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1. Introduction 

Seventy years have passed since Wright’s (1936) pioneering study, yet in all that time the empiri-

cal study of organizational learning curves has experienced remarkably little technical change. 

Wright observed that the unit labor requirement in airframe manufacturing declined at a con-

stant rate with each doubling of cumulative output. This phenomenon, consistent with a loglinear 

relationship between productivity and cumulative output, has subsequently been found to apply 

in numerous settings, although reported rates of learning vary widely across industries and across 

firms within industries (Dutton and Thomas 1994, Yelle 1979).  

Among the few noteworthy innovations in the study of learning curves has been the introduction 

of the notion of organizational forgetting. Several researchers (Argote, Beckman and Epple 1990, 

Argote, at al. 1997, Benkard 2000, Darr, Argote and Epple 1995, Epple, Argote and Devadas 

1991, Epple, Argote and Murphy 1995) have noted that observed costs may actually increase dur-

ing certain periods of a product lifecycle. In a neat appeal to symmetry with the literal interpreta-

tion of the learning curve, these researchers have argued that reversals in productivity can be at-

tributed to organizational forgetting.1  

There is considerable evidence that interruptions to production may be associated with organiza-

tional knowledge loss (e.g., Hirsch 1956, Baloff 1970). But the more recent studies have made the 

rather stronger claim that organizational forgetting occurs even under conditions of continuous 

production.2 The evidence, drawn from a diverse set of industries, suggests that knowledge depre-

ciation can be economically significant, although it varies widely across cases. Among pizza fran-

chises, for example, Darr, Argote and Epple found that knowledge depreciates at the astonishing 

rate of 17 percent per week, implying that “roughly one half of the stock of knowledge at the be-

ginning of the month would remain at the end of the month.” In wartime construction of Liberty 

cargo vessels, Argote, Beckman and Epple report that knowledge depreciated at the rate of 25 

                                            

1. There is a larger, and older, literature on individual forgetting (e.g., Ebbinghaus 1885, Finkenbinder 1913, 

Thorndike 1914, McGeoch 1932). Some papers in this area (e.g., Nembhard 2001, Nembhard and Uzumeri 

2000a, 2000b) have studied individual forgetting in commercial organizations. 

2. A parallel claim does not exist for individual forgetting. In fact, McGeoch (1932:357) wondered “if there 

are cases of forgetting which occur during use.” The only examples he could come up with were a vague allu-

sion to forgetting “sexual perversions” and typists forgetting to make errors (i.e. learning). 
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percent per month. Benkard’s (2000) study of aircraft manufacturing by Lockheed generated an 

annual rate of depreciation of about 40 percent, or about 3 percent per month.  

Although numerous explanations have been given for why organizations appear to forget in the 

face of interruptions to production (e.g., Anderlohr 1969), few have been given for continuous 

depreciation of knowledge. One – that technological change makes past experience increasingly 

irrelevant – is perhaps a misnomer.3 A second explanation is that organizations often fail to re-

cord experiences because of inadequately-designed organizational memory systems (Landry 1999). 

A third is that tacit knowledge embodied in employees is lost to labor turnover. Only the third 

explanation has been subject to direct testing, and the evidence is a little thin. In wartime ship-

building, Argote, Beckman and Epple (1990) found that labor turnover rates averaging 10 percent 

per month did not appear to affect productivity. Argote, at al. (1997) find a u-shaped relationship 

between productivity and turnover in an American truck plant. However, Argote (1999) has 

noted that the rank order of knowledge depreciation rates in several studies matches the rank 

order of labor turnover rates. 

Having accepted the evidence along with the few explanations on offer, many authors have drawn 

attention to the consequences of organizational forgetting for firm profitability and some have 

proposed strategies to help firms retain their hard-won knowledge (e.g., Belason 2000, Cross and 

Baird 2000, Kransdorrf 1997). Perhaps just to be contrary, Peters (1999) has gone so far as to 

argue that forgetting is more valuable than learning and has proposed methods by which firms 

can increase the amount they forget. More considered arguments along the same lines can be 

found in Huber (1991), and Walsh and Ungson (1991). Yet other research has shown how forget-

ting undermines attempts to institute flexible production schedules and just-in-time manufactur-

ing processes (Smunt 1987). Interest is now turning toward the broader consequences of organiza-

tional forgetting. Benkard (2000), for example, has called for new theoretical efforts to explain its 

strategic implications. 

In view of this broad interest, this paper offers another look at a familiar case study, the Liberty 

shipbuilding program of World War II. The episode has long been a classic case study of learning 

(Searle 1945, Rapping 1965, Lucas 1993, Thompson 2001, Thornton and Thompson 2001) and it 

is also a seminal case study of forgetting (Argote, Beckman and Epple 1990). The paper exploits 

recently discovered data on unit labor requirements (ULRs), collected by the author from primary 

                                            

3. Productivity losses associated with changes in technology are usually interpreted as incomplete knowledge 

spillovers (e.g. Irwin and Klenow 1994). 
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sources at the National Archives, to produce new estimates of the rate of forgetting. The data 

were originally collected by auditors because cost-plus contracts paid out on individual ships de-

manded accurate and contemporaneous records of labor utilization at the individual product level. 

The quality of the data in this study is therefore comparable to those used in Benkard’s (2000) 

analysis of aircraft manufacturing.  

The unusually rich data make it possible to address two possible pitfalls in estimating forgetting 

rates that I think have not received sufficient attention to date. The first of these concerns prob-

lems of aggregation bias induced by unobserved changes in the product mix that can complicate 

inference about learning and forgetting from more aggregate data than those used here. The sec-

ond concerns the relationship that can exist between assumptions about the nature of learning 

and inferences about the rate of forgetting. In particular, if learning is bounded, the dominant 

loglinear specification can produce high imputed rates of forgetting even when none exists. These 

issues are discussed in Sections 2 and 3. 

The main empirical results are reported in Section 4. A loglinear specification for learning with no 

attempt made to control for the product mix returns a rate of forgetting of 8.4 percent per 

month, about one-third of the rate reported in Argote, Beckman and Epple (1990). Accounting 

for product-mix changes reduces the estimate by half, to 4.2 percent. Somewhat surprisingly, re-

placing the loglinear specification with either of two bounded learning models has little effect on 

the results. Absent controls for changes in the product mix, the bounded learning models return 

rates of forgetting of 8.7 and 5.8 percent per month. In both cases, accounting for the product 

mix reduces these estimates significantly, to 5.7 percent and 3.6 percent respectively, rates very 

close to those reported in Benkard (2000). The addition of controls for labor turnover also yields 

surprising results. When added in the usual way as a level effect, turnover rates are found to be 

positively correlated with productivity, while the estimated monthly rate of forgetting declines 

further to between −1.4 and +2.0 percent. An alternative specification, in which the rate of for-

getting is a function of labor turnover rather than time also produces no evidence of organiza-

tional forgetting.  

Section 5 concludes. In this case, changes in the specification of the learning curve had little effect 

on inferences about forgetting, although there is no reason to expect this finding to hold in other 

applications. In contrast, adequate controls for the product mix appeared to matter, and using 

them yielded modest rates of organizational forgetting, at least relative to most previous findings. 

Attempts to relate forgetting to labor turnover were unsuccessful. To the contrary, the inclusion 

of labor turnover data eliminates entirely any evidence of organizational forgetting. Although 



   

 4

these findings are robust across three specifications for learning, the concluding section includes a 

caveat. A major motivation for incorporating organizational forgetting into our learning models is 

to improve our ability to track the data. While it is certainly true that the incorporation of for-

getting achieves this aim, it turns out that a wide range of rates of forgetting does almost as well 

as any other in terms of model fit.  

2. Aggregation and the Product Mix 

A challenge in measuring learning and forgetting rates with firm- or plant-level data is that at 

this level of aggregation inferences from output levels can easily confound within−product varia-

tions in productivity with changes in a firm's product mix.4 Even minor product changes, unob-

servable to the econometrician, can induce significant declines in measured productivity as a firm 

tries to incorporate the changes into its production system. It is also typical for line speed to de-

cline as the firm tools up to accommodate the new design. It then follows that design changes 

induce a negative correlation between line speed and productivity, and this can lead to an infer-

ence of organizational forgetting in the standard formulation.  

The consequences of changes in the product mix are well-illustrated by two episodes from the 

Liberty ship program. Both episodes are more easily understood with some background on his-

torical data. The standard data source for the Liberty ship program is Fischer (1949), which 

turns out to have some important limitations. To produce yard output data from Fischer's tabu-

lations, it is necessary to combine a table listing, for each yard, monthly output of Liberty ships 

per way (building berth) with a table summarizing the number of ways in the yard. Labor inputs 

are obtained as the product of another two tables, one giving the average number of employees at 

the yard in each month, the other the average hours worked per week.5 These are the data used 

                                            

4. Of course, this is not a new concern. For example, Smunt (1987), and McCreery and Krajewski (1999), 

have used simulation experiments to draw attention to the effects of changing product mixes on learning 

performance.  

5. There are also some minor complications. For example, the average hours worked refers to wage employ-

ees and not salaried employees; the number of workers is from a survey taken on the 15th of each month for 

most of the war but on the 30th of each month for some observations; the number of ways refers to the num-

ber authorized, not the number fully equipped and in operation. For an extensive treatment of capital meas-

urement problems in wartime shipbuilding, see Thompson (2001). 
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in Rapping (1965) and Argote, Beckman and Epple (1990), although Rapping aggregated to an-

nual data. 

Output per unit of labor inferred from these data mislead in two ways. First, the output data 

include modifications to the standard dry cargo vessel – tankers, colliers, aircraft transporters, 

hospital ships, passenger ships, and navy training vessels − which induced significant shocks to 

measured labor productivity. Each of these shocks associates a temporary period of low productiv-

ity with low line speed. Second, the input data include labor used in the production of some ves-

sels that are excluded from the output data. Toward the end of the war, many of the yards 

gradually switched production to new vessel types, most commonly the new Victory cargo ship. 

Liberty ship production did not entirely stop in a yard until several months after it had begun to 

divert labor to the newer vessels. Although the labor input data record employees working on all 

types of vessels, including new vessels for which labor productivity is very low, output data de-

rived from Fischer (1949) assign all this labor to Liberty ships. The net effect is to give the ap-

pearance of a dramatic decline in productivity as the rate of Liberty ship production declined. 

Figure 1, which details production at the Delta Shipbuilding yard between January 1942 and Sep-

tember 1945, illustrates the productivity consequences of product design changes. The yard built 

185 vessels during the war, all of them Liberty ships. But of these, 54 were heavily modified de-

signs produced in two distinct clusters. In the spring of 1943, the yard won a contract to produce 

32 oil tankers. To satisfy the contract, the production schedule for standard Liberty ships already 

under contract was suspended on 18 May 1943, and the yard tooled up to produce the tankers. 

Between 18 May and 6 July 1943, when the last standard Liberty that had already been under 

construction in May was delivered, the yard was simultaneously producing two types of vessels. 

Construction of the standard Liberty recommenced gradually after 25 November 1943, and until 

10 February 1944, when the last tanker was delivered, the yard was again distracted by the con-

struction of multiple designs. In October 1944, the yard won a contract for 24 colliers. This time, 

the yard completed its outstanding contract for standard designs, progressively turning the yard 

over to collier construction as capacity became available. The completion of the collier contract 

ended the yard's involvement in the shipbuilding program. However, between 15 September 1944 

and 4 May 1945, the yard was again constructing two designs. 

The two periods in which the yard engaged in production of the modified designs are associated 

with a sharp increase in unit labor requirements (upper panel of Figure 1) along with a sharp 
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increase in unit production times (lower panel). Equivalently, design changes induce the same 

negative association between labor productivity and line speed that is predicted by forgetting 

models.6 One can also see in the figure the impact on line speed in the standard Liberty of the 

complications caused by producing multiple designs simultaneously. However, it is evident that 

                                            

6. The slope of the cumulative output curve in the lower panel approximates the line speed. Note the near-

zero slope during the start up of the tanker production.  
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FIGURE 1. Delta Shipbuilding Corporation: unit labor requirements and production 
speed. Upper panel records unit labor requirements by vessel type and mean con-
struction date (defined as the mid-point between dates of keel laying and delivery). 
Lower panel records production time by vessel type and mean construction rate. 
Upper panel also shows actual (solid line) and interpolated (dashed line) values for 
the average monthly ULR (by month of delivery) for standard Liberty ships alone. 
Lower panel also shows the cumulative number of vessels launched. 
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excluding the modified designs from the productivity data tell a rather different story about the 

time path of productivity. As the upper panel shows, there is little, if any, decline in the produc-

tivity of labor employed in the production of standard Liberty ships, despite a sustained interrup-

tion to production. 

The product design changes at the Delta shipyard were not an anomaly. Ten of the sixteen Lib-

erty shipyards produced modified Liberty ships or different vessels altogether alongside the stan-

dard Liberty at some point during the war. Moreover, most of these yards wound down Liberty 

production by switching labor to entirely new vessels whose output is not recorded in Fischer's 

statistical summary. Monthly data on production and labor inputs will be very misleading unless 

one can fully account for variations in the output mix. To accomplish this, one needs data on in-

dividual production units, which this study uses. 

3. The Learning Curve 

Given the unit productivity data available, the following model is a reasonable formulation for a 

prototypical learning-forgetting model: 

 ( ) ijZ
ij j ij ij ijq F E K e uβα= + , (1) 

where qij is labor productivity (the inverse of the unit labor requirement) on the ith unit produced 

at plant j, Kij is physical capital, and Zij is a vector of potential additional regressors.7 Experience, 

Eij, is assumed to depreciate at a constant exponential rate δ and to accumulate as a result of 

production experience: 

 
1,

1

( )
1,

0

1 , 2, 3, . . .ij i j

j

t t
ij i j

E

E e E iδ −− −
−

 = = + =
, (2) 

where tij is the calendar time at which unit i is produced.  

3.1 Loglinear learning 

Theory provides little guidance as to the form in which knowledge should enter the ULR (c.f., 

Muth 1986). The standard approach is to assume a loglinear learning curve of the form 

                                            

7. A minor variation to (1) assumes a multiplicative disturbance. In all regressions reported below, however, 

the additive disturbance outperforms the multiplicative error on goodness of fit criteria. 
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( )ij j ijF E A E λ= , where Aj is a yard-specific constant.8 This specification assumes equiproportionate 

differences in yard productivity at any given level of experience, an assumption strongly at odds 

with the Liberty ship experience. Early differences in productivity across yards were largely 

driven by the state of readiness of the shipyard at the time production commenced, delays in the 

delivery of steel, and delays in labor recruitment (Lane 1951). These were start-up constraints 

that had no impact on yard productivity at the end of the war. To allow for deviations from 

equiproportionate yard effects, I therefore assume a loglinear specification of the form, 

 ( ) j
j ij j ijF E A E λ= , (3) 

that allows for both different initial productivities and different learning rates. 

A potential danger of the loglinear specification is that, if productivity is bounded, it is capable of 

generating the appearance of forgetting, where none exists. It would be valuable, therefore, to 

supplement analysis using (3) with alternative specifications that allow for bounded learning even 

in the absence of forgetting. Relatively little attention has been paid to the issue of functional 

form, so I think it useful to expand briefly on the possibility that  spurious forgetting rates can be 

induced by unbounded learning. The introduction of forgetting has two major impacts on the 

learning curve. First, it generates a steady state for knowledge that bounds productivity. The 

obvious analogy is the neoclassical capital accumulation equation with constant investment, 

1 (1 )t tk i kδ+ = + − . In the absence of depreciation, k grows without bound, while depreciation im-

poses a steady state * /k i δ= . Second, forgetting increases flexibility in fitting the curvature of 

the learning curve. Unbounded learning and deviations in curvature from the loglinear specifica-

tion are precisely the two main weaknesses of loglinear learning that have been identified in the 

past (Auerswald et al. 2000, Muth 1986), and the appearance of forgetting can then simply be the 

result of a misspecified learning curve.  

To illustrate just how much this could matter empirically, a bounded hyperbolic learning curve 

without forgetting, of the form 1 ( )/( )iq i p i p r+ = + + +  was used to generate a time-series of 100 

nonrandom observations for productivity. A learning curve of the form ln lni i iq a E u= + , where 

Ei evolves according to (2), was then fit to the data. The imputed knowledge depreciation rates so 

 

                                            

8. Although alternative functional forms have sometimes been applied in different settings (Carlson 1961, 

1973, Nembhard and Uzumeri 2000a), the loglinear model remains by far the most widely employed specifi-

cation. 



   

 9

obtained from 1,000 replications generated by random parameter draws of , [0,10]p r ∈  vary be-

tween 0.4 and 11.7 percent, even though no forgetting is present in the data generating process. 

Moreover, there is a systematic relationship between the imputed depreciation rate and various 

characteristics of the learning curve. For example, Figure 2 shows a strong positive relationship 

between the estimated depreciation rate and the slope of the hyperbolic functions evaluated at 

zero experience. More generally, easier technologies in which early learning is rapid and the ter-

minal productivity is approached more quickly generate higher imputed depreciation rates. It is 

perhaps no surprise, then, that “[a]n interesting hypothesis that is consistent with our results is 

that more technologically sophisticated organizations exhibit less depreciation than less techno-

logically sophisticated ones” (Argote 1999, pp. 60-61).  

3.2 Bounded learning 

Because the artificial data just generated contain no noise, Figure 2 likely exaggerates the practi-

cal consequences of assuming unbounded learning. Nonetheless, one would be well-served to ex-

plore simultaneously alternatives that do not require forgetting to bound productivity. Informa-

tion theoretic models of learning provide such alternatives in a natural way. Prominent examples 

include the Prescott and Visscher (1980) task assignment model, the Jovanovic and Nyarko 

(1995) task learning model, and Jovanovic’s (1979) labor turnover model. In the assignment 

model, workers are assumed to have different skills that make them comparatively more suitable 

for one of two tasks that must be undertaken by the firm. The firm does not know in advance 

FIGURE 2. Imputed forgetting rates obtained from fitting a log-linear learn-
ing curve to artificial data obtained from a bounded hyperbolic learning 
function. 1,000 replications. 
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which worker should be assigned to which task, but must learn this over time by observing 

worker performance. Productivity attains a finite upper bound when all workers are assigned cor-

rectly. In the task learning model productivity is a decreasing function of the distance between a 

target and an action chosen by the firm. The target is unknown at first and must be learned over 

time. Productivity attains its upper bound when the firm has completely learned the target. In 

the labor turnover model, worker productivity depends on the quality of the match between 

worker and firm. Match quality is discovered slowly. Workers that turn out to make poor 

matches depart and are replaced. Firm productivity stops rising when all workers turn out to 

make matches good enough that they stay with the firm. 

Unfortunately, these models are quite difficult to make empirically operational.9 I therefore em-

ploy two specifications familiar to mathematical psychologists (e.g. Restle and Greeno 1970). 

Both generate bounded learning, and it turns out in each case to be simple to allow for adequate 

yard fixed effects. The first of these, known as the accumulation model, has the form 

 ( )
1
j j ij

j ij
ij

b a E
F E

E
γ

γ
+

=
+

, (4) 

where aj, bj, and λ are positive parameters. The second specification,  

 ( ) ( )(1 ) ijE
j ij j j jF E a a b γ= − − − . (5) 

is known as the replacement model. Both functions predict an initial productivity of bj, and a 

terminal productivity of aj, and so readily allow for yard effects as rich as those in (3). The pa-

rameter γ governs the rate of learning.10 To interpret γ, consider a simplified model where ex-

pected productivity satisfies ( )i iq F E=  and iE i= . In the replacement model, 

1( ) /( )i i iq q a qγ += − − , which is the change in expected productivity between adjacent units ex-

pressed as a fraction of the amount left to learn. The accumulation model is a little more compli-

                                            

9. Thornton (2000) has explored in some detail the finite-sample properties of the least squares estimator of 

the Jovanovic-Nyarko model. With four parameters only weakly identified by nonlinearity, it proved ex-

tremely challenging to obtain reliable parameter estimates for the model. 

10. Equations (4) and (5) allow for yard-specific initial and terminal productivities but impose the same 

learning parameter on all yards. The loglinear model has no terminal productivity (absent forgetting). How-

ever, allowing for different learning rates in (3) implies all three specification have similar degrees of freedom 

and hence are comparable on a level playing field. 
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cated, as 1 1( ) /( ( ))i i i i iq q a q i q qγ + += − − − −  contains an extra term in the denominator. There is, 

of course, no constant relationship between γ and λ, but we may expect estimates of the latter to 

be an order of magnitude larger than the former.11  

The names for the two specifications are derived from an intuitive appeal to two urn problems 

that generate these functions. Consider first the following replacement problem. There are two 

urns, A and B. Urn A contains a fixed number of marbles, of which a fraction b is red and a frac-

tion 1−b is white. On each trial, one marble is drawn from A. If it is red a correct response is re-

corded, while a white marble indicates an incorrect response. Urn B contains an infinite number 

of marbles, a fraction a>b of which are red. After each trial, a fraction λ of the marbles in A are 

replaced by marbles drawn from B. Let expected productivity be represented by the probability 

of a correct response. Then it can be shown (Restle and Greeno 1970, ch. 1) that expected pro-

ductivity in the ith trial is given by (4). The accumulation problem differs only in that after each 

trial a constant number of marbles from B are added to A without removing any from A. Let λ 

denote the number of marbles added after each trial, expressed as a fraction of  the initial number 

of marbles in A. Then, (5) gives the probability of a correct response in the ith trial. 

This is a rather abstract way of thinking about learning. However, the urn problems capture the 

idea that learning can be thought of as either the replacement of incorrect ways of doing tasks 

with correct ways of doing them, or as the accumulation of new skills on top of existing skills. It 

is not obvious which of these is more appropriate for any given learning problem, individual or 

organizational. For example, learning to type can equally well be envisaged as a process of accu-

mulating new skills or of replacing bad ways to type with good ways. Learning in wartime ship-

building may equally be interpreted ambiguously. This is probably not important. What matters 

is that both models are computationally tractable, they are capable of producing non-zero initial, 

and finite terminal, productivity levels, and they offer alternative assumptions about how firms 

get from the former to the latter while still providing a compact measure of the learning rate. The 

next section estimates both bounded learning models along with the loglinear specification. 

                                            

11. A back-of-the-envelope calculation illustrates. If the loglinear model is iq iλ= , the replacement model 

implies a relationship, to first order, satisfying 1 /( )i a iλ λγ λ −≈ − . In the data the sample mean terminal pro-

ductivity, a, is about 3.5 while the sample mean experience is i=130. We will produce estimates ˆ 0.01γ ≈ , 

which at the sample mean implies estimates for λ exceeding 0.2.  
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4. Estimation  

The shipbuilding data used in this study have been fully documented in Thompson (2001), and 

are only briefly described here. Between 1941 and 1945, the US Maritime Commission procured 

5,777 ocean-going vessels for war service. Prominent among these were 2,699 Liberty-type cargo 

vessels, an all-welded dry cargo vessel of some 7,000 displacement tons. Sixteen purpose-built 

yards were engaged in the production of Liberty vessels at one time or another. However, three of 

these yards produced 20 vessels or fewer and are excluded from the study, leaving a sample size of 

2,662. Of these, 130 were modified designs, including tankers, colliers, tank and aircraft transport-

ers. Yet another 31 vessels were constructed as standard designs, but delivered to the government 

incomplete for subsequent conversion to troop carriers or training ships. The data contain obser-

vations on the unit labor requirement, date of keel laying and date of delivery, for each of these 

2,662 ships. For each yard, I use the number of ways in use as a proxy for capital, and I record 

monthly labor data, most notably average job separation and hiring rates. While I do not have 

complete comparable data for non-Liberty vessels, I do know the dates know when a Liberty 

shipyard was engaged in the production of non-Liberty vessels.12 

In all the regressions that follow, vessels are ordered by date of keel laying. Ordering vessels by 

date of delivery produced smaller, and often negative, estimates of the rate of forgetting, but led 

to models that fit the data less well. I estimate the models using a computationally convenient 

two-step procedure. First, I conduct a grid search over δ, constructing new series for E at each 

step and estimating (1) by nonlinear least squares (NLLS) conditional on δ.13 For the standard 

errors, I then approximate the gradient vector, G, with respect to all parameters, including δ, us-

ing the delta method. The asymptotic variance of the coefficient vector is given by 
1ˆvar( ) 2 ( )mβ −′= GG , where m is the mean square error of the NLLS estimator (Greene 2003, ch. 

10).  

                                            

12. Unit labor requirements were obtained from typescript records held in the National Archives [Boxes 35 

and 37, Records of the Historian’s Office, National Archives RG 178]. Dates of keel laying are from type-

script records in Boxes 35 and 37, while dates of delivery were constructed by adding to the keel laying dates 

the construction times recorded in handwritten tabulations [various boxes]. The number of ways in use was 

also obtained from these data. Labor data were obtained from monthly reports of the Bureau of Labor Sta-

tistics forms BLS1761, Plant Operations, Box 36. 

13. Because I assume an additive disturbance, the loglinear model must also be estimated by NLLS. 
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TABLE 1 

NLLS estimates of learning curves 

 |--------------------ALL DATA---------------------| |------CORRECTIONS FOR PRODUCT MIX-------| 

 Loglinear Accumulation Replacement Loglinear Accumulation Replacement 

 (1) (2) (3) (4) (5) (6) 

        δ 0.084 
(.011) 

0.087 
(.010) 

0.058 
(.012) 

0.042 
(.010) 

0.057 
(.009) 

0.036 
(.012) 

        γ 
 

0.008 
(.001) 

0.011 
(.001) 

 
0.007 
(.001) 

0.009 
(.001) 

Average λa 0.320   0.303   

        α −0.210 
(.069) 

−0.109 
(.072) 

−0.125 
(.068) 

−0.103 
(.067) 

−0.009 
(.067) 

−0.033 
(.066) 

2 vessel types under 
construction    

−0.084 
(.079) 

−0.074 
(.020) 

−0.083 
(.100) 

3 vessel types under 
construction    

−0.119 
(.115) 

−0.113 
(.057) 

−0.130 
(.156) 

4 vessel types under 
construction    

−0.239 
(.223) 

−0.225 
(.039) 

−0.217 
(.231) 

    N 2,649 2,649 2,649 2,488 2,488 2,488 

   2R  0.992 0.992 0.992 0.994 0.994 0.994 

Dependent variable is the inverse of the unit labor requirement in millions of hours. The first vessel launched by 
each yard is dropped from the sample. Asymptotic standard errors in parentheses. Estimates of A

j
, a

j
 and b

j
 not 

reported. a Average λ is the mean of thirteen yard-specific growth rates weighted by sample size: see Table A.1 
for individual estimates and standard errors. 

 

Table 1 reports the first results. Column 1 uses the loglinear specification from (3), and fails to 

account in any way for modified designs. The specification includes thirteen distinct learning rates 

and thirteen yard-specific constant terms. As usual, the estimates for the constant terms, which 

are precisely estimated and vary significantly across yards, are not reported. To avoid distracting 

clutter, the individual learning rates are relegated to Table A.1 in the appendix, while in Table 1 

the sample-weighted mean is provided. The fit of the regression is remarkably good, as one would 

expect with strongly trending data. The regression returns an estimate for δ indicating rapid 

knowledge depreciation, at the rate of 8.4 percent per month. Nonetheless, this rapid imputed 
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rate of forgetting is about one third of the rate previously reported for this industry in Argote, 

Beckman and Epple (1990). I conjecture that the rate is lower because the ULR data do not 

misattribute to Liberty ship production labor used in the production of other types of vessels. 

Unsurprisingly, the average of the learning parameter, λ, is also about one third the rate esti-

mated previously. However, one result suggestive of a specification problem is the point estimate 

for α, which at −0.2 indicates that larger yards have much lower productivity than small yards, 

and this is something we know not to be true.14  

Columns 2 and 3 report the results for the accumulation and replacement models respectively. 

The surprising result is that the switch to bounded learning curves has only a modest impact on 

the estimated rate of forgetting. In fact, there is essentially no change in the estimate upon mov-

ing from the loglinear to the accumulation model, which continues to return a rate of about 8.5 

percent. The replacement model does produce a lower estimate, however, which at 5.8 per cent 

per month represents a proportional decline of around 30 percent. One notable change is that the 

point estimates of α are much reduced and now statistically insignificant. The estimates of the 

learning parameter, γ , are also plausible. The gross learning rate, expressed as a fraction of the 

amount left to learn, is approximately one percent per vessel constructed.  

Columns 4 through 6 make corrections for changes in the product mix. Doing so requires three 

adjustments. First, incomplete vessels of standard designs are included in the construction of the 

experience measure, but then excluded from the regressions. This is equivalent to assuming full 

knowledge spillovers from incomplete vessels to standard designs subsequently constructed, and 

has the effect of increasing the estimated rate of forgetting relative to assuming zero or partial 

spillovers. Second, non-standard Liberty designs were excluded from the data prior to construct-

ing the experience measure. This is equivalent to assuming zero spillovers from non-standard de-

signs to standard designs.15 Third, to account for inefficiencies caused by disrupting the operations 

                                            

14. The number of ways is more a proxy for the scale of operation than it is for the capital stock. Thompson 

(2001) used detailed data on capital authorizations for six yards, and showed that a significant amount of 

learning could be attributed to increases in the amount of  capital  per way. 

15. This set of assumptions produced the best fit, although the difference from alternative treatments was 

modest. Benkard (2000) estimated the degree of spillovers from one aircraft design to another. Attempts to 

do so here failed to attain convergence, no doubt because of the relatively small number, and scattered ap-

pearance, of modified and incomplete designs. 
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of yards intended for production of a single vessel design, three indicator variables were added to 

record whether the shipyard was simultaneously producing other types of vessels.  

The main effect of these changes is, as expected, to induce a marked reduction in the estimated 

rates of forgetting. For the loglinear model, δ̂  declines by exactly half to 4.2 per month. For the 

bounded learning models it declines by about 35 percent, yielding estimates of 5.7 percent per 

month for the accumulation model and 3.6 percent per month for the replacement model. The 

remaining parameters are only modestly affected by the adjustments for product mix. Despite the 

declines in the reported rate of forgetting, the estimates for the learning parameters, λ and γ, 
have also declined a little. All three estimates of α have also declined, and are now statistically 

insignificant. Thus, corrections for product mix plausibly yield estimates consistent with a con-

stant returns to scale technology. Finally, the coefficients on the indicator variables for simulta-

neous production of multiple vessel types are negative, economically and statistically significant, 

and with the expected rank ordering.16 

4.1 Labor Turnover 

A frequent motivation for organizational forgetting is that knowledge embodied in workers is lost 

when they leave. If that is the case, labor turnover should be negatively correlated with produc-

tivity and, when measures of turnover are included in the model, the estimated rate of knowledge 

depreciation over time should decline. Columns 1 through 3 of Table 2 add as a level effect the 

recorded rates of labor hiring and separation in the month in which the vessel was delivered. In 

each case the estimate of δ does indeed decline, to 1.8 and 2.1 percent per month for the two 

bounded learning models. The estimated rate of forgetting is now negative but statistically insig-

nificant for the loglinear case. However, the coefficients on the hiring and separation rates are 

consistently the wrong sign, although in five of six cases statistically insignificant, suggesting that 

increased labor turnover either has no effect on productivity, or raises it. These results are clearly 

inconsistent with conventional wisdom about the role of labor turnover. 

One possible explanation for the implausible positive coefficients on the labor turnover measures 

is that the model may be fundamentally misspecified in this area. If organizational forgetting 

 

                                            

16. Alternative specifications not reported also included controls for night shift work and Sunday shift work, 

intended as proxies for the intensity of production. The additional controls had no effect on the reported 

results. 
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TABLE 2 

Learning, forgetting and labor turnover 

 Loglinear Accumulation Replacement Loglinear Accumulation Replacement 

 (1) (2) (3) (4) (5) (6) 

        δ −0.014 
(.011) 

0.016 
(.007) 

0.021 
(.012) 

−0.003 
(.001) 

−0.002 
(.001) 

−0.001 
(.012) 

       δ  
   

−0.036 
(.012) 

−0.017 
(.005) 

−0.006 
(.010) 

        γ 
 

0.006 
(.001) 

0.008 
(.001) 

 
0.007 
(.001) 

0.008 
(.001) 

Average λ 0.293   0.244   

       α −0.052 
(.066) 

0.011 
(.066) 

−0.016 
(.070) 

−0.039 
(.062) 

−0.014 
(.079) 

−0.032 
(.065) 

Hiring rate 0.646 
(.088) 

0.549 
(.450) 

0.498 
(.639) 

   

Separation rate 0.011 
(.076) 

0.075 
(.122) 

0.062 
(.096) 

   

2 vessel types under 
construction 

−0.132 
(.015) 

−0.110 
(.020) 

−0.102 
(.129) 

−0.154 
(.165) 

−0.129 
(.018) 

−0.115 
(.089) 

3 vessel types under 
construction 

−0.191 
(.040) 

−0.160 
(.052) 

−0.148 
(.184) 

−0.210 
(.223) 

−0.183 
(.047) 

−0.165 
(.130) 

    N 2,233 2,233 2,233 2,233 2,233 2,233 

   2R  0.994 0.994 0.994 0.994 0.994 0.994 

Some observations are lost due to missing data for labor turnover, and few observations remain with four vessel 
types under construction. All regressions include corrections and controls for product mix. See also notes to Table 
1. 

 

results from labor turnover, there should be forgetting only indirectly with respect to time and 

directly with respect to labor turnover. To explore this idea, consider the following variation on 

the assignment model of Prescott and Visscher (1980). A firm of age T employs workers indexed 

by a type, θ, where ( )20,N θθ σ∼ , and must assign each worker to one of two tasks. Suppose pro-

ductivity is given by 

 ( )
0

T
A B

T t t t
t

q C µ θ θ
=

= + −∑ , (6) 
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where j
tθ  is the average type of workers with tenure t assigned to task j={A,B}, and µt is the 

fraction of workers with tenure t. Clearly the firm would like to assign all workers with positive 

type to task A and those with negative type to task B. Let θi, denote the type of the ith  individ-

ual. The firm does not initially know the individual’s type, but must learn it over time by observ-

ing signals satisfying , ,i t i i tx θ ε= + , ( )20,N εε σ∼ . After t signals, the firm’s posterior distribution 

of i’s type, ( | )tF xθ , is ( ) ( )( )2 2 2 2 2 2 2
, / , /i tN t x t tθ θ ε θ ε θ εθ θ θ θ θ θ θ+ + , where ,i tx  is the mean of the t sig-

nals. The firm assigns worker i to task A if ,i tx >0 and task B otherwise (reassignment is possible 

whenever the sign of ,i tx  changes). Suppose the firm is large, so that approximately half the labor 

force is assigned to each task. Then, expected productivity is  

 
0

00

2 ( | ) ( ) 2 ( | ) ( )
T

T t t t t t
t

q C dF s dG x dF x dG sµ θ θ θ θ
∞ ∞ ∞

−∞ −∞ −∞=

 
= + −  

 
∫ ∫ ∫ ∫∑  

         

1
2

1
2

2 2
0

22
T

t
t

tC
tθ

θ ε
σ π µ

σ σ
−

=

 
= +   + 

∑  (7) 

where Gt, the unconditional distribution of x , is ( )2 20, /N tθ εσ σ+ . In (7), the term in parentheses 

is strictly increasing in t, so the expected contribution of any worker rises with tenure. It is now 

easy to see how labor turnover affects productivity. Assume a constant separation rate, s, that 

workers of any tenure are equally likely to depart, and that departures are replaced immediately 

by new workers. A steady state distribution for µ (which requires T → ∞ ) satisfies 0 sµ = , and 

1 (1 )t tsµ µ+ = −  for 1t ≥ . This implies (1 )tt s sµ = − , t =0,1,2,  . . , and hence 

 

1
2

1
2

2 2
0

22 (1 )t
t

tq C s s
tθ

θ ε
σ π

σ σ

∞
−

=

 
= + −   + 

∑ . (8) 

The term (1 )ts s−  is increasing [decreasing] in s for [ ](1 ) /t s s< > − , so that an increase in labor 

turnover increases the weight put on low values of the second term in parentheses, and decreases 

the rate put on high values. The net effect, of course, is to reduce q .  

It remains to make this idea operational in our data. Let Lt denote the number of employees at 

time t and let ht and st denote the mean monthly hiring and separation rates over the period 

(t,t+∆). Then, the fraction of inexperienced workers at time t+∆ can be written as 

 (1 )1
1 ( )

t t t
t

t t t

s L h
L h s

ρ +∆
+∆

− ∆ ∆= − =
+ − ∆

. (9) 



   

 18

The specifications in the final columns of Table 2 assume that depreciation of knowledge in any 

month depends positively upon ρ. That is, knowledge evolves according to 

 
1

1,

0

1 , 2, 3, . . .ij

j

ij i j

E

E e E iδρ−
−

 = = + =
, (10) 

where 

 
1 ( )

ij ij
ij

ij ij ij

h
h s

ρ
∆

=
+ − ∆

, (11) 

and sij and hij are the separation and hiring rates for the month of vessel delivery. I let the rele-

vant period, ∆ij, over which depreciation takes place for the ith vessel at yard j be the difference in 

months between the date of keel laying and the date of delivery.17 To interpret δ , consider a 

steady-state employment level where j jh s=  and hence j j jhρ = ∆ . The depreciation rate of 

knowledge implied by (9) and  (10) is then j jh sδ δ δ= ≡  per month. I estimate δ  by the usual 

grid search, and then calculate sδ δ= , where s =0.104 is the sample mean separation rate.18 The 

results are reported in columns 4 through 6 of Table 2. As before, the fit of the model is very 

high, and the parameters other than δ are essentially unaffected by the changed specification. In 

contrast, the monthly rates of forgetting returned by the new specification are tiny and, although 

statistically distinguishable from zero in two cases, they are economically indistinguishable from 

zero in all three. 

5. Conclusions 

This paper has presented new estimates of the rate of organizational forgetting in wartime ship-

building using unusually detailed and precise data on unit labor requirements. The richness of the 

data facilitated a focus on two potentially important confounding issues. First, unobserved 

changes in a firm’s product mix can produce spurious evidence for organizational forgetting. Sec-

ond, the estimated rate of forgetting may be sensitive to assumptions made about the learning 

                                            

17. Other regressions, in which depreciation was assumed to take place between successive keel laying dates, 

produced large negative rates of forgetting, but fit the data as well as the specification reported here. 

18.  This is virtually identical to the sample mean hiring rate of 0.103, thereby justifying the steady-state 

employment assumption. 
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process. It was found that for this data set, controlling adequately for changes in the product mix 

has significant effects on the estimated rate of forgetting, but the results were only moderately 

sensitive to the specification of the learning curve. The rate of organizational forgetting estimated 

in this paper is markedly lower than has previously been reported. In a seminal study on organ-

izational forgetting, Argote, Beckman and Epple (1990) had reported an estimated 25 percent 

monthly rate of knowledge depreciation in the industry. The estimates reported in columns 4 

through 6 of Table 1 of the present paper range from 3.6 percent to 5.7 percent.  

Nonetheless, these are still significant rates of knowledge depreciation. Because much previous 

literature has suggested that organizational forgetting may be driven by labor turnover, I explore 

the relationship between productivity changes and labor turnover through two models, one which 

incorporates labor hiring and separation rates as simple level effects, and another which assumes 

organizational forgetting operates directly through turnover and only indirectly as a function of 

time. Labor turnover appeared to be largely unrelated to productivity changes. However, incorpo-

rating them essentially eliminated all evidence of organizational forgetting. 

It is prudent to close with a note of caution. The fact that we are necessarily dealing with 

strongly trending data makes the estimated rate of forgetting quite sensitive to model specifica-

tion, while allowing wide variations in the forgetting rate to account well for variations in the 

data (see Figure 3). Moreover, the relatively modest rates estimated in this paper compound the 

importance of uncertainty about the point estimate. For example, in Table 2, column 2, the point 

FIGURE 3. Contour lines for coefficient of determination, from accumula-
tion model (Table 1, column 5). The contours are drawn by fixing d at 
different levels and then estimating the remaining parameters by NLLS. 
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estimate is a rate of forgetting of 1.6 percent per month, with a 95 percent confidence interval of 

[0.2 percent, 3.0 percent]. The strategic implications of organizational forgetting are vastly differ-

ent at the two ends of the interval. 

 

APPENDIX TABLE A.1 

Yard-specific estimates of learning rates, loglinear specifications 

SHIPYARD a NO. OF LIBERTY 

SHIPS BUILT b 

TABLE 1 
COLUMN 1 

TABLE 1 
COLUMN 4 

TABLE 2 
COLUMN 1 

TABLE 2 
COLUMN 4 

Bethlehem-Fairfield Shipyards, 
Inc. (Baltimore, MD) 

384 0.172 
(.015) 

0.182 
(.013) 

0.205 
(.012) 

0.156 
(.013) 

California Shipbuilding Corp. 
(Los Angeles, CA) 

306 .278 
(.014) 

0.325 
(.014) 

0.308 
(.013) 

0.258 
(.018) 

Delta Shipbuilding Co. 
(New Orleans, LA) 

188 0.136 
(.024) 

0.234 
(.025) 

0.216 
(.019) 

0.202 
(.018) 

Todd-Houston Construction Co. 
(Houston, TX) 

208 0.408 
(.029) 

0.348 
(.024) 

0.298 
(.021) 

0.243 
(.020) 

J.A. Jones Construction Co. 
(Brunswick, GA) 

85 0.484 
(.040) 

0.443 
(.034) 

0.429 
(.029) 

0.371 
(.028) 

J.A. Jones Construction Co. 
(Panama City, FL) 

102 0.545 
(.044) 

0.459 
(.038) 

0.449 
(.032) 

0.420 
(.032) 

North Carolina Shipbuilding Co. 
(Wilmington, NC) 

126 0.211 
(.016) 

0.200 
(.014) 

0.224 
(.014) 

0.179 
(.012) 

New England Shipbuilding Co. 
(South Portlasnd, ME) 

244 0.484 
(.031) 

0.419 
(.025) 

0.351 
(.020) 

0.331 
(.015) 

Oregon Ship Building Corp. 
(Portland, OR) 

330 0.345 
(.013) 

0.310 
(.012) 

0.298 
(.012) 

0.219 
(.021) 

Permanente Metals Corp., No. 1 
Yard (Richmond, CA) 

138 0.186 
(.020) 

0.118 
(.017) 

0.165 
(.019) 

0.143 
(.018) 

Permanente Metals Corp., No. 2 
Yard (Richmond, CA) 

351 0.380 
(.014) 

0.349 
(.013) 

0.353 
(.017) 

0.278 
(.020) 

Southeastern Shipbuilding Co. 
(Savannah, GA) 

88 0.326 
(.044) 

0.287 
(.035) 

0.275 
(.029) 

0.232 
(.026) 

St. John’s River Shipbuilding Co. 
(Jacksonville, FL) 

82 0.471 
(.051) 

0.415 
(.041) 

0.372 
(.033) 

0.335 
(.031) 

Asymptotic standard errors in parentheses. a Yards omitted because of small volumes are: Alabama Dry Dock
Co., Mobile AL (20 delivered), Kaiser Co., Vancouver WA (2 delivered, 8 transferred incomplete to another
yard), Marinship Corp., Sausolito CA (15 delivered), Walsh-Kaiser Co., Providence RI (10 delivered), and
Rheem Manufacturing Co., Providence RI (1 delivered). b Includes modified designs and vessels delivered incom-
plete.  
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