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Abstract

We develop a consistent conditional moment test of -best predictor
functional form, 1· 2. Our main result is a reduction of the nuisance
parameter space to the set of integers which greatly simpli…es asymptotic
theory, and allows for removal of the nuisance parameter in a mechanical
fashion. Our results provide a fresh vantage into why Bierens’ (1990) mo-
ment condition works, and uncovers a new class of weights which sharply
contrasts with Stinchcombe and White’s (1997) weight classi…cation (real
analytic and non-polynomial). The computation of a weighted-Average
CM statistic is easy and asymptotically nuisance parameter free because
it incorporates all possib le nuisance parameter values. Our test serves as a
consistent model check in -regression environments. Finally, we provide
a simple nuisance parameter free series expansion of the best-predictor.
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1. Introduction Parametric conditional moment (CM) tests of functional form

based on a …nite number of 2-orthogonality conditions, cf. Ramsey (1969, 1970),

White (1981), Newey (1985) and Tauchen (1985), are known in general not to be

consistent against every alternative. Apparently the only consistent parametric CM

tests are those of Bierens (1982, 1984, 1987, 1990), de Jong (1996), and the Integrated

CM test of Bierens (1982) and Bierens and Ploberger (1997). See, also, White (1989),

de Jong and Bierens (1994), and Corradi and Swanson (2002) for related methods.

Consistency is apparently achieved by generating weight functions (0) indexed

by a real-valued nuisance vector 2 ¥ ½ R, e¤ectively producing uncountably many

moment conditions which "reveal" model mis-speci…cation. Stinchcombe and White

(1998) show that any real analytic function (()) that is non-polynomial can

reveal model mis-speci…cation, where : R! R is a¢ne. For notation conventions,

see Section 2.

Although much has been said about the subset ½ ¥ on which consistent tests

fail, very little has been said about noteworthy subsets of the remaining "revealing"

points ¥. The extant literature argues test consistency requires the nuisance para-

meter space ¥ to have positive Lebesgue measure and therefore contain uncountably

in…nitely many elements: see Bierens (1990: Lemma 1), Bierens and Ploberger (1997:

Theorem 1), and Stinchcombe and White (1998: Theorems 2.2 and 2.3).

Stinchcombe and White (1998: p. 298) claim a "remarkable feature of Bierens’

approach is that a smooth random choice of ...will deliver a consistent test." Such
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a perspective neglects to consider the trivial decomposition = []=1 = []=1

for some integer 2 Nand 2 R. It is worth wondering what roles  and play

with respect to test power.

Hansen (1996: p. 415, 419) laments the "unpleasant dilemma" of selecting 

arbitrarily or in a data dependent way; the extensive costliness of selecting from

a continuous parameter space ¥; and the necessary diminishment of power when

a discreet approximation to ¥ is used (which is always the case, in practice). The

source of the dilemma is the assumption that is selected from a set with uncountably

in…nitely many elements.

The ICM test of Bierens (1982) and of Bierens and Ploberger (1997) solves the

choice problem by integrating the sample moment over a subset ¥ with positive

Lebesgue measure. A discreet approximation to ¥ is required in practice. Moreover,

the integration involves a probability measure weight that only incorporates informa-

tion from the nuisance vector and not the actual magnitude of the sample moment

evaluated at .

In this paper we develop CM tests of best -predictor functional form that are

consistent against any deviation from the null speci…cation under a class of
p
-

local alternatives. We consider -best prediction because the 2-best predictor is

hardly the only object of interest. Indeed, -regression, -GMM, M-estimation,

non-Hilbertian metric projection and impulse response analysis provide important

alternatives to canonical 2-methods for both iid and time series data. See Koul
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and Zhu (1995), Arcones (1996), Koul (1996), Bantli and Hallin (2001), de Jong and

Han (2002), Liebscher (2003), Cheng and De Gooijer (2005), Lai and Lee (2005), Hill

(2006) and Wu (2006).

Our main contribution is a reduction of the nuisance parameter space to the set

of integers. We e¤ectively present an alternative interpretation of the power of the

Bierens test: test consistency is not predicated on a smooth choice of , per se,

but for any non-zero 2 Rthere exist in…nitely many integers  2 Z such that

[]=1 = []=1 generates a consistent test. We provide fresh perspectives on why

Bierens’ (1990) exponential moment condition works, and uncover an in…nitely large

class of "totally revealing" weights that does not nest the class of real analytic, non-

polynomial weights characterized by Stinchcombe and White (1997). Indeed, our

weight functionals need not be di¤erentiable nor, therefore, analytic.

A weighted "Average CM" test can be computed mechanically over an increasing

integer subset. Asymptotic theory is greatly simpli…ed because distribution tightness

requirements are automatically satis…ed. Our test provides a consistent model check

for -regression models of -best predictors, 1 · 2. Moreover, we use data-

driven weights that place more weight on large sample moments.

Furthermore, our theory allows for a simple, asymptotically nuisance-parameter-

free, -norm convergent series expansion of the best -predictor. This provides a

simple plug-in for a consistent non-parametric test of -functional form. See Lee

(1988), Yatchew (1992), Hong and White (1995), Zheng (1996), Dette (1999) and Li
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et al (2003) for related non-parametric methods in 2.

We only consider the …nite dimensional case for brevity. See de Jong (1996) for an

in…nite dimensional extension of the Bierens (1991) test. Finally, the 1-case involves

known di¢culties which deviate from the fundamental objectives of this paper. We

leave this case for future consideration.

In Section 2 we construct a basic vector moment condition, and develop an integer

indexed conditional moment in Section 3. Section 4 presents the Average CM test,

and Section 5 concludes with a monte carlo study. Assumptions can be found in

Appendix 1, all proofs are left for Appendix 2, and all tables are placed at the end

of the paper.

Throughout ! denotes convergence in probability or in …nite dimensional distrib-

utions; ) denotes weak convergence. j ¢ jdenotes the -norm for real-valued vectors

or matrices, and jj ¢ jjdenotes the corresponding -norm: j jjj= (§jj)1.

Vector powers are understood to represent (11 ) 0, and = ()=1,

8f6= 0g=1 2 R. denotes a -dimensional identity matrix and 0and 1denote

-vectors of 00and 10.  denotes the signed power: () £ jj. ?if and

only if ¡1= 0. (fg1=1) denotes the span of fg1=1 and (fg1=1) the

closed linear span. Let 0 2 N(i.e. N= Z
+).

2. Conditional Moments A standard preliminary result concerning "reveal-

ing" vector moments under model mis-speci…cation is contained in Lemma 1.

Let f~g 2 R £ R¡1 be a strictly stationary, ergodic stochastic process in
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(=), 2 (12], with nondegenerate continuous marginal distributions, = =

([=), =¡1 µ == (fg : · + 1). De…ne ´ (1~0)0. The regressors 

may contain lags of as well as contemporary and lagged values of some other vector

process.

Let () = () denote a known response function, : R£ © ! Rmea-

surable with respect to =¡1, with © a compact subset of R. Consult Appendix 1

for all assumptions detailed under Assumption A.

We aim for the greatest generality in order to permit consistency and asymp-

totic normality of the -regression estimator ̂= argmin2©fP
=1 j¡ ()jg

for dependent, heterogeneous data f~g. Consult Assumption A. There exists a

substantial literature on the topic of -regression of linear models () = 0

(e.g. Koul and Zhu 1995, Bantli and Hallin 2001, Lai and Lee 2005, and Wu 2006),

and a comparatively small literature for nonlinear models (e.g. Koul 1996, Cheng

and De Gooijer 2005, and Liebscher 2003).

Denote by ¡1́ (j=¡1) the orthogonal -metric projection of onto the

space spanned by f¡g1=0. The operatoris orthogonal: ¡1= 0 8?(f¡g1=0);

quasi-linear: ¡1(+ ) = ¡1() + 82(f¡g1=0); conditional expecta-

tions: ¡1= [j=¡1] su¢ciently if = 2; and ¡1 generates a moving average

decomposition with strong orthogonal innovations fg (i.e. ?(f¡g1=0 and

P¡1
=0 ¡?(f¡g1=8¸ 0) if and only if  iterates (i.e. ¡¡= ¡

8̧ ̧ 0). Consult Lindenstrauss and Tzafriri (1977), Megginson (1998), and Hill
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(2006).

Write

= ¡1
 = (¡ ¡1)¡1

Clearly satis…es

[¡1] = 0 8¡1 2 (f¡g1=0)

The fundamental hypotheses are

0 : ((j=¡1) = (0)) = 1for some 0 2 ©

1 : sup2©((j=¡1) = (0)) 1

Under 0 there exists some set 0 such that (0) is almost surely correctly

speci…ed as the best -predictor of , and forms a martingale di¤erence sequence:

[j=¡1] = 0. 1 embraces any deviation from the null.

Stinchcombe and White (1998: Theorem2.3) expand upon Bierens’ (1990) Lemma

1 for the best 2-predictor [j=¡1] by considering the class of functions

H= f: R! R j () = (())a¢ne: R ! Rg

The authors prove that any analytic member 2 H has the desired "generically

totally revealing" property if and only if  is non-polynomial.

Assumption B Let 2 HAssume  is analytic and non-polynomial on some

open interval 0 ½ R. Assume ()()j=0 = 0 for only …nitely many 2

N. Let 0 lie in the interior of 0.
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Remark 1: We use the assumptions ()()j=0 = 0 for …nitely many 

2 N, and 0 2 interior(0), in the main result Theorem 3.

Remark 2: That the available set of functions (¢) is limited under Assumption

B is irrelevant for the main results of the paper.

Let : R£ ¢ ! Rbe a uniformly bounded, F¡1-measurable function, ̧ 1,

where ¢ is an arbitrary subset of R, ̧ 0. Write () = (). The following is

a required, although easy, extension of Lemma 1 of Bierens (1990) and Theorem 1 of

Bierens and Ploberger (1997).

LEMMA 1 Let be a random variable satisfying jj  1and let be an

=¡1-measurable bounded vector in R such that ([j] = 0)  1. Let

Assumption B hold. For each 2 Rand each = 1the sets

=
n
2 R: [()(0)] = 0g and 

¡
02 0

¢
= 1

o
,

have Lebesgue measure zero, and are nowhere dense in R

Remark 1: The sets will depend on the distribution of fg, and on each

point 2 R.

Remark 2: The resulting set ´ \, the collection of each such that the

vector [()(0)] = 0 has Lebesgue measure zero under 1.

Remark 3: Conditioning on is equivalent to conditioning on any bounded,

measurable, one-to-one function of , ª() : R! Rsince any such functional

induces the same -…eld as : see Billingsley (1995: Theorem 5.1). In this case 
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need not be bounded, cf. Bierens (1991).

3. Main Results A preliminary result is contained in Lemma 2. The main

result of the paper is contained in Theorem 3. De…ne

¢ = f= [0
...1] 2 R£2 : 0 2 R, 16= 0= 1g

3.1 Preliminary Result

Let (¢) satisfy Assumption B, and for any 2 ¢ write

() ´ (01 + 1110+ 1)0

Consider any bounded one-to-one mapping ª : R! R. For example ª(()) =

(exp(1())exp(())) 0 if is bounded.

De…ne the set

¤(ª(()) = f2 R: (0ª(()) 2 0) = 1g

the set of such that 0ª(() almost surely obtains values on the interval on

which (¢) is non-polynomial and analytic. In the exponential () = expfg and

logistic () = [1 + expfg]¡1 cases, ¤(ª(()) = R. Under Assumption B 0 2

¤(ª(()) because 00ª(() 2 0.

Write (¢) ´ ()(¢) for any 2 NBy convention 0(¢) = (¢).

LEMMA 2 Let be a random variable satisfying jj  1and let be an

¡1-measurable bounded vector in R such that [(j) = 0]  1. Let
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Assumption B hold. For each point 2 ¢ and every 2 ¤(ª(()) there

exists in…nitely many vectors 2 Zand for each  some scalar integer ~̧

0, such that

(1) 
·


Y

=1
ª(())~(0ª(()))

¸
6= 0

In particular, 80 2 Zand any 0 2 Z, 0 ¸ 0, (1) holds 8 ¸ 0.

Remark : Although there are in…nitely many integer vectors  that satisfy (1),

there is not necessarily a unique integer ~for each .

3.2 Main Result

We can always set 0 = 0 in Lemma 2 to ensure ¸ 0. Moreover, (1) holds for

any 2 ¢ and every 2 ¤(ª(()), therefore it holds for = [0
...1] and = 0,

cf. Assumption B.

This suggests the following class of weights:

H() = f: R! R j (ª(())) = u
=1 ª(())2 ¢

ª : R! R, ª is bounded, one-to-one, 2 Zg

Notice if () = (ª(())) 2 H() then (0) = 1 .

When = [0
...1] we write

H() =
½
2 H() : = [0

...1]
¾

with elements ()= (ª()) 2 H(). The following two results are immediate.
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THEOREM 3 Let be a random variable satisfying jj 1let be an =¡1-

measurable bounded vector in Rsuch that [(j¡1) = 0] 1. If ()

= (ª(())) 2 H() then

[()] 6= 0

for any 2 ¢ and in…nitely many  2 Z in general, and speci…cally for

in…nitely many  2 N.

Remark : Suppose = (¡ ())¡1. If [()] = 0 82 Zand

any 2 ¢ then [(j¡1) = 0] = 1 must hold, hence (j=¡1) = (0) .

In fact, Theorem 3 implies we need only consider N: if [()] = 0 82 N

then (j=¡1) = (0) 

Examples of weights () satisfying Theorem 3 are easily to generate.

COROLLARY 4 Under the conditions of Theorem 3 if [(j) = 0] 1 then

[u
=1


] 6= 0[expf0g] 6= 0, and [expf0()g] 6= 0,

for any 2 ¢ and in…nitely many 2 N.

Remark 1: The moment [expf0g] considered in Bierens (1990) is simply

a special case of [expf0()g] with …xed = 1.

Remark 2: Because each weight () is a multiplicative transform of a

one-to-one vector function of (), we can always de…ne = (~0)0, 2 R and ~

2 N¡1 whenever contains a constant term.
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Remark 3: The result 
h
u

=1



i
6= 0 for in…nitely many  2 Nunder

1 generalizes Bierens’ (1982) proof that  [u
=1 


 ] 6= 0 for some 2 N.

Remark 4: Theorem 3 provides further support for the practice of adding

products and cross-products to regression models in order to improve model …t. Cf.

Gallant and Souza (1991).

The facts that Bierens’ chosen weight expfg is analytic and non-polynomial, and

expf0g exploits a "smooth choice" of 2 R, are apparently immaterial. We are

only concerned with power-products u
=1ª(())of bounded one-to-one functions

ª, and ª(()) need not be analytic because it need not be di¤erentiable1 . Moreover,

is irrelevant for consistency as long as 2 ¢ (i.e. non-zero weight is placed on ).

Thus expf0g = expf0()g = u
=1 expfg = u

=1ª(()) delivers a

consistent test for countably in…nitely many integers 2 N.

Stinchcombe and White’s (1997) class H is not nested within H(). The

multiplicative logistic, for example,

Y

=1
[1 +expf0+ 1g]¡

is an element of H(), and cannot be represented as (()) : R ! R for a¢ne 

if 1. That said, the standard logistic in general [1 + expf0()g]¡1 2 H()

even if = 1.

Stinchcombe and White (1998: Lemma 3.5) exploit results in Hornik (1991) in
1Stinchcombe and White (1998: Theorem 3.10) characterize revealing functionals (¢) that are

non-real analytic. However, they still require (¢) to be in…nitely di¤erentiable.
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order to rule out -order polynomials because they are not comprehensive. However,

it is straightforward to show that (0)for any 2 N is simply a version of u
=1(0

+ 1)for some 2 N. Therefore (0)2 H().

3.3 Bounding the Weight

For test computation purposes a bounded weight () may be desirable given

 2 Z is unrestricted. For notational simplicity …x = [0
...1]. Weights () 2

H() with trivial bounds include

exp
©
0~max1··fj~jg

ª
= (2§


=12)

Y

=1
(1 + ~max1··fj~jg)= (2§


=12)

Weights that are (2¡§

=2) are also easy to construct. Let = (1~0)0, 1

2 R and ~2 N¡1. An argument identical to Lemma 1 shows Theorem 3 holds for

any (), 2 R¡1. Consider () = expf0~2g and () = expf0g. Now

re-parameterize: de…ne ´ ¡0 and ´ ~(2) for each = 1¡ 1, and

…x 1 =
P¡1

=1 ~2
(4). Then [(j) = 0] 1 implies for each 0

(2) [expf¡0~2g expf0g] = [expf¡0(~¡ )2g] 6= 0

for countably in…nitely many = ~(2), ~2 N¡1. Simply pick, say, = ¡=

¡12.

COROLLARY 5 Under the assumptions of Theorem 3, if ([j] = 0)  1,

then

[expf¡5 £ §¡1
=1 (~¡ ~)2g] 6= 0
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for in…nitely many ~2 N¡1, where expf¡5 £ §¡1
=1 (~¡ ~)2g = (2

¡§=2).

Remark : It is easy to show u
=1[expf¡jjg £ ()],

Y

=1

([1 + jj] £ ())¡ and sup2¢
Y

=1

[1 + expf0+ 1g]¡

are also (2¡§

=2) elements of H()

3.4 Best -Predictor

The remark following Theorem 3 implies the best -predictor of is an element

of the closed linear span of f()g2Nwith probability one. Note(f()g2N)

= (1f()g2N) due to (0) = 1.

THEOREM 6 If () = (ª()) 2 H() ½  and is bounded, then

(j=¡1) 2 (f()g2N) In particular, for some sequence of real

numbers fg2N, (j=¡1) =
P

2N() , where
P

2N()

is -norm convergent.

Remark 1: The assumption H() ½ simply ensures (f()g2N) ½

. If () = (2
¡§=2) then necessarily () ½ by the =¡1-measurability

of .

It is now an empirical matter whether a truncated version of
P

2N()

adequately approximates (j=¡1). In practice estimation of the unique set of pa-

rameters fg by -regression is trivial, and asymptotically all nuisance parameters

in Nare incorporated.
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4. Test Functional For convenience restrict 2 Nand = [0
...1]. In this

section we analyze weak convergence of a suitable sample moment on a functional

space, and design a simple test functional. Let

minf1 + 5 £ arg inff0 : jj1g, 2g

Hence jj2(¡1)+1 for some 0.

Write ̂= argmin2©fP j¡ ()jg, de…ne ̂´ ¡ (̂) and write (¢) =

()(¢)De…ne the sample moment

̂() = 1
p


X

=1
̂(), where ̂́ ̂¡1

 

We use a Pitman
p
-local alternative of the form

(3) 
1 : = (0)+ 

p
+ 

where ¡1= 0, and  is measurable with respect to =¡1 and governed by a

non-generate distribution.

Using the mean-value-theorem and Assumption A, under 
1 for some sequence

f¤g, ¤2 [0], ¤= (
p
), we may write

̂() = 1
p


X

=1
¡1
 ()(4)

+ (¡ 1)1
X

=1
j¤

p
+ j¡2() + (1)

= () + (1)
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say, where

() = () ¡ (0)
0(0)

¡1(0)(5)

(0) = (¡ 1) plim!1(1)
X

=1
j¡ (0)j¡2(0)0(0)

(0) = (¡ 1) plim!1(1)
X

=1
j¡ (0)j¡2()0(0)

Assumption A guarantees the following result.

THEOREM 7 Let Assumption Ahold, and let 2H() where () = (ª())

= (2
¡§=2). Let () denote a Gaussian random variable with mean

() = (¡ 1) plim!11
P

=1 jj¡2() 1 and variance () =

plim!1 1
P

=1 jj2(¡1)()2 1. Under 
1 , ̂() ! (()())

in distribution pointwise in  2 N.

4.1 Weak Convergence on R1

The random sequence f̂()g2N does not converge on a space of continuous

real functions because ̂() is a step function on N. It does, however, converge on

a space of countably in…nite sequences.

Denote by 
 a monotonically increasing subset of Nsuch that 

! Nas 

! 1. Let fg be a …nite sequence of possibly stochastic real numbers,  

0,
P

2

 · 1 with probability one, and  = (2¡2§


=1). Let fg be

a non-stochastic in…nite sequence,  0,
P

2N = 1,  = (2¡2§

=1) and

lim sup!1 j ¡ j = (1).
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Let R1 ´ (R1<1) be the countably in…nite dimensional Euclidean space with

Borel sets <1See Billingsley (1995). We require separability and the notion of a

bounded inner product2 .

Write = f()g2N. De…ne the inner product space

³
B1B1k¢k

´
= f2 (R1<1): () = (2§


=12),

kk= (§2N()2)12g

where B1 denotes the associated Borel sets, and the supporting inner product is 

 =
P

2N()(). Because fg 2 B1 satisfy j()()j =

(2¡§

=1) and ()2 = (2¡§


=1), summations like

P
2N()2 and

P
2N()() are well-de…ned.

If () = (2
¡§=1) then () = (2¡§


=1) and () = (2¡§


=1)

follows from Assumption A.4. Similarly, if () = (2
§=12) then () =

(2§

=12) and () = (2§


=12).

LEMMA 8 B1 has the topology of pointwise convergence. B1 is separable and

complete, hence each sequence of measures on B1 is tight. The …nite dimen-

sional sets f()g=1, ̧ 1, where 2 Nand (f()g=1) ½ B1, are

convergence determining.
2Billingsley (1999) discusses the space (R1<11) metricized with 1() =

P1
=1 j() ¡

()j(1 +j() ¡ ()j). (R1<11) is separable and complete, but 1() is not induced

by an inner product.
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Remark : Thus, pointwise convergence is equivalent to convergence in …nite

dimensional distributions, which is equivalent to weak convergence. Cf. Billingsley

(1999).

THEOREM 9 Under Assumption A and 
1 there exists a Gaussian element of

B1 with mean functions () = (¡ 1) plim!1 1
P

=1 jj¡2() and

covariance functions (12) = plim!1 1
P

=1 jj2(¡1)(1)(2) such

that ̂) on B1.

4.2 Average Conditional Moment Statistic

Let ̂() = ¡1
P

=1 ĵj2(¡1)̂()2 estimate the asymptotic variance of ̂().

If () = (2
¡§

=1) then ̂()̂()12 need not be well-de…ned as  ! 1.

For the sake of brevity we will therefore,not consider supremum sup2

̂()2̂()

and average
P

[̂()2̂()] statistics. See, e.g., Davies (1977, 1987), King and

Shively (1993), and Andrews and Ploberger (1994, 1995).

A powerful alternative statistic is the weighted-AverageConditional Moment [ACM]:

̂=
X

2

̂()2

Recall  may be stochastic.

THEOREM 10 ̂) P
2N()2 ´ 1 under Assumption A and 

1 .

Remark 1: For a chosen sequence of weights fg the distribution of 1 is
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nuisance parameter-free:
P

2N()2 averages out every possible nuisance pa-

rameter  in N

Remark 2: Tightness is trivially guaranteed in the present environment, and

all nuisance parameters are incorporated into 1. Thus, an extension of Hansen’s

(1996) monte carlo method for asymptotic -value approximation is straightforward.

Valid stochastic weights include

(6)  = 2¡2§

=1+

̂()2
1 +

P
2


̂()2

or
2¡2§


=1+ ̂()2

1 +
P

2

̂()2



Clearly fg augments the weight placed on large sample moments ̂(), ceteris

paribus. As long as lim sup̧ 1
P

2

̂()2= (1) then both

P
2


 !

1 under either hypothesis. The former condition holds if () = (2
¡§=2), or

() = (2
§=22) and max1··f¤

: ¤
= maxf2 

gg · ln.

4.3 The Distribution 1

Characterizing the limiting distribution 1 closely follows Bierens and Ploberger

(1997). The space B1 is a separable, complete inner-product space, hence a separable

Hilbert space. Each separable inner product space has a countably in…nite orthonor-

mal basis, say f()g1=1 with
P

2N()() = =(e.g. Giles, 2000:

Theorem 3.27). Thus, for some orthonormal sequence f()g1=1 each element 2

B1 admits a coordinate-wise expansion

(7) () =
X1

=1
()
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where fg1=1 satis…es

(8) = hi=
X

2N
()()

Moreover, because each ¡(12) is a symmetric positive-semi-de…nite function,

the linear operator ¡ = (¡(12))122N is a compact self-adjoint operator (e.g.

Giles, 2000: Section 15). Using the spectral theorem for compact self-adjoint op-

erators ¡ on the Hilbert space (B1B1jj ¢ jj), there is an orthonormal basis of

(B1B1jj ¢ jj) consisting of eigenvectors of ¡, where each eigenvalue of ¡ is real

and non-negative (Giles, 2000: Theorem 20.4.1). It is immediate that f()g1=1

denotes the eigenfunctions of ¡, hence

X
22N

¡(12)(2)2 = (1)

Using Parseval’s identity, (6)-(7) and the orthonormality of f()g1=1 we obtain

1 =
X

2N
()2 = hi=

X1
=1

2

Each () under 
1 is Gaussian, therefore each Fourier coe¢cient =

P
2N()() is Gaussian and therefore completely characterized by means

= [] =
X

2N
()()

and pair-wise covariances


³X

2N
[()¡ ()]()

´

£
³X

2N
[() ¡ ()]()

´

=
X

12N

X
22N

¡(12)(1)(2)12 = =
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Thus fg1=1 is a sequence of independent Gaussian random variables with means

and variances . This proves the limit distributions of the ACM statistic ̂and

Bierens and Ploberger’s ICM statistic are identical in form.

THEOREM 11 Under Assumption A and 
1 there exists a sequence fg1=1 of

iid standard normal random variables such that

1 =
X

2N
()2 =

X1
=1

[
12
 + ]

2

Remark : Because
P1

=1[
12
 + ]

2 identically represents the limiting distri-

bution form of the ICM test, all of the implied properties of the ICM test carry over

to the ACM test, including properties under the null, global alternative, "large" local

alternatives, and asymptotic admissibility for normally distributed errors.

5. Monte Carlo Study In this …nal section we perform a limited monte

carlo study. We draw 100 samples of iid standard normal random variables , 

2 f400800g and we simulate -order autoregression (AR), self-exciting-threshold-

autogression [SETAR], and bilinear [BILIN] randomvariables. Write ~= [¡1¡]0.

We compute

AR: = 01~+ 

SETAR: = 01~£ (¡1 0) + 

BILIN: = 01~£ ¡1 + 
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The order is randomly selected from f15g, 1 and 2 are randomly selected

from [¡99]contingent on all roots being outside the unit circle. Because  is

symmetric iid and ~is =¡1-measurable, trivially the best -predictor for any 2

(12] satis…es (j=¡1) = 01~in the AR case, etc.

For each sample we estimate an AR() null model by -regression for each 2

f111251752gand select the order by minimizing the AIC over f010g.

For the ACM statistic ̂=
P

2

̂()2 we use the stochastic weight

 =
³
2¡2§


=1+ ̂()2

´
£

·
1 +

X
2


̂()2

¸¡1


For the moment weights we use

(1) () = exp
©
0 ~max1··fj~jg

ª

(2) () =
Y

=1
[expf¡j~jg£ (~)]

(2) () =
Y

=1
[1 + expf¡~g]¡

(1) () =
Y

=1
(1 + ~max1··fj~jg)

(2) () =
Y

=1

µ
1

(1 + j~j) £ (~)

¶

Notice f(1) ()(1) ()g are (2§

=12) and f(2) ()(2) ()(2) ()g

are (2¡§

=1).

For any moment condition weight discussed in Section 3.3
P

2

 ! 1 holds

su¢ciently if max1··f¤: ¤= maxf2 
gg · ln. Denote by () a -vector
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with the valuefor thecomponent and the valuein all other components. For ex-

ample, 2(0)3 = [00200]0 and 2(2)1 = [222]0. Let ~
be a set with [

p
ln] inte-

ger vectors randomly selected from f[00]0[[
p

ln][
p

ln]0]g. Let ·
be the

set of all integers in the hypercube f[00]0[[(ln)18][(ln)18]]0g. Finally,

let ̧
denote the set of all simple integersff(0) g[

p
ln]

=1 g=1 and f1(1)1 2(2)1 [
p

ln]([
p
ln])

1 g

The nuisance integer  is taken from the set


= ~

[ ·
[ ̧



Thus 
contains -vectors ranging from [100] to [[

p
ln][

p
ln]]0. Clearly

·
! Nhence 

! N.

Test results are located in Table 1. Each ACM test generates a reasonable empiri-

cal size at the nominal 5% level given the rejection rates have 99% bounds 05 § 0195.

The best weights with respect to empirical power and all 2 f111251752g are

(1) () = exp f0~max1··fj~jgg and (2) () = u
=1[1 + expf¡~g]¡.

For = 2 the weight (2) () = u
=1[(1 + j~j) £ (~)]works extremely well.

Recalling that all model parameters are chosen randomly, and not purposefully to en-

hance power, empirical power resulting from the weights f(1) ()(12) ()(2) ()g

reaches 80%-87% for = 800.

Appendix 1: Assumptions

Assumption A1: The parameter space © is a compact subset of R. 0 =

arg inf2©j¡ ()j2 interiorf©g, 2 (12]. () is twice continuously dif-
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ferentiable on ©. and () are =¡1-measurable, where =is the sequence of

-algebras generated by ( : · + 1). Moreover, [¡1
 j=¡1] = 0 . for

some 2 minf(11 + 25 £ arg sup0fjj1g2g.

Assumption A2: Let () = (¡ 1)(1)
P

=1 j¡ ()j¡2()0(),

where () ! () uniformly on ¥, where () is a non-stochastic matrix such

that (0) is positive de…nite. Moreover, the -estimator ̂= argmin2©
P

=1 j

¡ ()jsatis…es for some stochastic sequence f¤g, ¤2 [0], ¤= (
p
),

p


³
̂¡ 0

´
= (0)

¡1
Ã X

=1

¡1
p


(0)


+
1


X

=1

¯̄
¯̄+

¤p


¯̄
¯̄
¡2


(0)


!
+(1)

Assumption A3: Let ̂(0)= (¡ 1)(1)
P

=1 j¡ (0)j¡2 £ ()0(0),

where () = (2
¡§=2). Then ̂() ! () uniformly on N£ ¥ where

() is a non-stochastic function satisfying sup2©2N j()j2 1.

Assumption A4:

i. (1)
P

=1[jj2(¡1)()()(0)()] ! 2, a …nite non-stochastic ma-

trix.

ii. There exists a mapping : Z! R such that (¡ 1) £ (1)
P

=1 jj¡2()

! (¡ 1) £ lim!1(1)
P

=1[jj¡2()] = (). If () is (()) or

(()) for some : Z! R then () = (()) or (()).

iii . There exists a functional (12) on N£such that (1)
P

=1[jj2(¡1)j=¡1]

£ (1)(2) ! (12), (1)
P

=1 jj2(¡1) £ (1)(2) ! (12) and

(1)
P

=1[jj2(¡1) £ (1)(2)] ! (12) pointwise on N£. If j()j

= (()) or (()) for some : Z! R then (12) = (()) or (()).
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iv. For some 0, lim sup!1 sup2N1
P

=1jjj¡2()j2+1.

Appendix 2: Proofs of Main Results

Proof of Lemma 1. Using Assumption B, Theorem 2.3 of Stinchcombe and

White (1998) implies the closure of each set has empty interior, and therefore 

is nowhere dense in R1+1. In particular, each has Lebesgue measure zero.

Proof of Lemma 2. The claim follows from Lemmas A.1-A.4, below. Under 1,

Lemma A.2 proves for any 2 ¢some set ½ ¤(ª(()) with Lebesgue measure

zero, and every 2 ¤(ª(())),

(9) 
·


Y

=1
ª(())~(0ª(()))

¸
6= 0

for some  2 Z and some scalar integer ~¸ 0. Lemma A.3 proves (8) holds for

each 2 . Trivially ¤(ª(())) = ¤(ª(()))[ , hence (8) holds 82

¤(ª(())).

Finally, for each 2 ¤(ª(())) Lemma A.4 implies the moment condition holds

for in…nitely many 2 Zand some integer ~̧ 0 for each .

Proof of Corollary 5. Except for (2¡§
¡1
=1 ~2

)-bound the result is an immediate

consequence of Lemma 1 and Corollary 4. For the bound we may write

expf¡5§¡1
=1 (~¡ ~)

2g

= expf¡5§¡1
=1 ~2g

³
exp

n
5 ¡ §¡1

=1 ~( ~1)
o´¡1

where 1 = §¡1
=1 ~2

. Thus expf¡5§¡1
=1 (~¡ ~)2g = (2¡§

¡1
=1 ~2

) = (2¡§
¡1
=1 ~)

given is bounded and 2 N.
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Proof of Theorem 6. We prove the claim in two steps. Step 1 proves the result

contingent on a preliminary claim proved in Step 2. We only consider the scalar

case = 1 for notational simplicity. The general case ¸ 1 follows by an identical

argument.

Step 1: For each = 12project () onto (f()g¡1=0) by -orthogonal

metric projection, write () ´ () ¡ (()j(f()g¡1=0)) and form an -

orthonormal functional f()g:

() = ()(j()j)1, if j()j0

= 0, if j()j= 0.

Clearly () 2 (f()g¡1=0) 8hence


£
()

¡1()
¤

=


£
()¡1()

¤

(j()j)(¡1)(j()j)1
= 08

= 18= 

The Banach space (f()g1=0) forms a Schauder basis (see Step 2, below),

which in turn guarantees for each element 2 (f()g1=0) the existence of a

sequence of real numbers fg1=0 such that =
P1

=0() where
P1

=0()

is -norm convergent. See Megginson (1998: Proposition 4.1.24).

Project onto (f()g1=0): for some sequence of real constants fg1=0


³
¡

X1
=0

()
´¡1

= 082 (f()g1=0)

hence


³
¡

X1
=0

()
´¡1

() = 0= 01
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By Remark 1 of Theorem 3 we deduce (j=¡1) =
P1

=0().

Finally by construction () 2 (f()g=0) for each , and each element

of a …nite closed linear span (f()g=0) has a …nite series expansion () =

P
=0() for some sequence of real numbers fg=0From the construction of

f()g we conclude(j=¡1) =
P1

=0()., where= (j()j)¡1
P

=0

Step 2: We now prove (f()g1=0) forms a Schauder basis. By the -

orthonormal construction of f()g1=0, for any 0

X

=0
()?

X0

=+1
()

Moreover, -orthogonality ?between arbitrary subspaces fg µ  implies

James orthogonality jj+ jj¸ jjjjfor all 2 and 2 , and 82 R. Hence,

for all 2 R

°°°°
X

=0
() + 

X0

=+1
()

°°°°


¸
°°°
X

=0
()

°°°



Setting = 1 we deduce

°°°°
X0

=0
()

°°°°

¸

°°°
X

=0
()

°°°



The latter inequality implies (f()g1=0) forms a Schauder basis: see Megginson

(1998).

Proof of Theorem 7. Let = f()g2Nbe a Gaussian element of R1 with mean

function ()= plim!1¡1
P

=1 jj¡2() and covariance function (12)

= plim!1¡1
P

=1 jj2(¡1)(1)(2). The weak functional limit f()g2N
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) f()g2N follows from Assumption A, Theorem 6.1.7 of Bierens (1994), and

the fact that all distributions on B1 are tight. The weak limit f̂()g2N )

f()g2N is then a consequence of (4).

Proof of Lemma 8. A proof that (B1B1jj ¢ jj) is separable and complete

simply mimics arguments in Billingsley (1999: p.10), or Theorem 5.15 of Davidson

(1994). Tightness now follows from Theorem 1.3 of Billingsley (1999). The fact that

…nite dimensional sets f()g=1 form a convergence determining class is analogous

to Example 2.4 and Theorem 2.4 of Billingsley (1999).

Proof of Theorem 10. Recall sup2N ĵ() ¡ ()j = (1)cf. (4). Using

Theorem 9 it su¢ces to prove j P2

()2 ¡ P

2N()2j = (1).

Let = 1 for notational convenience (i.e.  2 N), and recall  = (2¡2§

=1),

lim sup!1 j ¡ j = (1), and 
£
()2

¤
= (2§


=12 by construction and

Assumption A.4. Let  = 0 8and recall
P

=1 · 1 with probability

one. For some 0

°°°°
X

=1
()2 ¡

X1
=1

()2

°°°°
1

·
X

=1

°°()2 ¡ ()2
°°
1+

X1
=+1


£
()2

¤


+
X1

=+1


£
()2

¤ ¯̄
¡ 

¯̄
+

X1
=1


£
()2

¤ ¯̄
¡ 

¯̄

·
X

=1

°°()2 ¡ ()2
°°
1

+ 
X1

=+1
2¡2+ 2

X1
=1

2¡
¯̄
 ¡ 

¯̄

= (1)
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The last line follows from the construction of fg and fg, weak convergence

() ) (), the continuous mapping theorem, and the Helly-Bray Theorem: 

´ j()2 ¡ ()2j ) 0 implies [] ! 0.

Appendix 3: Supporting Lemmeta

LEMMA A.1 Let be a random variable satisfying jj  1and let be

an =¡1-measurable bounded -vector such that [(j) = 0]  1and let

Assumption B hold. Then for each 2 ¢ and any 2 Zthe set

= f2 R : 
·


Y

=1
ª(())

¡
0ª(())

¢¸
= 0

and 
¡
0ª(()) 2 0

¢
= 1g

has Lebesgue measure and is nowhere dense in R.

LEMMA A.2 Let the assumptions of Lemma A.1 hold. If [(j) = 0]  1,

then for each 2 ¢some set ½ ¤(ª(()) with Lebesgue measure zero,

and every 2 ¤(ª(())there exists an integer vector 2 Zand scalar

integer ~̧ 0 such that

(10) 
·


Y

=1
ª(())~(0ª(()))

¸
6= 0

In particular, ~=
P

=1where =  ¡ for some 2 Z, ¸ .

LEMMA A.3 The conclusion of Lemma A.2 holds for each 2 .
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LEMMA A.4 Let [(j) = 0]  1. For any 0 2 Zand scalar integer ~0 ¸

0 such that Lemmas A.2 and A.3 hold, the results hold for some 1 0 and

~1 ¸ 0.

Proof of Lemma A.1. The claim follows immediately from Lemma 1, and the

fact that mapping ª(() is for each 2 ¢ a one-to-one function of .

Proof of Lemma A.2. Denote by () an open -ball of , f0 2 R : jj¡ 0jj

g for some 0. By construction () has positive Lebesgue measure.

Let 1 hold. Applying Lemma A.1 for any 0 2 ¢ and any 2 Zthe set in

(9) has Lebesgue measure zero, where ½ ¤(ª((0)) = f2 R : (0ª(())

2 0) = 1g by construction.

Because(¢) is analytic on the interval0, for each 0 2 ¢any 2 ¤(ª((0)),

and every 0 in some open neighborhood () we may expand (0ª((0)))

around each scalar component 0, = 1

(11)


¡
0ª((0))

¢

=
X1

1=0
1

µ
01ª1((0))+

X

=2
ª((0))

¶

£ ª1((0))1[(1 ¡ 01)1]1!
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=
X1

1=0

X1
2=0

1+2

µX2

=1
0ª((0)) +

X

=3
ª((0)

¶

£ ª1((0))1ª2((0))2[(1 ¡ 01)1 ]1![(2 ¡ 02)2]2!

= 

=
X1

2N

Y

=1
ª((0))§


=1(00ª((0)))(0)

where (0) =
Q

=1[(¡ 0)]!. Combining (9) and (11), for each 0 2

¢each 2 ¤(ª((0))), every 0 2 () and any 2 Z

0 6= 
·


Y

=1
ª((0))

¡
0ª((0))

¢¸

=
X1

2N


·


Y

=1
ª((0))+§


=1(00ª((0)))

¸
£(0)

Using a simple re-parameterization, we conclude there exists at least one set of integer

vectors  ¸ and =  ¡ ̧ 0 such that for every 0 2 () and every 2

¤(ª((0)))

(12) 
·


Y

=1
ª(())~(00ª((0)))

¸
6= 0

where ~=
P

=1¸ 0. Note ¸ 2 Zhence 2 Z.

Proof of Lemma A.3. Lemma A.2 holds for every 0 in an open neighborhood

() of every 2 ¤(ª((0))). Thus, Lemma A.2 holds for every

0 2
[

2¤ (ª((0)))
()

It su¢ces to prove ½ [2¤(ª((0)))(). By LemmaA.1 the set has Lebesgue

measure zero, therefore its closure has empty interior, which implies is equivalent

31



to its boundary. Moreover µ ¤(ª((0)) by construction. For each 2  it

follows that

inf2¤ (ª((0)))j j¡ jj = 0

Thus there exists some 2 ¤(ª((0)))arbitrarily close to each 2 . There-

fore each 2  is an element of some open neighborhood () with positive

Lebesgue measure such that (12) holds. But this implies ½ [2¤(ª((0)))().

Proof of Lemma A.4. For any pair (00), 0 2 ¢ and 0 2 ¤(ª((0)))let

0 2 Zand ~0 ¸ 0 satisfy Lemmas A.2 and A.3. Now apply Lemmas A.2 and A.3

again: for the same 0 2 ¢, and each 1 2 ¤(ª((0)))1 6= 0, there exists an

integer vector 1 and scalar integer ~1 ¸ 0 such that

(13) 
·


Y

=1
ª((0))1~1(01ª((0)))

¸
6= 0

Note ~1 =
P

=11, where 1 = 1 ¡ 1 for some 1 2 Zand 1 ¸ 1. But 1 is

arbitrary, hence we can always set 1 = 0 + 1such that 1 ¸ 0 + 1and 1 ¸

0 ¸ 0.

Now expand (13) around each 0, = 1. Using the same argument from the

line of proof of Lemma A.2,

0 6= 
·


Y

=1
ª((0))1~1 (01ª((0)))

¸

=
X1

2N


·


Y

=1
ª((0))1+g§

=1+~1 (00ª((0)))
¸

£ (0)

32



Therefore at least one moment

(14) 
·


Y

=1
ª((0))2~2(00ª((0)))

¸
6= 0

holds for some 2 ¸ 0 + 10 and ~2 ¸ 0. In particular, there exists some 

2 Nsuch that (14) holds for 2 = + 1 ¸ 1 ¸ 1 ¸ 0 and ~2 =
P

=12 ¸

0where 2 = + 1 = + 1 ¡ 1 = 2 ¡ 1 ¸ 0, and 1 ¸ 0.
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Table 1 - ACM
p 1.10 1.25 1.75 2.00

Model n 400 800 400 800 400 800 400 800
E1-ACM .02 .02 .06 .04 .04 .05 .03 .05
E2-ACM .03 .06 .03 .02 .01 .00 .03 .04

AR L2-ACM .04 .02 .05 .06 .01 .00 .03 .05
P1-ACM .06 .07 .06 .05 .02 .01 .04 .05
P2-ACM .08 .03 .03 .03 .02 .03 .02 .04
E1-ACM .66 .69 .58 .67 .68 .83 .65 .82
E2-ACM .52 .69 .59 .71 .38 .64 .54 .87

SETAR L2-ACM .67 .78 .63 .79 .56 .79 .67 .87
P1-ACM .57 .41 .46 .43 .45 .54 .39 .38
P2-ACM .26 .56 .31 .54 .26 .50 .33 .79

E1-ACM .54 .82 .66 .73 .61 .71 .64 .80
E2-ACM .32 .57 .36 .56 .41 .53 .68 .52

BILIN L2-ACM .56 .79 .52 .72 .49 .73 .68 .75
P1-ACM .45 .60 .58 .43 .49 .51 .42 .63
P2-ACM .28 .42 .25 .37 .30 .39 .40 .52

Notes: a. The weight is expf0 ~max1··fj~jgg
b. The weight is u=1 [expf¡j~jg £(~)]
c . The weight is u=1 [1 + expf¡~g]¡
d. The weight is u=1 (1 + ~max1··fj~jg)
e . The weight is u=1 [(1 + j~j) £(~)]¡
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