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Abstract 

  We study the effects of incorporating incomplete information in the recently 

developed long run risks model of asset pricing. Studying the effects of incomplete 

information in such a setting is tractable, especially in the homoskedastic case with no 

fluctuating economic uncertainty. The incomplete information model is solved using 

approximate analytical methods as in the complete information framework analyzed in 

the literature. Model implications on moments of endogenous variables of interest 

including rates of return are compared in the long run risks model with and without 

incomplete information.  
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1. INTRODUCTION 

  Recent work on long run risks and their implications for asset pricing pioneered 

by Bansal and Yaron (2004) shows a great deal of promise in resolving several empirical 

puzzles in asset pricing. An abundance of research attention is currently focused on 

exploring implications of long run risks in a variety of contexts. Bansal (2007) provides a 

brief review of this literature. See also Hansen, Heaton and Li (2005). 

 The structure of the long run risks model in Bansal and Yaron (2004) is well 

suited for an exploration of the effects of incomplete information in asset pricing context. 

The potential importance of the effects of incomplete information in asset pricing has 

been recognized in early work by Dothan and Feldman (1986), Detemple (1986,1989), 

Gennotte (1986), and more recently, by Brennan and Xia (2001). This literature studies 

incomplete information in a linear Gaussian setting wherein the classic Kalman filter 

provides an optimal Bayesian updating rule for learning about the unobservable dividend 

drift rate with the arrival of new information on dividends each period. More recently, 

David (1997) and Veronesi (2004) study asset pricing with incomplete information in a 

non-Gaussian setting where the unobservable dividend growth rate undergoes jumps, 

driven either by a Markov switching or Poisson arrival process. 

 A linear Gaussian conditionally homoskedastic model (the no fluctuating 

economic uncertainty case in Bansal and Yaron 2004) with incomplete information is 

particularly amenable to analysis. This is because, with conditional homoskedasticity, the 

variance of the filter density of the state vector becomes time invariant once the Kalman 

filter has reached steady state. The approximate analytical solution method in Bansal and 

Yaron (2004) can then be used to solve the model. 
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 In this paper we explore the implications of incorporating incomplete information 

in the long run risks model in a linear Gaussian homoskedastic framework. We derive 

approximate analytical solution to the model in this setting using the methods in Bansal 

and Yaron (2004). We quantify the implications of incomplete information on the 

moments of risk premium and risk free rate by making a detailed comparison with the 

complete information case. 

 The paper is organized as follows. We describe the economic environment, the 

specification of the exogenous stochastic process for consumption and dividend growth 

rates, as well as solution to the asset pricing model in section 2. We parameterize the 

model and analyze its empirical implications in section 3. We conclude in section 4 with 

some key observations derived from the study. 

2.  THE MODEL 

Is this section we lay out the economic environment, including specification of 

exogenous stochastic processes and information structure, and present solution to the 

asset pricing model. 

2.1 Model Economy 

 Our model economy is very similar to the one studied in Bansal and Yaron 

(2004). The first order condition for a representative agent with Epstein and Zin (1989) 

and Weil (1989) recursive preferences satisfies: 

  ( ) 1RRGE 1t,i
1

1t,a1tt =















δ +

θ−−
+

ψ
θ

−

+
θ      (1) 
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for any asset with gross returns 1t,iR + . Here in this equation, 1tG +  is the aggregate 

gross growth rate of consumption, 10 <δ<  is the time discount factor, 0≥ψ  is the 

elasticity of intertemporal substitution (IES), and 

ψ
−

γ−
≡θ

11

1  with 0≥γ  being the risk 

aversion parameter. The intertemporal marginal rate of substitution (IMRS) 

( )θ−−
+

ψ
θ

−

+
θδ 1

1t,a1t RG  is alternatively referred to in the literature as the pricing kernel or the 

stochastic discount factor.  

 The above first-order condition applies in turn to an asset with unobservable gross 

returns 1t,aR +  that pays aggregate consumption as dividends each period, to an asset 

with observable gross returns 1t,mR +  that pays aggregate dividends on the market 

portfolio, as well as an asset with observable risk free returns t,fR  that pays one unit of 

aggregate consumption.    

 Let 





≡

t
t,a

t C
Plnz  be the log price-consumption ratio and ( )1t,a1t,a Rlnr ++ ≡  

be the continuous return. From the definition of gross returns, one can utilize first-order 

Taylor’s series approximation to write: 

  1tt1t101t,a gzzkkr +++ +−+≅      (2) 

where 0k  and 1k  are approximating constants that depend only on the average level of 

z . Similarly, we define analogous quantities, namely 





≡

t
t,m

t,m D
Plnz  and 
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( )1t,m1t,m Rlnr ++ ≡  on the market portfolio. The following equation then holds 

approximately for the continuous returns on the market portfolio: 

  1t,dt,m1t,mm,1m,01t,m gzzkkr +++ +−+≅     (3) 

where the approximating constants m,0k  and m,1k  now depend only on the average 

level of the log price-dividend ratio mz . 

 The logarithm of the IMRS is easily seen to be: 

  ( ) ( ) 1t,a1t1t r1glnm +++ −θ+
ψ
θ

−δθ=     (4) 

where ( )1t1t Glng ++ ≡  is the log of gross consumption growth rate.  

2.2 Consumption and Dividends Growth Rate Processes under Complete 

Information  

We assume that consumption and dividend growth rates stochastically evolve 

according to the following process: 

1tt1t xg ++ ση+=        (5a) 

1tet1t e)x(x ++ σϕ+µ−ρ=µ−      (5b) 

1tdt1t,d uxg ++ σϕ+φ=       (5c) 

1t+η , 1te + , 1tu +  )1,0(Niid~  

with the three shocks 1t+η , 1te + , and 1tu +  being mutually independent. This is very 

similar to the homoskedastic process used in Bansal and Yaron (2004). The only 

difference is in the treatment of the non-zero mean term. Unlike above, in Bansal and 

Yaron (2004), tx  is a zero mean process while the equations for 1tg +  and 1t,dg +  have 
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non-zero µ  and dµ  respectively appearing as additive terms on the r.h.s. Our process 

above is a constrained version of this case, where we restrict φµ=µd . 

 Here, tx  is interpreted as the conditional growth rate of consumption assumed 

known at time t and 2σ  is its conditional variance. We refer to this as the complete 

information case. 

 Under complete information the expected growth rate of consumption tx  is the 

state variable. The endogenous solution to the price dividend ratios on claims to 

aggregate consumption and the market returns can be fully characterized in terms of this 

single state variable. 

 Following the solution method in Bansal and Yaron (2004) closely, we conjecture 

the following linear solution forms for tz , the log price-dividend ratio on a claim to 

aggregate consumption and for m,tz , the log price-dividend ratio on a claim to market 

returns: 

  t10t xAAz +=        (6a) 

tm,1m,0m,t xAAz += .      (6b) 

 One can now easily derive the solution coefficients for the price-dividend ratios. 

These are given by: 

  
ρ−
ψ−

=
1

1 k1
/11A ,   

ρ−
ψ−φ

=
m,1

m,1 k1
/1A .   (7) 

In the complete information case the formulae for the unconditional mean and 

variance of the risk premium on the market portfolio and of the risk free rate, as well as 

the unconditional variance of the log price-dividend ratio on the market portfolio can be 
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worked out as special (homoskedastic) cases of the more general formulae derived in the 

time-varying uncertainty case in the appendix to Bansal and Yaron (2004). 

2.3 Consumption and Dividends Growth Rate Processes under Incomplete 

Information  

We assume that consumption and dividend growth rates stochastically evolve 

according to the following process: 

ttt xg ση+=         (8a) 

te1tt e)x(x σϕ+µ−ρ=µ− −      (8b) 

tdtt,d uxg σϕ+φ=        (8c) 

tη , te , tu  )1,0(Niid~  

with the three shocks tη , te , and tu  being mutually independent. 

 We interpret the model above as a state space model, with tx  being the 

unobservable state variable driven by the dynamics in Equation (8b) with the signal 

shock te . Equations (8a) and (8c) are the measurement equations, with consumption and 

dividend growth rates tg  and t,dg  being observable. Here, tx  can only be inferred 

probabilistically through a Bayesian filtering process. Since the model is linear Gaussian, 

the conditional filter density of tx  is itself Gaussian and hence is completely 

characterized by its mean and variance. These are recursively given by the classical 

Kalman filter recursions. We refer to this as the incomplete information case. 

 In the rest of the paper, for the sake of analytical simplicity, we assume that 

investors ignore the measurement Equation (8c) while trying to learn about the 

unobservable tx . Therefore, Bayesian filtering on the investors’ part is done treating 
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Equation (8a) as the measurement equation and Equation (8b) as the state transition 

equation. For all other purposes, namely in trying to derives rates of return and risk 

premia on the market portfolio, investors are assumed to fully take the process for the 

dividend growth rates specified in Equation (8c) into account.  

Let { }t2,1t g,...,g,gY ≡  denote the history of consumption growth rates up to and 

including the value at time t. Then the filter density of tx , ( ) ( )tttt P,aN~Y|xp  can be 

characterized  by the filter mean ta  and the filter variance tP . In this homosekdastic 

model, once the filter reaches steady state, the filter variance stabilizes to a constant 

value P . The Kalman filter updating formula for the filter mean can then easily be shown 

to be (see, for instance, Harvey 1992, Ch.3): 

( ) ( ){ }tte1t1t222
e

2

22
e

2
1tt eax

P

P
a1a ση+σϕ+−ρ















σ+σϕ+ρ

σϕ+ρ
+ρ+µρ−= −−− . (9a) 

The steady state filter variance can be obtained by solving the following Riccati equation 

for PPP 1tt == − : 

( )
222

e1t
2

222
e1t

2
t

P

P
P

σ+σϕ+ρ

σσϕ+ρ
=

−

− .      (9b) 

The resulting quadratic equation for P  has only one positive root which we take to be the 

steady state filter variance. 

Under incomplete information the filter mean of tx  is the relevant state variable. 

The endogenous solution to the price dividend ratios on claims to aggregate consumption 

and the market returns can be fully characterized in terms of the filter mean. 
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 We conjecture the following linear solution forms for tz , the log price-dividend 

ratio on a claim to aggregate consumption and for m,tz , the log price-dividend ratio on a 

claim to market returns: 

  t10t aAAz +=        (10a) 

tm,1m,0m,t aAAz += .      (10b)  

 Following the methods in Bansal and Yaron (2004), one can easily derive the 

solution coefficients for the price-dividend ratios. These are given by: 

  ( )
ρ−
ψ−ρ

=
1

1 k1
/11A ,   ( )

ρ−
ψ−ρ

=
m,1

m,1 k1
/11A .   (11) 

 In the incomplete information case, using methods identical to those in Bansal 

and Yaron (2004) but recognizing that the relevant state variable is now, instead of the 

unobservable tx , its filter mean ta , one can derive expressions for the relevant moments 

of endogenous variables of interest. These are given in Appendix B. 

3.  ANALYSIS OF MODEL IMPLICATIONS 

In this section we report parameter values used to specify preferences and 

exogenous stochastic process for consumption and dividend growth rates. We then 

present model implications for various endogenous quantities of interest, including rates 

of return.  

3.1 Model Parameterization 

 The asset pricing model has three preference parameters δ , γ  and ψ , with θ  

being determined by the latter two.  It also has six parameters describing the joint 

stochastic processes for consumption and dividend growth rates. In what follows, we 

choose parameter values given in Bansal and Yaron (2004). These are presented in Table 
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1. Subsequent empirical implications of the model will be explored for various 

alternative values of the risk aversion parameter γ  and the IES parameter ψ  in addition 

to those listed in Table 1. 

The preference and stochastic process parameters are identical for the complete 

and incomplete information cases. In the latter case, the steady state filter variance 

obtained by solving the Riccati Equation (9b) works out to be 6e683.1 − . 

The approximating constants 0k , 1k , m,0k , and m,1k  appearing in Equations 

(2)-(3) depend on the average levels of z  and mz  which are themselves endogenous. 

Therefore, these constants can be solved for endogenously, by solving an equation such 

as Equation (10) in Bansal, Kiku and Yaron (2006). For our chosen parameter values, the 

approximating constants 1k  and m,1k  work out to be 0.9990 and 0.9967.1 In the 

incomplete information case, these constants work out to be 0.9981 and 0.9997 

respectively. 

3.2 Analysis of Unconditional Moments of Model-Implied Variables of Interest  

 Table 2 reports the unconditional means and variances of the risk premium and 

the risk free rate, as well as the unconditional variance of the log price-dividend ratio on 

the market portfolio for various values of γ  and ψ  in both the complete and incomplete 

information cases. For ease of comparison we also reproduce these statistics estimated 

from data from Table IV in Bansal and Yaron (2004). 

                                                           
1 I thank Ravi Bansal for bringing this point to my attention and Dana Kiku for providing 

implied values of the approximating constants for the model parameterization used in 

Bansal and Yaron (2004). 
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Results reported in the complete information case are comparable to those in 

Table II of Bansal and Yaron (2004) with no fluctuating economic uncertainty. 

Differences between the results can be directly attributed to the slightly different 

specification of our stochastic process for consumption and dividend growth rates as 

noted in the paragraph immediately following Equations (5) above. The most significant 

difference between the results is that our complete information model ends up generating 

about 0.30 percent per annum higher risk premium on average across the various 

parameter specifications considered. This is because our stochastic process and our 

parameterization implies that the average dividend growth rate is  φµ  which from Table 

1 works out to be 5.4 percent per annum rather than 1.8 percent per annum implied by the 

process in Bansal and Yaron (2004). 

 Adding incomplete information to the long risks model shows that all the 

statistics reported in Table 2 uniformly decline in magnitude. Specifically, the risk 

premium is either negative or very close to zero and the risk free rate declines by about 

0.6 to as much as 1.4 percent per annum. The volatility of the risk premium declines to 

about 12.5 percent per annum for all values of γ  and ψ , while the volatility of the risk 

free rate reduces to about 0.24 or 0.73 percent per annum depending on the parameter 

values. Finally, the volatility of the log price dividend ratio reduces to 0.05 percent per 

annum or less.  

 The decline in volatility of the risk free rate and the log price dividend ratio is 

easily rationalized. Equations (B1) and (B2) provide formulae for these volatilities in the 

incomplete information case. In the complete information case, these formulae have 

( )t
2 xσ  rather than ( )t

2 µσ  terms appear on the rhs, since tx , not tµ , is the relevant 
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state variable in this instance.2 For our model parameterization, ( )t
2 xσ  is 2.834e-6 while 

( )t
2 µσ  is only 1.152e-6. 

 Overall, it appears that adding incomplete information to the long run risks model 

moves the mean risk free rate (and for some parameter values its volatility) in the right 

direction to match up with the corresponding statistic in the data. However, along all 

other dimensions (i.e. in terms of the mean and volatility of the risk premium and the 

volatility of the log price-dividend ratio), the model performance deteriorates. 

4. CONCLUSIONS 

 We explored the effects of incomplete information in the benchmark long run 

risks model of asset pricing due to Bansal and Yaron (2004). We compared the 

homoskedastic (no fluctuating economic uncertainty) complete information model 

analyzed in the above study with an incomplete information version. We solved the asst 

pricing model in the incomplete information case using the approximate analytical 

methods exposited in the above study.  

 We analyzed the implications of incorporating incomplete information on the 

means and volatilities of model-implied rates of return on risk free asset and the market 

portfolio, as well as the volatility of the log price dividend ratio. Our results show that 

incomplete information helps to move the model implications on the risk free rate closer 

to the data (at least for some parameter values) but that the model performance 

deteriorates significantly in terms of all other moments. 

                                                           
2 Also, for the volatility of the risk free rate in the complete information case, 2ρ  is 

replaced by 1 on the rhs but this has little impact since ρ  is calibrated to be 0.979. 
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APPENDIX A 

 In this appendix we provide expressions for some quantities of interest, namely 

the innovations to the return on the aggregate consumption claim and the IMRS, as well 

as the risk premium on the aggregate consumption claim in the incomplete information 

case. The derivations rely on methods identical to those in Bansal and Yaron (2004) but 

recognizing that the relevant state variable in the incomplete information case is now, 

instead of the unobservable tx , its filter mean ta . The steady state variance of the filter 

density is given by P . We use the notation 
( )

222
e

2

222
e

2

P

P
K

σ+σϕ+ρ

σσϕ+ρ
≡  in what follows.  

 The innovation to the return on the consumption claim can be shown to be: 

  ( ) [ ] ( )[ ]1t1tett111t,at1t,a eaxKAk1rEr ++++ ση+σϕ+−ρ+=− . (A1) 

It then easily follows that ( ) [ ] [ ]222
e

22
111t,at PKAk1rvar σ+σϕ+ρ+=+ . 

The innovation to the IMRS can be shown to be: 

( ) ( ){ } ( )[ ]1t1tett111tt1t eaxKAk11mEm ++++ ση+σϕ+−ρ







+−θ+

ψ
θ−

=− . (A2) 

The risk premium for holding the aggregate consumption claim is determined by 

the conditional covariance of its return with the IMRS. Thus,  

( ) ( ) ( )[ ] ( )1t,at1t,at1t,a1tt1ttt,f1t,at rvar5.0rEr,mEmcovrrE ++++++ −−−−=− . 

This can be shown to be: 

( ) [ ] ( ){ } [ ]222
e

2
1111t,f1t,at PKAk15.0KAk1rrE σ+σϕ+ρ








+−θ+

ψ
θ−

+−=−+ . (A3) 



 14

APPENDIX B 

 In this appendix we provide expressions for the unconditional mean and variance 

of the risk premium on the market portfolio and of the risk free rate, as well as the 

unconditional variance of the log price-dividend ratio on the market portfolio in the 

incomplete information case. The derivations rely on methods identical to those in Bansal 

and Yaron (2004) but recognizing that the relevant state variable in the incomplete 

information case is now, instead of the unobservable tx , its filter mean ta . The steady 

state variance of the filter density is given by P . We use the following notation in what 

follows. Let 222
e

2PF σ+σϕ+ρ≡  and 
( )

222
e

2

222
e

2

P

P
K

σ+σϕ+ρ

σσϕ+ρ
≡ .  

Then one can show that ( )
2

22
e

t
2

1
x

ρ−

σϕ
=σ , ( ) 2

2
t

2

1
FKa
ρ−

=σ , and 

( )
2

22
e

tt
1

K
a,xarcov

ρ−

σϕ
= . 

The unconditional variance of the log of the price-dividend ratio on the market 

portfolio can be shown to be: 

( ) ( )t
22

m,1t,m
2 aAz σ=σ .      (B1) 

The unconditional variance of the risk free rate can be shown to be: 

( ) ( )t
2

2

2
f

2 aR σ
ψ

ρ
=σ .      (B2) 

Let KAk1A 11+=  and ( ) 







−θ+

ψ
θ−

= A1B . Then unconditional mean risk free 

rate can be shown to be: 
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( ) ( ) ( ) ( )
θ

−







−θ+

ψ
θ−

θ
θ−

−
ψ
µ

+δ−=
2

t,f
FB5.0A5.0AF1lnrE . (B3) 

Let φ+= KAkC m,1m,1 . Then unconditional mean risk premium on the market 

portfolio can be shown to be: 

( )
( ) 22

d
22

m,1m,1

22
e

2222
m,1m,1t,f1t,m

5.0KAk5.0

C5.0PC5.0KBAkBCKFrrE

σϕ−σ−

σϕ−ρ−σ−−=−+
.  (B4) 

Let ( )[ ]µφρ+−ρ−≡ 1kAD m,1m,10 , ρ≡ CD1 , [ ]ρ−≡ KAkD m,1m,12 , CD3 ≡ , 

and KAkD m,1m,14 ≡ . Then, unconditional variance of return on the market portfolio 

can be shown to be: 

( ) ( ) ( ) ( ) 22
d

22
4

22
e

2
3tt21t

22
2t

22
11t,m

2 DDa,xarcovDD2aDxDr σϕ+σ+σϕ++σ+σ=σ + . 

           (B5) 
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Table 1. Calibrated Parameter Values 

 
Preference Parameters  

δ  0.999 
γ  10 
ψ  1.5 

Parameters of Stochastic Process for 
Consumption 

 

µ  0.0015 
ρ  0.979 
σ  0.0078 

eϕ  0.044 
Parameters of Stochastic Process for 

Dividends 
 

φ  3 

dϕ  4.5 
 

 
This table reports calibrated parameter values for the consumption and dividend growth 
rates processes tg  and t,dg , respectively. In the complete information case, the 
stochastic process is written as: 

1tt1t xg ++ ση+=  

1tet1t e)x(x ++ σϕ+µ−ρ=µ−  

1tdt1t,d uxg ++ σϕ+φ=  

1t+η , 1te + , 1tu +  )1,0(Niid~  
with the three shocks tη , te , and tu  being mutually independent. These parameter 
values are identical to those used in Bansal and Yaron (2004). In the incomplete 
information case, the equations for 1tg +  and 1t,dg +  have 1tx +  rather than tx  appearing 
on the r.h.s. 
 
 



Table 2. Asset Pricing Implications 

   )RR(E fm −  )R(E f  )R( mσ  )R( fσ  )dp( −σ
 

Data  Estimate 6.33 0.86 19.42 0.97 0.29 
  SE 2.15 0.42 3.07 0.28 0.04 
Complete Information  γ  ψ       
 7.5 0.5 0.69 4.79 13.43 1.17 0.08 
 7.5 1.5 3.02 1.66 17.82 0.39 0.18 
 10 0.5 1.42 4.85 13.43 1.17 0.08 
 10 1.5 4.71 1.40 17.82 0.39 0.18 
Incomplete Information         
 7.5 0.5 -2.05 3.83 12.68 0.73 0.05 
 7.5 1.5 -0.17 1.23 12.37 0.24 0.02 
 10 0.5 -2.53 3.46 12.68 0.73 0.05 
 10 1.5 0.04 0.81 12.37 0.24 0.02 

 
 
The table reports unconditional moments implied by the long run risks model, with complete and incomplete informational 
assumptions. Moments for the equity premium )RR( fm −  and the risk free rate )R( f  are expressed in percent per annum. Model-
implied moments are reported for a range of values for the risk aversion parameter γ and the intertemporal elasticity of substitution 
(IES) ψ  as in Bansal and Yaron (2004). Estimates using data reported in the first row are reproduced from Table IV of Bansal and 
Yaron (2004). 
 
 


