 is about 17%. Slemrod (2007) proposes an upda-

ted and detailed description of tax compliance in the United States. In the 80’s,

the black economy in western countries represented 5% to 15% of GDP (Cowell

(1985)). More recently, McKay (1998) and Schneider (2005) estimated that the

black economy roughly ranges from 6% (Switzerland) to 27% (Italy) of GDP.

Allingham and Sandmo (1972) and (1991) are amongst the most well known

works on tax compliance. Many surveys are available of the recent literature on

tax avoidance and/or evasion:2 among the most complete, Slemrod and Yitzhaki

(2002) focus on tax avoidance and it is more theory oriented while Andreoni, Erard,

and Feinstein (1998) concentrate more on empirical works.

Social welfare reasons exist for not fighting tax evasion: it is generally expensive

to reduce evasion; furthermore, taxes are distortive and evasion may partially

overcome this distortion.3 Finally, if evasion is negatively correlated with income,

tax evasion will have redistributive effects. Section 7 of Cowell (1985) offers other

arguments for and against fighting tax evasion. For an analysis of the welfare

consequences of tax evasion, see Davidson, Martin, and Wilson (2007).

A politician may want to reduce evasion nevertheless, so as to increase tax

proceeds; to promote the country’s image on an international ground; or simply

because tax evasion is illegal. Note also that black money is more likely to finance

other illegal activities (Fortin, Lacroix, and Montmarquette (2000)): by reducing

evasion, the government reduces funds spent on illicit activities. Finally, in the

presence of equality/fairness concerns, some agents may have a disutility from

knowing that other people evade.

The literature on tax evasion is mainly devoted to income taxation.4 Most of

the analysis of tax evasion concentrates on how evasion can be deterred through

1Tax gap, according to the United States Department of Treasury, measures the extent to
which taxpayers do not file their tax returns and pay the correct tax on time.

2Tax evasion consists of not declaring some earnings that, by law, an agent is supposed to
declare, while tax avoidance consists of abusing some laws or, often, using the lack of detail in
some laws, to reduce the tax burden.

3In the presence of information asymmetries and different revenue elasticities, the (second-
best) choice of government may distort sectors differently, and evasion may have a counterba-
lancing effect.

4Cremer and Gahvari (1993) and Marelli (1984) are notable exceptions.
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detection and sanctions (Franzoni (1999)); rational consumers decide whether to

evade or not on a “cost-benefit” analysis.5 The legislator disposes of a wide set of

instruments to fight tax evasion (e.g., auditing, fines, incentives not to evade, direct

taxes to make it harder to evade); the cost of auditing and agents’ limited liability

strongly limit the legislator’s policy space. People receive direct incentives not to

evade (such as decreasing tax rates), and evading becomes more costly (through

higher fines or by using more sophisticated audit systems).

I instead focus on the indirect mechanism of itemised deductions. Deductions

are not a widely used policy instrument: in Italy and Spain allowed deductions

represent at most 5% of taxable income, in the UK and Ireland up to 9%; in all

OECD countries itemised deductions are below 15%, excepted for France and the

Scandinavian countries, where deductions range between 25% and 30% (OECD

(1990)).

I show that giving incentives to consumers to declare their purchases reduces

tax evasion by forcing sellers to declare their revenue. I consider a market with

a consumption good available both legally and on the black market. Profits on

the legal market and consumers’ income are both taxed. Tax rates (on profits and

on income) are exogenous (possibly optimally chosen). Itemised deductions allow

consumers to reduce their tax base by declaring their purchases; this force sellers

to declare their earnings too.6

The itemised deduction that maximises tax proceeds is always strictly positive,

which means that, ceteris paribus, introducing deductions implies: a) that the

public budget constraint is relaxed (higher tax proceeds and/or lower tax rates)

and b) that the size of the underground market shrinks. My model shows that

partial deductibility of expenditures is sufficient enough of an incentive for the

consumers to declare their purchases without negatively affecting tax proceeds.

The reduction in the amount of collected taxes from consumers is less substantial

than the increase in tax proceeds deriving from the reduction in the evasion of the

tax on profits.

Section 2 presents the framework of the model. In section 3 I solve the model

and find the optimal level of deduction. Section 4 analyses the results and provides

a numerical example. The last section concludes.

5Note that evasion may also derive from the willingness to hide illegal activities: even with a
0% tax rate, the underground economy would still represent about 4% of GDP, because of illegal
activities and agents willing to avoid regulation laws (McKay (1998)).

6A similar idea has been used in France over the last decades: the government partially
subsidises the rent of the poorest citizens through the “Aide au Logement”. Landlords are
forced to declare their renting income or to reduce the rent by the value of the subsidy.
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2 The model

I describe here the main elements of the model: I start (subsection 2.1) by descri-

bing the goods in the economy and the agents’ behaviour; then I analyse the orga-

nisation of the market and the firms’ behaviour (subsection 2.2); finally I present

the problem of the central authority (politician/social planner) (subsection 2.3).

2.1 The agents

A representative consumer can choose between the numeraire good M and a

consumption good available both legally (X) and illegally (Y): x denotes the quan-

tity of good exchanged on the legal market at price p, and y is the quantity pur-

chased on the black market at price q.

For a consumer, X and Y are versions of a same good. It is natural to assume

(in terms of the utility function) that the two goods are substitute. The degree

of substitutability may range from perfect subsitutability (e.g., a shop that may

register or not the transaction) to very low substitutability (e.g., an illegal copy

of a technological product, possibly with very different technical characteristics).

Regardless of the possible differences between the two versions of the good, a

consumer may have a preference for legal purchases over the illegal ones; for that

reason, I introduce a parameter in the utility function allowing to consider for the

aversion towards illegality (the parameter accounts for the depreciation, in terms

of utility, of a good that is sold on the black market, compared to the same good

sold on the legal market).

I assume that the representative consumer has the standard utility function (U)

for imperfect substitute goods; with no restrictions on the (positive) quantities x

and y that can be consumed, as far as the consumer’s budget constraint is satisfied.

U(x, y, M) = (x − x2) + θ(y − y2) + 2σxy + M (1)

where σ ∈ [0, 1] is the degree of substitutability between X and Y (the two goods

are perfect substitutes if σ = 1), and θ ∈ [0, 1] is the aversion-towards-illegality

parameter.7 When θ = 1, the consumer has no prejudice against the illegal good.

The consumer has an exogenous income I, on which he pays an income tax,

which rate is t. An itemised deduction is a reduction in the tax base depending on

the number of units of good that are (legally) purchased. The deduction is per-unit

(opposed to per-value), this has the nice property of avoiding unnecessary inflation.

The deduction is of amount a for any purchased unit exceeding the threshold x0

7While σ depends on the real characteristics of the goods, θ is the type of the consumer/society.
The larger θ, the more likely are people to accept to break the law.
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(and 0 otherwise). The (exogenous) threshold x0 is equal to the number of units

that are purchased when itemised deductions are not allowed. Introducing the

threshold allows to reduce the cost for the government of implementing this policy,

without affecting its effectiveness.

The consumer’s problem can be written as:

max
x,y,M

U(x, y, M) (2)

s.t. px + qy + M = I − t(I − a(x − x0))

From the first order conditions, we derive the inverse demand function respec-

tively for X and Y :

p(x, y) = 1 − 2x − 2σy + ta (3)

and

q(x, y) = θ − 2θy − 2σx (4)

2.2 The market

The organisation of the industry heavily depends on the type of good that we

consider. The common factor is that we have two sub-markets, one for the legal

and one for the illegal good. The simplest market that we can imagine is a duopoly,

with one firm operating in each sub-market. This structure can apply, for example,

to the case of a regulated legal market, in presence of an illegal cartel. In that

case, one single agent is choosing the quantity and price on the legal market (the

regulator) and one on the black market (the cartel). It seems reasonable to consider

that the legal firm sets its own quantity and price, anticipating the behaviour of

the illegal firm. For that reason, the natural way to model this framework is the

Stackelberg competition with the legal firm acting as the leader.

For expositional convenience, I restrain my attention, in the core of the paper,

to the Stackelberg duopoly case, that seems to me the best compromise between

simplicity of the model and realism. The reader should not think that results

are driven by this assumption; results hold (qualitatively) for a much larger set

of market configurations. In the appendix I solve the problem for the case of

Cournot competition, with n firms operating on the legal market and m firms on

the underground market.

X and Y are produced by two independent firms competing à la Stackelberg

and facing the same marginal cost of production c. The legal firm is the leader

and chooses the quantity first, and the illegal one follows. By definition, only the

legal firm pays the tax T on its profits. The maximisation problem of the follower,
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given the demand function q(x, y), is

max
y

(q(x, y) − c)y (5)

s.t. q(x, y) = θ − 2θy − 2σx

from which we obtain the follower’s reaction function

y =
θ − 2σx − c

4θ
(6)

The Stackelberg leader maximisation problem is therefore:

max
x

(1 − T )(p(x, y) − c)x (7)

s.t. p(x, y) = 1 − 2x − 2σy + ta

y =
θ − 2σx − c

4θ

2.3 The government

The government is concerned by total tax proceeds (TP), which are given by the

sum of consumers’ income tax proceeds and firms’ profits tax proceeds, and which

are equal to

TP (a) = T (p(x, y) − c)x + t(I − a(x − x0) (8)

The focus of this research is on itemised deductions; for that reason, I assume

that both tax rates are exogenous (that is, the government has already chosen

the optimal rates) and I focus on the optimal level of deduction. Therefore, the

government only controls the level of a, which represents the reduction in the tax

base for each unit of x purchased above the threshold x0 to which the representative

consumer is entitled.

The optimal level of deduction is defined, according to this maximisation pro-

blem, as the one that maximises tax proceeds. Clearly, the objective function of

the social planner/politician may be different, ranging from minimising the size of

the underground market to the reduction of the tax rate for some agents in the

economy. These questions are beyond the scope of this work.

3 Market equilibrium and optimal deduction

In this section, I compute the market equilibrium, finding the optimal quantities

and prices both for the legal and illegal firm. Afterwards, I compute the optimal
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level of deduction a.

Solving equation (7), from the first order condition we obtain that

x∗(a) =
θ(2 − σ) − c(2θ − σ)

4(2θ − σ2)
+

θ

2(2θ − σ2)
ta (9)

Replacing x∗ in equation (6), we obtain that

y∗(a) =
θ(4θ − σ2 − 2σ) − c(4θ − σ2 − 2θσ)

8θ(2θ − σ2)
−

σ

4(2θ − σ2)
ta (10)

and finally, using (9) and (10) we can also compute prices:

p∗(a) =
θ(2 − σ) + c(2θ + σ)

4θ
+

1

2
ta (11)

q∗(a) =
θ(4θ − 2σ − σ2) + c(4θ + 2θσ − 3σ2)

4(2θ − σ2)
−

θσ

2(2θ − σ2)
ta (12)

As we are interested in a market with tax evasion, when the itemised deduc-

tion is not allowed (i.e., a = 0) we want the quantity of good purchased on the

underground market to be positive (y∗(0) > 0), which occurs if and only if

c <
θ(4θ − σ2 − 2σ)

(4θ − σ2 − 2θσ)
(13)

Assuming also that

θ > σ (14)

is sufficient to guarantee that condition (13) is not requiring a negative marginal

cost.

Conditions (13) and (14) are sufficient to ensure that both prices and quantities

are positive in equilibrium and that both the consumer’s and the firms’ problems

are strictly concave. 8.

Proposition 1 The equilibrium quantities x∗(a) and y∗(a) are respectively defined

by equations (9) and (10), and the corresponding prices are p∗(a) and q∗(a), as

defined by equations (11) and (12).

Proposition 2 The legally purchased quantity and its price (x∗(a) and p∗(a)) are

both increasing in the level of deduction a; the reverse is true for the quantity

bought illegally and for its price (y∗(a) and q∗(a)), which are decreasing in a.

8By the strict concavity of the problem, the previously shown results (derived from the first
order conditions) represent the unique maxima of the corresponding maximisation problems
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Using the previous results, we can solve the government problem, consisting in

finding, for an exogenous level of taxation, the itemised deduction a that maximises

tax proceeds TP (a).

max
a

T (p(a) − c)x + t(I − a(x − x0)) (15)

s.t. x = x∗(a)

From the first order condition of the problem, we obtain that the optimal level

of itemised deduction is:

a∗ =
T (θ(2 − σ) − c(2θ − σ))

2θt(2 − T )
(16)

Under the previous assumptions (13) and (14), the problem is strictly concave and

a∗ is always positive.

Proposition 3 Equation (16) defines the optimal level of the per-unit itemised de-

duction a∗ when the government’s aim is to maximise tax proceeds for a given level

of tax rates. The value a∗ is always positive, meaning that it is always beneficial

to allow for the deduction.

3.1 Comparative statics

For its policy implications, a policy maker may be also interested in knowing the

effect of the different parameters on the optimal value a∗. This subsection briefly

analyses the impact of T , t, θ, σ and c on the optimal value of a.

∂a∗

∂T
=

(θ(2 − σ) − c(2θ − σ))

θt(2 − T )2
> 0 (17)

∂a∗

∂t
= −

a∗

t
< 0 (18)

∂a∗

∂θ
= −

cσT

2θ2t(2 − T )
< 0 (19)

∂a∗

∂σ
=

T (c − θ)

2θt(2 − T )
< 0 (20)

∂a∗

∂c
= −

2θ − σ

2θt(2 − T )
< 0 (21)

From the previous derivatives, we observe that the optimal deduction increases

in the tax rate on profits T : when it is larger, reducing the size of the underground

market is more profitable, therefore the public authority accepts larger losses on
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the consumer side. The opposite reasoning applies for a larger tax rate t: the

larger the tax on income, the more costly is to implement a deduction policy.

Whenever the legal firm’s profits decrease, it becomes less profitable to intro-

duce deductions, therefore the optimal value for a decreases. Both θ and c reduce

the profits of the legal firm. The marginal cost of production, c, has a direct ef-

fect on profits; θ measures how likely citizens are to buy on the illegal market: a

change in θ modifies the marginal rate of substitution between X and Y . When θ

increases, X is replaced by Y and the legal firm’s profits decrease. Consequently,

both an increase in θ and in c induce a reduction in the optimal value of a.

Also an increase in σ implies a reduction in the value of a. The reason is that

a larger value of σ means that X and Y are better substitutes. Consumers replace

Y by X more easily, deductions are more effective and a smaller a is enough to

obtain an increase in the consumption of the legal good.

3.2 Deductions and auditing

Readers certainly noticed that I do not explicitly considered the possibility of

deterring evasion through auditing and fining, a diffused technique that has been

largely studied in the theoretical, empirical and experimental literature.

Fining and auditing is a costly but also effective way of reducing evasion and it

can and should be used together with itemised deductions and not as a substitute.

I implicitly assumed that, given costs of auditing and limited liability, the govern-

ment was already choosing the pair auditing-fine that maximises tax proceeds.

The fine affects the final expected profit of the illegal firm, but (unless it deter-

mines the exit of the firm from the market) it does not affect the decision about

quantities and prices. In this subsection, I study the main interaction between

auditing and the optimal deduction.

Considering auditing (and fining), the maximisation problem of the under-

ground firm (equation (5)) becomes

max
y

− αF + (1 − αT )(q(x, y)− c)y (22)

s.t. q(x, y) = θ − 2θy − 2σx

where α is the probability of being audited and F is the fine that the firm should

pay when audited. The value of α is affecting profits but not the reaction function,

which remains the same as in equation (6).

Denote by ∆(α) the cost of auditing, assumed to be increasing and convex; the
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maximisation problem of the government becomes

max
a,α

T (p(a) − c)x + t(I − a(x − x0)) + α(F + T (q(a) − c)y) − ∆(α) (23)

s.t. x = x∗(a)

y = y∗(a)

when deductions are allowed; while, for the case of no itemised deductions (i.e.,

a = 0), it is

max
a,α

T (p(0) − c)x + tI + α(F + T (q(0) − c)y) − ∆(α) (24)

s.t. x = x∗(0) = x0

y = y∗(0) = y0

Using equation (24), the derivative with respect to α defines the optimal level

of audit when deductions are not allowed α∗(0), which is

F + T (q(0) − c)y0 =
∂∆(α)

∂α
(25)

from which we have that

α∗(0) = (∆′)−1(F + T (q(0) − c)y0) (26)

From q(a) and y(a) being decreasing functions of a follows that α∗ is also de-

creasing in a. The optimal audit level is the one that equates the expected benefits

(i.e., the increase in tax proceeds) and its cost; when introducing deductions, the

size of the underground market shrinks, making it less profitable to audit. When

the expected benefits are reduced, the optimal audit level decreases.

Analogously, starting from when audits are not performed (α = 0), the level

of deduction decreases if the government introduces audit. The optimal deduction

equalises the increase in tax proceeds on the firm side with the losses generated

by the deduction on the consumer side. An extra loss appears in the presence

of audit, generated by the reduction in the proceeds derived from fines, equal to

α(∂(q(a)−c)y(a)
∂a

).

Proposition 4 Both itemised deductions and audit are instruments to reduce tax

evasion. A crowding out effect exists among the two, but it does not imply that the

two measures are incompatible. An increase in deductions reduces the profitability

of audits, and vice versa. If the audit cost function is continuous and well behaved,

(absent fix costs of audit) the optimal levels α∗ and a∗ are both positive.
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4 Analysis of the results

I derived the equilibrium prices and quantities for a consumption good that is sold

both on the legal and the underground market, under the assumption that the

firm operating on the legal market and the one on the black market compete à la

Stackelberg, with the legal firm representing the leader.9 Consumers perceive the

two goods as substitutes, with σ as a parameter of how substitute the two goods

are; and may have an aversion to illegality, represented by θ, that implies that,

ceteris paribus, a consumer prefers to buy the good legally.

Imposing only a condition on c, θ and σ that ensures some tax evasion, I

derived the optimal value for a, which is a per-unit itemised deduction that allows

consumers to reduce their tax base for any purchased unit of the legal good above

an exogenous threshold.

The deduction is independent of prices, otherwise we would observe an unne-

cessary artificial increase in the price p (inflation). The itemised deduction is a

cost for the government (the tax proceeds collected from consumers decrease); but

the consumption of legal good increases, generating extra proceeds from the tax

T . This second effect offsets the previous one as long as a ≤ a∗.

The optimal value a∗ is positive for any combination of the parameters: for the

government it is always beneficial (in terms of tax proceeds) to allow for itemised

deductions. Furthermore, a induces a profits reduction for the underground firm.

It is likely that profits from the underground economy are invested in illegal acti-

vities, therefore itemised deductions can also be used to fight illegal activities in

the country. Depending on the social welfare function, therefore, the government

may prefer a larger than optimal level of deduction (representing a loss in terms

of tax proceeds but inducing a reduction in crime).

Tables 1 and 2 propose some numerical examples of the results of the model,

for the case of t = T = 0.3, and c = 0.2; in table 1 θ = 1 and σ = 0.9, while

θ = 0.7 and σ = 0.5 in table 2.10

a = 0 a = a∗ = 0.259 a = 2.059
p 0.42 0.459 0.729
q 0.434 0.404 -
x 0.185 0.217 0.444
y 0.117 0.102 0

TP 0.3I+0.012 0.3I+0.014 0.3I-0.09

Table 1: Numerical example 1.

9In the appendix, I show the results for the Cournot case, which are qualitatively analogous.
10Values are cut after the 3rd decimal.
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a = 0 a = a∗ = 0.365 a = 3.405
p 0.511 0.566 1.02
q 0.355 0.339 -
x 0.189 0.223 0.5
y 0.111 0.099 0

TP 0.3I+0.018 0.3I+0.021 0.3I-0.194

Table 2: Numerical example 2.

The first column represents the market equilibrium when deductions are not

allowed; the middle one is for the optimal level of deductions. When a = a∗,

the size of the underground economy shrinks, but it does not disappear. The

right column corresponds o a level of deduction large enough for the underground

market to disappear. The bottom row (i.e., TP ) represents tax proceeds. You can

notice that the largest TP is attained when a = a∗.

5 Conclusions

This study investigates the effectiveness of itemised deductions as a device to

reduce tax evasion, when both sides of the market (sellers and consumers) pay

some taxes (possibly with different rates).

Consumers use their income to buy a good on the legal or underground market

(or both), to consume the numeraire good and to pay a tax on their exogenous

income. The legal and underground firms compete on quantities; the legal firm

pays a tax on profit. Treating the tax rates as exogenous, the government chooses

the level of itemised deductions that maximises tax proceeds.

I show that the optimal level of deductions is always positive, meaning that

it is always beneficial to allow for deductions in a market characterised by tax

evasion. Part of the effect of deductions is offset by the use of fines and audit to

discourage evasion. The cost of auditing and limited liability nevertheless make

fines an imperfect instrument; itemised deductions should not be considered as a

substitute of auditing systems but rather as a complement. The cost of deductions

consists in the drop in tax proceeds from consumers, but I show that this is more

than compensated by a fall in tax evasion of firms and by the subsequent increase

in tax proceeds.

Although I do not study welfare implications in my model, it is clear that the

reduction in tax evasion does not represent an increase in efficiency but only a

different redistribution of welfare (from the underground firm to the government,

that will use it either to provide more public goods or to reduce tax rates). Cer-

tainly we do not observe a Pareto improvement; depending on the social welfare

function, we can expect an increase in welfare deriving from a better arbitrage
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amongst marginal utilities of money for the firm and consumers.

Provided that profits on the black market are likely to be used for financing

illegal activities, if the social welfare function includes the crimes rate in the coun-

try, or the country’s reputation on the international ground, the optimal level of

deduction would be above the one that maximises tax proceeds. Using this mo-

del results, it would be interesting to study the consequences on the underground

economy of a long term policy of deductions above the optimal level.

Another possible extension of this model would be to consider the implications

in terms of optimal behaviour for a politician. In particular, depending on how

profits from the underground firm are used and/or distributed among shareholders,

would it be in the interest of a politician aiming to be elected to propose such a

policy?

Finally, this model can be applied to a labour supply-demand model; in order

to determine the conditions under which a reduction in the taxes on the labour

force would push firms to legally hire their employees (forcing them to declare their

income). In particular, it would be interesting to consider a more complex general

equilibrium model, in which agents income is endogenous and an analogous scheme

is used to convince workers to declare their income.
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Appendix

A The Cournot case

I solve here the model for the case of Cournot competition, with n legal and m

illegal firms being active on the market. The optimal value a∗ is quantitatively

different, but it remains positive; all the previous results hold under Cournot

competition.

Each legal firm produces a quantity xi, with i ∈ [1, n]; the total quantity is

then x =
∑n

1 xi. The firms on the underground market produce a quantity yj,

with j ∈ [1, m]. The maximisation problem of the a legal firm is

max
xi

(1 − T )(p(x, y) − c)xi (27)

s.t. p(x, y) = 1 − 2x − 2σy + ta

while firms on the underground market face the following maximisation problem:

max
yj

(q(x, y) − c)yj (28)

s.t. q(x, y) = θ − 2σx − 2θy

The two corresponding first order conditions are respectively

4xi = 1 − 2σy − c + ta − 2
∑

h 6=i

xh (29)

4θyj = θ − 2σx − c − 2θ
∑

k 6=j

yk (30)

Assuming that firms are symmetric, and that therefore xi = xh for any i, h ∈

[0, n], and that yj = yk for any j, k ∈ [0, m], we have that
∑

h 6=i xh = (n−1)xi and
∑

k 6=j yk = (m − 1)yj.

Solving the system of the equations (29) and (30) we obtain the optimal Cour-

not quantities:

xc
i(a) =

(m + 1)(1 − c)θ − mσ(θ − c)

2((m + 1)(n + 1)θ − mnσ2)
+

(m + 1)θ

2((m + 1)(n + 1)θ − mnσ2)
ta (31)

yc
i (a) =

(n + 1)(θ − c) − nσ(1 − c)

2((m + 1)(n + 1)θ − mnσ2)
−

nσ

2((m + 1)(n + 1)θ − mnσ2)
ta (32)
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and the Cournot prices

pc(a) =
θ[1 + m(1 − σ)] + c[mn(θ − σ2) + nθ + mσ]

(m + 1)(n + 1)θ − mnσ2
+

(m + 1)θ

(m + 1)(n + 1)θ − mnσ2
ta

(33)

qc(a) =
θ[n(θ − σ) + θ] + c[mn(θ − σ2) + θ(m + n)σ]

(m + 1)(n + 1)θ − mnσ2
−

nθσ

(m + 1)(n + 1)θ − mnσ2
ta

(34)

For the Cournot case with many firms, the assumptions that guarantee the

presence of tax evasion when deductions are not available become

c <
n(θ − σ) + θ

n(1 − σ) + 1
(35)

and

θ ≥
n

n + 1
σ (36)

The assumption that θ ≥ σ is still sufficient for all the maximisation problems

to be concave and the results (quantities and prices) to be always positive.

Remembering that the aggregate legal quantity xc(a) is defined as xc(a) =

nxc
i(a), let’s now rename the quantity and price in the following way:

xc(a) = n(xc
0 + xc

vta) (37)

pc(a) = pc
0 + pc

vta (38)

where xc
0 = n

(m+1)(1−c)θ−mσ(θ−c)
2((m+1)(n+1)θ−mnσ2 )

, xc
v = n

(m+1)θ
2((m+1)(n+1)θ−mnσ2)

, pc
0 = θ[1+m(1−σ)]+c[mn(θ−σ2)+nθ+mσ]

(m+1)(n+1)θ−mnσ2 ,

and pc
v = (m+1)θ

(m+1)(n+1)θ−mnσ2 .

The maximisation problem for the government is

max
a

T (pc(a) − c)xc(a) + t(I − a(xc(a) − xc(0))) (39)

(40)

Solving the problem, we obtain the optimal level of deduction ac, which is now

defined by the following equation:

ac =
T [pc

1x
c
0 + (pc

0 − c)xc
1

2txc
1(1 − pc

1T )
(41)

It is easy to check that ac is always positive: (pc
0−c) > 0 is a necessary condition

to have a market in the case of no deduction, and (1 − pc
1T ) is always positive.
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