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Abstract. This paper develops a simple sequential multiple horizon non-
causation test strategy for trivariate VAR models (with one auxiliary variable).
We apply the test strategy to a rolling window study of money supply and real
income, with the price of oil, the unemployment rate and the spread between
the Treasury bill and commercial paper rates as auxiliary processes. Ours is
the first study to control simultaneously for common stochastic trends, sensi-
tivity of causality tests to chosen sample period, null hypothesis over-rejection,
sequential test size bounds, and the possibility of causal delays. Evidence sug-
gests highly significant direct or indirect causality from M1 to real income, in
particular through the unemployment rate and M2 once we control for cointe-
gration.

1. Introduction

We are interested in testing for linear causal patterns over multiple horizons
within aggregate measures of income and money supply, with macroeconomic con-
trol variables. In particular, we test for the precise horizon at which money growth
causes disposable income growth, controlling for test sensitivity to chosen sample
period and common stochastic trends of unknown form. In order to do so, we de-
velop a recursive technique for characterizing typically nonlinear causality chains for
a trivariate process X, Y and Z in terms of linear parametric restrictions, which
lead to simple compound hypotheses for tests of multiple horizon non-causation
when the auxiliary variable Z is scalar-valued. In principle X and Y can be of any
vector dimension.
Noncausation from Y to X in a bivariate system implies non-causation at all

horizons, irrespective of the vector dimensions of X and Y 1. However, following
the seminal studies of Granger (1969), cf. Wiener (1956), and Sims (1972), Sims
(1980), Lütkepohl (1993) and Renault and Szafarz (1991) point out that indirect
multi-step ahead causality from Y to X is possible in multivariate systems with
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auxiliary variables Z. Dufour and Renault (1998) set out a broad non-parametric
and parametric theory of general horizon Granger-Wiener causality for discreet-
valued processes, and demonstrate the nonlinear nature of parametric conditions
for non-causality in multivariate VAR processes.
A simple, efficient test procedure for multi-step ahead causation that can be em-

ployed to characterize causality chains and causal neutralization2, however, has yet
to be established. The fundamental problem lies in the inherently nonlinear nature
of parametric conditions for non-causality in VAR models, and the potential for as-
ymptotic degeneracy of test statistics. Lütkepohl and Müller (1994) and Lütkepohl
and Burda (1997) tackle the problem of degenerate Wald statistics, however at a
severe cost of empirical power.
Using a more intuitive approach, Dufour et al (2003) regress Wt+h on (Wt, ...,

W1), and a direct in-sample test of zero coefficient restrictions is all that is re-
quired. However, the method allows for a test of non-causality only at one horizon
at a time; a new VAR model must be estimated for each horizon making cross-
horizon comparisons particularly difficult; the method usually cannot itself be used
to distinguish between simple non-causation (the total absence of indirect causal
routes) and causal neutralization; and non-causation over horizons 1...h followed
by causality at h + 1 can occur only if an indirect causality chain exists: the pro-
cedure of Dufour et al (2003) does not ensure such a logical outcome is deduced3.
Nonetheless, attractive features of this procedure are its relative ease of implemen-
tation, and the fact that it can be used on a multivariate VAR process of arbitrary
dimension.
Chao et al (2001) and Corradi and Swanson (2002) consider linear and non-linear

out-of-sample tests of non-causality. Like Dufour et al (2003), this method can be
applied to vector processes of arbitrary dimension, only tests for non-causality at
a particular horizon, and cannot be used in a simple efficient fashion to address
causality chains4.
In this paper, we develop recursive parametric representations of causality chains

for trivariate, discreet-time VAR processes in the case of one scalar-valued auxiliary
variable Z. The recursions developed here imply greatly simplified sequential linear
restrictions for performing in-sample tests of non-causality up to arbitrary time
horizons.
Although we allow the vector innovation components to be contemporaneously

correlated, we make no attempt to consider causality and causal chains from the
perspective of impulse response functions, a la Wold decompositions and forecast
error variance decompositions, and so-called instantaneous causality, cf. Granger

2Causal neutralization from Y to X occurs when multiple causal routes at some time horizon
h ≥ 2 exist through Z, yet cancel each other out such that noncausation holds.

3For example, in their study of monthly GDP (X), the federal funds rate (Y ), the GDP deflator
and non-borrowed reserves (Z), horizon specific tests suggest Y fails to cause X for horizons 1 and
2, and causes X at horizon h = 3. This is possible only if an indirect causal route Y → Z → X
exists. However, their test procedure reveals that Y fails to cause Z one-month, a characteristic
that implies noncausation at all horizons, which contradicts their conclusion.

4In general, the exixstence and detection of patterns "causality" will be sensitive to functional
form, causal moment, and in-sample versus out-of-sample techniques. See Comte and Lieberman
(2000) for details on the various "orders" of causality. For a smooth-transition autoregression
model of 1-step ahead causality, see Rothman et al (2001). For a consistent out-of-sample predic-
tive accuracy Bierens-type test (usable as a test of non-linear causality), see Corradi and Swanson
(2002).
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(1988), Lütkepohl (1993) and Swanson and Granger (1997)5. Our methodology
is grounded on discreet-time metric linear projection theory in Hilbert space, and
closely follows Dufour and Renault’s (1998) theory of linear Granger-Wiener causal-
ity with respect to observable information.
We focus entirely on trivariate processes with one scalar auxiliary variable for

expository and empirical reasons. Low dimension models are still employed in
many empirical studies of causality (e.g. bivariate volatility spillover: see Hong,
2001; Hiemstra and Jones, 1994; and Brooks 1998). Indeed, bivariate applications
using VARs still abound: see, for example, Coe and Nason (2004). Moreover, a
causal chain Y → Z → X implies Y will eventually cause X if Z is univariate, and
linear necessary and sufficient conditions for non-causation up to arbitrary horizons
are available in all cases (see Theorem 2.1, below).
A related technique of sequential linear hypothesis construction for models with

multiple auxiliary processes is certainly achievable. Apparently, however, rather
restrictive assumptions must be imposed (e.g. Y causes only one component of
Z), even for an analysis of 2-step ahead causation. We provide a special case
when non-causation up to horizon h in a system with one scalar auxiliary variable
is equivelant to non-causation when multiple auxiliary variables are included. In
general, we leave the topic of multivariate auxiliary variables for future research.
We apply our test procedure to the classic question of whether monetary dynam-

ics influence the growth of real income. We use monthly M1 and real disposable in-
come, with the unemployment rate, M2, the price of oil and the spread between the
Treasury bill rate and the commercial paper rate as auxiliary variables. We study
the causal properties from money to income in the sample period Jan. 1959-Dec.
2002. In order to control for the possibility of parametric evolution with respect
to detectable causal patterns and test sensitivity to the chosen sample period, we
study causation over rolling sample windows of fixed and increasing length, with a
minimum length of 324 months. Moreover, we employ conventional and bootstrap
test techniques that are robust to unknown forms of cointegration, a la Toda and
Yamamoto (1995), and derive an upper bound of the test size due to the sequential
nature of the test method. This is the first such study (to the best of our knowledge)
to control simultaneously for each method/issue just described.
Controlling only for integration and using the complete data sample, we find

evidence for the presence of delayed causal effects from the growth of M1 to the
growth of income, in particular through the unemployment rate. Using rolling win-
dows, we find significant evidence of a causal delay of 1-3 months before growth
in M1 anticipates income growth, with the longest delay occurring through the
unemployment rate. Once cointegration is controlled, we find substantially signifi-
cant evidence that money causes real income 1 or 2-months ahead through M2, the
unemployment rate and the price of oil, a result that strongly supports the major
findings of Swanson (1998).

5Prediction-based non-causation for observable variables (e.g. Y to X) in the sense of Granger
(1969) does not typically generalize to non-causation with respect to innovations in an impulse-
response framework (e.g y to X): see Dufour and Tessier (1993) and Dufour and Renault (1998).
See Swanson and Granger (1997) for issues related to Wold-forms, vector innovation decomposi-
tions, and contemporaneous causality through innovation correlatedness, and an insightful appli-
cation to macroeconomic settings of the graph-theoretic approach (e.g. Studený and Bouckaert,
1998) to vector-innovation causal chains.
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Studies of statistical causal relationships within aggregate measures of money and
real income have expanded substantially since the seminal investigations of Sims
(1972, 1980). The bivariate methodologies of Sims (1972, 1980) and Christiano and
Ljungqvist (1988) were augmented in numerous subsequent studies. See the seminal
money-income study of Stock and Watson (1989), and see, e.g., and Friedman and
Kuttner (1993). These now classic studies do not consider common stochastic
trends, data dependent model selection, the evolution of causal patterns over time,
causal delays, nor the tendency for Wald statistics to lead to over-rejections of the
null of non-causation. Sims et al (1990), Toda and Phillips (1993,1994) and Toda
and Yamamoto (1995) each consider problems associated with testing 1-step ahead
causation in VAR systems with integrated processes or cointegrating relationships.
Thoma (1994) and Swanson (1998) consider rolling windows of data samples in
order to control for the dependence of test results on the chosen data period. Thoma
(1994) does not use a data dependent technique for VAR order selection, does not
consider the possibility of cointegration; and Swanson (1998) controls for common
stochastic trends and test sensitivity to chosen sample period using a rolling window
approach6. Neither study controls for causal delays and the possibility that the
asymptotic distribution may be a poor proxy for the true small sample distribution.
Finally, we do not consider real-time data: we only use the latest time series

available, and do not control for the fact that several time series used in this study
are periodically updated. See Amato and Swanson (2001) who find that money
fails to Granger-cause (1-step ahead) output when real-time data is used in VARs
and VECMs, using standard in-sample and out-of-sample test procedures.
The rest of the paper contains the following topics. In Section 2 we define h-

step ahead causation, and provide parametric characterizations of causal chains
for trivariate and multivariate VAR processes in Section 3. Section 4 develops the
test strategy for causation at or up to general horizons h ≥ 1. Section 5 contains
the empirical study. Section 6 concludes with parting comments. Appendix 1
contains all tables, a simulation study is performed in Appendix 2, and all proofs
are contained in Appendix 3.
Throughout, we employ the following notation conventions. We write Ut⊥Vt for

m-vector processes Ut and Vt to denote orthogonality between all scalar components
for all t, ui,t⊥vj,t, i, j = 1...m, which in L2(Ω,Ft, Q) implies E (ui,tvj,t) = 0 for
every i, j = 1...k and every t. For an m-vector-process {Wt : t ∈ Z}, let W (−∞, t]
denote the Hilbert space spanned by the components Wi,s : i = 1...m, s ≤ t. For
Hilbert spaces A and B, we write A + B to denote the Hilbert space spanned by
all components of A and B.

6Swanson’s (1998) fixed window lengths are set at 10 and 15 years. A window of length 10 years
has 120 observations before lagging, and a 4-vector VAR(12) model of first differences, optimally
selected in many windows considered in Swanson’s (1998) study, implies a degrees of freedom of
120 − 12 − 13 × 4 = 56, assuming intercepts are included and controlling for sample truncation
due to the 12 lags. Despite such a potentially low degrees of freedom, the chi-squared distribution
is used for all Wald tests, for all models and for all sample periods. In the present paper, we use
windows of a minimal length of 324 months, as well as a bootstrap test method: both the larger
degrees-of-freedom and the small sample test method will in principle improve inference accuracy.
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2. Causality Preliminaries

We define non-causality in the manner of Granger (1969), which was augmented
to a multiple horizon Hilbert space framework by Dufour and Renault (1998). Con-
sider somem-vector processes {Wt} with trivariate representationWt = (X

0
t, Y

0
t , Z

0
t)
0,

where Xt, Yt, and Zt have dimensions mx ≥ 1, my ≥ 1 and mz ≥ 0 respectively,
and m = mx + my + mz ≥ 2. We assume Wt is defined in L2(Ω,Ft, Q), where
Ft denotes an increasing σ-field of all past and present information at time t. De-
note by I(t) the information universe at time t which contains X(−∞, t] and any
information available in all periods H = ∩t∈ZI(t) (e.g. starting conditions and
constants), and let IXZ = IXZ(t) = H + X(−∞, t] + Z(−∞, t] for arbitrary t.
In principle, none of the following results rely on stationarity assumptions. For

example, we may allow time to be bounded in the finite past. For brevity, however,
we consider only an unbounded past.
We say the subvector Y "does not cause" X at horizon h > 0 in some Hilbert

space (denoted Y
h9 X|IXZ) if P (Xt+h|IXZ(t) + Y (−∞, t]) = P (Xt+h|IXZ(t)):

the inclusion of Y (−∞, t] does not improve the L2-orthogonal projection of Xt+h

for all t; Y "does not cause" X up to horizon h > 0 (denoted Y
(h)9 X|IXZ)

if P (Xt+k|IXZ(t) + Y (−∞, t]) = P (Xt+h|IXZ(t)) for each k = 1...h and for all

t; and Y "does not cause" X at any horizon h > 0 (denoted Y
(∞)9 X|IXZ) if

P (Xt+h|IXZ(t) + Y (−∞, t]) = P (Xt+h|IXZ(t)) for every h > 0 and for all t.

It is important to point out that causation Y h→ X occurs if and only if at least
one scalar component of the closed linear span of Yi,s, i = 1...my, s ≤ t, improves
a forecast of at least one scalar component Xj,t+h, j = 1...mx.

2.1. Non-parametric Preliminaries. The following results will be useful for sub-
sequent discourse regarding causality chains and the dimension of Z. Results (i)-
(iii) follow straightforwardly from Propositions 2.3 and 2.4 of Dufour and Renault
(1998). We provide a proof only for (iv). Each process X, Y and Z are of arbitrary
dimension unless otherwise noted.
Theorem 2.1 i. If Y 19 (X,Z)|IXZ , or (Y,Z)

19 X|IXZ , then Y
(∞)9 X|IXZ ;

ii. If mz ≥ 2 and Z = (Z01, Z02)0 for arbitrary sub-vectors Zi, and if (Y,Z2)
19

(X,Z1)|IXZ1 , then Y
(∞)9 X|IXZ; iii. In order for non-causation Y

19 X|IXZ to

be followed by causation Y
h→ X|IXZ , for any h > 1, it is necessary for Y 1→ Z

1→
X; iv. If Z is scalar-valued and Y

1→ Z
1→ X, then Y

h→ X|IXZ for some h ≥ 1.
Remark 1: If the auxiliary process Z affords the partition Z = (Z01, Z

0
2)
0 such

that (Y,Z2)
19 (X,Z1)|IXZ1 , then no form of causal chain can exist, and Y

(∞)9
X|IXZ : even if Y

1→ Z1 and/or Z2
1→ X, causal-chains are broken by Y

1→ Z1
19

X or Y 19 Z2
1→ X or Y 1→ Z1

19 Z2
1→ X, etc. Similarly, if non-causation Y

19 X|IXZ holds, and Y
19 Z|IXZ and/or Z

19 X|IXZ holds, then a broken causal
chain exists, and non-causation for all horizons exists.

Remark 2: Because Y 19 (X,Z) or (Y,Z) 19 X are sufficient for Y
(∞)9 X,

non-causation Y
19 X|IXZ followed by causation Y

h→ X|IXZ , h ≥ 2, can only
occur if a causality chain exists, Y 1→ Z

1→ X. However, except in the univariate
Z-case, a causality chain Y

1→ Z
1→ X is generally not sufficient for causation Y
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h→ X|IXZ , h ≥ 2, due to the possibility that multiple causal routes through the
auxiliary variables Z may cancel each other out (causal neutralization). When Z is

scalar-valued, then a causality chain Y
1→ Z

1→ X implies Y will eventually cause
X.

2.2. Parametric Preliminaries. Denote by W (−∞, t] the closed linear span of
Wi,s : i = 1...m, s ≤ t, and let H be empty for brevity. Assume Wt has an
autoregressive representation

Wt =
X∞

i=1
πiWt−i + t, t⊥W (−∞, t− 1] = 0, (2.1)

where t denotes a mean-zerom-vector L2-orthogonal to the subspaceW (−∞, t−1],
with non-singular moment matrix E [ t 0t]. The coefficients πi are real-valuedm×m
matrices for each i, and the infinite series

P∞
i=1 πiWt−i is assumed to converge in

mean-square. In what follows, we explicitly ignore the issue of cointegration and
VECM’s, however only slight modifications to (2.1) and the following discourse is
required to include this case.
Note that we allow the innovations to be contemporaneously correlated across

components i,t, but not serially correlated ( t⊥ s, s 6= t). Thus, the distributed lagP∞
i=1 πiWt−i represents the best linear 1-step ahead forecast ofWt, P (Wt|W (−∞, t−

1]), but not necessarily the best 1-step ahead forecast, P (Wt|I(t−1)), although the
two coincide for Gaussian vector processes. The setup in (2.1) is fairly standard (e.g.
Lütkepohl, 1991), but does not preclude the possibility of nonlinear causal relation-
ships (nor, indeed, of second-order causal patterns). In the following, we therefore

use the notation Y
(h)9 X|IXZ strictly to imply "linear predictive" non-causation:

Y
(h)9 X|IXZ if and only if P (Xt+h|IXZ(t) + Y (−∞, t − 1]) = P (Xt+h|IXZ(t)).

See Dufour and Renault (1998) and Comte and Lieberman (2000)7.
By Hilbert projection operator linearity, and error orthogonality, the h-step

ahead projection Ŵt+h|IW (t) of Wt+h onto the linear sub-space W (−∞, t] satisfies
the recursion

Ŵt+h|IW (t) =
X∞

i=1
πiŴt+h−i =

X∞
i=1

π
(h)
i Wt+1−i, (2.2)

where Ŵt+h−i|IW (t) ≡Wt+h−i∀i≥ h, and the coefficient matrix sequence {π(h)i }∞i=1
is defined by the recursive relationship

π
(0)
1 = Im, π

(1)
j = πj , π

(h+1)
j = π

(h)
j+1 + π

(h)
1 πj . (2.3)

See, e.g., Dufour and Renault (1998: eq. 3.8).

7Most L2(Ω,Ft, Q) processes of interest will have a representation (1) either in levels, or after
some standard transformation, e.g. first differencing. Nonetheless, in Hill (2004) we find that
several processes used in our empirical study of money and income demonstrate highly significant
patterns of smooth-transition autoregressive nonlinearity. See, also, Rothman et al (2001). Despite
the inherent shortcomings associated with linear time series models, however, nonlinear models
do not typically afford straightforward recursive parametric causal chain representations (e.g. the
STAR model of Rothman et al, 2001), even though a consistent nonlinear out-of-sample test of
non-causality at a particular horizon is available (Corradi and Swanson, 2002). Apparently there
does not exist (to our knowledge) a published work which details testable parametric causality
chains for inherently non-linear models (e.g. SETAR). I would like to thank an anonymous referee
for pointing out the important issue of nonlinearity in the present context.
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Consider the (X 0, Y 0, Z0)0-conformable partition of the coefficient sequence

π
(h)
j =

 π
(h)
XX,j π

(h)
XY,j π

(h)
XZ,j

π
(h)
YX,j π

(h)
Y Y,j π

(h)
Y Z,j

π
(h)
ZX,j π

(h)
ZY,j π

(h)
ZZ,j

 . (2.4)

For example, for every j ≥ 1, π(h)XY,j denotes an mx × my matrix of constant real
numbers.
The following theorem, due to Dufour and Renault (1998: Theorem 3.1), pro-

vides a fundamental nonlinear basis for parametric tests of non-causality h-steps
ahead.
Theorem 2.2 Consider any m-vector process Wt = (X

0
t, Y

0
t , Z

0
t)
0 that satisfies

(2.1). Y h9 X|IXZ if and only if π
(h)
XY,j = 0, ∀j = 1, 2, ...

3. Causality Chains

Because Y 19 X and Y
19 Z will imply non-causation at all horizons, Y

(∞)9
X (cf. Theorem 2.1), we assume causation Y

1→ Z throughout the remainder of
the paper, unless otherwise noted. Without loss of generality, assume X and Y are
univariate processes (mx = my = 1)8.
In order to understand what is required for non-causation to occur through some

arbitrary horizon h ≥ 2, consider h = 2. If Y 19 X|IXZ and (2.1) hold, then the
orthogonal 1-step ahead projection of Xt+2 is exactly

X̂t+2|IW (t+ 1) =
X∞

i=1
πXX,iXt+2−i +

X∞
i=1

πXZ,iZt+2−i. (3.1)

Whether Y causes X at any other horizon h ≥ 2 depends on a causal chain through
Z (Theorem 2.1.iii,iv), and therefore on the coefficients πXZ,i. Projecting both
sides onto IXZ(t) + Y (−∞, t], we obtain the best 2-step ahead forecast of Xt+2 by

iterated projections and Y
19 X|IXZ

X̂t+2|IW (t) = πXX,1X̂t+1|IXZ(t) + πXZ,1Ẑt+1|IW (t) (3.2)

+
X∞

i=2
πXX,iXt+2−i +

X∞
i=2

πXZ,iZt+2−i.

Clearly X̂t+2|IW (t) ∈ IXZ(t) such that Y
29 X|IXZ if and only if πXZ,1Ẑt+1|IW (t)

∈ IXZ(t) with probability one for all t. If Z is vector-valued, then πXZ,1Ẑt+1|IW (t)
∈ IXZ(t) is feasible simply via nonlinear row-column combinations and the cancel-
lation of Y -components.
Because the span IXZ(t) + Y (−∞, t] can be written as X(−∞, t] + Y (−∞, t] +

Z(−∞, t], we may write Ẑt+1|IW (t) = azx(t) + azy(t) + azz(t) for some elements
azx(t) ∈ X(−∞, t], azy(t) ∈ Y (−∞, t] and azz(t) ∈ Z(−∞, t]. Hence, X̂t+2|IW (t)
∈ IXZ(t) if and only if

πXZ,1Ẑt+1|IW (t) ∈ IXZ(t)⇒ πXZ,1azy(t) ∈ IXZ(t). (3.3)

8Dufour and Renault (1998) prove that noncausation from vector process Y to vector process X
is equivelant to noncausation from each scalar component Yi to each scalar component Xj . Thus,
it suffices to consider the causal structure from Y to X by considering the scalar components
individually.
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If the element azy(t) ∈ IXZ(t) for all t9, then Ẑt+1|IW (t) ∈ IXZ(t) and Y
19

Z|IXZ . Conversely, if Y
1→ Z then azy(t) 6= 0 with probability one for some t,

hence πXZ,1azy(t) ∈ IXZ(t) for all t if and only if πXZ,1azy(t) = 0 with probability
one for all t. If Z is scalar-valued then πXZ,1azy(t) = 0 if and only if πXZ,1 = 0

10.

3.1. Recursive Representations for mz = 1. The above example through 2-
steps can be easily replicated through h-horizons ahead. The coefficient recursion
(2.3) renders the XY th-block of πj as

π
(h+1)
XY,j = π

(h)
XY,j+1 + π

(h)
XX,1πXY,j + π

(h)
XY,1πY Y,j + π

(h)
XZ,1πZY,j . (3.4)

It follows that if non-causality up to horizon h is true, Y
(h)9 X|IXZ , then, cf.

Theorem 2, π(k)XY,j = 0 for each k = 1...h, and subsequently, cf. (3.1) and Theorem

2, Y h+19 X if and only if

π
(h+1)
XY,j = π

(h)
XZ,1πZY,j = 0,∀j ≥ 1. (3.5)

See Corollary 3.1 of Dufour and Renault(1998). Thus, non-causality up to horizon
h ≥ 1 and causality at h + 1 can only occur if a causality chain exists such that
π
(h)
XZ,1πZY,j 6= 0, for some j ≥ 1. Provided Y 1→ Z|IXZ , then some scalar component
of πZY,j is non-zero for some j ≥ 1.
If the auxiliary variable Z is scalar-valued (mz = 1) and if for any j we have

πZY,j 6= 0, then Y
1→ Z, cf. Theorem 2.1, and we conclude from (3.5) that Y h+19

X follows if and only if π(h)XZ,1 = 0. Simply by using recursion (2.3) in a sequential

manner we may deduce a simple characterization of the parameter π(h)XZ,1.
Lemma 3.1 Consider the VAR process (2), and let mz = 1. Assume non-

causation Y
(h)9 X|IXZ for any h ≥ 2, and causation Y

1→ Z|IXZ are true. Then
π
(2)
XZ,1 = πXZ,2 for h = 2, and for any other h > 2,

π
(h)
XZ,1 = πXZ,h +

Xh−1
i=1

³
π
(h−i)
XX,1πXZ,i

´
. (3.6)

The following theorem delivers a simple linear necessary and sufficient condition
for non-causality up to horizon h ≥ 1.
Theorem 3.2 Consider the VAR process (2), and assume mz = 1. Assume

causation Y
1→ Z|IXZ is true.

i. For all h ≥ 2, Y (h)9 X|IXZ if and only if Y
19 X|IXZ and πXZ,k = 0, k =

1...h − 1;
ii.. For all h ≥ 2, if Y (h−1)9 X|IXZ , then Y

(h)9 X|IXZ if and only if πXZ,h−1
= 0.

Remark 1: For any h ≥ 1, non-causation Y
(h)9 X followed by causation Y

h+1→ X is feasible only if a causal chain Y
1→ Z

1→ X exists (cf. Theorem 2.1) and
if and only if πXZ,i = 0, i = 1...h−1, and πXZ,h 6= 0. Conversely, if a causal chain

9Under the maintained assumptions this is possible only if azy(t) = 0 with probability one for
all t.

10If azy(t) = 0 with probability one for all t, then Ẑt+1|IW (t) ∈ IXZ(t), a contradiction of

the assumption Y
1→ Z|IXZ .
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Y
1→ Z

1→ X exists and Z is univariate, then πXZ,h 6= 0 for some h ≥ 1 and either
Y

1→ X, or Y
(h)9 X|IXZ followed by Y

h+1→ X|IXZ , occurs.

The result that Y 19 X|IXZ and πXZ,i = 0, i = 1...h, sequentially imply non-

causation Y
(h+1)9 X|IXZ when Z is univariate suggests a simple graph-theoretic

representation of causality chains. See, e.g., Geiger and Pearl (1990) and Studený
and Bouckaert (1998) for details on causal chain graph theory, and see Swanson
and Granger (1997) for an application of the graph-theoretic approach to Wold-
form innovations decompositions in a macroeconomic context. Because the chain
representation Y

1→ Z
1→ X neither suffices to suggest causation will even occur

when Z is vector-valued, nor provides enough information concerning when causa-

tion takes place if Z is univariate, we adopt a more concise notation. Write Y
1:hZY→

Z to imply Y causes Z one-step ahead, and Yt−hZY is the most recent component
of Y (−∞, t ] to enter into Ẑt+t|IW (t). For any h ≥ 1, if Y 19 X|IXZ and if Z is
univariate, then by Theorem 3.2 the chain graph11

Y
1:hZY→ Z

1:h→ X (3.7)

provides the unambiguous interpretation that Y
(h)9 X|IXZ and Y

h+1→ X|IXZ .

Indeed, the notation Y
1:hZY→ Z

1:h→ X unambiguously implies X̂t+h+1|IW (t + 1)

is a simple linear function of Zt+1 and Ẑt+1|IW (t) is a simple linear function of
some component of Y (−∞, t], hence, by iterated projections and the fact that Z is
univariate, X̂t+h+1|IW (t) is a linear function of some component of Y (−∞, t].

3.2. Multivariate vs. Univariate Z. The sequential conditions of Theorem 3.2
are necessary and sufficient for non-causation if Z is univariate. For multivariate
auxiliary variable models (mz > 1), the conditions are not necessary although they
remain sufficient. The non-necessity follows from the possibility that π(h)XZ,1πZY,j

= 0 may be true when π
(h)
XZ,1 6= 0 and Y

1→ Z.

The chain notation Y
1:hZY→ Z

1:h→ X in the multivariate Z-case, however, does
not contain sufficient information to describe whether, when and how causation
takes place. Consider a simple example: if Z is a 2-vector and Y

19 X|IXZ , then

Y
1:1→ Z

1:1→ X need only imply Y 1:1→ Z1 and Z2
1:1→ X, in which case non-causation

Y
(2)9 X|IXZ occurs: a direct path from Y to X does not exist at h = 2.
In general, such causal chain graphs may not have much use in multivariate

auxiliary variable models, unless strong assumptions are imposed. For example, if
Z = (Z1, Z

0
2)
0 where Z1 is a scalar and Z2 has an arbitrary dimension, then (Y,Z2)

19 X|IXZ1 implies that the use of (X,Y,Z1)
0 and the conditions of Theorem 3.2

suffice to characterize non-causation from Y to X within the augmented system
(X,Y,Z1, Z

0
2)
0.

Let δ(h)j denote the VAR coefficients in the projection of Xt+h onto the linear
sub-space IXZ1(t) + Y (−∞, t], and consider a preliminary result.
Lemma 3.3 Let W = (X,Y,Z 01, Z

0
2)
0 where each Zi has arbitrary dimension

11The chain Y
1:hZY→ Z

1:h−1→ X depicts a directed, acyclic chain: the arrows depict the
direction of influence, and the chains are inherently acyclic because causation occurs over time
and time is unidirectional. See, e.g., Geiger and Pearl (1990) and Studený and Bouckaert (1998).
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mzi ≥ 0. Non-causation Y
(h)9 X|IXZ1 occurs if and only if δ

(k)
XY,j = 0, k = 1...h,

j ≥ 1, where
δ
(k)
XY,j ≡ π

(k)
XY,j +

X∞
i=1

π
(k)
XZ2,i

β1−iZ2Y,j
, (3.8)

and β1−iZ2Y,j
denotes the Y -specific coefficients in the projection of each vector Z2,t+1−i

onto IXZ1 + Y (−∞, t], i ≥ 1.
Remark 1: Formula (3.8) implies Y 19 X|IXZ1 (δXY,k = 0, ∀k) and Y

1→
X|IXZ (πXY,k 6= 0, for some k) may simultaneously be true due to possible neutral-
ization effects through the multiple causal routes from Y to Z2 to X (πXZ2,iβ

1−i
Z2Y,k

)
and Y to X (πXY,k). Notice that the coefficients β

1−i
Z2Y,k

represent the marginal "im-
pact" components of Y (−∞, t] have on contemporary and past Zt+1−i, thus the
chain "Y to Z2 to X" covers only one period.
If πXZ2,i = 0 for all i, then Z2

19 X|IXZ1 and (3.8) dictates Y
19 X|IXZ if and

only if Y 19 X|IXZ1 . In general, we have the following result.
Theorem 3.4 Let Z = (Z1, Z02)

0 for some scalar Z1 and vector Z2 of arbitrary
dimension mz2 ≥ 0.
i. If Z2

19 X|IXZ1 , then Y
19 X|IXZ if and only if Y

19 X|IXZ1 .

ii. If (Y,Z2)
19 X|IXZ1 , then for any h ≥ 1, Y

(h)9 X|IXZ1 implies Y
(h)9

X|IXZ , and Y
h+1→ X|IXZ1 implies Y

h+1→ X|IXZ .

iii. If (Y,Z2)
19 X|IXZ1 and Y

(h)9 X|IXZ1 , then Y
(h+1)9 X|IXZ if and only

if πXZ1,h = 0.

Remark 1: The implication that (Y,Z2)
19 X|IXZ1 =⇒ Y

19 X|IXZ is par-
allel to Dufour and Renault’s (1998) Proposition 2.4 (see also Theorem 2.1, above).
They prove a more restricted implication that if Z satisfies the "separation" con-
dition IXZ = IXZ1 + Z2(−∞, t], where IXZ1 = H + X(−∞, t] + Z1(−∞, t], then

(Y,Z2)
19 (X,Z1)|IXZ1 is sufficient for Y

(∞)9 X|IXZ . Similarly, see Corollary 3.6

of Dufour and Renault (1998) in which the conditions Y 19 (X,Z)|IXZ or (Y,Z)
19 X|IX are shown to be necessary and sufficient for non-causation at all horizons,

Y
(∞)9 X|IXZ , when Z is univariate.

Remark 2: If (Y,Z2)
19 X|IXZ1 then the chain graph Y

1:hZ1Y→ Z1
1:h→ X

has an unambiguous interpretation for either the reduced system (X,Y,Z1)
0, Y

(h)9
X|IXZ1 and Y

h+1→ X|IXZ1 , or the augmented system (X,Y,Z1, Z
0
2)
0, Y

(h)9 X|IXZ

and Y
h+1→ X|IXZ .

4. Tests for Causation at Arbitrary Time Horizons

We now construct a strategy for testing non-causality up to arbitrary time hori-
zons, and analyze test size bounds.

4.1. Sequential Test

. Step 1: Test Y
(∞)9 X
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We test both

Y
19 (X,Z) (Test 0.1)

(Y,Z)
19 X. (Test 0.2)

Evidence in favor of either hypothesis provides evidence in favor of Y
(∞)9 X, cf.

Theorem 2.1. We proceed to test Y 19 X only if we reject both tests.
Step 2: Test individually Y

19 X, Y 19 Z, and Z
19 X

If the hypothesis
Y

19 X (Test 1.0)
is rejected, the test procedure is stopped. If we find evidence in favor of a broken
causal chain by failing to reject either

Y
19 Z (Test 1.1)

Z
19 X (Test 1.2)

then evidence suggests non-causation at all horizons, Y
(∞)9 X. If we reject both

Tests 1.1 and 1.2, we proceed to Step 3.

Step 3: Test Y
(h)9 X, h ≥ 2

By Theorem 3.2, provided Y
1→ Z sequential evidence in favor of πXZ,h−1 =

0 is evidence in favor of non-causation up to horizon h. Thus, we test the linear
compound hypothesis

Y
19 X,πXZ,i = 0, i = 1...h− 1 (Test h.0)

for each h ≥ 2. Failure to reject provides evidence in favor of Y (h)9 X.

4.2. Size Bounds. Due to the sequential nature of the tests of Y
(h)9 X|IXZ , h =

1, 2, ..., we require an upper bound on the test size. We reject Y 19 X only if we

first reject both Tests 0.1 and 0.2 (Y
(∞)9 X) and then reject Test 1.0 (Y 19 X);

we reject Y
(2)9 X if we reject Y 19 X, or fail to reject Y 19 X , reject Y 19 Z and

reject Z 19 X, and reject the compound hypothesis Y 19 X, πXZ,1 = 0; and so
on. Let α#.# denote the nominal size of Test #.#.

Lemma 4.1 Let H(h)
0 denote the hypothesis H0 : Y

(h)9 X, for any h ≥ 1. Let
p(h) ≡ P (rej. H(h)

0 |H(h)
0 is true).

i. If Y
19 Z

1→ X then p(h) ≤ p1 = min{α0.1, α1.0 + (h − 1) × α1.1};
ii. If Y

1→ Z
19 X then p(h) ≤ p2 = min[α0.2, α1.0 +

Ph
i=2min{α1.2, αi.0}];

iii. If Y 19 Z
19X then p(h) ≤ p3 = min[α0.1, α0.2, α1.0 + (h − 1) × min{α1.1, α1.2}];

iv. If Y
1→ Z

1→ X then p(h) ≤ p4 =
Ph

i=1 αi.0.
In general,

P
³
rej. H(h)

0 |H(h)
0 is true

´
≤ max1≤i≤4{pi}. (4.1)

Bound (4.1) generalizes every possibility for a false rejection of H(h)
0 . Let h ≥

2. If Y 19 Z
1→ X or Y 19 Z

19 X, for example, then the conditions outlined in
Theorem 3.2 are only sufficient for non-causation, but not necessary. From (3.2),

we may have Y 19 X, πXZ,1 6= 0 and Y
(2)9 X: in such a case if a consistent test
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statistic is used, then there is a probability one asymptotically that we reject Y
19 X, πXZ,1 6= 0 and falsely deduce Y

(2)9 X. In cases (i) and (iii), the upper
bound of the sequential test size embodies the probabilities of erroneous rejections

of Tests 0.1 and 0.2 (Y
(∞)9 X) and Tests 1.1 and 1.2 (Y 19 Z and Z 19 X). Neither

bound depends on the nominal horizon-specific sizes αh.0 because the parametric
conditions of Tests h.0 are not necessary for non-causation in these cases. The
probability bound of a Type I error in these cases can be controlled simply by
setting the nominal size α1.1 of the test Y

19 Z to a small value (e.g. .01).
In practice, a simple rule will likely be applied. For example, put α0.1 = α0.2 =

α, α1.1 = α1.2 = αi.0 = β for each i = 1...h. Then (4.1) reduces to

P
³
rej. H(h)

0 |H(h)
0 is true

´
≤ max[min{α, h× β}, h× β] = h× β, (4.2)

the standard Bonferonni bounds, depending only on the common β.

5. U.S. Income and Monetary Aggregates

We now investigate the causal relationships within aggregate income, money, oil
prices, unemployment and interest rates. For the period January 1959 - December
2002, we use the logarithm of monthly, seasonally adjusted, nominal M1 and M2
(m1,m2), the logarithm of seasonally adjusted disposable income (y), the logarithm
of the spot oil price (o), the civilian unemployment rate (u), the 90-day Treasury
bill rate (rb), the 90-day commercial paper rate (rp) and the spread between the
two rates (rr = rb − rp).
Except for the commercial paper rate, all data are taken from the databases made

publicly available by the Federal Reserve Bank of Saint Louis. The commercial
paper rate was taken from the NBER data archive for the period 1959:01-1971:12,
and from the Federal Reserve Bank of Saint Louis for the period 1972:01-2002:12.
Seasonal adjustment, where applicable, was performed at the source. In order to
control for any apparent trend, we pass all final (e.g. post-differenced) processes
though linear trend filters.
Significant evidence suggests one positive unit root exists in each series, except

for the rate spread rb-rp: the rate spread is likely I(0), implying the process may
represent one possible error correction term within a system of y, m1, m2, rb,
and rp, with an error correction vector (0, 0, 0, 1,−1)12. Using industrial output
y, aggregate money m, prices p, and the Treasury and commercial paper rates,
Swanson (1998) finds in a rolling window framework the rate spread rb − rp and
the velocity of money y + m − p are likely the only two error correction terms.
Considering the amassed, yet uneven, evidence in support of integration within

the individual processes and cointegration between money, real income and interest
rates, we implement two widely practiced VAR methods. We construct VARmodels
of de-trended first differences (except for the rate spread) in order to control for
integration of order one: the processes are∆y,∆m1,∆m2,∆o,∆u, and rr. Second,
we employ the excess-lag technique of Toda and Yamamoto (1995) and Dolado and
Lütkepohl (1996) for VAR models of de-trended level processes in order to control

12Stock and Watson (1993) similarly find evidence of cointegration among M1, industrial out-
put, and the Treasury bill rate. Hafer and Jensen (1991) find evidence for cointegration within
M2, real income and a short-term interest rate at quarterly increments, and conclude all evidence
for cointegration vanishes once M2 is replace by M1.
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for cointegration of unknown form. For this procedure, we specify a VAR(p) model
in levels adding lags equal to the maximum order of suspected integration d (in this
case, d = 1), and test only the first p − d coefficient matrices13.
There is ample evidence in the literature that standard Wald tests in multivariate

models tend to lead to over-rejection of null hypotheses: see, e.g., Dufour (2002) and
Dufour et al (2003). A parametric bootstrap method for simulating small sample
p-values has been shown to provide sharp approximations to the chosen significance
level, although over-rejections may persist if the test statistic asymptotic distribu-
tion involves nuisance parameters (see, e.g., Andrews, 2000; and Dufour and Jouini,
2003). We perform standard and parametric bootstrap tests for each VAR method
separately14. Consult Hill (2004a) for a simulation study demonstrating the mer-
its of the sequential test strategy using standard and bootstrap test methods on
VARMA processes.
We perform sequential tests on 3-vector systems with real disposable income

y, money m1, and one auxiliary variable chosen from the set {m2, u, o, rr} for
the period 1959:01-2002:12, and for rolling sample periods of increasing and fixed
width. VAR model orders are selected by minimizing the AIC over possible orders
p = 1...18, subject to reasonably noisy residuals.

5.1. Sample Period 1959-2002. Extended test results for all auxiliary variables
can be found in Table 1. For brevity, however, in the following we only discuss
results based on the parametric bootstrap for models with either the unemployment
rate or M2. Consult Hill (2004a) for complete discussions and test results using
standard p-values.

5.1.1. Unemployment. For the process (∆y,∆m1,∆u), the optimally selected
VAR order is 8, however portmanteau tests suggest lags may have been omitted.
The minimum order for which we fail to reject the white noise hypothesis for the
residual series is p = 12 (.131), however test results based on either level are quali-
tatively similar. We opt to use the parsimonious specification VAR(8). In order to
control for cointegration of unknown form, the optimal order in levels is 9, hence
we use a VAR(10) model.

We reject both hypotheses for ∆m1
(∞)9 ∆y at the 10%-level (Test 0.1: .080, and

Test 0.2: .040)15. We fail to reject ∆m1 19 ∆y (Test 1.0: .626), and reject at the

13Swanson et al (1996) demonstrate in a monte carlos study of tests of one-step ahead non-
causation that the excess-lag method provides excellent empirical sizes, but tends to generate low
power.

14The parametric bootstrap (i.e. asymptotic Monte Carlo test based on a consistent point
estimate) is performed as follows for an arbitrary hypothesis: i. obtain estimated VAR coefficients,
π̂ = (π̂1, ..., π̂p), where p minimizes the AIC; ii. derive the test statistic, denoted Tn; iii. simulate
J seriesWt,j , j = 1...J, t = 1...n, based on the the estimated parameters π̂ with the null hypothesis

restrictions imposed (for example, a test of Y 19 X imposes π̂XY,i = 0, i = 1...p): the process
Wt,j is simulated as Wt,j =

Pp
i=1 π̂iWt−1 + t where t are 3-vector iid draws from a standard

normal distribution; iv. use the double-array {Wt,j}n,Jt,j=1 to estimate J separate VAR(p) models,
and generate J test statistics Tn,j for the hypothesis in question; v. the approximate p-value is
simply the percent frequency of the event Tn,j > Tn. For all tests, we set J = 1000. For first order
asymptotic validity of the above parametric bootstrap, see Proposition 6.1 of Dufour (2005).

15Parenthetical values denote p-values derived from a parametric bootstrap.
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nominal 5%-level sequentially only the compound Test 4.0, ∆m1
(4)9 ∆y16. If we

perform each sequential test at the 1%-level, then we fail to reject ∆m1
(5)9 ∆y at

a bounded 5%-level; if we perform each test at the level of the smallest compound

test p-value (i.e. .032), then we reject ∆m1
(4)9 ∆y at a bounded 13%-level. We

have, therefore, conflicting (and weak) evidence in support of either ∆m1
(∞)9 ∆y

or ∆m1 4→ ∆y.
For the excess-lag VAR(10) model in levels, we fail to reject ∆m1

(∞)9 ∆y (Test

0.2: .216) and ∆m1 19 ∆y (Test 1.0: .148). Evidence suggests a broken chain,

∆m1
1→ ∆u 19 ∆y (Test 1.1: .000; Test 1.2: .376). If we pursue tests at subsequent

horizons, we reject ∆m1
(2)9 ∆y at a nominal 5%-level (Test 2.0: .024). If we

perform each sequential test at the 1%-level, then we only reject ∆m1
(5)9 ∆y at

a bounded 5%-level, suggesting ∆m1 5→ ∆y and strengthening the above evidence
for a causal delay when cointegration is ignored. Use of either method suggests
at least three months pass before growth of the money supply anticipates growth
of real income, through the intermediary impact fluctuations in the money supply
have on the unemployment rate.

5.1.2. M2. For a VAR model with M2, the minimum AIC order is p = 6 for first
differences. The lowest order at which we fail to reject the white-noise hypothesis
for the residual series is 10 (.370), hence we opt for the VAR(10) model. Similarly,
the optimal order for levels is p = 7 while white-noise is detected in the VAR
residuals at a lowest order of 11. We therefore opt to use a VAR(12) model of
excess lags in levels.

In the VAR(10) case bootstrap tests fail to reject ∆m1
(∞)9 ∆y (Test 0.2: .198),

suggesting the growth of M1 never causes income growth. If we proceed to check
individual horizons, we fail to reject ∆m1 19∆y (Test 1.0: .466), we find highly sig-
nificant evidence for a causal chain, ∆m1 1→ ∆m2 1→ ∆y, and reject the compound
hypothesis ∆m1

(h)9 ∆y at the nominal 1%-level only for h = 11, and therefore at a

bounded 11%-level (Test 11.0: .006). This suggests either ∆m1
(∞)9 ∆y, or nearly

one year passes before fluctuations in the money supply will have an impact on real
income.
For the excess-lag VAR(12) model in levels, we reject every null hypothesis con-

sidered at below the 1%-level: we immediately deduce ∆m1 1→ ∆y. Similar to the
model with the unemployment rate, once cointegration is controlled for significant
evidence for causation expands sharply, supporting the major findings of Swanson
(1998)17.

16We find significant evidence of a causal chain ∆m1
1→ ∆u

1→ ∆y (Test 1.1: .000, Test
1.2: .026). Indeed, for each auxililary variable Z in models of either levels or differences, we
find evidence in favor of ∆m → Z, with the level of significance below .1%. Thus, evidence
strongly suggests the non-causality conditions of Theorem 4 are necessary and sufficient: we will
not comment on the issue below.

17It should be pointed out that Swanson (1998) uses an industrial production index as "real
income", aggregate prices and several measures of supply of money (M1, M2 and the Divisia
measure of money) in a multivariate model, and control for cointegration of unknown form by use
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5.1.3. Oil Price. Using first differences, the VAR order p = 4 both minimizes
the AIC and maximizes the portmanteau test p-value, however we still strongly
reject the white noise hypothesis (.004). This suggests a severe form of model mis-
specification may exist, possibly with respect to unmodeled cointegration18. We
consider, therefore, both the parsimonious VAR(4) model in differences, and an
optimally selected VAR(3.5) excess-lag model in levels.

In the VAR(4) case, we fail to reject both tests of ∆m1
(∞)9 ∆y (Test 0.1: .856,

Test 0.1: .560). If we decide to pursue subsequent tests, we fail to reject ∆m1 19
∆y (Test 1.0: .9540), and find evidence for a broken causal chain, ∆m1 1→ ∆o 19
∆y (Test 1.1: .000, Test 1.2: .194). Compound tests do not reveal a causal delay:

we fail to reject ∆m1
(h)9 ∆y for each h = 2...5. This provides support for the prior

evidence of non-causation at all horizons.
In the VAR(3.5) excess-lag model of levels, by comparison, we find weak evidence

that non-causation at all horizons fails to hold, and we reject ∆m1 19 ∆y (Test

1.0: .026) at the 3%-level. If we decide to perform each test of ∆m1
(h)9 ∆y at the

1%-level, then we fail to reject every compound test ∆m1
(h)9 ∆y.

5.1.4. Rate Spread. The optimal VAR order for first differences is 6, however we
reject the white noise hypothesis for all orders considered, with the largest p-value
(.020) occurring at p = 13.We consider, therefore, a VAR(3.5) model in differences,

and a VAR(8) model in levels. For the VAR(3.5) model we fail to reject ∆m1
(∞)9

∆y (Test 0.1: .718) and fail to reject ∆m1 19 ∆y (Test 1.0: .964). If we pursue

subsequent tests, we find evidence for ∆m1 1→ rr (Test 1.1: .000) and fail to reject

every subsequent hypothesis ∆m1
(h)9 ∆y.

For the excess-lag VAR(8) model in levels we still reject the white noise hy-

pothesis for all orders considered. We now reject both tests of ∆m1
(∞)9 ∆y and

reject ∆m1 19 ∆y at the 5%-level (Test 1.0: .032). If we perform each test at the

1%-level, we fail to reject each test ∆m1
(h)9 ∆y, h = 1...5. Thus, while previous

studies find the rate spread may be a statistically significant error correction term
in a cointegrated VAR system of money, real income and interest rates, controlling
for common stochastic trends within the present trivariate model here does not
significantly alter the fundamental conclusion that a lengthy delay exists before
causation occurs, if at all.

5.1.5. All Auxiliary Variables. Notice that we fail to reject the hypothesis Z
19 ∆y (Test 1.2) for each scalar Z = ∆u, ∆o, or rr. Moreover, we reject 1-month
ahead noncausation from M1 to income in the truncated system (∆y,∆m1,∆m2).

of the excess lag technique. We use real disposable income in a trivariate model (e.g. income, M1
and M2) similar in spirit to Boudjellaba et al (1992, 1994).

18Of course, numerous other types of mis-specification may be in play, including unmodeled
conditional variance and nonlinearity. We do not pursue these topics in the present setting of
tests of multiple horizon noncausation. See Rothmant et al (2001) for a vector smooth transition
autoregression (STAR) study of one-step ahead noncausation between money and income, with
auxiliary variables similar to those used in the present paper. See, also, Corradi and Swanson
(2002) who develop an out-of-sample Bierens-type test of functional specification for VAR models
of causality.
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Based on the ideas presented in Section 3.2, it is worthwhile, therefore, to check if
the causality properties in the augmented system (∆y,∆m1,∆u,∆m2,∆o, rr) are
the same as in the system (∆y,∆m1,∆m2).
We estimated a VAR(12) excess lag model in levels19, tested the joint hypoth-

esis (∆u,∆o, rr) 19 ∆y, and obtained a bootstrapped p-value of .229. Thus,

evidence supports Z2
19 X where Z2 = (∆u,∆o, rr)0. By Theorem 3.4.i we

may infer that causation in the complete vector system matches what was ob-
tained for the truncated system with M2, hence ∆m1 1→ ∆y|I∆y,∆m2 and ∆m1
1→ ∆y|I∆y,(∆u,∆m2,∆o,rr). Of course, a classic 1-step ahead noncausation test can
be performed directly: a test of ∆m1 19 ∆y|I∆y,(∆u,∆m2,∆o,rr) produces a boot-
strapped p-value of .022.
Evidence in the truncated system (∆y,∆m1,∆u) suggests 1-month ahead non-

causation from M1 to income, ∆m1 19 ∆y|I∆y,∆u, and we conclude 1-month ahead
causation in the complete system, ∆m1 1→ ∆y|I∆y,(∆u,∆m2,∆o,rr). Using the nota-
tion of Section 3.2, for the 3-vector (∆y,∆m1,∆u) evidence therefore suggests δXY,j

= 0 for all j, for the complete system (∆y,∆m1,∆u,∆m2,∆o, rr) evidence suggests
πXY,j 6= 0 for some j, and therefore neutralization πXY,j +

Pp
i=1 πXZ2,iβ

1−i
Z2Y,j

= 0 is
evidently occurring for some j, where X = ∆y, Y = ∆m1 and Z2 = (∆m2,∆o, rr)0:
the association between∆m1 and (∆m2,∆o, rr), and the 1-month ahead causal im-
pact (∆m2,∆o, rr) has on ∆y, evidently exactly offsets the causal influence ∆m1
has on ∆y when all auxiliary variables are present.

5.2. Rolling Windows. Finally, we study trivariate causal patterns in money
and income over rolling sample periods of increasing and fixed length. Increasing
windows begin and end with the sample periods 1959:01 - 1985:12 and 1959:01-
2002:12, hence the initial window contains n = 324 months (before truncation due
to lagging), and ends with n = 528 months for a total of 204 windows. We then fix
the window to 324 months, a sample size that corresponds to Stock and Watson’s
(1989) seminal study. In this case, the initial sample period is 1959:01 - 1985:12
and the final period is 1971:11-2002:12, generating 205 windows.
Due to the large volume of tests required, we perform tests rather mechanically.

VAR models of differences and levels (with excess lags) are employed, and VAR
orders are selected by minimizing the AIC over p = 1...18. For the excess-lag
models we add one lag to the optimally selected order in lieu of evidence that the
largest order of integration is one in any window. Although we collect residual
white-noise test p-values for each window, the information is not used for model
selection. We perform both standard and bootstrap tests of non-causality for each
window for each VAR model in differences and levels, and keep a running count

of rejections of the various non-causality hypotheses. Tests of ∆m1
(∞)9 ∆y are

performed at the 5%-level; all other tests are performed at the nominal 1%-level.

The criterion for detection of non-causation at all horizons (∆m1
(∞)9 ∆y) is a

failure to reject either of Tests 0.1 or 0.2. We reject at h = 1 if we reject ∆m1 19

19Based on the AIC and Ljung-Box tests, the optimal VAR order for the compete vector
process (∆y,∆m1,∆u,∆m2,∆o, rr) is p = 8. In order to improve comparability with the above
tests on the truncated system (∆y,∆m1,∆m2), we opted for a VAR(12) excess-lag model in
levels.
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∆y; we reject ∆m1
(2)9 ∆y if we fail to reject ∆m1 19 ∆y, reject both Tests 1.1

(∆m1 19 Z) and 1.2 (Z 19 ∆y), and reject Test 2.0 (∆m1 19 ∆y, π∆y,Z,1 = 0); and
so on.
For a particular window we do not allow for rejection at multiple horizons: if we

reject ∆m1
(h)9 ∆y we stop the test procedure. In this sense, our analysis concerns

the earliest horizon at which causation takes place. We do, however, allow for

simultaneous detection of non-causation at all horizons ∆m1
(∞)9 ∆y and causation

at some horizon, ∆m1 h→ ∆y: we employ the tests of non-causation at all horizons
∆m1

(∞)9 ∆y separately from the remaining horizon-specific tests, and do not force
the tests of non-causation at h ≥ 1 to be contingent on the results of tests of ∆m1
(∞)9 ∆y. We present window frequencies in which the two sets of tests contradict

each other (i.e. detect ∆m1
(∞)9 ∆y and ∆m1 h→ ∆y). Horizon specific causality

frequencies can be found in Table 2 for both increasing and fixed window length,
and models of differences and levels20.
First Differences, Increasing Windows
For VAR systems with the unemployment rate, sequential tests based on the

parametric bootstrap detect non-causation ∆m1
(∞)9 ∆y in only 2.94% of all win-

dows; causation 1-month or 2-months ahead is never detected; and causation 3 and
4 months ahead are detected in roughly 45% and 13% of all sample periods. In un-
der 1% of all sample windows do we detect both non-causation at all horizons ∆m1
(∞)9 ∆y and causation at some horizon ∆m1 h→ ∆y. Thus, there exists an unam-
biguous tendency for growth in the money supply to anticipate real income growth
after a discreet delay of 2-3 months as the unemployment rate adjusts. This both
corroborates and strengthens evidence for causation at h = 4 within the complete
sample period 1959-2002, cf. Section 5.1.1.
For VAR systems with M2 test evidence suggests both non-causation in all peri-

ods∆m1
(∞)9 ∆y (over 96% of all periods), or causation 1-2 months ahead (23%-37%

of all periods). Use of M2 generates extensive conflicting evidence of non-causation
and causation: in roughly 58% of all sample periods evidence exists both in fa-

vor of non-causation at all horizons ∆m1
(∞)9 ∆y and causation at some horizon

tested ∆m1 h→ ∆y. Considering that nearly all evidence for causation takes place
at horizons 1 or 2 for a combined 59.8% of all windows, we can infer that when-

ever ∆m1 1→ ∆y or ∆m1 2→ ∆y was detected, so was ∆m1 (∞)9 ∆y. Such highly
ambiguous evidence suggests extreme caution should be applied when interpreting
tests of 1-step ahead non-causation in related money-income models with M2 (e.g.
Boudjellaba et al, 1992,1994; Amato and Swanson, 2001).
First Differences, Fixed Windows
In this context, evidence for causal delays expands in several notable directions.

A system with the unemployment rate provides evidence of causation 3-4 months
ahead, with a substantial increase in the number of windows suggesting causation
exactly 4-months ahead ∆m1 4→ ∆y: allowing the sample period to increase (and
thereby allowing the system to evolve toward a steady-state) suggests causation

20Consult Hill (2004a: Figures 1-12) for graphic representations of window-specific causality
counts, as well as model selection accuracy.
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4-months ahead occurs in only 12.75% of all windows; fixing sample periods to 324
months (and thereby allowing period-specific non-stationarity) generates evidence
for causation at the same horizon in 55.88% of all sample periods. This pattern
extends to the price of oil and the rate spread.
Except for the system with M2, the most prominent characteristic is the sig-

nificant increase in the number of windows providing any evidence of causation.
Causation takes place between 1-5 months ahead through the unemployment rate
in 93.63% of all sample periods, compared to 57.85% when sample periods increase
in length. Similar to the increasing window case, VAR models with the unemploy-
ment rate lead to a negligible frequency of contradictory test results.
Levels with Excess Lags, Increasing Windows
Once cointegration is controlled for, a vastly different causation picture emerges.

In over 53% and 40% of all sample periods for models with the unemployment rate
and the interest rate spread, respectively, money causes income 1-month ahead.
Indeed, when M2 is included, in 100% of all windows direct causation from money
to income is detected (i.e. 1-month ahead), strongly supporting Swanson (1998).
Notice, however, that except for the model with M2, tests of non-causation at all
horizons and at specific horizons are in substantial conflict.
Levels with Excess Lags, Fixed Windows
Using rolling windows of fixed 324-month length and controlling for cointegra-

tion, evidence now strongly points toward causality exactly one-month ahead (un-
employment, M2), or causality 1-2 months ahead (oil). Similar to increasing win-
dows with levels, inclusion of M2 (unemployment) points to causation 1-month
ahead in 95.61% (90%) of all windows. In this case, only the model with M2 leads
to a negligible frequency of contradictory test results (under 10% of all windows).
Final Remarks
In general, VAR systems of first differences suggest a clear evolutionary trend

exists over the last five decades. For fixed window models with unemployment or
M2, evidence for causation at any horizon begins roughly in the periods ending
in mid-1992 (window 80), the recovery period of the recession of early 1990’s: see
Hill (2005a: Figures 1 and 4). The most prominent characteristic for all models
of increasing or fixed windows as the sample extends into the 1990’s is evidence
for white-noise in the residuals series: a pronounced spike across all models occurs
in the period ending in Sept.-Nov. 2001 (roughly windows 190-192), suggesting
samples containing the social events surrounding the third and fourth quarters of
2001 may contain a substantial outlier. It is interesting to note that models with
either the unemployment rate or M2 generate essentially bimodal Q-test p-value
spikes, one occurring near the end of 1992 and the other in the end of 2001, both
coinciding with periods of recovery following economic down turns and periods
surrounding events associated with war.
VAR specification significance reaches extreme levels of significance in the latter

sample periods (beginning in the 1990’s) of the fixed 324-month rolling window
framework: this can be clearly seen in Hill (2005: Figures 9-12). This suggests the
excess-lag model in levels for these latter sample periods reasonably captures the
dynamic traits of the included macroeconomic processes. Moreover, this points out
the complexity of the model specification and estimation issues surrounding money-
income systems, and surrounding Stock and Watson’s (1989) seminal investigation
and Friedman and Kuttner’s (1993) influential follow-up. The results of those
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popular studies should be seen as initial steps toward a complete investigation
of sample period dynamics and common stochastic trending prevalent in many
macroeconomic systems.

6. Conclusion

In the present study we develop a simple VAR parametric recursion that, for
trivariate processes with one scalar auxiliary variable, always allows for sequential
linear parametric conditions for non-causality up to horizon h ≥ 1. We prove
causation must eventually occur from Y to X when the auxiliary variable Z is
univariate, and provide a special case when a simple linear parametric condition
for noncausation up to arbitrary horizons is identical in VARs with univariate or
multivariate auxiliary variables.
An empirical analysis of the money-income relationship reveals significant evi-

dence in favor of linear causation from money to income, either directly when we
control for cointegration, or indirectly in models of first differences. Multiple hori-
zon tests of non-causation over rolling windows provides evidence of either causal
pattern evolution or substantial sample period non-stationarity. Sample windows
incorporating recent information (starting from about 1990), in particular for fixed
windows which remove information from the 1960’s, produce extreme spikes in
model significance. This suggests causal evidence from these periods is arguably
the most reliable, although there is not a pronounced pattern of causality or non-
causality across all models (i.e. differences, levels, Z) in these latter periods.
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Appendix 1
Table 1

Auxiliary: Unemployment Rate
Differences Levels

Test # Hypothesis p-valuea p-bootb p-value p-boot

Test 0.1 ∆m1
(∞)9 ∆y .0373 .080 .0000 .000

Test 0.2 ∆m1
(∞)9 ∆y .0086 .040 .0012 .216

Test 1.0 ∆m1
19 ∆y .5693 .626 .0070 .148

Test 1.1 ∆m1
19 ∆u .0096 .000 .0000 .000

Test 1.2 ∆u
19 ∆y .0055 .026 .4264 .376

Test 2.0 ∆m1
(2)9 ∆y .3182 .450 .0000 .024

Test 3.0 ∆m1
(3)9 ∆y .0194 .092 .0000 .012

Test 4.0 ∆m1
(4)9 ∆y .0030 .032 .0000 .020

Test 5.0 ∆m1
(5)9 ∆y .0024 .032c .0000 .008d

Min. AIC VAR Order p 8 10
Ljung-Box p-value .045 .0089

Auxiliary: M2
Differences Levels

Test # Hypothesis p-value p-boot p-value p-boot

Test 0.1 ∆m1
(∞)9 ∆y .0000 .000 .0000 .000

Test 0.2 ∆m1
(∞)9 ∆y .0093 .198 .0000 .002

Test 1.0 ∆m1
19 ∆y .4938 .466 .0000 .008

Test 1.1 ∆m1
19 ∆o .0000 .000 .0000 .000

Test 1.2 ∆o
19 ∆y .0383 .244 .0000 .000

Test 2.0 ∆m1
(2)9 ∆y .0092 .082 .0000 .000

Test 3.0 ∆m1
(3)9 ∆y .0170 .126 .0000 .000

Test 4.0 ∆m1
(4)9 ∆y .0088 .128 .0000 .000

Test 5.0 ∆m1
(5)9 ∆y .0022 .066 .0000 .000

... .... .... .... ....

Test 11.0 ∆m1
(11)9 ∆y .0000 .006e .0000 .000f

Min. AIC VAR Order p 10 12
Ljung-Box p-value .370 .183

Notes: a. p-values based on the chi-squared distribution; b. p-values based on parametric bootstrap.

c. Reject ∆m1
(∞)9 ∆y at 10%-level, and reject ∆m1

(4)9 ∆y at bounded 13%-level.
d. Fail to reject ∆m1

(∞)9 ∆y at 10%-level; or reject ∆m1
(2)9 ∆y at bounded 5%-level.

e. Fail to reject ∆m1
(∞)9 ∆y at 10%-level; or reject ∆m1

(11)9 ∆y at bounded 11%-level

f. Reject ∆m1
(∞)9 ∆y at 1%-level, and ∆m1

19 ∆y at 1%-level.
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Table 1 - Cont.
Auxiliary: Oil Price

Differences Levels
Test # Hypothesis p-value p-boot p-value p-boot

Test 0.1 ∆m1
(∞)9 ∆y .7900 .856 .0021 .020

Test 0.2 ∆m1
(∞)9 ∆y .0524 .560 .0000 .106

Test 1.0 ∆m1
19 ∆y .9590 .954 .0038 .026

Test 1.1 ∆m1
19 ∆o .3780 .000 .0379 .000

Test 1.2 ∆o
19 ∆y .1925 .194 .3686 .516

Test 2.0 ∆m1
(2)9 ∆y .9343 .890 .6230 .670

... ... ... ... ...

Test 5.0 ∆m1
(5)9 ∆y .5664 .734a .8361 .850b

Min. AIC VAR Order p 4 6
Ljung-Box p-value .004 .0014

Auxiliary: Rate Spread
Differences Levels

Test # Hypothesis p-value p-boot p-value p-boot

Test 0.1 ∆m1
(∞)9 ∆y .7715 .718 .0000 .000

Test 0.2 ∆m1
(∞)9 ∆y .0081 .166 .0000 .020

Test 1.0 ∆m1
19 ∆y .9769 .964 .0000 .032

Test 1.1 ∆m1
19 rr .3240 .000 .0000 .000

Test 1.2 rr
19 ∆y .0009 .034 .8579 .526

Test 2.0 ∆m1
(2)9 ∆y .9043 .912 .0847 .402

Test 3.0 ∆m1
(3)9 ∆y .7937 .822 .1264 .396

Test 4.0 ∆m1
(4)9 ∆y .8208 .892 .1012 .508

Test 5.0 ∆m1
(5)9 ∆y .6289 .710c .1145 .526d

Min. AIC VAR Order p 6 8
Ljung-Box p-value .009 .002

Notes: a. Fail to reject ∆m1
(∞)9 ∆y at 10%-level; or fail to reject ∆m1

(5)9 ∆y.

b. Reject ∆m1
(∞)9 ∆y at 10%-level, and reject ∆m1

19 ∆y at 5%-level, or

fail to reject ∆m1
(5)9 ∆y at bounded 5%-level

c. Fail to reject ∆m1
(∞)9 ∆y at 10%-level; or fail to reject ∆m1

(5)9 ∆y.
d. Reject ∆m1

(∞)9 ∆y at 5%-level, and reject ∆m1
19 ∆y at 5%-level or

fail to reject ∆m1
(5)9 ∆y at bounded 5%-level.
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Table 2
Horizon Rejection Frequencies: First Differences

Increasing Width Rolling Windows Fixed Width Rolling Windows
Horizon u o rr m2 Horizon u o rr m2
0a .2647 .6667 .7281 .8775 0 .5245 .9510 .8137 .9069

[.0294 ]b [.6373] [.7647] [.9608] [.0294] [.2402] [.8725] [.9706]
1 .0000 .0000 .0000 .2255 1 .3872 .1176 .1520 .1324

[.0000 ] [.0000] [.0000] [.2304] [.1716] [.0490] [.1569] [.1275]
2 .2990 .2353 .0147 .3725 2 .0000 .3775 .1521 .0931

[.0000 ] [.1569] [.0000] [.3676] [.0049] [.3824] [.1078] [.1029]
3 .3137 .0000 .0733 .0000 3 .2108 .0000 .0343 .0196

[.4510 ] [.0147] [.0392] [.0000] [.2010] [.0000] [.0343] [.0049]
4 .1422 .0000 .0000 .0000 4 .3725 .00000 .0000 .0245

[.1275 ] [.0000] [.0000] [.0000] [.5588] [.0000] [.0000] [.0049]
5 .0000 .0000 .1618 .0049 5 .0000 .0000 .0000 .0833

[.0049] [.0000] [.0000] [.0049] [.0049] [.0000] [.0000] [.0000]
≥ 1c .7549 .2353 .2498 .6029 ≥ 1 .9705 .4951 .3384 .2696

[.5785] [.1716] [.0392] [.5980] [.9363] [.4314] [.2990] [.2402]
0, ≥ 1d .1324 .0392 .2500 .4804 0, ≥ 1 .5245 .4559 .1666 .2598

[.0098] [.0294] [.0392] [.5735] [.0294] [.1078] [.2304] [.2157]
Notes: a. h = 0 denotes noncausation at all horizons: values are window frequencies for

which we fail to reject H∞0 ;
b. Bracketed values denote window frequencies based on bootstrapped p-values;
c. Window frequencies for causation at any horizon h ≥ 1;
d. Window frequencies for noncausation at all horizons, h = 0, and causation at
some horizon h ≥ 1.

Table 2 - Cont.
Horizon Rejection Frequencies: Levels with Excess Lags

Increasing Width Rolling Windows Fixed Width Rolling Windows
Horizon u o rr m2 Horizon u o rr m2
0 .0000 1.000 1.000 .00000 0 .2634 .2488 1.000 .0439

[.0000] [1.000] [1.000] [.0000] [.4098] [.3658] [1.000] [.0976]
1 .6049 .0293 .4634 1.000 1 .9122 .4049 .4195 .9561

[.5317] [.0585] [.4049] [1.000] [.9024] [.6146] [.4585] [.9561]
2 .3171 .6341 .0195 .0000 2 .0146 .4537 .1902 .0439

[.2341] [.6683] [.0488] [.0000] [.0244] [.1707] [.0976] [.0390 ]
3 .0000 .0244 .0000 .0000 3 .0049 .0732 .0000 .0000

[.0098] [.0000] [.0000] [.0000] [.0439] [.0000] [.0049] [.0000]
4 .0000 .0000 .0000 .0000 4 .0000 .0000 .0244 .0000

[.0000] [.0000] [.0000] [.0000] [.0000] [.0000] [.0098] [.0000]
5 .0000 .0000 .0000 .0000 5 .0390 .0000 .0000 .0000

[.1756] [.0000] [.0000] [.0000] [.0000] [.0000] [.0000] [.0000]
≥ 1 .9220 .6878 .4829 1.000 ≥ 1 .9707 .9318 .6341 1.000

[.9512] [.7268] [.4537] [1.000] [.9707] [.7853] [.5708] [.9951]
0, ≥ 1 .9220 .6878 .4878 .0000 0, ≥ 1 .2341 .2488 .6341 .0439

[.9512] [.7268] [.4537] [.0000] [.3805] [.2927] [.5707] [.0927]
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Figure 1: Z = ue (diff., inc.)
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Figure 2: Z = rr (diff., inc.)
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Figure 3: Z = o (diff., inc.)
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Figure 4: Z = m2 (diff., inc.)
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Figure 5: Z = ue (levels, inc.)
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Figure 6: Z = rr (levels, inc.)
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Figure 7: Z = o (levels, inc.)
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Figure 8: Z = m2 (levels, inc.)
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Figure 9: Z = ue (levels, fix)
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Figure 10: Z = rr (levels, fix)
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Figure 11: Z = o (levels, fix)
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Figure 12: Z = m2 (levels, fix)
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Appendix 2: Simulation Study
In order to study the performance of the above test procedure, we employ a

controlled experiment for derivation of empirical test size and power for various
VAR and VARMA processes. We employ Wald tests analyzed by p-values derived
both by the asymptotic distribution and by a parametric bootstrap method.
5.1 Set Up
For our study, we generated VAR(6) and vector MA(1) processes under the null

of non-causation at all horizons, and under alternatives of causation at horizons
h = 1, 2, and 3. In all cases, mx = my = mz = 1 such that m = 3, sample sizes are
restricted to T ∈ {100, 200, 300, 400, 500} and 1000 series are generated for each
test.

VAR(6) Construction and Hypotheses
For the VAR(6) process we simulate Wt =

P6
i=1 πiWt−i + t, where t denotes

an iid 3-vector with mutually independent components t = ( x,t, y,t, zt,)
0 drawn

from a standard normal distribution. The matrix coefficients πi are generated as
uniform iid random numbers from the cube [−.5, .5]3: we use π = (π1, ..., π6) only
if the resulting characteristic polynomial I3 − π1z − ... − π6z

6 has all roots outside
the unit circle, ensuring stability.
During the simulation process we impose the following restrictions (or lack,

thereof), depending upon the hypothesis to be tested:

H∞0 : πXY,i = πXZ,i = 0, i = 1...6

H1
1 : πXY,i 6= 0, i = 1...6

H2
1 : πXY,i = 0, i = 1...6, πZY,i 6= 0, πXZ,i 6= 0, i = 1...6

H3
1 : πXY,i = 0, i = 1...6, πZY,i 6= 0, i = 1...6, πXZ,i 6= 0, i = 2...6

Under H∞0 , we deduce Y 19 (X,Z)|IXZ , cf. Theorem 2.2, and therefore Y never

causes X, Y
(∞)9 X|IXZ , cf. Theorem 2.1. Under H1

1 , Y causes X at horizon h =

1. Under H2
1 , non-causation Y

19 X|IXZ , and causation Y
1→ Z

1→ X are true,

with πXZ,1 6= 0, thus Y 2→ X|IXZ is true, cf. Theorem 3.2. Finally, under H3
1 , Y

19 X|IXZ , Y
1→ Z

1→ X, πXZ,1 = 0 and πXZ,2 6= 0, thus Y (2)9 X|IXZ and Y
3→

X|IXZ are true, cf. Theorem 3.2.
VMA(1) Construction and Hypotheses

For the VMA(1) processes, we simulate Wt = θ t−1 + t by drawing iid uniform
numbers θ from the cube [−.9, .9]3, retaining only those matrices θ with character-
istic roots outside the unit circle, ensuring invertibility. We employ the following
restrictions:

H0 : θXY = θXZ = 0

H1 : θXY = 0. (6.1)

In order to deduce that nature of multiple horizon non-causation for invertible
VMA processes in VAR form, we require necessary and sufficient conditions for
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VAR noncausality in terms of VARMA coefficients. Boudjellaba et al (1992) derive
reasonably simple necessary and sufficient conditions for non-causality at horizon
h = 1 for such processes. Consider the general VARMA(p, q) process in lag form

Φ(L)W (t) = Θ(L) (1), (6.2)

where Φ(L) and Θ(L) denote the associated pth and qth-order lag m × m matrix-
polynomials

Φ(L) = Im −
Xp

i=1
φiL

i, Θ(L) = Im +
Xq

i=1
θiL

i (6.3)

It is assumed that the polynomials do not have common roots, and all roots lie
outside the unit circle. By Theorem 1 of Boudjellaba et al (1992, 1994), non-
causality from scalar Wi to scalar Wj exists if and only if

det
¡
Φi(z),Θ(j)(z)

¢
= 0, |z| < δ, (6.4)

for some δ > 0, where Φi(z) denotes the ith column of Φ(z) and Θ(j)(z) denotes
the matrix Θ(z) with the jth column removed. In the 3-vector MA(1) case with W

= (W1,W2,W3)
0 = (X,Y,Z)0, it follows that Φ(z) = Im, and Y

19 X holds if and
only if

det
¡
Φ2(z),Θ(1)(z)

¢
(6.5)

= det

 0 θ12z θ13z
1 1 + θ22z θ23z
0 θ32z 1 + θ33z


= θ13θ32z

2 − θ12z − θ12θ33z
2

= 0, |z| < δ.

This occurs for every complex |z| < δ, δ > 0, if and only if θ12 = θ13θ32 = 0.

Similarly, Y 19 Z if and only if θ32 = θ31θ12 = 0, and Z
19 X if and only if

θ13 = θ12θ23 = 0. Consult Boudjellaba et al (1992, 1994), Dufour and Tessier
(1993), and Dufour and Renault (1998) for further details on parametric conditions
of non-causation at h = 1 for VARMA processes.
From the above details and Theorem 2.1, we deduce the hypothesis of non-

causation at all horizons Y
(∞)9 X|IXZ is true if and only if θ12 = θ13θ32 = 0 and

either θ32 = θ31θ12 = 0 and/or θ13 = θ12θ23 = 0. Therefore, the VMA(1) coefficients

in (14) under H0 in fact satisfy Y
(∞)9 X|IXZ : the identity θ12 = θ13 = 0 (i.e. θXY

= θXZ = 0 ) implies Y
19 X and Z

19 X, therefore Y
(∞)9 X|IXZ .

It is interesting to point out in the 3-vector MA(1) case that either non-causation

at all horizons Y
(∞)9 X|IXZ or standard causation Y

1→ X|IXZ must be true,

similar to the bivariate VAR case. Consider if non-causation is true Y 19 X|IXZ ,
then either θ12 = θ32 = 0 and/or θ12 = θ13 = 0 must be true: in the former case Y
19 Z follows, and in the latter case Z 19 X follows. In either case, a causal chain

does not exist, and Theorem 2.1 implies Y
(∞)9 X|IXZ . Therefore, for 3-vector

MA(1) vector-processes, Y 19 X|IXZ if and only if Y
(∞)9 X|IXZ , which implies

causation lags and causal neutralization are impossible. Thus, we deduce under H1

in (6.1) that causation Y
1→ X|IXZ is true.
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For each simulated series {Wt}nt=1 a minimum AIC method is employed for VAR
order p selection, the VAR coefficients are estimated, and standard Wald tests are
implemented for the linear compound hypotheses. All tests are performed at the
5%-level.
5.2 Parametric Bootstrap
There is ample evidence in the literature, however, that standard Wald tests

in multivariate models tend to lead to over-rejection of null hypotheses. In order
to analyze the problem, we employ a parametric bootstrap method for simulating
the asymptotic p-value of each test statistic. In brief, the parametric bootstrap is
performed as follows for an arbitrary hypothesis:

i. Obtain estimated VAR coefficients, π̂ = (π̂1, ..., π̂p), where p minimizes the
AIC;

ii. Derive the test statistic, denoted Tn;
iii. Simulate J series Wt,j , j = 1...J, t = 1...n, based on the the estimated

parameters π̂ with the null hypothesis restrictions imposed. For example, a test of
Y

19 X|IXZ imposes πXY,i = 0, hence the X,Y -block π̂XY is replaced by zeros.
The series are simulated as

Wt,j =
Xp

i=1
π̂iWt−1 + t

where t is an iid 3-vector draw from a standard normal distribution.
iv. Use the double-array {Wt,j}n,Jt,j=1 to generate J test statistics Tn,j for the

hypothesis in question;
v. The approximate p-value is simply the percent frequency of the event Tn,j

> Tn.
For all tests, we set J = 1000. See Dufour (2002) for a proof of the asymptotic
validity of the parametric bootstrap.
5.3 Simulation Results
Tables 3 and 4 below contain all simulation results. Columns in each table con-

tain empirical rejection frequencies based on p-values derived from the asymptotic
chi-squared distribution, and the empirical bootstrap method [in brackets]. Tests

at horizon h = 0 are tests of noncausation at all horizons: we fail to reject Y
(∞)9

X|IXZ for some series {Wt}nt=1 when we fail to reject Y 19 X, and fail to reject

either Y 19 Z and/or Z 19 X. For tests at individual horizons h ≥ 2 we detect

causation Y
h→ X|IXZ when we reject the compound hypothesis Y

19 X, πXZ,i

= 0, i = 1...h − 1.
VAR Simulations

Consider the results for VAR processes based on p-values derived from the as-

ymptotic distribution. For processes that satisfy Y
(∞)9 X|IXZ and for the sample

size n = 500, rejection frequencies at horizons h ≥ 1 are not far from the nominal
level of 5% for tests of noncausation at all horizons: empirical sizes at h ≥ 1 ranged
from .066 to .076.
When causation occurs at horizons h ≥ 1, tests rarely suggest noncausation at

all horizons occur: evidence for noncausation at all horizons in such cases occurred
in 7.2% or fewer of simulated series for n ≥ 300, and for n = 500 in 2% or fewer of
such series.
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Moreover, when causation occurs exactly one-step ahead, rejection frequencies
at h ≥ 1 reach above 90% for sample sizes n ≥ 300. For the same sample size range
noncausation in all horizons is detected in fewer than 5% of all such series.
When a one-period causal delay exists such that Y 19 X and Y

2→ X, again
standard tests work reasonably well, generating empirical sizes at h= 1 near the 5%-
level (.064 with n = 500), and producing reasonable empirical powers at subsequent
horizons h ≥ 2 (.812 with n = 500 at h = 3).

However, when causation occurs at horizon h = 3 (i.e. Y
(2)9 X and Y

3→ X),
noticeable size distortions occur for tests at lower horizons 1 and 2. For such tests,
empirical sizes approach .20 for nominal levels of 5% and n ≥ 300. This implies we
are more likely to detect causation at low horizons when in fact true causal delays
are longer.
Bootstrapped p-values clearly provide better size approximations to the null

distribution than standard p-values. However, even the bootstrapped p-values lead
to over-rejections of the fundamental null of noncausality when non-causality occurs
at all horizons: for sample sizes under 400, rejection rates reached 10% for tests
at the 5%-level. Encouragingly, however, for sample sizes n ≥ 400, rejection rates
were very close to the nominal level.
When a causal lag exists, empirical sizes are again near the nominal level, however

empirical powers are noticeably low. For example, with a sample size of 500 and a

true causal lag of 2 periods such that Y
(2)9 X and Y

3→ X are true, the bootstrap
test detected causation at h = 3 in under 48% of simulated series.
For both asymptotic and bootstrap tests, however, empirical power diminishes

severely as the horizon of causation increases. When causation occurs at h = 1,
powers reach above 90% even for small n. However, when causation occurs at h =
3, powers drop to under 70% for the standard tests, and below 50% for bootstrap
tests.
We argue that this evidence alone portrays a far more complicated picture of

the relative merits of standard and bootstrap tests than typically argued in the
literature. Neither method generates both competitive empirical sizes and powers in
a benchmark Gaussian VAR environment in which model coefficients are randomly
generated. Which method we favor in practice depends on whether we favor a
conservative test with low power (bootstrap test), or a liberal test with excessive
probability of a Type I error for some hypotheses (conventional test).

VMA Simulations
Next, consider test results for VMA(1) processes. For series in which Y

(∞)9 X
and for small sample sizes, standard asymptotic tests produce large empirical sizes
for the fundamental tests of non-causation, in particular for tests at horizons h ≥
2. For n ≥ 400, however, erroneous detection of causality dropped to frequencies
of 5.1%-8.9% for tests of noncausation at horizons h = 1...3.
It is important to point out that for tests of noncausation at all horizons, in 95.8%

(95.9%) of all series with n = 400 (500) did tests correctly conclude noncausation
occurred at all horizons, which implies an the effective empirical size is 4.2% (4.1%)
based on this fundamental hypothesis. Bootstrap tests, by comparison, generated
empirical sizes near the nominal 5%-level for tests at n≥ 300, with extreme accuracy
at n = 500.
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When causation occurs one-period ahead (Y 1→ X), both tests work well when
judged by whether they detect causation at all, although standard tests uniformly
perform better. However, both tests struggle with tests of noncausation at all
horizons: for a large sample size n = 500, standard (bootstrap) tests incorrectly

detect Y
(∞)9 X in 36.7% (32.8%) of all series

Noticeable lags exist before either test method leads to the correct detection of
causation. In general, tests are sensitive to causation at h ≥ 2, and comparatively
weak at h = 1. For example, with n = 400 (500) standard tests correctly detect
causation one-step ahead in only 18.3% (31.5%) of all series, however causation is
detected at h = 2 in 70.1% (81.9%) of all series. It seems that a relatively large
sample size would be required in order for empirical rejection rates at h = 1 to
reach a reasonable level, in particular for the bootstrap tests.
The characteristic that causal relationships in VMA processes may not be suffi-

ciently detected using VAR models presents a clear case for the need to implement
multiple-horizon causality tests. Beyond the obvious necessity for such tests when
true causal lags exists, even when a causal lag is impossible Wald tests may not
be able to detect causation in the classic sense of a one-step ahead VAR forecast
improvement. If classic tests at h = 1 were the only tests performed in the present
setting, empirical power would be a dismal .315 (.328) for a sample size n = 500
based on the asymptotic (bootstrap) distribution. However, if we generalize the
concept of power to engross the probability of detecting causation at any horizon
at or beyond the true horizon of causality (in this case, h = 1), power reaches 82.3%
(78.9%).
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Table 3
Empirical Size and Power:VAR(6)

H∞0 : Y
(∞)9 X|IXZ H1

1 : Y
1→ X|IXZ

n h=0a h=1 h=2 h=3 n h=0 h=1 h=2 h=3
100 .955 .092b .136 .137 100 .596 .623 .833 .886

[.946] [.055]c [.063] [.047] [.535] [.377] [.395] [.465]
200 .909 .149 .201 .209 200 .133 .945 .973 .992

[.937] [.104] [.094] [.086] [.102] [.906] [.945] [.945]
300 .913 .081 .145 .162 300 .050 .967 .983 .989

[.939] [.070] [.064] [.058] [.028] [.961] [.978] [.983]
400 .885 .076 .111 .124 400 .026 .992 .994 .998

[.899] [.065] [.059] [.061] [.022] [.986] [.996] [.998]
500 .946 .066 .070 .076 500 .003 .993 .993 .999

[.941] [.061] [.061] [.054] [.001] [.989] [.992] [.994]

H2
1 : Y

19 X|IXZ , Y
2→ X|IXZ H3

1 : Y
(2)9 X|IXZ , Y

3→ X|IXZ

n h=0 h=1 h=2 h=3 n h=0 h=1 h=2 h=3
100 .569 .119 .390 .517 100 .612 .150 .284 .400

[.468] [.037] [.093] [.167] [.598] [.058] [.052] [.120]
200 .136 .098 .432 .604 200 .186 .124 .198 .466

[.090] [.062] [.244] [.364] [.188] [.066] [.058] [.220]
300 .030 .112 .540 .658 300 .071 .071 .176 .547

[.021] [.040] [.402] [.552] [.065] [.053] [.041] [.317]
400 .015 .087 .551 .777 400 .022 .108 .186 .592

[.012] [.053] [.418] [.671] [.018] [.051] [.049] [.401]
500 .003 .064 .582 .812 500 .020 .150 .177 .642

[.004] [.051] [.487] [.735] [.015] [.049] [.048] [.473]
Notes: a. Values below "h = 0" denote series frequencies for which we fail to reject H∞0 .

b. Rejection rates based on p-values derived from the chi-squared distribution.
c. Rejection rates based on p-values derived from the parametric bootstrap.

Table 4
Empirical Size and Power: VMA(1)

H0 : Y
(∞)9 X|IXZ H1 : Y

1→ X|IXZ

n h=0 h=1 h=2 h=3 n h=0 h=1 h=2 h=3
100 .964 .074 .172 .197 100 .850 .033 .392 .408

[.947] [.039] [.066] [.053] [.683] [.025] [.242] [.242]
200 .900 .108 .152 .183 200 .525 .117 .675 .652

[.892] [.097] [.108] [.083] [.375] [.118] [.609] [.567]
300 .917 .034 .076 .108 300 .467 .219 .758 .759

[.932] [.057] [.059] [.068] [.264] [.225] [.717] [.729]
400 .958 .076 .118 .132 400 .442 .183 .701 .708

[.936] [.058] [.057] [.066] [.274] [.207] [.669] [.643]
500 .959 .058 .051 .068 500 .367 .315 .819 .823

[.942] [.050] [.025] [.042] [.199] [.328] [.820] [.789]
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Appendix 3: Formal Proofs

Proof of Theorem 2.1. Consider (iv) and assume Y 1→ Z
1→ X where Z is uni-

variate. Then either Y 1→ X|IXZ or Y
19 X|IXZ . Suppose Y

19 X|IXZ : we will

prove Y
(h−1)9 X|IXZ and Y

h→ X|IXZ for some h ≥ 2.
From Lemma 2.1.2, below, for any h ≥ 2 given Y 1→ Z, if Y

(h−1)9 X|IXZ then Y
(h)9 X|IXZ if and only if c

t,1
z,t−h+1,t−h+1 = 0 with probability one for every t, where

ct,1z,t−h+1,t−h+1 denotes that unique component of the subspace Z(t − h + 1, t − h

+ 1] that enters into the orthogonal projection of Xt+1 onto IXZ(t) + Y (−∞, t].
Thus, no component of Z(t − h + 1, t− h+ 1] enters into the 1-step ahead metric

projection of Xt. However, because Z
1→ X, it must be the case that ct,1z,t−h+1,t−h+1

6= 0 for some h ≥ 2: some component of the sub-space Z(t − h + 1, t−h+1] must
enter into the 1-step ahead metric projection of Xt for some h ≥ 2. Therefore, by
Lemma 2.1.2, Y

(h−1)9 X|IXZ and ct,1z,t−h+1,t−h+1 6= 0 for some h ≥ 2 implies Y h→
X|IXZ . ¤

Lemma 2.1.1 Let Zt be scalar-valued. Denote by ct−k3,hz,t−k1,t−k2 that unique
element of the span Z(t − k1, t− k2] that enters into the projection of Xt+h onto

IXZ(t − k3) + Z(−∞, t − k3], k3 ≤ k2 ≤ k1. For any h ≥ 2, if Y
(h−1)9 X|IXZ

and Y
1→ Z, then Y

(h)9 X|IXZ if and only if ct,h−1z,t,t = 0 with probability one for
every t.

Lemma 2.1.2 Let Zt be scalar-valued. For any h ≥ 1, if Y (h)9 X|IXZ and

Y
1→ Z then Y

(h+1)9 X|IXZ if and only if c
t,1
z,t−h+1,t−h+1 = 0 with probability one

for every t.

Proof of Lemma 2.1.1. Assume Y
(h−1)9 X|IXZ for some h ≥ 2. By iterated

projections for Hilbert space projection operators

P (Xt+h|IXZ(t) + Y (−∞, t]) (6.6)

= P (P (Xt+h|IXZ(t+ 1) + Y (−∞, t+ 1]) |IXZ(t) + Y (−∞, t])

= P (P (Xt+h|IXZ(t+ 1)) |IXZ(t) + Y (−∞, t]) .

Notice IXZ(t + 1) decomposes into

IXZ(t+ 1) = H +X(−∞, t+ 1] + Z(−∞, t+ 1] (6.7)

= H +X(−∞, t] +X(t+ 1, t+ 1] + Z(−∞, t] + Z(t+ 1, t+ 1]

= IXZ(t) +X(t+ 1, t+ 1] + Z(t+ 1, t+ 1].

Hence, we may write P (Xt+h|IXZ(t + 1)) as

P (Xt+h|IXZ(t+ 1)) = at+1,hxz,t + bt+1,hx,t+1,t+1 + ct+1,hz,t+1,t+1, (6.8)

where

at+1,hxz,t ∈ IXZ(t), bt+1,hx,t+1,t+1 ∈ X(t+ 1, t+ 1], ct+1,hz,t+1,t+1 ∈ Z(t+ 1, t+ 1]. (6.9)
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We obtain from projection operator linearity, the assumption Y
19 X|IXZ and

bt+1,hx,t+1,t+1 ∈ X(t + 1, t + 1],

P (Xt+h|IXZ(t) + Y (−∞, t]) (6.10)

= P (P (Xt+h|IXZ(t+ 1)) |IXZ(t) + Y (−∞, t])

= P
³
at+1,hxz,t + bt+1,hx,t+1,t+1 + ct+1,hz,t+1,t+1|IXZ(t) + Y (−∞, t]

´
= at+1,hxz,t + P

³
bt+1,hx,t+1,t+1|IXZ(t) + Y (−∞, t]

´
+P

³
ct+1,hz,t+1,t+1|IXZ(t) + Y (−∞, t]

´
= at+1,hxz,t + P

³
bt+1,hx,t+1,t+1|IXZ(t)

´
+ P

³
ct+1,hz,t+1,t+1|IXZ(t) + Y (−∞, t]

´
.

Because Y 1→ Z, ct+1,hz,t+1,t+1 ∈ Z(t + 1, t + 1], and Z(t + 1, t + 1] is a scalar-valued

Hilbert space, we deduce P (ct+1,hz,t+1,t+1|IXZ(t) + Y (−∞, t]) = P (ct+1,hz,t+1,t+1|IXZ(t))

with probability one if and only if ct+1,hz,t+1,t+1 = 0 with probability one for all t. If Zt
were multivariate, then elements of the single-period span Z(t + 1, t + 1] contain
linear combinations of the multiple Zt,i-components, hence ct+1,hz,t+1,t+1 6= 0 would

be possible while also P (ct+1,hz,t+1,t+1|IXZ(t) + Y (−∞, t]) = P (ct+1,hz,t+1,t+1|IXZ(t) = 0
due to linearity of the projection operator and causal neutralization. Therefore if

Y
(h−1)9 X|IXZ , Y

1→ Z, and Z is scalar-valued, then Y
(h)9 X|IXZ if and only if

ct+1,hz,t+1,t+1 = 0 with probability one for every t. Because t and h are arbitrary, we

conclude Y
(h)9 X|IXZ if and only if c

t,h−1
z,t,t = 0 with probability one for every t. ¤

Proof of Lemma 2.1.2. We prove the claim by induction. Let Y 19 X|IXZ . By

Lemma 2.1.1, Y
(2)9 X|IXZ if and only if ct,1z,t,t = 0 with probability one for every

t. This proves the claim for h = 1.

Now, for any h ≥ 2 assume Y (h)9 X|IXZ if and only if c
t,1
z,t−k+2,t−k+2 = 0 with

probability one for every t and each k = 2...h. We will prove if Y
(h+1)9 X|IXZ if

and only if ct,1z,t−h+1,t−h+1 = 0.

By iterated projections, the assumption Y
19 X|IXZ , and the decomposition

IXZ(t+ h) = IXZ(t) +X(t+ 1, t+ h] + Z(t+ 1, t+ h], (6.11)

we obtain

P (Xt+h+1|IXZ(t) + Y (−∞, t]) (6.12)

P (P (Xt+h+1|IXZ(t+ h) + Y (−∞, t+ h]) |IXZ(t) + Y (−∞, t])

= P (P (Xt+h+1|IXZ(t+ h)) |IXZ(t) + Y (−∞, t])

= P
³
at+h,h+1xz,t + bt+h,h+1x,t+1,t+h + ct+h,h+1z,t+1,t+h|IXZ(t) + Y (−∞, t]

´
= at+h,h+1xz,t + P

³
bt+h,h+1x,t+1,t+h|IXZ(t) + Y (−∞, t]

´
+P

³
ct+h,h+1z,t+1,t+h|IXZ(t) + Y (−∞, t]

´
.
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By Y
(h)9 X|IXZ , b

t+h,h+1
x,t+1,t+h ∈ X(t + 1, t + h] and projection operator linearity, we

deduce

P
³
bt+h,h+1x,t+1,t+h|IXZ(t) + Y (−∞, t]

´
= P

³
bt+h,h+1x,t+1,t+h|IXZ(t)

´
. (6.13)

Moreover, the element ct+h,h+1z,t+1,t+h denotes that unique component of the subspace
Z(t + 1, t + h] that enters into the orthogonal projection of Xt+h+1 onto IXZ(t +
h) + Y (−∞, t + h]. Because Z(t + 1, t + h] decomposes into

Z(t+ 1, t+ h] = Z(t+ 1, t+ 1] + ...+ Z(t+ h, t+ h] (6.14)

we deduce ct+h,h+1z,t+1,t+h satisfies for every t

ct+h,h+1z,t+1,t+h = ct+h,h+1z,t+1,t+1 + ...+ ct+h,h+1z,t+h,t+h, (6.15)

hence, because t and h are arbitrary,

ct,1z,t−h+1,t = ct,1z,t−h+1,t−h+1 + ...+ ct,1z,t,t. (6.16)

By the induction assumption ct,1z,t−k+2,t−k+2 = 0 (hence ct+h,1z,t+h−k+2,t+h−k+2 = 0)
with probability one for every t and each k = 2...h, thus

ct+h,h+1z,t+1,t+h = ct+h,h+1z,t+1,t+1. (6.17)

This implies

P (Xt+h+1|IXZ(t) + Y (−∞, t]) (6.18)

= at+h,h+1xz,t + P
³
bt+h,h+1x,t+1,t+h|IXZ(t) + Y (−∞, t]

´
+ P

³
ct+h,h+1z,t,t |IXZ(t) + Y (−∞, t]

´
= at+h,h+1xz,t + P

³
bt+h,h+1x,t+1,t+h|IXZ(t)

´
+ P

³
ct+h,h+1z,t+1,t+1|IXZ(t) + Y (−∞, t]

´
.

We deduce if Y
(h)9 X|IXZ then Y

(h+1)9 X|IXZ if and only if P (ct+h,h+1z,t+1,t+1|IXZ(t)

+ Y (−∞, t]) = P (ct+h,h+1z,t+1,t+1|IXZ(t)]) for all t. Using the logic from the line of proof

of Lemma 2.1.1, because Z(t + 1, t + 1] is a scalar-valued Hilbert space, ct+h,h+1z,t+1,t+1

∈ Z(t + 1, t + 1], and Y
1→ Z, we deduce Y

(h+1)9 X|IXZ if and only if c
t+h,h+1
z,t+1,t+1

= 0 with probability one for all t, or ct,1z,t−h+1,t−h+1 = 0 with probability one for all
t. ¤

Proof of Lemma 3.1. Recall we assume Y
(h)9 X|IXZ and Y

1→ Z|IXZ . From

(3.5), and the assumption mz = 1, we know Y
(h+1)9 X|IXZ if and only if π

(h)
XZ,1 =

0. Therefore, if Y 19 X|IXZ , then Y
(2)9 X|IXZ if and only if πXZ,1 = 0.

Now, from (2.3)) we deduce

π
(h)
XZ,1 = π

(h−1)
XZ,2 + π

(h−1)
XX,1πXZ,1 + π

(h−1)
XY,1 πY Z,1 + π

(h−1)
XZ,1 πZZ,1. (6.19)

For h = 2, Y
(2)9 X|IXZ implies π

(1)
XZ,1 = 0 from above, hence

π
(2)
XZ,1 = πXZ,2 + πXX,1πXZ,1 + πXY,1πY Z,1 + πXZ,1πZZ,1 (6.20)

= πXZ,2 + πXX,1 × 0 + 0× πY Z,1 + 0× πZZ,1

= πXZ,2.
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For h = 3, Y
(3)9 X|IXZ implies π

(2)
XZ,1 = π

(1)
XZ,1 = 0 from above, hence

π
(3)
XZ,1 = π

(2)
XZ,2 + π

(2)
XX,1πXZ,1 + π

(2)
XY,1πY Z,1 + π

(2)
XZ,1πZZ,1 (6.21)

= π
(2)
XZ,2 + π

(2)
XX,1 × 0 + 0× πY Z,1 + 0× πZZ,1

= π
(2)
XZ,2,

where

π
(2)
XZ,2 = πXZ,3 + πXX,1πXZ,2 + πXY,1πY Z,2 + πXZ,1πZZ,2 (6.22)

= πXZ,3 + πXX,1πXZ,2 + 0× πY Z,2 + 0× πZZ,2

= πXZ,3 + πXX,1πXZ,2.

Thus,

π
(3)
XZ,1 = π

(2)
XZ,2 = πXZ,3 + πXX,1πXZ,2. (6.23)

Recursively we deduce for h ≥ 2, Y (h)9 X|IXZ implies

π
(h)
XZ,1 = πXZ,h +

Xh−1
i=1

π
(h−i)
XX,1πXZ,i. (6.24)

Notice in (6.24) we include the term π
(h−1)
XX,1πXZ,1 = 0 which follows from above: Y

(h)9 X|IXZ for h ≥ 2 implies Y (2)9 X|IXZ , hence πXZ,1 = 0. ¤

Proof of Theorem 3.2. i. Consider h = 2 and assume Y
19 X|IXZ . By the

assumptions Y 19 X|IXZ and Y
1→ Z|IXZ , and mz = 1, from (3.5) we deduce Y

(2)9 X|IXZ if and only if πXZ,1 = 0.

For the remainder of the proof, assume h > 2. Let Y
(h)9 X|IXZ . From Lemma

3.1, it follows that π(k)XZ,1 has the representation π
(2)
XZ,1 = πXZ,2, and for k > 2

π
(k)
XZ,1 = πXZ,k +

Xk−1
i=1

³
π
(k−i)
XX,1πXZ,i

´
. (6.25)

Moreover, Y
(h)9 X|IXZ implies by definition Y

k9 X|IXZ , k = 1...h, and we deduce
from (3.5) that π(k)XZ,1 = 0, k = 1...h − 1. Using the zero identities π(k)XZ,1 = 0,
k = 1...h − 1, we deduce from Lemma 3.1, cf. formula (3.6),

0 = π
(1)
XZ,1 = πXZ,1 (6.26)

0 = π
(2)
XZ,1 = πXZ,2 +

³
π
(1)
XX,1πXZ,1

´
= πXZ,2

0 = π
(3)
XZ,1 = πXZ,3 +

³
π
(2)
XX,1πXZ,1

´
+
³
π
(1)
XX,1πXZ,2

´
= πXZ,3 +

³
π
(2)
XX,1 × 0

´
+
³
π
(1)
XX,1 × 0

´
= πXZ,3

...

0 = π
(h−1)
XZ,1

= πXZ,h−1 +
Xh−2

i=1

³
π
(h−1−i)
XX,1 × 0

´
= πXZ,h−1,

which gives πXZ,k = 0, k = 1...h − 1. This proves the first direction.
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Conversely, let Y 19 X|IXZ and πXZ,i = 0, i = 1...h − 1. From equation (6.19)
in the line of proof of Lemma 3.1, we have

π
(k)
XZ,1 = π

(k−1)
XZ,2 +

³
π
(k−1)
XX,1πXZ,1 + π

(k−1)
XY,1 πY Z,1 + π

(k−1)
XZ,1 πZZ,1

´
. (6.27)

If k = 1, then trivially π
(1)
XZ,1 = πXZ,1 = 0, and by (3.5) Y 29 X|IXZ follows.

Thus, along with Y
19 X|IXZ by assumption, we obtain Y

(2)9 X|IXZ . However,

by Theorem 1 and Lemma 3.1, Y
(2)9 X|IXZ implies π

(k)
XY,j = 0, k = 1, 2, j ≥ 1 and

π
(2)
XZ,1 = πXZ,2 +

X2−1
i=1

³
π
(2−i)
XX,1πXZ,i

´
= πXZ,2 = 0. (6.28)

Thus, by (3.5), Y 39 X|IXZ follows immediately, and in conjunction with Y
(2)9

X|IXZ , we deduce Y
(3)9 X|IXZ . Recursively, for each k = 1...h − 1 that we have

Y
(k)9 X|IXZ , from Lemma 3.1 we deduce

π
(k)
XZ,1 = πXZ,k +

Xk−1
i=1

³
π
(k−i)
XX,1πXZ,i

´
, (6.29)

which reduces to

π
(k)
XZ,1 = πXZ,k +

Xk−1
i=2

³
π
(k−i)
XX,1πXZ,i

´
(6.30)

= 0 +
Xk−1

i=1

³
π
(k−i)
XX,1 × 0

´
= 0.

By (3.5) and π(k)XZ,1 = 0, we deduce Y
k+19 X|IXZ for k = 1...h−1. Combined with

the assumption Y
19 X|IXZ , it follows that Y

(h)9 X|IXZ . This proves claim (i).

ii. The result is a direct consequence of claim (i): Y
(h+1)9 X|IXZ if and only if

Y
19 X|IXZ and πXZ,i = 0, i = 1...h . Thus, given Y

(h)9 X|IXZ , we have πXZ,i =

0, i = 1...h − 1, hence Y (h+1)9 X|IXZ follows if and only if πXZ,h = 0. ¤

Proof of Lemma 3.3. From (2.1), due to error orthogonality t⊥W (−∞, t − 1]
we have

P (Xt+h|IXZ + Y (−∞, t]) =
X∞

k=1
π
(h)
XX,kXt+1−k (6.31)

+
X∞

k=1
π
(h)
XY,kYt+1−k +

X∞
k=1

π
(h)
XZ,kZt+1−k.
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Projecting both sides onto the subspace IXZ1 + Y (−∞, t] ⊆ IXZ + Y (−∞, t], and
invoking iterated projections and projection operator linearity, we obtain

P (P (Xt+h|IXZ + Y (−∞, t]) |IXZ1 + Y (−∞, t]) (6.32)

= P (Xt+h|IXZ1 + Y (−∞, t])

=
X∞

i=1
π
(h)
XX,iXt+1−i +

X∞
i=1

π
(h)
XY,iYt+1−i

+
X∞

i=1
π
(h)
XZ,iP (Zt+1−i|IXZ1 + Y (−∞, t])

=
X∞

i=1
π
(h)
XX,iXt+1−i +

X∞
i=1

π
(h)
XY,iYt+1−i +

X∞
i=1

π
(h)
XZ1,i

Z1,t+1−i

+
X∞

i=1
π
(h)
XZ2,i

P (Z2,t+1−i|IXZ1 + Y (−∞, t])

=
X∞

i=1
π
(h)
XX,iXt+1−i +

X∞
i=1

π
(h)
XY,iYt+1−i +

X∞
i=1

π
(h)
XZ1,i

Z1,t+1−i

+
X∞

i=1
π
(h)
XZ2,i

hX∞
k=1

βj,t+1−iZ2X,k
Xt+1−k

i
+
X∞

i=1
π
(h)
XZ2,i

hX∞
k=1

βj,t+1−iZ2Y,k
Yt+1−k +

X∞
k=1

βj,t+1−iZ2Z1,k
Z1,t+1−k

i
=

X∞
i=1

π
(h)
XX,iXt+1−i +

X∞
i=1

π
(h)
XY,iYt+1−i +

X∞
i=1

π
(h)
XZ1,i

Z1,t+1−i

+
X∞

k=1
Xt+1−k

³X∞
i=1

π
(h)
XZj ,i

βj,1−iZ2X,k

´
+
X∞

k=1
Yt+1−k

³X∞
i=1

π
(h)
XZj ,i

βj,1−iZ2Y,k

´
+
X∞

k=1
Z1,t+1−k

³X∞
i=1

π
(h)
XZj ,i

βj,1−iZ2Z1,k

´
=

X∞
k=1

Xt+1−k
³
π
(h)
XX,k +

X∞
i=1

π
(h)
XZj ,i

βj,1−iZ2X,k

´
+
X∞

i=k
Yt+1−k

³
π
(h)
XY,k +

X∞
i=1

π
(h)
XZj ,i

βj,1−iZ2Y,k

´
+
X∞

i=k
Z1,t+1−k

³
π
(h)
XZ1,k

+
X∞

i=1
π
(h)
XZj ,i

βj,1−iZ2Z1,k

´
=

X∞
i=k

δ
(h)
XX,kXt+1−k +

X∞
k=1

δ
(h)
XY,kYt+1−k +

X∞
k=1

δ
(h)
XZ1,k

Z1,t+1−k

hence

P (Xt+h|IXZ1 + Y (−∞, t]) =
X∞

k=1
δ
(h)
XX,kXt+1−k (6.33)

+
X∞

k=1
δ
(h)
XY,kYt+1−k +

X∞
k=1

δ
(h)
XZ1,k

Z1,t+1−k

where
δ
(h)
XY,k ≡ π

(h)
XY,k +

X∞
i=1

π
(h)
XZ2,i

β1−iZ2Y,k
, (6.34)

and β1−iZ2Y,k
denotes the Y -specific coefficients in the projection of each vector

Z2,t+1−i onto IXZ1 + Y (−∞, t], i ≥ 1. ¤

Proof of Theorem 3.4. i. Let Z2
19 X|IXZ1 . Then πXZ2,j = 0, ∀j ≥ 1, hence

from Lemma 3.3, cf. (3.8), we obtain δXY,j = πXY,j . Therefore δXY,j = 0 if and

only if πXY,j = 0, which implies Y
19 X|IXZ1 if and only if Y

19 X|IXZ .

ii. Let (Y,Z2)
19 X|IXZ1 and Y

(h)9 X|IXZ1 for any h ≥ 1, and recall δ(h)j denote
the VAR coefficients in the projection of Wt+h onto IXZ1(t) + Y (−∞, t]. By the
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assumption Z2
19 X|IXZ1 , we just proved Y

(h)9 X|IXZ1 if and only if Y
(h)9 X|IXZ

for h = 1. Therefore let h ≥ 2. By Lemma 3.1 and Theorem 3.2, Y
(h)9 X|IXZ1

implies δ(k)XZ1,1
= δXZ1,k = 0, k = 1...h − 1, and using Lemma 3.3 for δ(h)XZ1,j

and

δ
(k)
XZ1,1

we deduce

δ
(h)
XY,j ≡ π

(h)
XY,j +

X∞
i=1

π
(h)
XZ2,i

β1−iZ2Y,j
(6.35)

δ
(k)
XZ1,1

= δXZ1,k = πXZ1,k +
X∞

i=1
πXZ2,iβ

1−i
Z2Z1,k

= 0.

The assumption Z2
19 X|IXZ1 implies πXZ2,i = 0, i ≥ 1, hence πXY,j = δXY,j

= 0 ∀j ≥ 1, giving Y 19 X|IXZ , cf. Theorem 2.2. Additionally, the zeros δXZ1,k

= 0, k = 1...h − 1, imply δXZ1,k = πXZ1,k = 0, k = 1...h − 1, hence πXZ,1 =

[πXZ1,1, πXZ2,1] = 0. From (3.5) we deduce Y
(2)9 X|IXZ given πXZ,1πZY,j = 0.

Similarly, using (2.3) non-causation Y
(2)9 X|IXZ and πXZ,1 = 0 imply

π
(2)
XZ,1 = πXZ,2 + πXX,1πXZ,1 + πXY,1πY Z,1 + πXZ,1πZZ,1 (6.36)

= πXZ,2 + πXX,1 × 0 + 0× πY Z,1 + 0× πZZ,1

= πXZ,2.

If h ≥ 3, then non-causation Z2
19 X|IXZ1 and the identity δXZ1,k = πXZ1,k = 0,

k = 1...h − 1 again imply πXZ,2 = 0, thus π(2)XZ,1πZY,j = 0 for all j, giving Y
(3)9

X|IXZ , cf. (3.5). Repeating this logic,

π
(3)
XZ,1 = π

(2)
XZ,2 + π

(2)
XX,1πXZ,1 + π

(2)
XY,1πY Z,1 + π

(2)
XZ,1πZZ,1 (6.37)

= π
(2)
XZ,2 + π

(2)
XX,1 × 0 + 0× πY Z,1 + 0× πZZ,1

= π
(2)
XZ,2

= πXZ,3 + πXX,1πXZ,2 + πXY,1πY Z,2 + πXZ,1πZZ,2

= πXZ,3 + πXX,1 × 0 + 0× πY Z,2 + 0× πZZ,2

= πXZ,3,

and so on. Recursively we deduce (Y,Z2)
19 X|IXZ1 and Y

(h)9 X|IXZ1 imply
δXZ1,k = πXZ1,k = 0, k = 1...h − 1, πXZ2,i = 0, ∀i ≥ 1, and πXZ,k = π

(k)
XZ,1, k =

1...h − 1, hence π(k)XZ,1 = 0, k = 1...h − 1, giving Y
(h)9 X|IXZ .

iii. and iv. For any h ≥ 1, if (Y,Z2)
19 X|IXZ1 , Y

(h)9 X|IXZ1 and Y
h+1→

X|IXZ1 , then Y
(h)9 X|IXZ also holds by (ii). Moreover, by Theorem 2.1 causation

Y
h+1→ X|IXZ1 implies a causal chain Y

1→ Z1
1→ X must exist. Using the above

logic, we recursively deduce π(h)XZ,1 = πXZ,h. Because Z2
19 X|IXZ1 , Y

(h)9 X|IXZ1 ,

and Y
h+1→ X|IXZ1 , by Theorems 2.2 and 3.2 it must be the case that πXZ2,i =

0,∀i ≥ 1, XZ1,h 6= 0, hence

π
(h)
XZ,1 = πXZ,h = [πXZ1,h, 0]. (6.38)
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Therefore, by (3.5), Y
(h+1)9 X|IXZ if and only if

π
(h)
XZ,1πZY,j = πXZ,hπZY,j = πXZ1,hπZ1Y,j = 0 (6.39)

for all j ≥ 1. Because Y 1→ Z1|IXZ1 it must be the case that πZ1Y,j 6= 0 for at

least one j, therefore Y
(h+1)9 X|IXZ if and only if πXZ1,h = 0. Because πXZ1,h 6=

0 and Y
(h)9 X|IXZ , we conclude Y

h+1→ X|IXZ . ¤

Proof of Lemma 4.1. We reject Y 19 X if we reject Tests 0.1- 0.2 (Y
(∞)9 X)

and Test 1.0 (Y 19 X) :

P
³
rej. H(1)

0 |H(1)
0 is true

´
(6.40)

= P
³
rej. 0.1 ∩ rej. 0.1 ∩ rej. 1.0|H(1)

0 is true
´

≤ P
³
rej. 1.0|H(1)

0 is true
´
= α1.0.

We reject Y
(2)9 X if we reject Tests 0.1- 0.2 (Y

(∞)9 X), and either reject Test

1.0 (Y 19 X), or fail to reject Test 1.0 and reject Tests 1.1 and 1.2 (Y 19 Z and Z
19 X) and Test 2.0 (Y 19 X, πXZ,1 = 0). We have

P
³
rej. H(2)

0 |H(2)
0 is true

´
(6.41)

= P
³
(rej0.1 ∩ rej0.2) ∩ (rej1.0 ∪ [fail1.0 ∩ rej1.1 ∩ rej1.2 ∩ rej2.0]) |H(1)

0 is true
´
.

There are four cases to consider: Y 19 Z
1→ X, Y 1→ Z

19 X, Y 19 Z
19 X and

Y
1→ Z

1→ X. Under H(2)
0 , if Y 19 Z

1→ X then Y
19 (X,Z) is true, (Y,Z) 19 X

is false, and Test 2.0 represents only a sufficient condition for non-causation Y
(2)9

X. Hence

P
³
rej. H(2)

0 |H(2)
0 is true

´
(6.42)

= P
³
(rej0.1 ∩ rej0.2) ∩ (rej1.0 ∪ [fail1.0 ∩ rej1.1 ∩ rej1.2 ∩ rej2.0]) |H(1)

0 is true
´

≤ P
³
rej0.1 ∩ (rej1.0 ∪ [fail1.0 ∩ rej1.1 ∩ rej1.2 ∩ rej2.0]) |H(1)

0 is true
´

≤ min
n
α0.1, P

³
rej1.0 ∪ [fail1.0 ∩ rej1.1 ∩ rej1.2 ∩ rej2.0] |H(1)

0 is true
´o

≤ min
n
α0.1, α1.0 + P

³
(rej1.1 ∩ rej1.2 ∩ rej2.0) |H(1)

0 is true
´o

≤ min {α0.1, α1.0 + α1.1}

If Y 1→ Z
19 X, then Y

19 (X,Z) is false, (Y,Z) 19 X is true, and Test 2.0

represents a valid necessary and sufficient condition for non-causation Y
(2)9 X,
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hence

P
³
rej. H(2)

0 |H(2)
0 is true

´
(6.43)

= P
³
(rej0.1 ∩ rej0.2) ∩ (rej1.0 ∪ [fail1.0 ∩ rej1.1 ∩ rej1.2 ∩ rej2.0]) |H(1)

0 is true
´

≤ P
³
rej0.2 ∩ (rej1.0 ∪ [fail1.0 ∩ rej1.1 ∩ rej1.2 ∩ rej2.0]) |H(1)

0 is true
´

≤ min
n
α0.2, α1.0 + P

³
rej1.1 ∩ rej1.2 ∩ rej2.0|H(1)

0 is true
´o

≤ min[α0.2, α1.0 +min {α1.2, α2.0}]
If both Y

19 Z
19 X, then both Y

19 (X,Z) and (Y,Z) 19 X are true, and Test
2.0 does not present a necessary condition, and

P
³
rej. H(2)

0 |H(2)
0 is true

´
(6.44)

= P
³
(rej0.1 ∩ rej0.2) ∩ (rej1.0 ∪ [fail1.0 ∩ rej1.1 ∩ rej1.2 ∩ rej2.0]) |H(1)

0 is true
´

≤ min[α0.1, α0.2, α1.0 +min{α1.1, α1.2}]
Finally, if Y 1→ Z

1→ X then both Y
19 (X,Z) and (Y,Z) 19 X are false, and

P
³
rej. H(2)

0 |H(2)
0 is true

´
(6.45)

= P
³
(rej0.1 ∩ rej0.2) ∩ (rej1.0 ∪ [fail1.0 ∩ rej1.1 ∩ rej1.2 ∩ rej2.0]) |H(1)

0 is true
´

≤ α1.0 + α2.0.

Repeating the above for each H
(h)
0 , h ≥ 2, gives the case-specific size bounds. ¤
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