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Abstract
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1 Introduction

To address the growing economic and financial crisis, many industrialized countries have

adopted fiscal stimulus measures. Most countries increased public spending on infrastructure,

in particular transportation networks (e.g., highways, mass transit, and airports).1 These

developments have revived interest in the debate on the macroeconomic effects of public

infrastructure investment. The present paper contributes to this literature by analyzing the

short-run, transitional, and long-run output effects of public investment for a small open

economy. More specifically, we analyze how various assumptions on the firm’s production

technology and the household’s labor supply response affect the impulse responses and the

size of long-run output multipliers of public investment.

The notion that public capital generates beneficial spillover effects to the private sector

is widely accepted in the empirical literature.2 The theoretical literature on the dynamic

allocation effects of public spending on infrastructure is less well developed. Most contribu-

tions employ a Ramsey framework in which households are infinitely lived. Baxter and King

(1993) and Turnovsky and Fisher (1995), for instance, employ closed-economy models with

inelastic labor supply to analyze transitional and welfare effects of public investment shocks

under both distortionary and non-distortionary financing scenarios. Fisher and Turnovsky

(1998) and Rioja (1999) explicitly focus on the effects of public capital congestion.3 The

open economy implications of public investment are little researched. A notable exception is

the finite-horizon model of Heijdra and Meijdam (2002), to which our work is most closely

related.

Public capital gives rise to positive spillover effects in private production and therefore may

enter the firm’s production function in two ways: (i) as a separate input (direct effect); and (ii)
1Public infrastructure capital is defined to include, among others, highways, railways, airports, sewerage

and water systems, dams and other flood control structures, and lighthouse services. Public capital in a broad
sense also includes hospitals and educational buildings and other public buildings.

2Aschauer’s (1989) seminal paper—which estimates an output elasticity of public capital of 0.39—gave a
strong boost to the empirical literature on public capital. The meta-analysis by Bom and Ligthart (2008) finds
estimates of the output elasticity of public capital in the range 0.08–0.15.

3A second strand of literature considers models in which the assumption of constant returns to scale to
reproducible factors of production generates endogenous growth. Barro (1990) and Glomm and Ravikumar
(1994, 1997) use endogenous growth models featuring infinitely-lived households without a leisure-labor choice
to derive the conditions of optimal fiscal policy along the balanced growth path. Chatterjee (2008) focuses
rather on the short-run and long-run interhousehold distributional effects of public investment.
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via the index of factor productivity (indirect effect). The majority of studies, however, assume

a Cobb-Douglas production function, in which case the direct and indirect effects cannot be

disentangled.4 More important, public capital is always assumed to enter production in a

Hicks-neutral fashion, that is, it affects labor and capital productivity to the same extent.

The change in factor productivity in the US economy during the 20th century has neither

been Hicks neutral nor has it been Harrod neutral (i.e., labor augmenting).5 In addition, the

elasticity of substitution between private capital and labor is not necessarily unity. Empirical

evidence on this elasticity is mixed, ranging from 0 to 3.4 with the majority of estimates

falling into the range of 0.40–0.60 (cf. Chirinko, 2008). By choosing a more general functional

form, which embeds various elasticities of substitution, we are able to meaningfully analyze

the factor-augmenting role of public capital. We distinguish between Harrod-neutral public

capital and Solow-neutral (capital-augmenting) public capital. To our knowledge, the factor-

augmenting role of public capital has not been analyzed in a dynamic macroeconomic context

yet.6

We develop a microfounded dynamic macroeconomic model for a small open economy.

The household sector extends the Yaari (1965)–Blanchard (1985) framework of overlapping

generations—which assumes that households face a constant probability of death—by mod-

eling endogenous labor supply.7 This extension is not only important in view of the emphasis

in the Real Business Cycle literature on the intertemporal labor supply effect for shock prop-

agation (cf. Prescott, 2006), but also because recent studies have demonstrated its empirical

relevance (e.g., Kimball and Shapiro, 2008). The model features an internationally traded

bond, ensuring that households can use the current account of the balance of payments to

smooth private consumption. Firms operate under perfect competition and enjoy production

spillovers from public capital. The presence of public capital yields a suboptimal market

outcome, providing a justification for government intervention. To limit the international
4Because the Cobb-Douglas function yields constant output elasticities of inputs, the literature has strongly

focused on this case (cf. Bom and Ligthart, 2008). Otto and Voss (1998) is a notable exception.
5See David and Van de Klundert (1965) and Boskin and Lau (2000).
6Feehan (1998) touches upon the issue, but employs a static two-factor, two-goods model of a small open

economy. In addition, he focuses on the flow rather than the stock of infrastructure.
7Heijdra and Meijdam (2002) neither model endogenous labor supply nor take into account different pro-

duction technologies.
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mobility of physical capital, and thus to avoid trivial capital dynamics, we postulate adjust-

ment costs of both private and public investment. The government balances its budget by

employing lump-sum taxes.

Our paper develops a simple graphical framework to analyze the qualitative steady-state

effects of a public investment shock. The framework is versatile because it incorporates the key

specifications employed in the literature (e.g., exogenous labor supply, Hicks-neutral public

capital, a Cobb-Douglas production technology, and infinitely-lived households) as special

cases. To get insight into the quantitative effects of public investment shocks over time,

we numerically simulate the model using empirically plausible parameter values taken from

the literature on small open economy models. We go beyond the standard practice of using

numerical impulse response functions by deriving analytical expressions for the transition

paths.

Infinite-horizon models of a small open economy typically suffer from the knife-edge prop-

erty (i.e., the rate of interest should equal the pure rate of interest for a meaningful steady

state to exist), thus yielding hysteresis. Introducing Yaari-Blanchard overlapping generations

is a convenient way to arrive at an endogenously determined (non-hysteretic) steady state.

Besides serving this technical objective, overlapping generations provide a realistic descrip-

tion of the demographic structure of the household sector. A key question is whether our

hysteresis-eliminating device affects the impulse responses of a fiscal shock. Therefore, an-

other objective of our paper is to compare the impulse responses in the non-hysteretic model

with those found in the hysteretic version of our model. More specifically, we investigate the

robustness of Schmitt-Grohe and Uribe’s (2003) central result, that is, non-stationary and sta-

tionary models yield virtually identical impulse responses.8 Schmitt-Grohe and Uribe (2003),

however, neither incorporate externalities in their model nor employ overlapping generations

as a stationarity-inducing device.

We show that while the type of factor-augmenting public capital does not matter for the

sign of the output multiplier, it affects its size. If public capital is Solow neutral and factors of
8Schmitt-Grohe and Uribe (2003) employ a dynamic stochastic general equilibrium model for a small open

economy and therefore speak of stationary and non-stationary models. In our deterministic setting, this
terminology corresponds to non-hysteretic and hysteretic models.
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production are gross complements, which is the empirically relevant case, the long-run output

multiplier falls short of its Hicks-neutral value. Conversely, the Solow-neutral case yields a

long-run output multiplier that exceeds the Hicks-neutral value if factors of production are

gross substitutes. Harrod-neutral public capital always yields a long-run output multiplier

equal to that found in the Hicks-neutral scenario. Second, the way in which public capital

affects factor productivity crucially matters for the dynamics of private capital and net foreign

assets, but yields qualitatively similar output dynamics. Finally, we show that the impulse

responses of a public investment shock in the finite-horizon model are very different from

those found in the infinite-horizon model. The combination of a public capital externality,

endogenous labor supply, and finite horizons gives rise to non-monotonic output dynamics.

If any of these three elements is dropped from the analysis, we find the conventional result

of monotonic transition paths. Schmitt-Grohe and Uribe’s (2003) result is not robust to the

inclusion of production externalities and is therefore not as generally valid as suggested.

The paper is organized as follows. Section 2 develops a dynamic macroeconomic framework

for a small open economy in which public capital enters the production function in a factor-

augmenting fashion. Section 3 studies the steady state and develops a graphical framework.

Section 4 analyzes analytically and graphically the long-run effects of a public investment

shock financed by lump-sum taxes. Section 5 studies numerically the dynamic macroeconomic

effects of an unanticipated and permanent increase in public investment. Section 6 summarizes

and concludes.

2 The Model

Consider a small open economy populated by overlapping generations of finitely-lived house-

holds and infinitely-lived representative firms. The household section of the model extends

Yaari (1965) and Blanchard (1985) by incorporating an endogenous labor-leisure choice along

the lines of Heijdra and Ligthart (2007). Firms enjoy positive spillover effects from the stock

of public infrastructure capital.
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2.1 Households

Individual households face a constant probability of death β ≥ 0, which is assumed to equal

the rate at which new agents are born. Because population growth is absent, the size of

the population can be normalized to unity. Households are disconnected and therefore do

not leave bequests. Efficient financial markets allow households to borrow and lend at the

exogenously given world rate of interest (denoted by r) adjusted for the probability of death.

The utility functional at time t of a household born at time v ≤ t is:

Λ(v, t) ≡
∫ ∞
t

lnU(v, τ)e(α+β)(t−τ)dτ, (1)

where α is the pure rate of time preference and the sub-utility index U(v, t) is a Cobb-Douglas

utility index defined over private consumption C(v, t) and leisure 1− L(v, t):

U(v, t) ≡ C(v, t)εC [1− L(v, t)]1−εC , 0 < εC < 1, (2)

where L(v, t) denotes labor supply. Note that total time available to the household has been

normalized to unity. Equation (1) implies a unitary intertemporal elasticity of substitution

and (2) imposes a unitary intratemporal elasticity of substitution between private consump-

tion and leisure. The household’s flow budget constraint is:

Ȧ(v, t) = (r + β)A(v, t) + w(t)L(v, t)− T (t)− C(v, t), (3)

where Ȧ(v, t) ≡ dA(v, t)/dt, A(v, t) denotes real financial wealth, w(t) is the (age-independent)

real wage rate, and T (t) are lump-sum taxes. Private consumption is used as numeraire com-

modity whose price has been normalized to unity. Households can contract actuarially fair

‘reverse’ life insurance (cf. Blanchard, 1985), implying an effective return on financial wealth

equal to r + β.

The representative household of cohort v, who is endowed with perfect foresight, maxi-

mizes lifetime utility (1)–(2) subject to its budget identity (3) and a no-Ponzi game solvency

condition. We solve the household’s problem by two-stage budgeting. In the first stage, the
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household decides on its consumption over time, yielding the Euler equation for individual

‘full’ consumption:9

Ẋ(v, t)
X(v, t)

= r − α > 0, (4)

where full consumption is defined as:

X(v, t) ≡ w(t) [1− L(v, t)] + C(v, t). (5)

We study the case of a patient nation (i.e., r > α), which yields rising individual consump-

tion profiles. In the second stage, full consumption is allocated over private consumption

and leisure. The first-order conditions yield an expression for the consumption-leisure ratio:
C(v,t)

1−L(v,t) = εC
1−εCw(t). Together with (5), this expression gives rise to demand functions for

goods consumption and leisure:

C(v, t) = εCX(v, t), (6)

1− L(v, t) = (1− εC)
X(v, t)
w(t)

. (7)

Variables at the aggregate level can be calculated as a weighted sum of the values for dif-

ferent generations. For example, aggregate financial wealth is A(t) ≡
∫ t
−∞A(v, t)βeβ(v−t)dv,

where βeβ(v−t) is the size of cohort v at time t. By aggregating (4) over all existing generations,

we arrive at aggregate full consumption:

Ẋ(t)
X(t)

= r − α− β(α+ β)
A(t)
X(t)

=
Ẋ(v, t)
X(v, t)

− β · X(t)−X(t, t)
X(t)

. (8)

The second line of equation (8) says that aggregate consumption growth equals individual

consumption growth (the first term) minus the ‘generational turnover effect’ (the second

term), that is, the wealth redistribution caused by the passing away of generations. Intuitively,

old generations have accumulated wealth over the course of their life, whereas new generations
9Further details on the mathematical derivations can be found in Bom, Heijdra, and Ligthart (2010).
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are born without financial wealth (i.e., A(t, t) = 0). Consequently, the consumption level of

new generations X(t, t) falls short of the average consumption level X(t).10

2.2 Firms

The representative firm produces a homogeneous good Y (t) under perfect competition. Tech-

nology is described by a constant elasticity of substitution function, which is linearly homo-

geneous in private capital K(t) and labor L(t). The public capital stock KG(t) enters private

production in a factor-augmenting fashion:

Y (t) = Y [K(t), L(t),KG(t)]

=
[
εY [AK(t)K(t)]

σY −1

σY + (1− εY ) [AL(t)L(t)]
σY −1

σY

] σY
σY −1

, (9)

where 0 < σY � ∞ is the elasticity of substitution between private capital and labor,

0 < εY < 1 is the efficiency parameter of capital, and AK(t) and AL(t) are technology

functions:

Ai(t) ≡ ρiKG(t)ηi , i = {K,L}, (10)

where ηi represents the elasticity of the technology function and ρi > 0 is a scaling factor.

Hicks-neutral public capital can be represented by ηK = ηL = η > 0,11 Harrod-neutral

(or labor-augmenting) public capital assumes ηL > ηK = 0, and Solow-neutral (or capital-

augmenting) public capital is described by ηK > ηL = 0.12 If σY = 1, then (9) collapses to

a Cobb-Douglas function, in which case the distinction between the various types of factor-

augmenting public capital is immaterial.

Equation (9) incorporates a public capital externality, which gives rise to θK(t) + θL(t) +

θG(t) > 1, where θj(t) ≡ ∂Y (t)
∂j(t)

j(t)
Y (t) > 0 represents the output elasticity of factor j =

10We use X(t) = (α + β) [A(t) +H(t)] and X(t, t) = (α + β)H(t), where H(t) is ‘full’ human wealth, that
is, the after-tax value of the household’s time endowment: H(t) ≡

∫∞
t

[w(τ)− T (τ)] e(r+β)(t−τ)dτ.
11Equation (10) boils down to AL(t) = AK(t) = ρKG(t)η, where ρL = ρK = ρ. If we also set σY = 1,

equation (9) reduces to Heijdra and Meijdam’s (2002) production technology.
12Of course, intermediate cases such as ηK > 0 and ηL > 0 (with ηK 6= ηL) are feasible. Here, we focus on

the pure types of factor-augmenting public capital only.

7



{K,L,KG}.13 The output share of public capital can be written as

θG(t) = θK(t)ηK + θL(t)ηL. (11)

To ensure diminishing returns with respect to broad capital (and thus exclude endogenous

growth), we impose η = θG < 1− θK in the case of Hicks-neutral public capital. The Solow-

neutral case requires θK(1+ηK) < 1, whereas no conditions are needed for the Harrod-neutral

case. For plausible parameter combinations, these conditions are easily met (see Section 5.1).

To avoid trivial capital dynamics, we introduce adjustment costs in private investment.

Net capital formation is linked to gross investment I(t) according to a concave accumulation

function (cf. Uzawa, 1969):

K̇(t) =
[
Φ
(
I(t)
K(t)

)
− δ
]
K(t), (12)

where δ is the (constant) rate of capital depreciation and Φ (·) is the installation cost function

of private capital accumulation, which satisfies Φ(0) = 0, Φ′(·) > 0, and Φ′′(·) < 0 (where

primes denote derivatives). The degree of physical capital mobility of private capital is given

by 0 < σA ≡ − I
K

Φ′′(·)
Φ′(·) � ∞. A small σA—representing a less concave installation cost

function—characterizes a high degree of physical capital mobility.

The representative firm is infinitely lived and maximizes the net present value of its cash

flow:

V (t) ≡
∫ ∞
t

[Y (τ)− w(τ)L(τ)− I(τ)] er(t−τ)dτ, (13)

subject to the capital accumulation constraint (12) and the economy-wide stock of public

capital. The prices of output and investment goods are normalized to unity. To allow for

meaningful production spillovers, we require that the government cannot charge a user fee on
13Some authors assume constant returns to scale across all inputs (e.g., Aschauer, 1989) with a view to

model congestion effects. In our context, however, public capital is modeled as a pure public good.
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the services of public capital, for example, road toll fees. The optimality conditions are:

w(t) = YL [K(t), L(t),KG(t)] , (14)

1 = q(t)Φ′
(
I(t)
K(t)

)
, (15)

q̇(t)
q(t)

= r + δ − Φ
(
I(t)
K(t)

)
+

I(t)
q(t)K(t)

− YK [K(t), L(t),KG(t)]
q(t)

, (16)

where q(t) denotes Tobin’s q, which is defined as the market value of private capital relative

to its replacement costs, and Yj(t) ≡ ∂Y (t)
∂j(t) > 0 represents the marginal productivity of factor

j = {K,L,KG}. Equation (14) describes labor demand, (15) represents investment demand,

and (16) shows the evolution of Tobin’s q.14 The ratio of marginal products of the private

factors of production is given by:

YK(t)
YL(t)

=
εY

1− εY

(
ρK
ρL

)σY −1

σY

KG(t)
(ηK−ηL)(σY −1)

σY

(
K(t)
L(t)

)−1/σY

. (17)

If private production factors are gross substitutes (i.e., σY > 1) and public capital is capital-

augmenting (i.e., ηK − ηL > 0), an increase in KG(t) increases the relative marginal product

of private capital. Thus, public capital is biased toward private capital. If private factors are

gross complements (i.e., σY < 1) and ηK − ηL > 0, an increase in KG(t) increases the relative

marginal product of labor. Thus, public capital is biased toward labor.

2.3 Government and Foreign Sector

The government invests in public capital IG(t) and consumes goods CG(t). To focus solely

on spillovers of public investment on the production side, we assume that public consumption

does not give rise to spillovers on the consumption side. Total public spending is financed by

lump-sum taxes, implying that CG(t) + IG(t) = T (t) holds at each instant of time. Just like
14Without adjustment costs, we have Φ (·) = I(t)/K(t) and Φ′(·) = 1, which yields σA = 0. Equation (15)

then reduces to q = 1. In this case, K(t) adjusts instantaneously to its steady-state level. Consequently,
equation (16) reduces to YK = r + δ, which is the familiar rental rate derived in a static framework.
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private capital, public capital accumulates according to a concave function:

K̇G(t) =
[
ΦG

(
IG(t)
KG(t)

)
− δG

]
KG(t), 0 < σG ≡

IGΦ′G(·)
KG

�∞, (18)

where δG is the rate of depreciation of public capital and ΦG (·) is the installation cost function

of public capital, which satisfies ΦG(0) = 0, Φ′G(·) > 0, and Φ′′G(·) < 0. The parameter σG

represents the elasticity of the public capital installation cost function.

Foreign financial capital is perfectly mobile across borders. The change in net foreign

assets Ḟ (t) follows from the current account of the balance of payments: Ḟ (t) = rF (t)+Z(t),

where rF (t) denotes the return on net foreign assets and net exports are given by: Z(t) ≡

Y (t)− C(t)− CG(t)− I(t)− IG(t).

2.4 Market Equilibrium

The domestic labor market clears at each instant of time. Similarly, goods markets do not

feature any rigidities, so that Y (t) = C(t) +CG(t) + I(t) + IG(t) +Z(t). Portfolio equilibrium

amounts to A(t) = V (t) + F (t), where V (t) = q(t)K(t) denotes the firm’s stock market

value. Assets in the household’s portfolio are assumed to be perfect substitutes. Initially,

A(0) = V (0) > 0 because K(0) > 0 and F (0) = 0, implying that the trade account of the

balance of payments is initially balanced; physical capital is thus fully domestically owned.

3 Solving the Model

This section studies the steady state and develops a graphical framework to analyze the

dynamic effects of a public investment impulse.

3.1 Steady State

To solve the model, we log-linearize it around an initial steady state in which F (0) = 0.

A tilde (˜) denotes a relative change, for example, X̃(t) ≡ dX(t)/X0, where X0 denotes

the initial steady-state value of full consumption.15 Notable exceptions are financial assets
15We use the subscript 0 to denote the initial steady-state value of a given variable.
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and lump-sum taxes. For financial assets A(t) and F (t), we use Ã(t) ≡ rdA(t)/Y0 and
˙̃A(t) ≡ rdȦ(t)/Y0, whereas the change in lump-sum taxes is scaled by steady-state output Y0

only, that is, T̃ (t) ≡ dT (t)/Y0.

The reduced-form dynamic model contains two predetermined variables (i.e., the private

capital stock and financial assets) and two non-predetermined variables (i.e., Tobin’s q and

full consumption). By collecting variables in the vector z̃(t) ≡ [K̃(t) q̃(t) X̃(t) Ã(t)]′ and

shock terms in the vector Γ(t) ≡ [0 γq(t) 0 γA(t)]′ we can write the dynamic system as:

˙̃z(t) = ∆z̃(t)− Γ(t), (19)

where the Jacobian matrix (with element δ̄ij) on the right-hand side of (19) is given by:

∆ ≡



0 rωI
σAωA

0 0

rθK
σY ωA

(1− ξyk) r − rθK
σY ωA

ξyx 0

0 0 r − α − r−α
ωA

rωwξwk 0 r(ωwξwx − ωX) r


,

where ωA ≡ rA0/Y0 denotes the output share of asset income, ωI ≡ I0/Y0 is the output share

of private investment, ωw ≡ w0/Y0 is the output share of wages, ωX ≡ X0/Y0 denotes the

output share of full consumption, and ξyk > 0, ξyx < 0, ξwk > 0, and ξwx > 0 are defined in

Appendix A.1. The policy shock terms are given by:

γq(t) ≡
rθK
σY ωA

[ξyg + (σY − 1)ηK ] (1− e−σGt)ĨG, (20)

γA(t) ≡ −r
[
ωwξwg(1− e−σGt)− ωIG

]
ĨG + rωCGC̃G, (21)

where ωCG ≡ CG0/Y0, ωIG ≡ IG0/Y0, and ξyg T 0 and ξwg T 0 are defined in Appendix A.1.

Because we are studying a public investment impulse, we set ĨG > 0 and C̃G = 0.

The model has a unique and locally saddle-point stable steady state, featuring two positive

real roots and two negative real roots (Appendix A.1). The system (19) embeds various special

cases. First, if labor supply is exogenous (i.e., δ̄23 ≡ − rθK
σY ωA

ξyx = 0), the system is recursive,

meaning that the investment subsystem [q̃(t), K̃(t)] can be solved independent of the savings
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subsystem [X̃(t), Ã(t)]. Second, if households are infinitely lived (imposing β = 0 and thus

r = α must hold for a steady state to exist) then the third row of ∆ consists of zeros only. The

four characteristic roots in the infinite-horizon case are: −h∗1 = (r −
√
r2 + 4δ̄12δ̄21)/2 < 0,

r∗1 = r, h∗2 = 0, and r∗2 = (r +
√
r2 + 4δ̄12δ̄21)/2 > 0. A hysteretic steady state is obtained if

a zero root is present.

3.2 Graphical Framework

Figure 1 graphically summarizes the model’s long-run equilibrium, which is simultaneously

determined in four panels. The economy is initially at the steady-state equilibrium E0. Panel

(a) shows the equilibrium on the private capital market. The long-run supply of private capital

Ks(r) is perfectly elastic in a small open economy, and can thus be graphically represented

by a horizontal line. Using the steady-state versions of (12) and (16), the long-run capital

demand curve Kd(r;L0,KG0, q0)—given L0 > 0, KG0 > 0, and q0 > 0—can be derived as:

r =
1
q0

[
YK(K,KG0, L0)− Φ−1(δ)

]
, (22)

which is downward sloping since ∂YK/∂K < 0. The intersection of capital supply Ks(r)

and capital demand Kd(r;L0,KG0, q0) determines the initial steady-state level of capital

K(0) = K0 > 0. The effect of public capital on private capital demand is given by:

∂YK
∂KG

=
YK

σYKG
[θG + ηK(σY − 1)]. (23)

Hence, an increase in public capital shifts the capital demand curve to the right if θG +

ηK(σY − 1) > 0. In the Solow-neutral case, this condition implies that σY > θL. We label

the shift in the capital demand curve the capital-productivity effect, which consists of the

pure externality effect θG and the Solow-substitution effect ηK(σY − 1). Only for ηK > 0 and

σY 6= 1 does the Solow substitution effect play a role; its value is small for complementary

private inputs. Because ∂YK/∂L > 0, the capital demand curve always shifts to the right if

employment increases.

Panel (b) depicts the equilibrium in the labor market. For a given level of full consumption,

12



the upward-sloping labor supply curve Ls(w;X0) is given by:

w =
(1− εC)X0

1− L
, (24)

which follows from (7) in aggregate form. A rise in full consumption induces households

to work less—the wealth effect on labor supply—and thus shifts the labor supply curve

to left, thereby pushing wages up and depressing employment. The labor demand curve

Ld(w;K0,KG0) is derived from the marginal productivity of labor (14):

w = YL(L,K0,KG0), (25)

which is downward sloping because ∂YL/∂L < 0. For K = K0, KG = KG0, and X = X0, the

equilibrium employment level and wage rate are L0 and w0, respectively. The effect of public

capital on the marginal productivity of labor is given by:

∂YL
∂KG

=
YL

σYKG
[θG + ηL(σY − 1)]. (26)

Thus, an increase in public capital shifts the labor demand curve to right if θG+ηL(σY −1) >

0, causing wages and employment to rise. We call this the labor-productivity effect, which

consists of the pure externality effect θG and the Harrod-substitution effect ηL(σY − 1). Since

∂YL/∂K > 0, a larger private capital stock also pushes the labor demand curve to the right.

Panel (d) determines initial full consumption and the stock of assets for given wages

and lump-sum taxes. The modified Keynes-Ramsey schedule Xkr(A) gives the steady-state

relationship between full consumption and financial assets [from (8)]:

X =
β(α+ β)
r − α

A. (27)

The Xkr(A) schedule is upward sloping because of the generational turnover effect. The vari-

ables X and A must also satisfy the steady-state household budget identity Xhb(A;w0,KG0)
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that follows from (3):

X = rA+ w0 − CG0 − Φ−1(δG)KG0, (28)

where we used the steady-state version of (18) and the government’s budget constraint. Given

KG = KG0 and w = w0, the intersection of the Xkr(A) and Xhb(A;w0,KG0) schedules

determines the initial steady-state levels of full consumption X0 and financial assets A0. A

rise in the wage rate shifts the Xhb(·) curve up, resulting in a higher equilibrium level of

assets.

Finally, Panel (c) shows the production function Y (·), which relates output to private

capital given labor and public capital. With initial levels of inputs of L0, K0, and KG0, initial

output is Y0. Panel (c) also depicts the line qK. Because A0 = qK0 (point G), foreign assets

in the initial steady state are zero, that is, F0 = 0.

As a result of an investment shock, the value of Tobin’s q deviates from q(0) = q(∞) in

the short and medium run. To graphically analyze the dynamics during this time period, we

make use of Figure 2. The q̇ = 0 locus in Panel (a) shows combinations of q(t) and K(t)

for which Tobin’s q is constant over time; it is also given by (22) with fixed r and variable

q. The schedule is downward sloping because a higher capital stock reduces the marginal

product of capital and thus yields lower dividends to shareholders. The K̇ = 0 locus denotes

combinations of q(t) and K(t) for which net investment is zero. The schedule is horizontal

at the unique value of Tobin’s q for which Φ(·) = δ. Panel (b) illustrates the labor market

dynamics by adding the short- and medium-term labor-productivity and wealth effects to

Panel (b) of Figure 1. Recall that because the dynamic system is not recursive the dynamic

equilibrium paths are simultaneously determined in the investment subsystem [Panel (a)] and

saving subsystem (not shown), which are connected by the endogenously determined level of

employment (see Section 3.1).
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4 Analytical Long-Run Effects of Public Investment

This section analytically investigates the long-run effects of a permanent and unanticipated

increase in public investment. The fiscal shock is unanticipated in the sense that it is simul-

taneously announced and implemented. To keep its budget balanced, the government raises

lump-sum taxes.

The increase in public investment expands the steady-state stock of public capital from

KG(0) = KG0 to KG(∞) = KG∞ via the capital accumulation function:

dKG(∞)
dIG

=
1

Φ−1
G (δG)

> 0. (29)

Panel (b) of Figure 1 shows that the increase in public capital has two opposite effects on

the labor market. On the one hand, the labor-productivity effect shifts the labor demand

curve to the right from Ld(w;K0,KG0) to Ld(w;K∞,KG∞), thereby boosting employment

and wages. On the other hand, the wealth effect on labor supply causes a leftward shift of

the labor supply curve from Ls(w;X0) to Ls(w;X∞), further increasing wages but partially

offsetting the increase in employment.16 The new steady-state equilibrium is denoted by E∞.

The labor-productivity effect always dominates the wealth effect, resulting in a net increase

in employment to L∞ and wages to w∞:17

dL(∞)
dIG

= ωLL
YG0

YL0

1
Φ−1
G (δG)

−ωLL
ωX

θL
w0

β(α+ β)
β(α+ β)− r(r − α)

(
YG0

L0

1
Φ−1
G (δG)

− 1

)
, (30)

dw(∞)
dIG

=
YG0

L0

1
Φ−1
G (δG)

, (31)

where ωLL ≡ (1−L0)/L0 is the leisure-labor ratio (or intertemporal substitution elasticity of

labor supply).18 The first term of (30) represents the labor-productivity effect and the second
16The wealth effect derives from the fact that—for plausible parameter values—the rise in gross wages

dominates the increase in lump-sum taxes necessary to balance the government budget. In Panel (d) of Figure
1, the Xhb(·) curve shifts up to Xhb(A;w∞,KG∞), raising full consumption to X∞ and financial assets to A∞.

17Using equation (8) in steady state yields β(α + β) − r(r − α) = β(α + β)(ωX − ωA)/ωX > 0, where
ωX − ωA > 0.

18Note that the intertemporal substitution elasticity of labor supply is equivalent to the intratemporal
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term captures the wealth effect. Since both effects contribute to raise the wage rate, the wage

multiplier given by (31) is positive. Of course, in the absence of a public capital externality

(i.e., YG0 = 0 and thus θG = 0), we find a zero effect on wages.

Public capital has a direct effect on private capital demand, which is captured by the

capital productivity effect described by (23). Also, because labor and private capital are

cooperative factors, public capital has an indirect effect on private capital through its effect

on employment. The private capital multiplier is:

dK(∞)
dIG

=
yG
θLy

[θG + ηK(σY − 1)]
1

Φ−1
G (δG)

+ ωLL
yG
θLy

1
Φ−1
G (δG)

−ωLL
1

ωXy

β(α+ β)
β(α+ β)− r(r − α)

(
YG0

L0

1
Φ−1
G (δG)

− 1

)
, (32)

where y ≡ Y0/K0 and yG ≡ Y0/KG0. The first term of (32) is the capital-productivity effect.

The second and third terms capture the effect of public investment on employment and cor-

respond to the labor-productivity and wealth effects, respectively. If public capital is Harrod

neutral (i.e., ηK = 0) or factors of production are gross substitutes (i.e., σY > 1) or both,

then the multiplier of private capital tends to be positive (see also Section 5). Graphically,

public investment shifts the capital demand curve to the right for a given interest rate—as

depicted in Panel (a) of Figure 1—causing an increase in the long-run stock of private capital

from K0 to K∞. However, if public capital is Solow neutral and factors of production are

strong gross complements, then the negative Solow-substitution effect dominates the positive

pure externality effect so as to render the capital-productivity effect also negative. In this

case, the net effect of public investment on private capital may be negative if the negative

capital-productivity effect more than offsets the positive indirect effect spilling over from the

labor market.

If employment, private capital, and public capital increase, then output also rises to Y∞.

compensated wage elasticity of labor supply.
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The expression for the long-run output change is:

dY (∞)
dIG

=
yG
θL

[θG + θKηK(σY − 1)]
1

Φ−1
G (δG)

+
yGθGωLL

θL

1
Φ−1
G (δG)

−ωLL
ωX

β(α+ β)
β(α+ β)− r(r − α)

(
YG0

L0

1
Φ−1
G (δG)

− 1

)
, (33)

where we have totally differentiated (9) and made use of (29), (30), and (32). The two terms

in the first line of (33) correspond to the capital-productivity and labor-productivity effects,

whereas the negative term in the second line represents the wealth effect. The most important

result from (33) is that the output multiplier is smaller if private inputs are gross complements

(i.e., σY < 1) and public capital is Solow neutral (i.e., ηK > 0). In this case, public capital is

biased toward the relative expensive factor (labor) and substitutability to the relative cheap

factor (private capital) is rather limited, which leads to lower private capital accumulation.

In contrast, if public capital is labor-augmenting (i.e., ηL > 0 and ηK = 0), then the elasticity

of substitution between private inputs is irrelevant to the size of the multiplier, reflecting the

availability of private capital at a fixed user cost.

Equation (33) embeds several other special cases. First, if labor supply is exogenous (i.e.,

ωLL = 0) the second and third terms of (33)—whose net effect is positive—drop out, implying

that the output multiplier is larger if labor supply is endogenous.19 Second, if agents are

infinitely-lived (i.e., β = 0) only the negative wealth effect drops out, which implies an even

larger output multiplier. Finally, if public capital is not productive (i.e., YG = θG = ηK = 0),

then only the negative component of the wealth effect remains; we thus obtain the output

multiplier of a public consumption shock: dY (∞)
dCG

= dY (∞)
dIG

= ωLL
ωX−ωA ≥ 0.20

Panel (c) of Figure 1 shows the long-run effect of public investment on output. The

increase in employment and public capital shifts up the production function Y (K;L0,KG0)

to Y (K;L∞,K∞). The new steady-state equilibrium is denoted by E∞, with a larger private

capital stock K∞ and higher output Y∞. The slope of the production function is the same
19It can easily be shown that since the labor-productivity effect dominates the wealth effect in equation (30),

so does it in (32) and (33).
20The macroeconomic effects of unproductive public investment and public consumption are identical. In this

case, the positive output multiplier stems entirely from the wealth effect; intuitively, the lump-sum tax increase
causes households to feel poorer, inducing them to supply more labor. If ωLL = 0, then dY (∞)

dCG
= dY (∞)

dIG
= 0.
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at E∞ and E0, since I/K, IG/KG, Tobin’s q, and thus YK(·) [see (16)] are fixed in the long

run. The stock market value of domestic firms increases to qK∞ (point N). However, Panel

(d) shows that public investment also raises total domestic financial assets to A∞ (point

M). Thus, the difference (represented by the distance between N and M) gives the long-run

effect of public investment on net foreign assets, which may be either positive or negative,

depending on the long-run change in the stock of private capital relative to the change in

domestic financial assets.21

5 Quantitative Analysis of the Effects of Public Investment

To quantify and visualize the dynamic macroeconomic effects of an increase in public invest-

ment, a simulation is performed. Section 5.1 describes the parameters used in the simulation,

Section 5.2 illustrates the transitional dynamics, and Section 5.3 provides numerical results

on both the short-run and long-run effects.

5.1 Parameters

Table 1 shows the parameter values that are taken from the literature. The time unit repre-

sents a year. We follow Mendoza (1991), who calibrates a dynamic general equilibrium model

for the Canadian economy, in assigning values to ωLL, r, and δ. In the benchmark model,

the intertemporal substitution elasticity of labor supply ωLL is set to 2.00, the rate of interest

takes on a value of 0.04, and the rate of depreciation of private and public capital is 0.1. Based

on an average expected life span of 55 (working) years, we assume a probability of death β of

1.82 percent. Following Baxter and King (1993), the ratio of public consumption to GDP is

set to 20 percent, whereas the ratio of private consumption to GDP is 0.55, which is in line

with the average value for OECD countries. The ratio of public investment to GDP takes

on a value of 0.05, which is slightly above the OECD average. Based on Bom and Ligthart’s

(2008) analysis, we use θG = 0.08. Initially, we set σY to unity, which is in line with the

Cobb-Douglas specification employed in most empirical studies.
21Panel (c) of Figure 1 shows the case dF (∞)/dIG < 0, which holds for reasonable parameter values in the

cases of Hicks-neutral and Harrod-neutral public capital. See Section 5.3.
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We employ a logarithmic specification for both the private and public installation cost

function:

Φ(x) ≡ z̄ ln
x+ z̄

z̄
, ΦG(x) ≡ z̄G ln

xG + z̄G
z̄G

, (34)

where z̄ and z̄G are exogenous constants, x ≡ I/K, and xG ≡ IG/KG. From (34) and the

definitions of σA and σG, we derive σA = x/(x + z̄) and σG = z̄GxG/(xG + z̄G). We set

the steady-state values for x at 0.11 and choose z̄ = 0.532, implying steady-state adjustment

costs of about 0.2 percent of output. Similarly, we use xG = 0.11 and pick z̄G = 0.532

to yield identical adjustment costs for public capital as for private capital. The degree of

private capital mobility is σA = 0.171 and the elasticity of the public installation function is

σG = 0.091.

Given the fixed rate of interest, our parametrization under finite horizons yields rising

individual consumption profiles, that is, r > α = 0.0388, where α is used as a calibration

parameter to arrive at A0 = q0K0.22 Once the parameters are set, all other information on the

spending shares, output elasticities, and the output-capital ratio can be derived: ωI = 0.20,

θL = 0.71, θK = 0.29, εC = 0.28, εY = 0.29, y = 0.55, and yG = 2.20. The conditions

η < 1− θK = 0.71 and θK(1 + ηK) = 0.37 < 1 are thus easily met. Depending on the type of

factor-augmenting public capital, we can derive ηK or ηL using (11); that is, ηK = θG/θK =

0.276 and ηL = 0 for Solow-neutral public capital and ηL = θG/θL = 0.113 and ηK = 0 for

Harrod-neutral public capital, and ηK = ηL = 0.08 for Hicks-neutral public capital. Of the

four real roots, two are stable and two are unstable; we find −h∗1 = −0.1576, −h∗2 = −0.0172,

r∗1 = 0.0584, and r∗2 = 0.1976.

5.2 Impulse Responses

To visualize the impulse responses of a permanent and unanticipated rise in public investment

financed by lump-sum taxes, we use the analytical expressions (A.23)–(A.26) in Appendix

A.2 together with the steady-state log-linearized equations of Table A1. We plot the im-
22For the special case of infinite horizons, we set r = α.
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pulse response functions for 200 time periods, which allows us to accommodate differences in

transition speed of variables. The impact (or short-run) effect of the fiscal shock occurs at

t = 0 and the steady-state (or long-run) effect materializes at t → ∞. The size of the fiscal

shock amounts to ĨG = 0.1. We first discuss the dynamic linkages between the variables for

Hicks-neutral public capital, which allows us to focus on the effect of endogenous labor supply.

Subsequently, we relax the Hicks-neutrality assumption and turn to our parametrization of

interest.

5.2.1 Hicks-Neutral Public Capital

The dotted lines in Figure 3 show the transitional dynamics for Hicks-neutral public capital.

On impact, Tobin’s q jumps up, in anticipation of the future increase in the marginal produc-

tivity of private capital. Consequently, private investment rises. In Panel (a) of Figure 2, the

economy moves from E0 to EH1 . Given the (future) increase in wages, households experience

a rise in total wealth, inducing them to reduce labor supply.23 As a result, wages increase

and employment falls on impact. Graphically, in Panel (b), the labor supply curve shifts to

the left to Ls1, while the labor demand schedule remains unaffected, yielding the short-run

equilibrium E1. Given that private capital is predetermined, the private capital-labor ratio

rises and output falls in the short run. The rise in short-run domestic absorption (denoted by

C̃(0) + Ĩ(0) + ĨG > 0) together with the fall in output implies that the country’s net exports

fall (i.e., Z̃(0) < 0).

The increase in public investment expands the public capital stock over time. Similarly,

the private capital stock rises gradually, owing to the larger private investment rate. In terms

of Panel (a) of Figure 2, the economy gradually moves from EH1 to EH2 along the dynamic

path DPH . Because private capital and labor are cooperative factors of production, the

marginal productivity of labor rises. In Panel (b), the labor demand curve shifts to the right

to Ld2. Labor supply shifts further to the left, reflecting a rise in full consumption. The

employment path during transition is non-monotonic. Initially, during periods 10-30, the

labor-productivity effect of both private and public capital is rather strong and dominates
23Private investment ‘crowds in’ private consumption; this result is in contrast to the conventional negative

effect found by Heijdra and Ligthart (2007).
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the wealth effect. Graphically, the rightward shift of the labor demand curve dominates the

leftward shift of the labor supply schedule, causing a net increase in wages and employment.

Once the economy reaches the temporary equilibrium E2, employment attains its maximum.

Eventually, during periods 30 and beyond, the rise in wages boosts the wealth effect on labor

supply. Graphically, the labor supply curve shifts to the left to a greater extent than in the

initial periods—which is represented by a move from Ls2 to Ls∞—pushing wages further up,

but depressing the employment increment. However, both employment and wages increase in

the long run, as indicated by the location of the new steady state E∞ to the Northeast of E0.

The drop in the employment increment in the medium run causes the capital-labor ratio

to rise. As a result, Tobin’s q gradually decreases over time, eventually returning to its

initial steady-state value at EH∞. Therefore, the transition in Tobin’s q—and thus in the

private capital stock—is also non-monotonic. Private and full consumption, however, increase

monotonically during transition, reflecting a continuous rise in wage income. The rise in

domestic absorption boosts imports, deteriorates the trade balance, and creates a short-run

current account deficit. Hence, the country accumulates net foreign debt. During transition,

the current account deficit shrinks, giving rise to a non-monotonic path of net foreign assets.

In the new steady state, the current account of the balance of payments is balanced again

(i.e., Ḟ (∞) = 0), where a surplus on the trade account offsets the interest payments on net

foreign debt.

5.2.2 Solow-Neutral and Harrod-Neutral Public Capital

To distinguish between different types of factor-augmentation, we focus on the case of 0 <

σY < 1. The dashed and solid lines in Figure 3 present impulse responses of a public in-

vestment shock for Harrod-neutral and Solow-neutral public capital, respectively. Section

4 showed that the elasticity of substitution is irrelevant in the long run if public capital is

Harrod neutral; apart from slight short-run differences, it turns out that also the transitional

dynamics are virtually identical to the Hicks-neutral case.24 In contrast, under Solow neu-

trality the transitional dynamics differ qualitatively for private capital and foreign assets, but
24In both technology cases, the Solow-substitution effect ηK(σY −1) of equation (23) drops out, leaving only

the pure externality effect on the medium-run marginal productivity of private capital.
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are only quantitatively different for output.

In the Solow-neutral case, Tobin’s q jumps down to ES1 , resulting in a decrease in private

investment in the short run. Consequently, the stock of private capital gradually reduces. As

the public capital stock expands, the marginal productivity of labor increases, which boosts

employment (recall from (17) that in this case public capital is biased toward labor). The

increase in labor use raises the marginal productivity of capital, Tobin’s q, and thus private

investment. Eventually, net private investment turns positive so that the private capital stock

expands back to the pre-shock level, causing the graphical swing in Panel (a) from ES1 to ES2

along the dynamic path DPS . However, over time the decrease in the employment increment

causes Tobin’s q and private investment to fall again, which creates a drop in long-run private

capital accumulation. Graphically, the economy follows the dynamic path DPS from ES2 to

the new steady state ES∞.

In the Harrod-neutral case, Tobin’s q jump down from E0 to some point (not shown) above

ES1 in Panel (a) of Figure 2, which temporarily depresses private investment to a smaller extent

than in the Solow-neutral case. As public capital accumulates, the marginal productivity of

private capital increases, thereby pushing Tobin’s q up. As a result, private investment rises

and the private capital stock expands, which moves the economy in the direction of EH2 ,

following a dynamic path similar to DPH . As in the Hicks-neutral case, once employment

attains its maximum at E2 in Panel (b), Tobin’s q starts adjusting back to its original level. In

Panel (a), the economy moves along the dynamic path DPH from EH2 to the new steady-state

equilibrium EH∞.

The dynamics of net foreign assets also depend on the technology scenario. Under Solow-

neutral public capital, the stock of net foreign assets increases in the new steady state, whereas

it drops in the Harrod-neutral case. The reason lies in the larger rise in imports due to the

higher private investment rate in the latter case. In contrast to the dynamics for capital and

net foreign assets, the impulse responses for labor are nearly identical across specifications.

Although the short-run effects on labor are slightly different for different values of σY and ηi,

the three lines for employment coincide in the long run. Intuitively, the steady-state effect on

wages and employment is only affected by YG(·), that is, the size of the pure public capital

22



externality [see equations (30)–(31)].

5.2.3 Comparison of Hysteretic and Non-Hysteretic Models

Output shows a non-monotonic transition path in the benchmark scenario, which crucially

depends on the assumptions made on the labor supply elasticity, the life span of agents, and

the presence of a public capital externality. The dotted lines in Figure 4 show monotonic

transition paths for output if labor supply is exogenous, households have infinite horizons,

and public capital does not give rise to a production externality. If labor supply is exogenous

(i.e., ωLL = 0), there is no wealth effect on labor supply. In this case, output and private

consumption do not react on impact.25 In the long run, consumption and output multipliers

are both positive. If households have infinite life spans (i.e., β = 0 so that r = α), full

consumption dynamics is degenerate, that is, Ẋ = 0. In that case, full consumption jumps

on impact and stays constant over time. Intuitively, all future changes in disposable income

are fully anticipated and already reflected in the initial jump in full consumption, so that

there are no further leftward shifts in the Ls(w;X) curve during transition. Consequently, no

wiggle is present in the output path.

Although not analyzed by Schmitt-Grohe and Uribe (2003), finite horizons can be used

to arrive at an endogenously-determined steady state.26 A key question is whether using a

hysteresis-eliminating device, such as overlapping generations, affects the impulse responses.

Panels (a)–(c) of Figure 4 show that the impulse responses of the hysteretic (infinite-horizon)

model—as represented by the dotted lines—are very different from those found in the non-

hysteretic (finite-horizon) model. This result contradicts Schmitt-Grohe and Uribe’s (2003)

primary finding that the non-stationary model and the stationary model yield nearly identical

impulse responses. Only in the absence of a production externality can we replicate their

result. Schmitt-Grohe and Uribe’s (2003) result is thus not as generally valid as suggested.
25The rise in wages without a wealth effect is smaller than in the benchmark case with a wealth effect

present.
26Schmitt-Grohe and Uribe (2003) discuss five ways to ‘close small open models:’ (i) an endogenous discount

factor; (ii) a debt-elastic interest rate premium; (iii) convex portfolio adjustment costs; and (iv) complete asset
markets. They show that the type of device does not matter.
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5.3 Quantitative Short-Run and Long-Run Effects

Table 2 presents macroeconomic multipliers for the benchmark scenario and alternative values

of the output elasticity of public capital θG and substitution elasticity in production σY .

The long-run output multiplier in the benchmark scenario is 2.71, whereas the short-run

multiplier is negative, suggesting substantial long-term output gains from investment in public

capital. The case of exogenous labor supply (i.e., ωLL = 0) and Hicks-neutral public capital—

which corresponds to Heijdra and Meijdam’s (2002) model, but is not shown in the table—

yields a long-run output multiplier of 2.25. Abstracting from endogenous labor supply thus

underestimates the long-run output multiplier. Output multipliers do not change sign across

various values of θG and σY . A larger output elasticity of public capital—and thus a larger

production externality—increases the marginal productivity of private capital. Consequently,

the steady-state investment and output multipliers both rise. If the public capital externality

is absent, the long-run output multiplier is only marginally above unity.27 In contrast to the

case with a public capital externality, short-run employment rises, reflecting a fall in aggregate

household wealth induced by the rise in lump-sum taxes necessary to balance the government

budget.

Although the sign of the long-run output multiplier is independent of the type of factor-

augmenting public capital, its size is substantially affected. The elasticity of substitution

plays an important role if public capital is Solow neutral. We find a long-run output multiplier

that falls short of that found in the Hicks-neutral scenario if factors of production are gross

complements; the output multiplier amounts to 1.59 compared to 2.71 in the benchmark

scenario. Both short-run and long-run investment multipliers may take on negative values.

Conversely, if factors of production are gross substitutes and public capital is Solow neutral,

the long-run output multiplier exceeds that found in the Hicks-neutral case. In absolute terms,

the response of net foreign assets is much larger than that of physical capital. Under Harrod

neutrality, the long-run output multiplier is equal to that found under Hicks neutrality. As

expected from the analytical results, both long-run wage and employment multipliers are
27Note that the output multiplier may fall below unity if the labor supply elasticity is small. For example,

for θG = 0 and ωLL = 1, we find an output multiplier of 0.85.
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independent of σY and ηi.

6 Conclusions

The paper develops a dynamic microfounded macroeconomic model of a small open economy

to study the transitional dynamics of a balanced-budget increase in public investment. Public

capital gives rise to an externality by entering private production in a factor-augmenting

fashion. Various forms of factor-augmenting public capital are distinguished. The household

side of the model extends a Yaari-Blanchard overlapping generations model—which gives

rise to a non-hysteretic steady state—by introducing a wealth effect on intertemporal labor

supply.

The paper shows that the type of factor-augmenting public capital matters for the size

of the output multiplier, but does not affect its sign. The long-run output multiplier for

the empirically plausible case of Solow-neutral public capital and low input substitutability

amounts to 1.59, which is substantially smaller than the value of 2.71 that is found if public

capital is Hicks neutral. The size of the long-run output multiplier under Harrod-neutral

public capital is identical to that under Hicks neutrality. Endogenous labor supply and

larger elasticities of substitution between private capital and labor boost the long-run output

multiplier.

The type of factor-augmenting public capital matters to the transitional dynamics of

a public investment shock. Qualitatively similar output dynamics of a public investment

impulse are found for various types of factor-augmenting public capital. Transition paths for

private capital and net foreign assets, however, differ substantially. If factors of production

are gross complements and public capital is Solow neutral (i.e., public capital is labor biased),

the path of the private capital stock shows an initial fall, followed by a rise, and a subsequent

decline in the new steady state. Long-run net foreign assets increase, sustaining a long-run

current account surplus. If public capital is Harrod or Hicks neutral, then the non-monotonic

path for private capital always lies above the zero axis, whereas the stock of net foreign assets

always falls.
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In contrast to conventional results obtained in hysteretic (infinite-horizon) models for a

small open economy, the output dynamics of a public investment shock in the non-hysteretic

(finite-horizon) model are non-monotonic. A necessary condition for this result is the simulta-

neous presence of a public capital externality, endogenous labor supply, and finite horizons of

households. Our results demonstrate that Schmitt-Grohe and Uribe’s (2003) central finding—

i.e., the impulse responses of hysteretic and non-hysteretic models are virtually identical—is

not as generally valid as suggested. Impulse responses of the hysteretic and the non-hysteretic

model are only identical without a production externality.

Our study does not analyze the intergenerational welfare effects of an increase in public

investment. We leave this for further research. In addition, the analysis assumes that the

government has access to lump-sum taxes. In future work, we want to study the dynamic

macroeconomic effects of alternative ways to balance the government’s budget, that is, labor

tax and debt financing. Finally, the model can easily be extended to a real business cycle

setting.
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Figure 3. Permanent Public Investment Shock under Various Types of
Factor-Augmenting Public Capital
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Notes: The dashed line denotes the scenario of σY = 0.5 and ηK = 0 (Harrod-neutral case), the
solid line represents σY = 0.5 and ηL = 0 (Solow-neutral case), and the dotted line represents
σY = 1 and ηK = ηL (Hicks-neutral case). The other parameters are set at their benchmark
values.



Figure 4. Impulse Responses of a Permanent Public Investment Shock:
Various Values of ωLL, β, and θG

Panel (a): Ỹ (t) and C̃(t) for various ωLL values
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Panel (b): Ỹ (t) and C̃(t) for various β values
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Panel (c): Ỹ (t) and C̃(t) for various θG values
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Notes: In Panel (a), ωLL takes on the values 0 (dotted line), 0.50 (dashed line), and 2.00 (solid
line). In Panel (b), β takes on the values 0 (dotted line), 0.0182 (solid line), and 0.05 (dashed
line), respectively. In Panel (c), θG takes on the values 0 (dotted line), 0.05 (dashed line), and 0.08
(solid line). The other parameters are set at their benchmark values.



Table 1: The Parameter Values in the Benchmark Model

Description Parameter Value

Birth rate β 0.018
Rate of interest r 0.040
Depreciation rate of private capital δ 0.100
Depreciation rate of public capital δG 0.100
Leisure-labor ratio ωLL 2.000
Elasticity of substitution between labor and private capital σY 1.000
Ratio of private consumption to GDP ωC 0.550
Ratio of public consumption to GDP ωCG 0.200
Ratio of public investment to GDP ωIG 0.050
Output elasticity of public capital θG 0.080
Parameter of the installation function for private capital z̄ 0.532
Parameter of the installation function for public capital z̄G 0.532
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Appendix

This Appendix derives the log-linearized model, analyzes stability, and solves for the short-

run, transitional, and long-run effects of a public investment shock. Further details are

provided in Bom, Heijdra, and Ligthart (2010)

A.1 The Reduced-Form Model

We log-linearize the finite-horizon model around an initial steady state in which F (0) = 0

so that A(0) = q(0)K(0).28 The results are reported in Table A.1. A tilde (˜) denotes a

relative change, for example, X̃(t) ≡ dX(t)/X0, where X0 denotes the initial steady-state

value of full consumption. For financial assets A(t) and F (t), we use Ã(t) ≡ rdA(t)/Y0

and ˙̃A(t) ≡ rdȦ(t)/Y0. Lump-sum taxes are scaled by steady-state output Y0 only, that is,

T̃ (t) ≡ dT (t)/Y0.

A.1.1 The Quasi-Reduced Form of the Static System

Conditional on the state variables and the policy shocks (see below), equations (TA.7)–(TA.9)

can be condensed to the following quasi-reduced form expressions:


1
σY

− 1
σY

−1

1 −θL 0

0 1 −ωLL



Ỹ (t)

L̃ (t)

w̃ (t)

 =


1−σY
σY

ηLK̃G(t)

K̃∗(t)

−ωLLX̃ (t)

 , (A.1)

where ωLL ≡ (1− L0)/L0 ≥ 0 is the leisure-labor ratio and K̃∗(t) denotes broad capital:

K̃∗(t) = θKK̃(t) + θGK̃G(t). (A.2)

Using K̃G(t) =
(
1− e−σGt

)
ĨG, we find:

K̃∗(t) = θKK̃(t) + θG
[
1− e−σGt

]
ĨG. (A.3)

28In the special case of infinite horizons (β = 0 and thus r = α), we set F (0) = −q(0)K(0) to arrive at
A(0) = 0.
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The system (A.1) can be solved to yield:


Ỹ (t)

L̃ (t)

w̃ (t)

 =


ξyk ξyx ξyg

ξlk ξlx ξlg

ξwk ξwx ξwg



K̃ (t)

X̃ (t)(
1− e−σGt

)
ĨG

 , (A.4)

where the coefficients for output are:

ξyk ≡
θK(σY + ωLL)
σY + ωLLθK

> 0, ξyx ≡ −
θLωLLσY

σY + ωLLθK
< 0, ξyg ≡

θG(σY + ωLL)− (1− σY )ωLLθLηL
σY + ωLLθK

,

and the coefficients for employment are:

ξlk ≡
θKωLL

σY + ωLLθK
> 0, ξlx ≡ −

ωLLσY
σY + ωLLθK

< 0, ξlg ≡
ωLL[θG + ηL(σY − 1)]

σY + ωLLθK
,

and the coefficients for wages:

ξwk ≡
θK

σY + ωLLθK
> 0, ξwx ≡

ωLLθK
σY + ωLLθK

> 0, ξwg ≡
θG + ηL(σY − 1)
σY + ωLLθK

.

A.1.2 Stability of the Dynamic System

Solving the dynamic system (19) gives rise to a fourth-order characteristic polynomial:

P (s) ≡ |sI−∆| = φ (s)ψ (s)− δ̄12δ̄23δ̄34δ̄41 = 0, (A.5)

where I is the identity matrix and φ (s) and ψ (s) are:

φ (s) ≡
(
s− δ̄33

) (
s− δ̄22

)
− δ̄34δ̄43, (A.6)

ψ (s) ≡ s
(
s− δ̄22

)
− δ̄12δ̄21. (A.7)

We can rewrite P (s) as:

P (s) = s4 + a3s
3 + a2s

2 + a1s+ a0 = 0, (A.8)
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where the a′is are defined as:

a3 ≡ −tr(∆) = −(2δ̄22 + δ̄33) < 0, (A.9)

a2 ≡ δ̄2
22 − δ̄12δ̄21 + 2δ̄22δ̄33 − δ̄34δ̄43, (A.10)

a1 ≡ δ̄12δ̄21(δ̄22 + δ̄33) + δ̄22

[
δ̄34δ̄43 − δ̄22δ̄33

]
, (A.11)

a0 ≡ |∆| = (r − α)
r3ωIθKθL

σAω3
A(σY + ωLLθK)

(ωX − ωA) > 0. (A.12)

The positive determinant may indicate various cases: (i) two positive roots and two nega-

tive roots; (ii) four positive roots (in which case the system is unstable); and (iii) four negative

roots, giving rise to an indeterminate steady state (cf. Benhabib and Farmer, 1994, p. 30).

The third case is excluded because of tr(∆) > 0. To distinguish between cases (i) and (ii), we

use Routh’s criterion (cf. Shi and Epstein, 1993), which considers the number of sequential

sign changes in the Routh scheme as an indicator of the number of unstable roots.29 Based

on the Routh analysis and the numerical results in Section 5, we find that the first is the

relevant case. Therefore, the system (19) has a unique and locally saddle-point stable steady

state, featuring four characteristic roots; that is, two stable real roots denoted by −h∗1 < 0

and −h∗2 < 0 and two unstable real roots denoted by r∗1 > 0 and r∗2 > 0.

A.2 Solving for the Comparative Dynamics

A.2.1 The Transformed Model

We will make use of the Laplace transform technique to analyze the model (cf. Judd, 1982).

The Laplace transformation of x(t) evaluated at s is given by

L{x, s} ≡
∫ ∞

0
x(t)e−stdt. (A.13)

Intuitively, L{x, s} represents the present value of x(t) using s as the discount rate.
29See Heijdra and Ligthart (2008) for further details on this analysis.
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By taking the Laplace transform of (19) we obtain:30

Λ(s)



L{K̃, s}

L{q̃, s}

L{X̃, s}

L{Ã, s}


=



0

f q̃(0)− L{γq, s}

X̃(0)

ωAq̃ (0)− L{γA, s}


, (A.14)

where Λ(s) ≡ sI−∆ and I is the identity matrix. We know that:

Λ(s)−1 ≡ 1
(s+ h∗1)(s+ h∗2)(s− r∗1)(s− r∗2)

adj Λ(s), (A.15)

where adj Λ(s) is the adjoint matrix of Λ(s). By pre-multiplying both sides of (A.14) by

Λ(s)−1 and rearranging we obtain the following expression in Laplace transforms:

(s+ h∗1)(s+ h∗2)



L{K̃, s}

L{q̃, s}

L{X̃, s}

L{Ã, s}


=

adj Λ(s)



0

q̃(0)− L{γq, s}

X̃(0)

ωAq̃ (0)− L{γA, s}


(s− r∗1)(s− r∗2)

. (A.16)

The adj Λ(s) matrix is equal to:

adj Λ(s) ≡



(
s− δ̄22

)
φ (s) δ̄12φ (s) δ̄12δ̄23

(
s− δ̄22

)
δ̄12δ̄23δ̄34

δ̄21φ (s) + δ̄23δ̄34δ̄41 sφ (s) δ̄23s
(
s− δ̄22

)
δ̄23δ̄34s

δ̄34δ̄41

(
s− δ̄22

)
δ̄12δ̄34δ̄41

(
s− δ̄22

)
ψ (s) δ̄34ψ (s)

δ̄41

(
s− δ̄22

) (
s− δ̄33

)
δ̄12δ̄41

(
s− δ̄33

)
δ̄43ψ (s) + δ̄12δ̄23δ̄41

(
s− δ̄33

)
ψ (s)


.

30We have made use of L{ ˙̃q, s} = sL{q̃(t), s} − q̃(0). In addition, we note that K̃(0) = 0 and Ã (0) 6= 0 due
to unanticipated capital gains/losses, that is, Ã (0) = ωAq̃ (0).
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A.2.2 Impulse Response Functions

We have two jumping variables [q̃(t) and X̃(t)] so that we need to impose only two initial

conditions. The values of q̃ (0) and X̃(0) are such that the right-hand side of (A.16) is of the

0 ÷ 0 type for both unstable roots r∗1 and r∗2.31 Using the first row of adj Λ(s), for example,

we get for s = r∗1 and s = r∗2:

[
φ (s) + δ̄23δ̄34ωA

]
q̃ (0) + δ̄23

(
s− δ̄22

)
X̃ (0) = φ (s)L{γq, s}+ δ̄23δ̄34L{γA, s}. (A.17)

We can solve (A.17) to yield:

 q̃(0)

X̃(0)

 =

 φ (r∗1) + δ̄23δ̄34ωA δ̄23

(
r∗1 − δ̄22

)
φ (r∗2) + δ̄23δ̄34ωA δ̄23

(
r∗2 − δ̄22

)

−1  φ (r∗1)L{γq, r∗1}+ δ̄23δ̄34L{γA, r∗1}

φ (r∗2)L{γq, r∗2}+ δ̄23δ̄34L{γA, r∗2}

 .
The transitional dynamics follow from the analytical impulse response functions, which

can be derived following the steps set out in Bom, Heijdra, and Ligthart (2010). As can be

seen from (20)–(21), the most general shock takes the following form:

γi (t) = πip + πite
−σGt, for i = {q, A}, (A.18)

where

πqp ≡
rθK
σY ωA

[ξyg + (σY − 1)ηK ] ĨG, πqt ≡ −
rθK
σY ωA

[ξyg + (σY − 1)ηK ]ĨG,

πAp ≡ −r
(
ωwξwg − ωIG

)
ĨG, πAt ≡ rωwξwg ĨG.

We employ the following definitions for the temporary transition terms Tl(.) for l = {1, 2, 3}
31The denominator on the right-hand side of (A.16) is zero. The only way to obtain bounded solutions for

the four key variables is that the numerator on the right-hand side is also zero.
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and the adjustment term A(.):

T1 (x, u, t) ≡ e−xt − e−ut

u− x
, x 6= u, (A.19)

T2 (x, u, t) ≡ ue−ut − xe−xt

u− x
, x 6= u, (A.20)

T3 (x, u, v, t) ≡ 1
u− x

(
e−xt − e−vt

v − x
− e−ut − e−vt

v − u

)
, x 6= u, v 6= x, v 6= u, (A.21)

A (x, u, t) ≡ 1
u− x

(
1− e−xt

x
− 1− e−ut

u

)
, x 6= u. (A.22)

The path for the private capital stock is:

K̃ (t) = δ̄12q̃ (0) T1 (h∗1, h
∗
2, t)− δ̄12

πqtφ (−σG) + πAtδ̄23δ̄34

(r∗1 + σG) (r∗2 + σG)
T3(h∗1, h

∗
2, σG, t)

+δ̄12
πqp
(
δ̄34δ̄43 − δ̄22δ̄33

)
− πApδ̄23δ̄34

r∗1r
∗
2

A(h∗1, h
∗
2, t). (A.23)

The impulse response function for Tobin’s q is:

q̃ (t) =
[(
r∗1 + r∗2 − δ̄22 − δ̄33

)
q̃ (0) + δ̄23X̃(0)− (πqp + πqt)

]
T1 (h∗1, h

∗
2, t)

q̃ (0) T2 (h∗1, h
∗
2, t) + σG

δ̄23δ̄34πAt + πqtψ (−σG)
(r∗1 + σG) (r∗2 + σG)

T3 (h∗1, h
∗
2, σG, t) . (A.24)

The paths for full consumption and financial assets are, respectively:

X̃(t) =
[
δ̄34ωAq̃(0) +

(
r∗1 + r∗2 − 2δ̄22

)
X̃(0)

]
T1(h∗1, h

∗
2, t) + X̃(0)T2 (h∗1, h

∗
2, t)

−δ̄34
δ̄12δ̄41πqt + πAtψ (−σG)

(r∗1 + σG) (r∗2 + σG)
T3 (h∗1, h

∗
2, σG, t)

+δ̄12δ̄34
δ̄21πAp − δ̄41πqp

r∗1r
∗
2

A (h∗1, h
∗
2, t) , (A.25)

Ã(t) =
[
ωA
(
r∗1 + r∗2 − δ̄22 − δ̄33

)
q̃ (0) + δ̄43X̃(0)− (πAp + πAt)

]
T1 (h∗1, h

∗
2, t)

+ωAq̃(0)T2 (h∗1, h
∗
2, t) + δ̄12δ̄33

δ̄41πqp − δ̄21πAp
r∗1r
∗
2

A (h∗1, h
∗
2, t)

+
(
σG + δ̄33

) δ̄12δ̄41πqt + ψ (−σG)πAt
(r∗1 + σG) (r∗2 + σG)

T3 (h∗1, h
∗
2, σG, t) . (A.26)
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Table A1: Summary of the Log-Linearized Model

(a) Dynamic Equations

˙̃K(t) =
rωI
ωA

[Ĩ(t)− K̃(t)] (TA.1)

˙̃q(t) = rq̃(t)− rθK
σY ωA

[Ỹ (t)− K̃(t) + (σY − 1)ηKK̃G(t)] (TA.2)

˙̃X(t) = (r − α)

[
X̃(t)− Ã(t)

ωA

]
(TA.3)

˙̃A(t) = r
[
Ã(t) + ωww̃ (t)− T̃ (t)− ωXX̃(t)

]
(TA.4)

˙̃KG(t) = σG[ĨG − K̃G(t)] (TA.5)

(b) Static Equations:

q̃(t) = σA[Ĩ(t)− K̃(t)] (TA.6)

w̃(t) =
1
σY

[
Ỹ (t)− L̃(t) + (σY − 1) ηLK̃G(t)

]
(TA.7)

Ỹ (t) = θKK̃(t) + θLL̃(t) + θGK̃G(t), (TA.8)

L̃(t) = ωLL[w̃(t)− X̃(t)] (TA.9)

C̃(t) = X̃(t) (TA.10)

F̃ (t) = Ã(t)− ωA[q̃(t) + K̃(t)] (TA.11)

T̃ (t) = ωIGĨG(t) + ωCGC̃G(t) (TA.12)

Notes: The following definitions are used: θK ≡ (YKK/Y )0, θL ≡ (YLL/Y )0, θG ≡ (YGKG/Y )0, ωA ≡

r(qK/Y )0, ωI ≡ I0/Y0, ωCG ≡ CG0/Y0, ωIG ≡ IG0/Y0, ωw ≡ w0/Y0, ωLL ≡ (1 − L0)/L0, ωX ≡ X0/Y0,

σA ≡ −(I/K)(Φ′′/Φ′) > 0, and σG ≡ IGΦ′G(·)/KG > 0. A tilde (˜) denotes a relative change, for example,

C̃(t) ≡ dC(t)/C0 for most variables. Financial assets, however, are scaled by steady-state output and multiplied

by r, for example, Ã(t) ≡ rdA(t)/Y0. Lump-sum taxes are scaled by output, that is, T̃ (t) ≡ dT (t)/Y0.
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