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Abstract

The universal method for testing linearity against smooth transition
autoregressive (STAR) alternatives is the linearization of the STAR model
around the null nuisance parameter value, and performing F-tests on poly-
nomial regressions in the spirit of the RESET test. Polynomial regres-
sors, however, are poor proxies for the nonlinearity associated with STAR
processes, and are not consistent (asymptotic power of one) against STAR
alternatives, let alone general deviations from the null. Moreover, the
most popularly used STAR forms of nonlinearity, exponential and logis-
tic, are known to be exploitable for consistent conditional moment tests
of functional form, cf. Bierens and Ploberger (1997). In this paper, push-
ing asymptotic theory aside, we compare the small sample performance of
the standard polynomial test with an essentially ignored consistent con-
ditional moment test of linear autoregression against smooth transition
alternatives. In particular, we compute an LM sup-statistic and charac-
terize the asymptotic p-value by Hansen’s (1996) bootstrap method. In
our simulations, we randomly select all STAR parameters in order not to
bias experimental results based on the use of "safe", "interior" parameter
values that exaggerate the smooth transition nonlinearity. Contrary to
past studies, we find that the traditional polynomial regression method
performs only moderately well, and that the LM sup-test out-performs the
traditional test method, in particular for small samples and for LSTAR
processes.

1. Introduction Smooth Threshold Autoregressive (STAR) models have
gained significant popularity in the economics and finance literatures as a means
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to transcend well known estimation and forecasting limitations of both linear
and binary switching (e.g. SETAR and Markov Switching) models. Original
theoretical contributions belong to Tong (1983) and Chan and Tong (1986a,b),
while Luukkonen et al (1988) and Teräsvirta (1994) develops a composite theory
of estimation and testing for STAR processes with exponential and logistic tran-
sition functions. Models of smooth regime switching have been widely applied
to exchange rates, prices, and stock returns, and the general theory has been
extended to the GARCH class of conditional volatility, and models of flexible
parametric form. See Teräsvirta (1994) and van Dijk et al (2000) for extensive
bibliographies.
Consider a time series process {yt}, regressors xit = (1, yt−1, ..., yt−pi)

0, i
= 1, 2, and a stochastic shock ut. The class of two-regime STAR processes is
represented as

yt = φ01x1t + φ02x2tF (yt−d, γ, c) + ut, (1)

for some transition function Ft(d, γ, c) = F (yt−d, γ, c) : R3 → [0, 1], transition
scale γ > 0, threshold variable yt−d, threshold c, and delay parameter d. The
transition function is assumed to be twice continuously differentiable in γ and
c. Luukkonen et al (1988), Teräsvirta (1994), and evidently the vast major-
ity of applied research, consider logistic and exponential transition functions,
respectively

Ft(d, γ, c) =
1

1 + e−γ(yt−d−c)
, Ft(d, γ, c) = 1− e−γ(yt−d−c)

2

. (2)

If the scale parameter γ and/or vector φ2 are zero, then the process collapses
to a linear autoregression.
Tests for linearity against STAR alternatives, however, have received little

attention, and to date there do not exist treatments of consistent (asymptotic
power of one) test methods. Under the traditional null hypothesis of linearity, γ
= 0, the coefficients φ2 are unidentified, and therefore standard Lagrange Mul-
tiplier statistics cannot be directly computed. Luukkonen et al (1988), Saikko-
nen and Luukkonen (1988), Teräsvirta (1994), Hagerud (1997), Gonzalez-Rivera
(1998), Escribano and Jorda (2000), Madieros and Veiga (2000) and others pro-
scribe a truncated Taylor expansion approximation of the nonlinear transition
function Ft(d, γ, c) around γ = 0 as a means to transcend the nuisance para-
meter and non-standard distribution dilemma. The technique leads to a simple
polynomial auxiliary regression in the spirit of the RESET tests by Ramsey and
Schmidt (1976) and Keenan (1985), and standard F -tests of parametric zero-
restrictions. Tests on subsets of coefficients can be used to infer whether the
process is exponential or logistic STAR. The simplicity of the auxiliary regres-
sion makes this method employable in any standard econometrics software and
therefore has appeal for quick applications.
Several fundamental problems associated with polynomial regressions exist,

however. First, by construction the resulting F -tests do not necessarily lead to a
STAR model when the null of linearity is rejected, unless it is assumed a priori
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that the true data generating structure is STAR: see Teräsvirta (1994). The
polynomial test amounts to a test of linearity on an assumed STAR process,
and is not, therefore, a true test of smooth transition nonlinearity. To date,
there does not exist a test which can reveal whether STAR nonlinearity pro-
vides a better approximation to the true data generating structure than the
null specification. Pending evidence in favor of a smooth transition structure
improving model fit, the polynomial regression would only then be appropriate
for ascertaining which STAR model, exponential or logistic, best describes the
data.
The polynomial regression technique only provides maximal power against

local polynomial alternatives. This issue is particularly relevant if we admit
any functional alternative to explain the data provided linearity is found inad-
equate, and are willing to use smooth transition nonlinearity to improve model
performance1. Indeed, polynomial nonlinearity is known not to be ”generically
comprehensive” in the sense that if linearity is incorrect, additive polynomial
terms may not improve the model fit: see Stinchcombe and White (1998). This
shortcoming of classic weight-based moment condition specification tests is well
known in the inference theory and artificial neural network literatures: see, e.g.,
Holley (1982), Davies (1987), Bierens (1990), and Kuan and White (1994).
Interestingly, the very nonlinear forms popularly espoused in the smooth

transition literature, exponential and logistic, are generically comprehensive2.
Orthogonality tests (e.g. a score test) which incorporate such functional weights
have been shown to obtain asymptotic power of one against arbitrary devia-
tions from the null functional specification: see Bierens (1982, 1990), Bierens
and Ploberger (1997), and Stinchcombe and White (1998). While the laudable
property of such structure absorption has been long recognized in the applied
neural network literature, it has evidently been ignored entirely in the STAR
literature. Indeed, under general conditions it is straightforward to show if Ft(·)
is generically comprehensive, then so is xtFt(·). Thus, whereas a Bierens-type
test employs the scalar weight Ft(·) and leads to a neural-network type model
when the null is rejected, use of the weight xtFt(·) in is identically generically
comprehensive and leads to a smooth transition type model when the null is
rejected.
Second, for STAR tests based on one threshold variable yt−d, the ”delay”

parameter d still exists in the polynomial regression. The delay parameter

1This is precisely the spirit in which the consistent parametric tests developed by Bierens
(1990), Lee et al (1993) and Bierens and Ploberger (1997) are employed in neural network
modeling. A null specification is tested without a prior alternative in mind, while rejection
leads to a model with an additional neural network term that is guaranteed asymptotically to
improve the model fit with probability one. See also Kuan and White (1994) and Stinchcombe
and White (1998). The Hausman, RESET and McLeod-Li tests are well known examples of
tests of model specification which are not consistent against general deviations, while consis-
tent nonparametric tests typically do not provide a parametric alternative when the null model
is found to be mis-specified: see, e.g., Yatchew (1992), Wooldridge (1992), Zheng (1996), and
Hong and White (1995)..

2 In general, essentially any real analytic function is generically comprehensive, including
the exponential, logistic and sin + cos: see Stinchcombe and White (1997).
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does not influence the process under the null, hence it must be treated as a
nuisance parameter. Teräsvirta (1994) and many others suggest performing the
polynomial regression tests for various delay values, say d, and selecting that d
which generates the lowest test p-value. This is mathematically equivalent to
generating an LM sup-statistic over possible d-values, a statistic known to have
a non-standard limit distribution. Nevertheless, in the literature the standard
practice is simply to employ p-values derived from the chi-squared distribution.
Here, we abstract from asymptotic theory and focus entirely on small sam-

ple performance of a class of tests universally over-looked in the above smooth
transition literature. In a broad simulation study of linear AR, STAR and bi-
linear processes, we employ Hansen’s (1996) method for approximating the null
distribution of an LM sup-statistic based on the sample null score, and demon-
strate the superior strengths of the resulting hybrid test method. Of separate
interest, our simulation study also provides a rare glimpse into the comparative
strengths of Bierens’ (1990) and Hansen’s (1996) competing solutions to the
dilemma of asymptotic non-standard null distributions: we demonstrate that
while a Bierens-type test for model specification against STAR alternatives pro-
vides optimal power, Hansen’s (1996) p-value method is the best technique for
analyzing the test statistic’s distribution for arbitrary sample sizes. Indeed, the
combined LM sup-test with bootstrapped p-values typically dominates the pop-
ularly espoused polynomial regression test for STAR processes, in particular for
logistic STAR processes, and in general for STAR processes "far" from linear.
Moreover, in many cases the STAR test dominates the Bierens test and the
popularly employed neural test of "neglected nonlinearity", cf. Lee et al (1993),
for detection of general model mis-specification.
Of particular note, our simulation study is substantially less restrictive than

previous such studies: we do not fix any STAR parameters, and therefore control
for the fact that a priori chosen parameters may bias test results (e.g. Luukko-
nen et al, 1988, Teräsvirta, 1994, Skalin, 1998). We find over a broad range of
admissible STAR parameter values that a sup-LM statistic out-performs extant
tests of STAR and general nonlinearity.
Finally, Skalin (1998) considers a Likelihood Ratio test of STAR nonlinear-

ity in a simulation based environment, and employs Hansen’s (1996) bootstrap
method for approximating the asymptotic p-value. The author finds the poly-
nomial regression method dominates the bootstrapped LR statistic. Contrary
to a score test, an LR test requires estimation of a specific alternative model.
Even when using efficient maximum likelihood estimation, STAR models are
renowned for their difficulty to provide sharp estimates of imperative transition
function coefficients. Typically the imperative scale parameter γ estimate, on
which the LR test hinges, appears to be insignificant, even in controlled ex-
periments where the data generating structure is STAR: see Teräsvirta (1994)
and Franses and van Dijk (2000). Thus, the power of such a test should be
held suspect, and it is not surprising, therefore, that Skalin (1998) finds the LR
test to be dominated by the provably non-consistent polynomial F -test method.
Moreover, apparently the only consistent parametric tests of functional form be-
long to the class of conditional moment tests developed in Bierens (1982, 1990)
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and Bierens and Ploberger (1997) which lends itself specifically to an LM test
framework. Because it is this class of tests that can be employed for a consistent
test of linear autoregression against smooth transition alternative, we ignore LR
tests.
The rest of this paper contains the following topics. In Section 2 the sup-LM

test is outlined, and the simulation study is performed in Section 3. Tables can
be found in the appendix.

2. Lagrange Multiplier Sup-Test Consider a standard two-regime STAR
model:

yt = φ01x1t + φ02x2tFt(d, γ, c) + ut. (3)

For simplicity of notation, assume regressors are identical across regimes, x1t
= x2t = xt, a k × 1 vector. The fundamental null hypothesis of linearity
maintained throughout states

H0 : φ2 = 0. (4)

Under the null hypothesis, therefore,

yt = φ01xt + �t, (5)

where �t = ut. Under the null, the transition parameters γ, c, and d are unspec-
ified: the hypothesis holds for any values, and therefore we treat the transition
parameters as nuisance parameters.
Alternatively, when γ = 0, the transition function is a constant (0 for the

exponential, and 1/2 for the logistic) and the STAR model collapses to a linear
AR model, for any value of φ2, c, and d. The hypothesis H0 : γ = 0 is the
favored focal point in the STAR test literature. Here, we focus on (8), and
develop an associated LM statistic.
Denote by θ the vector of all parameters (φ01, φ

0
2, d, γ, c)

0. For compactness,
define the sub-vector ϕ = (d, γ, c)0. It is straightforward to show that the null
score obtains the representation

sn(θ)|H0
= sn(0, ϕ) =

·
n−1

Pn
t=1 �txt

n−1
Pn

t=1 �txtFt(ϕ)

¸
. (6)

Using least squares estimates from the null model, we obtain

ŝn(0, ϕ) = n−1
Xn

t=1
�̂txtFt(ϕ) (7)

= n−1
Xn

t=1
�̂tzt

�̂t = yt − φ̂
0
1xt, zt = xtFt(ϕ).

The LM statistic, therefore, satisfies

Tn(ϕ) = nŝn(0, ϕ)
0V̂ (ϕ)−1ŝn(0, ϕ) (8)
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where standard asymptotic algebra shows (see, e.g., Bierens, 1990)

V̂ (ϕ) =
1

n

Xn

t=1
�̂2t

h
Ft(ϕ)Ik − b̂(ϕ)Â−1

i0
xtx

0
t

h
Ft(ϕ)Ik − Â−1b̂(ϕ)

i
(9)

b̂(ϕ) =
1

n

Xn

t=1
Ft(ϕ)xtx

0
t, Â =

1

n

Xn

t=1
xtx

0
t,

and Ik denotes the k-dimensional identity matrix.
Finally, define the sup-statistic,

gn = supϕ Tn(ϕ), (10)

where the supremum is taken over feasible values of the coefficient vector, ϕ =
(d, γ, c)0: see below for details.

3. Simulation Study We now investigate the empirical size and power
properties of the STAR sup-statistic gn = supTn(ϕ). Our simulations are based
on the following models:

H0 : yt = φ01xt + �t

HL
1 : yt = φ01xt + φ02xt (1 + exp[−γ(yt−d − c)])−1 + �t

HE
1 : yt = φ01xt + φ02xt exp[−γ(yt−d − c)2] + �t

HBL
1 : yt = φ01xt + yt−1�t−1 + �t

where �t is iid standard normal3, and xt = (1, yt−1, ..., yt−p)0 for some p > 0.
Under H0 the true data generating process is linear; under HL

1 and H
E
1 the true

process is a 2-regime LSTAR and ESTAR, respectively; under HBL
1 the process

is a hybrid bilinear-autoregression.

3.1 Set-up We consider sample sizes n = 100, 500, and 1000: in each
case, we generate 3n observations, and retain the last n observations in order
to reduce dependence on starting values. For each simulated series, the order p
is randomly chosen from the set {1, ..., 10}, and φ is randomly chosen from the
uniform hypercube [−1.5, 1.5]p+1. Moreover, the scale parameter γ is randomly
selected from the uniform interval [.05, 5], the threshold c is randomly selected
from [−.5, .5], and delay d is randomly chosen from the integer set {1, ..., p}. Be-
cause typical asymptotic considerations require the null model to be covariance
stationary, only vectors φ1 with characteristic polynomial roots outside the unit
circle are considered.
We generate 1000 replications of each series above. For each series, a linear

model is estimated and the resulting residuals are tested at the 5%-level. In
order to specify the null model, we employ a minimum AIC model selection
criterion for the order p over the integer set {1, ..., 10}.

3All simulations are performed using the GAUSS 5.0 software. Code is available upon
request.
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3.2 Tests In order to test for linearity, consider model (3). The STAR
sup-LM test is based on the score weight zt = xtFt(ϕ), cf. (7). The test is per-
formed based on grid-searches over d, γ, and c. Following the standard rule of
thumb (see, e.g., Teräsvirta, 1994), possible threshold values c are limited to
the interval between the lower and upper 15th-quantiles of yt, denoted y[.15] and
y[.85]. Moreover, for γ we search over the interval [.1, 10], and the candidate delay
values are restricted to the interval set {1, 2, 3}. Although the simulated STAR
series use a randomly selected scale γ with lower bound .05, the tests them-
selves must use a larger lower bound (.10) due to covariance matrix singularity
for small samples: the weight xtFt(ϕ) ≈ xt × ζ for some scalar-constant ζ > 0
when γ is close to zero, in which case the asymptotic covariance matrix estimator
V̂ (ϕ) becomes singular due to machine error. We use both Bierens’ (1990) cri-
terion technique for generating an asymptotic χ2-statistic, and Hansen’s (1996)
simulated p-value method in other to approximate the true null distribution of
gn.
Bierens’ (1990) criterion technique for generating an asymptotically χ2-

statistic is performed as follows. Let ϕ∗ = argmaxϕ Tn(ϕ), and let ϕ̃ denote a
nuisance vector randomly selected independent of the sample of data. Define
the respective LM statistics Tn(ϕ∗) and Tn(ϕ̃). For arbitrary parameters ψ >
0 and ρ ∈ (0, 1), we select ϕ̂ such that

ϕ̂ = ϕ̃ if Tn(ϕ∗)− Tn(ϕ̃) ≤ ψnρ

ϕ̂ = ϕ∗ if Tn(ϕ∗)− Tn(ϕ̃) > ψnρ.

Under H0 and appropriate assumptions governing dependence, the resulting
statistic Tn(ϕ̂) converges in law to a χ2-random variable with k-degrees of free-
dom: see Bierens (1990: Theorems 4-5). In lieu of simulation evidence reported
in Bierens (1990), we use ψ = .25 and ρ = .5. This is the STAR_Bier test.
Hansen’s (1996) method involves simulating the null distribution of the sup-

score ŝ(0, ϕ∗), where ϕ∗ = argmaxϕ Tn(ϕ). We draw n× J iid random variables
ut,j ˜ N(0, 1), t = 1...n, j = 1...J, and generate a sample of J-scores and J-test
statistics:

ŝn,j(0, ϕ
∗) =

1

n

Xn

t=1
�̂txtFt(ϕ

∗)ut,j (11)

Tn,j(ϕ
∗) = nŝn,j(0, ϕ

∗)0V̂ (ϕ∗)−1ŝn,j(0, ϕ∗).

The approximate p-value of the sup-statistic gn is simply the frequency with
which Tn,j(ϕ

∗) > gn occurs. For all simulations, we set J = 500. This is the
STAR_han test.
We also perform the neural test of neglected nonlinearity (Lee et al, 1996),

the Bierens test, the McLeod-Li test, the RESET test, and the polynomial
regression test of Luukkonen et al (1988) and Teräsvirta (1994).
The Bierens test is similar to the STAR test, except the scalar weight zt =

Ft(ϕ) is used. In this sense, we can simply interpret the Bierens test as a test
against a restricted STAR process with second regime slopes equal to zero: see
also Franses and van Dijk (2000) on a related point. For the Bierens test, we
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employ both Bierens’ (1990) criterion, with ψ = .5 and ρ = .25 (BIER); and we
use Hansen’s (1996) method for evaluating the true distribution of the Bierens
sup-statistic (BIER_han). In this manner, we control for the possibility that
differences between the STAR sup-test and all other tests is merely due to the
use of Hansen’s (1996) method.
The neural test is equivalent to the Bierens test (i.e. zt = Ft(ϕ)), except

all nuisance parameters d, γ, and c are randomly selected from their respective
intervals, detailed above.
For the standard STAR polynomial test, we estimate models of the form

yt = φ01x1t +
XL

i=1
β0ix̃ty

i
t−1 + ut, (12)

where x̃t = (yt−1, ..., yt−p). Under a null of linearity against an LSTAR alter-
native, L = 3 and (12) implies βi = 0, i = 1..3. Under a null of linearity against
an ESTAR alternative, L = 4 and (12) implies βi = 0, i = 1..4. In order to
decide between LSTAR and ESTAR alternatives based on the polynomial re-
gression, Teräsvirta (1994) suggests a test of H0 : βi = 0, i = 1..4 first in order
to substantiate concern for STAR nonlinearity at all, then a sequence of F -tests
on parameter sub-sets from (12). Because we are interested in whether the test
procedure can find any deviation from the null of linearity, we do not pursue
the test sequence approach and simply report null rejection frequencies based on
tests of (12) with L = 3 or 4. Rejection in either case is argued to be consistent
with evidence in favor of STAR nonlinearity, cf. Luukkonen et al (1988). These
are the POLY_L and POLY_E tests, respectively.
For the McLeod-Li test, we perform a standard portmanteau test on the

squared null residuals for lags 1...3. For the RESET test, we follow the procedure
detailed in Thursby and Schmidt (1977) by estimating the auxiliary regression
based on the null residuals ût,

ût = β00xt +
XL

i=2

Xk

j=2
βi,jx

i
t,j + wt, (13)

where we set L = 3. A standard LM test for the linearity hypothesis H0 : βi,j
= 0 is performed.
For all LM tests employed in this study, covariance matrix estimators robust

to unknown forms of conditional heteroscedasticity are used.

3.3 Results Test results for H0 are contained in Table 1, and Ta-
ble 2 contains empirical powers for LSTAR, ESTAR and bilinear alternatives.
For linear processes, the STAR tests compare well with the popularly used
neural and polynomial regression tests. The polynomial and STAR tests tend
to under-reject the null, while only the neural and exponential Bierens tests
closely approach the 5% level.
Under an LSTAR alternative, the STAR tests evaluated by bootstrapped

p-values dominate all other tests for sample sizes of 100 and 500. For large n =
1000 the STAR test only slightly out-performs the polynomial regression tests,
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yet still dominates all other tests. Under an ESTAR alternative, by comparison,
the STAR tests do not perform as favorably as the polynomial regression test,
however all tests, except the Bierens test, generate relatively low empirical re-
jection frequencies. The Bierens test with an exponential weight is more adept
at detecting linear model mis-specification in the presence of true ESTAR non-
linearity than the polynomial regression test. This also suggests in practice that
a neural network model may be found to improve model performance even when
the traditional STAR test suggests a linear model in adequate.
In general, the use of Bierens’ (1990) criterion method is dramatically sub-

optimal for the STAR sup-test, but not the Bierens test. Of course, the problem
may simply be due to the fixed criterion parameters values for ψ and ρ. In any
event, our simulations strongly suggest Hansen’s (1996) bootstrapped p-value
method for the STAR test renders a highly competitive test method, however
does not improve the performance of the Bierens test. Because bootstrapped
p-values are increasingly de riguer in practice, and because they impressively
aid STAR test performance here, we do not consider other values of ψ and ρ.
Moreover, the Bierens test, even when analyzed by bootstrapped p-values,

is substantially out-performed by the STAR and neural tests for tests on bi-
linear processes, the class of processes used in the simulation study of Bierens
(1990). The McLeod-Li test, however, has optimal power against Gaussian bi-
linear processes (see McLeod and Li, 1983), hence it is not surprising how well
the test performs in our study. For STAR nonlinearity, however, the McLeod-Li
test is outperformed by the Bierens, neural and in particular the STAR tests.
Recall that we randomize the transition scale γ ∈ [.05, 5] for STAR processes.

Values closer to zero imply a STAR model with very slow regime transition
such that the process appears to be "nearly linear". Thus, our simulation study
demonstrates that over a broad spectrum of transition velocities the sup-LM test
dominates on average the polynomial regression method, in particular against
LSTAR alternatives. However, the sup-LM statistic used in the present study
is shown by Andrews and Ploberger (1994) to be the limit of an optimal test
(admissible for any alternative, hence any non-zero value of φ2 and γ), and
effectively directs power toward distant deviations from the null. Thus, despite
being asymptotically consistent against any deviation from the null, the statistic
is expected to provide more power against deviations "far" from linearity (i.e.
large γ) for small samples.
We check this by performing an identical simulation study of only STAR

processes with a fixed γ = 3. All other simulation specifications remain as
above. Results are contained in Table 3. For STAR process that are more
"distant" from a linear autoregression, the sup-LM test demonstrates its com-
parative power lift both relative to itself when performed on STAR processes
that may be "nearly linear", and relative to the polynomial regression method.
Using bootstrapped p-values and for n ≥ 500, the STAR test with either expo-
nential of logistic weights xtFt(ϕ) correctly detects LSTAR nonlinearity in over
77% of such series, while the polynomial test correctly rejects the null in favor
of STAR in 43.50% (58.40%) series with sample size 500 (1000). Of particular
note, the STAR tests improved on empirical power for small n = 100 by nearly
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30% relative to simulations with randomized γ, while the polynomial F-test re-
sults in about 5% more power, admittedly an increase of over 100% relative to
the previous rejection rate with a randomized scale γ. However, even the RE-
SET test performs better than the standard polynomial STAR test for "strong"
STAR processes. In general, using either an exponential or logistic weight the
STAR sup-LM test dominates all tests when the true process is LSTAR.
Not only does the STAR test provide power leverage against unknown arbi-

trary deviations from the null (e.g. possibly small γ and bilinear nonlinearity),
but against strong forms of smooth transition nonlinearity (i.e. large γ) and
in particular against logistic STAR nonlinearity. The present simulation study
persuasively demonstrates that the universally employed polynomial STAR test
is sub-optimal relative to a sup-LM test, as well as the consistent Bierens and
neural tests. Indeed, the polynomial test may not even be an appropriate test
methodology for detecting which STAR form, exponential or logistic, best ap-
proximates the true data generating process. We may well argue that the best
test approach is a consistent STAR test of linear autoregression against either
STAR form, where the subsequent decision between STAR forms is informed by
economic theory and policy considerations.
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Appendix
Table 1

H0 : AR(p)

n 100 500 1000
STAR_Han_L .0330a .0040 .0010
STAR_Han_E .0360 .0070 .0030
STAR_Bier_L .0580 .0140 .0060
STAR_Bier_E .0840 .0340 .0130
NEURAL_L .0390 .0460 .0440
NEURAL_E .0390 .0590 .0390
BIER_han_L .0110 .0240 .0180
BIER_han_E .0400 .0580 .0430
BIER_L .0170 .0260 .0150
BIER_E .0420 .0470 .0490
POLY_L .0010 .0030 .0020
POLY_E .0010 .0030 .0020
RESET .0450 .0380 .0490
ML-1b .0520 .0700 .0860
ML-2 .0570 .0880 .0910
ML-3 .0640 .1050 .0950

Notes: a. p-values less than .00005 are reported as .0000;
b. ML-h denotes the ML test with h-lags.
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Table 2
H1 : STAR

n 100 500 1000
HL
1 HE

1 HBL
1 HL

1 HE
1 HBL

1 HL
1 HE

1 HBL
1

STAR_Han_L .2790 .0700 .1210 .5500 .1450 .3400 .6650 .2400 .5050
STAR_Han_E .2830 .0720 .1490 .5660 .1650 .4100 .6840 .2900 .5750
STAR_Bier_L .1520 .0690 .1040 .0970 .0320 .1310 .0840 .0280 .1740
STAR_Bier_E .2000 .1050 .1420 .1670 .0440 .1770 .1330 .0420 .2190
NEURAL_L .1830 .0710 .2110 .4290 .1950 .4690 .5020 .2880 .5760
NEURAL_E .1720 .0790 .2060 .3930 .1940 .4790 .4770 .2720 .5630
BIER_han_L .1650 .0320 .0290 .4870 .1300 .0470 .5810 .2170 .0710
BIER_han_E .2350 .1120 .2100 .5310 .3210 .2410 .6180 .4360 .2360
BIER_L .2350 .0500 .0970 .5070 .1590 .0720 .5970 .2350 .0810
BIER_E .1720 .1130 .2210 .5800 .3450 .2350 .6220 .4670 .2410
POLY_L .0430 .0040 .0180 .4330 .1800 .0290 .6510 .3820 .0180
POLY_E .0430 .0040 .0180 .4330 .1800 .0290 .6510 .3820 .0180
RESET .2610 .0210 .0920 .4110 .1090 .0060 .5150 .2710 .0010
ML-1 .1130 .0310 .5160 .3060 .0650 .9750 .3610 .1020 .9920
ML-2 .1240 .0500 .5170 .3660 .1270 .9870 .4050 .1690 .9990
ML-3 .1510 .0780 .5240 .4090 .1510 .9960 .4970 .2120 .9990

Table 3
H1 : STAR, γ = 3

n 100 500 1000
HL
1 HE

1 HL
1 HE

1 HL
1 HE

1

STAR_Han_L .5670 .1020 .7700 .3150 .7910 .4660
STAR_Han_E .5600 .1480 .8020 .3660 .8070 .5300
STAR_Bier_L .1760 .0830 .1220 .0660 .1060 .0430
STAR_Bier_E .2250 .1410 .1590 .1060 .1280 .0710
NEURAL_L .3860 .2150 .7260 .5090 .7680 .5720
NEURAL_E .3440 .2050 .6770 .4920 .7090 .5700
BIER_han_L .3820 .0710 .6990 .2530 .7430 .4040
BIER_han_E .4740 .3340 .7570 .5950 .7970 .7170
BIER_L .4060 .1980 .6460 .4370 .7160 .5560
BIER_E .4580 .3670 .7040 .6540 .7700 .7350
POLY_L .0910 .0070 .4350 .2290 .5840 .4860
POLY_E .0910 .0070 .4350 .2290 .5840 .4860
RESET .3850 .0410 .6320 .2030 .6990 .3680
ML-1 .1270 .0490 .3250 .0890 .3820 .1190
ML-2 .1490 .0710 .4010 .1440 .4490 .1850
ML-3 .1780 .0850 .4310 .1690 .5160 .2280
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