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Abstract

We explore the effects of fat tails on the equilibrium implications of the long run

risks model of asset pricing by introducing innovations with dampened power law to

consumption and dividends growth processes. We estimate the structural parameters

of the proposed model by maximum likelihood. We find that the homoskedastic model

with fat tails leads to significant increase in implied risk premia and volatility of price-

dividend ratio over the benchmark Gaussian model, but similar volatility of market

return, expected risk free rate and its volatility.
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1 Introduction

The long-run risks model of asset pricing, developed by Bansal and Yaron (2004), provides

sound theoretical rationalization for several empirical characteristics of financial markets,

such as market risk premium and asset return volatilities. Their model features a long-

run risk component, along with stochastic volatility, in consumption and dividend growth

processes in a conditionally Gaussian world. Essentially, in this framework, risk-averse agents

demand higher equity premium due to persistent effects of the long-run risk component.

Bansal (2007) provides a comprehensive review of the long-run risks model.

The presence of fat tails would result in agents with risk aversion demanding higher equity

premium than in a Gaussian world, since fat tails imply more frequent occurrence of extreme

events. Many financial and macroeconomic time series exhibit fat tails.1 One could ask how

much fat tails would increase the magnitude of implied risk premium in a long-run risks

model of Bansal and Yaron (2004) under reasonable assumptions about agents’ preferences.

We attempt to provide a quantitative assessment of a long-run risks model with fat tails in

order to answer this question.

Several papers attempt to document the asset pricing implications of fat tails. Bidarkota

and Dupoyet (2007) report that the introduction of fat tails to consumption growth process

produces 80% higher risk premium compared to a lognormal process. However, their model

does not feature long run risks or recursive utility as in Bansal and Yaron (2004). Shalias-

tovich and Tauchen (2008) assume that non-normality of consumption and dividend growth

comes from a Lévy innovation to an AR(1) economy-wide state variable. This time-varying

state variable time-changes both consumption and dividend growth. As in Bansal and Yaron

(2004), they assume a utility function of the Epstein and Zin (1989) type. They calibrate the

structural parameters of their model and find that their model can generate 4.5% implied

1Mandelbrot (1963) and Fama (1965) are the early studies documenting fat tails in financial time se-
ries. Cont and Tankov (2004) is an excellent exposition on financial modeling under non-Gaussian settings.
Blanchard and Watson (1986), Balke and Fomby (1994) and Kiani and Bidarkota (2004) provide empirical
evidence on the presence of fat tails in macroeconomic data.
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risk premium but only with a very high risk aversion coefficient of 50. By contrast, Bansal

and Yaron (2004) are able to generate 6.8% equity risk premium with a risk aversion of

10 assuming stochastic volatility in the consumption and dividend processes. Eraker and

Shaliastovich (2007) model volatility of consumption growth as a mean-reverting Gamma-

jump process that can accommodate fat tails. They focus on option pricing implications of

their model, although they do provide a solution to general asset prices.

Bidarkota, Dupoyet and McCulloch (2007) explore the effects of non-normality on asset

pricing through α-stable process under incomplete information. By imposing restrictions on

the parameters of the stable distribution, they guarantee finiteness of relevant moments of

interest necessary for asset pricing. They generate volatility persistence of implied returns

of a magnitude comparable to that in the data. However, their implied risk premium is 4%,

well shy of the over-6% value observed in the data. Martin (2008) considers the impact of

higher moments of consumption growth process on asset pricing, but without imposing long-

run risks. His model captures empirical features more general than fat tails in consumption

and dividend growth process by utilizing the cumulant generating function of non-normal

processes.

In this paper, we account for possible fat tails in the consumption and dividends growth

processes within the framework of long-run risks as in Bansal and Yaron (2004). Fat tails

are modeled as a dampened power law (DPL) process, as in Wu (2006b). The representative

agent’s preferences are assumed to be of Epstein and Zin (1989) recursive type. With this

model framework, we first estimate all structural parameters, including persistence of the

long run component, via maximum likelihood. We then evaluate the model-implied risk pre-

mium and the risk free rate, and their volatilities with the estimated values of the structural

parameters.

Using quarterly consumption and dividends data spanning the period from 1947 through

2007, we find that our model with fat tails can generate about 1.92% expected market risk

premium and 0.61 % expected risk free rate with the magnitudes of risk aversion and elasticity
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of intertemporal substitution being 35 and 1.5, respectively. These values are significantly

better than what the benchmark Gaussian model can produce (0.42% equity risk premium

and 1.56% risk free rate). We also show that the model with fat tails generates higher

volatility of price-dividend ratios. Using an alternative method for estimating the long-

run risk component, we report even more impressive empirical results, in which expected

market risk premium and risk free rate for the same fat-tailed model are 6.24% and 1.03%

(comparable to observed values in the data) compared to 2.95% and 1.42% for the benchmark

Gaussian model. In both scenarios, the fat-tailed model exhibits a clear advantage over the

benchmark Gaussian model.

The paper is organized as follows. Section 2 introduces the model with long run risks and

fat tails, and summarizes the solutions to asset prices in such a setting. Section 3 presents

data, discusses estimation methodology, and reports maximum likelihood model estimation

results. Section 4 analyzes the asset pricing implications. Section 5 concludes with a brief

summary of the main implications of modeling fat tails with long run risks and recursive

utility.

2 Model

In this section, we begin with a description of the pricing kernel in a long-run risks model in

subsection 2.1 and then propose a consumption growth process with fat tails in subsection

2.2. This is a modification to Bansal and Yaron’s (2004) model. We then derive the asset

pricing implications under our consumption growth process in the last subsection.

2.1 Pricing Kernel

A representative agent in the economy exhibits recursive preferences as in Epstein and Zin

(1989) and Weil (1989). The single period utility separates risk aversion and intertemporal
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elasticity of substitution in the following form:

Ut = {(1 − δ)C
1−γ
θ

t + δ(Et[U
1−γ
t+1 ])

1

θ }
θ

1−γ (1)

where the parameters δ, γ and ψ are the time discount factor, the risk aversion coefficient and

the intertemporal elasticity of substitution (IES), respectively. The parameter θ is defined

by 1−γ

1− 1

ψ

.

The representative agent faces the following first-order condition, or the Euler’s equation:

Et[δ
θG

θ
ψ

t+1R
−(1−θ)
a,t+1 Ri,t+1] = 1 (2)

where Ri,t+1, Ra,t+1, andGt+1 are the gross returns on any asset i, the gross returns on the ag-

gregate consumption portfolio, and the gross growth rate of consumption, respectively. The

aggregate consumption portfolio pays aggregate consumption as its dividend every period.

Mt+1 = δθG
θ
ψ

t+1R
−(1−θ)
a,t+1 is often called the “Intertemporal Marginal Rate of Substitution”

(IMRS) or the pricing kernel, which applies to any asset return Ri,t+1 in the economy. In

order to price any individual asset, we alternatively replace Ri,t+1 in the above equation

with either the aggregate consumption portfolio returns Ra,t+1 , or with the market portfolio

returns Rm,t+1 that pay the aggregate market dividend, or with the risk free asset returns

Rf,t+1 that pay one unit of consumption good as dividends every period.

We use the following notation in the rest of the paper:

ri,t+1 = lnRi,t+1

ra,t+1 = lnRa,t+1 = ln
Pa,t+1 + Ca,t+1

Pa,t+1
(3)

rm,t+1 = lnRm,t+1 = ln
Pm,t+1 +Dt+1

Pm,t+1
(4)

rf,t+1 = lnRf,t+1

mt+1 = lnMt+1 = θlnδ −
θ

ψ
gt+1 + (θ − 1)ra,t+1 (5)
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where Pa,t+1 and Pm,t+1 are the prices of aggregate consumption and market portfolios,

respectively. We drop the subscript “a” in aggregate consumption Ca,t+1 in the rest of the

paper.

The definitions of ra,t+1 and rm,t+1 in Equations (3) and (4) reflect the fact that the

consumption portfolio pays aggregate consumption Ct+1 as its dividend whereas the market

portfolio pays out Dt+1. We can relate the prices of consumption and market portfolios to

price-dividend ratios of these two assets, namely zt = lnPa,t
Ct

and zm,t = ln Pt
Dt

. Using their

definitions, we expand the aggregate and market returns by Taylor’s expansion around the

mean of zt and zm,t respectively as in Campbell and Shiller (1988) to obtain:

ra,t+1 ≃ k0 + k1zt+1 − zt + gc,t+1 (6)

rm,t+1 ≃ k0m + k1mzm,t+1 − zm,t + gd,t+1 (7)

where gc,t+1 = lnCt+1

Ct
and gd,t+1 = lnDt+1

Dt
are the consumption and dividends growth rates.

We complete our model specification by specifying the dynamics of consumption and divi-

dends growth rates in the following section.

2.2 Dynamics of Consumption and Dividends Growth Rates

We first specify the benchmark model - one in which all shocks to consumption and dividend

growth rates processes are Gaussian:

gc,t+1 = µc + xt + ηc,t+1 (8)

xt+1 = ρxt + et+1 (9)

gd,t+1 = µd + φxt + ηd,t+1 (10)

where ηc,t ∼ iidN(0, σ2
c ), et ∼ iidN(0, σ2

e) and ηd,t ∼ iidN(0, σ2
d).

This process is the same as the Gaussian no-fluctuating-uncertainty model of Bansal and

6



Yaron (2004) if we define σd = ϕdσc and σe = ϕeσc. Consumption growth rates are made up

of a non-zero constant mean, a persistent component xt, and noise. As in Bansal and Yaron

(2004), we assume that agents observe the persistent component and set equilibrium asset

prices accordingly.

For the more general model, we consider an alternative growth rates process that fea-

tures non-normality based on the well-documented evidence for the presence of fat tails in

macroeconomic (including consumption) data (see footnote 1 for references), As we shall

subsequently see in Section 3, the data also show that the deviation of dividend growth rates

from normality. However, we choose for brevity the innovations to consumption growth rates

ηc,t+1 to follow a fat-tailed distribution while letting shocks to both the dividend growth rates

and the persistent component be Gaussian.

As noted in Geweke (2001), we often encounter difficulty in ensuring finiteness of expo-

nential moments of a fat-tailed distribution. This is often essential for ensuring finiteness

of asset prices. One approach to overcoming this difficulty is to use “dampened power law”

(henceforth DPL) process as in Wu (2006b) to model fat tails. See also Cont and Tankov

(2004) and Shaliastovich and Tauchen (2008). An advantage of this approach is tractabil-

ity when we apply Fourier transform to derive the cumulant generating (and characteristic)

function that appears in asset pricing formulae as seen in the following section.

We refer to our model with fat tails in the consumption growth process as “the DPL

model”:

gc,t+1 = µc + xt + ηc,t+1 (11)

xt+1 = ρxt + et+1 (12)

gd,t+1 = µd + φxt + ηd,t+1 (13)

where et ∼ iidN(0, σ2
e), ηc,t and ηd,t obey two independent DPL processes. The two DPL
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process are defined by their Lévy densities ν(η):

ν(η) =











γ+η
−β+|η||η|−α−1, η > 0

γ−η
−β

−
|η||η|−α−1, η < 0.

This specification allows for leptokurtosis and skewness in innovations to consumption growth

rates. The former is controlled by α, while the latter arises from the asymmetry of the

scale parameters γ+ and γ− and the dampening parameters β+ and β−. A DPL process

without dampening, i.e. with β+ = β− = 0, becomes an α−stable distribution. Hence,

dampened power law is also called a “tempered stable” distribution. DPL process was used

in consumption-based asset pricing by Bidarkota and Dupoyet (2007). DPL distribution,

without dampening and with α = 2, results in the Gaussian distribution.

2.3 Equilibrium

With the specification of exogenous consumption and dividend growth rates, we can proceed

to deriving the pricing kernel mt, returns on the aggregate consumption ra,t, the risk-free

rate rf,t, the market return rm,t, and volatilities of asset returns. The key to deriving all

these quantities are the log price-dividend ratios zt and zm,t on the consumption and market

portfolios. The linear specification of the growth dynamics guarantees concise solutions to

both ratios. Equilibrium solutions to the price-dividend ratios and all other equilibrium

quantities of interest in the benchmark model are presented in Bansal and Yaron (2004). We

summarize their results using our notation in Appendix A.

In the rest of this subsection, we discuss the solution to the DPL model in some detail.

We conjecture that log price-consumption ratio zt and log price-dividend ratio zm,t in the

DPL model take the same form as in the benchmark model, namely that zt = b0 + bxxt

and zm,t = b0m + bxmxt. We derive the asset pricing implications with DPL shocks using

an approach similar to that in the benchmark model. The derivations of individual returns,

namely aggregate return on the consumption portfolio ra,t+1, risk free return rf,t+1, and
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the market return rm,t+1 involve the cumulant exponent of Lévy process. Risk premia and

variance of respective returns can then be easily obtained. Detailed derivation is available in

Appendix B. Here, we only summarize the main results and briefly discuss the dependence

of these results on the persistence of the long run component ρ, the variances of innovation

to the long run component σ2
e and dividend growth V ar(ηd).

The price-consumption and price-dividend ratios zt and zm,t are derived in Appendix

B.1 and B.2. The unconditional variance of the market price-dividend ratio is V ar(zm,t) =

b2xmV ar(xt) = b2xm
1−ρ2

σ2
e . Examining the formula reveals that V ar(zm,t) is positively dependent

on the persistence (ρ) and the variance (σ2
e) of innovation to the long run component.

Returns on the aggregate consumption portfolio are derived as Equation (B13) in Ap-

pendix B.3.

The pricing kernel (IMRS) mt+1 is derived in Appendix B.4. The unconditional variance

of the pricing kernel V ar(mt+1) is given by Equation (B16). V ar(mt+1) is determined by

the variance of the innovation to the state variable V ar(xt) and the second moment of the

innovation to the DPL consumption growth rates.

The expected risk free rate E(rf,t+1) is derived as Equation (B19) in Appendix B.5.

E(rf,t+1) is determined by non-time-varying mean component of consumption growth µc and

the variance of innovation to the long run component σ2
e positively, and cumulant exponent

of the DPL component of consumption growth.

The market return and the market risk premium are given by Equations (B21) in Ap-

pendix B.6 and (B23) respectively. The market risk premium E[rm,t+1 − rf,t] is mainly

determined by σ2
e , V ar(ηd) and two cumulant exponents of the DPL innovation positively.

The conditional and unconditional variances of market return are given by Equations

(B24) and (B25). The unconditional variance is determined by the variances of the innova-

tions to the state variable σ2
e negatively and dividend growth V ar(ηd) positively.
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3 Data and Estimation

This section presents details on the data used, discusses estimation of the consumption and

dividends growth processes, and reports their maximum likelihood estimates. Hypotheses

tests are also conducted to narrow down a best-fitting model incorporating fat tails.

3.1 Data Description

We employ quarterly US real consumption data on non-durables and services and US real

dividends data from the first quarter of 1947 through the fourth quarter of 2007. Con-

sumption data are obtained from the National Income and Product Accounts (NIPA) tables

published by the Bureau of Economic Analysis (BEA). Consumer Price Indices (CPI) used

to construct real values are obtained from the Bureau of Labor Statistics (BLS) publications.

We aggregate monthly dividends data obtained from Robert Shiller’s website to quarterly

frequency. 2 Dividends are paid toward the S&P 500 index. Table 1 presents summary

statistics for the data and Figure 1 plots the consumption and dividends growth rates.

Annualized standard deviation of consumption growth is 0.0132 during the period 1947-

2007, compared to 0.0293 in Bansal and Yaron (2004) (for the period 1929-1998), 0.0357

in Mehra and Prescott (1985) (for the period 1889-1978), and 0.03226 in Bidarkota and

Dupoyet (2007) (for the period 1889-1997). Since we use essentially the same source of

consumption data as these other studies, the difference arises solely from differing sample

periods used. Clearly, post-war consumption is much less volatile than that dating back to

1929 or 1889.

Dividends growth rates are more variable than consumption growth rates. Annualized

standard deviation of dividends growth rates is 0.0353 in our sample, compared to 0.115 in

Bansal and Yaron (2004), and 0.112 in Campbell (1999) (for the period 1947-1995). The

latter two studies use dividends to the CRSP value-weighted NYSE stock index. Differences

in summary statistics of consumption and dividend growth rates between our data sample

2http://www.econ.yale.edu/~shiller/data.htm
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and these other studies have significant implications for asset pricing that we will examine

in the next section.

Jarque-Bera tests reported in Table 1 show that both consumption and dividend growth

rates exhibit significant non-normality. Based on this observation, we consider model speci-

fication in Equations (11-13), namely that non-Gaussian (fat-tailed) shocks drive both con-

sumption and dividend growth rates.

3.2 Model Estimation

Agents are assumed to observe xt in Equations (8-10) and (11-13). Since we (econome-

tricians) do not have data on xt, we estimate Equations (8-9) and (11-12) as unobserved

components models, and use the resulting filtered mean of xt as “the data” on xt that

investors are assumed to observe in setting equilibrium asset prices. Estimation of the un-

observed components models involves either Kalman filtering in the fully Gaussian model of

Equations (8-9), or the more general Sorenson and Alspach (1971) filter in the DPL model

of Equations (11-12). In order to avoid complications resulting from bivariate observation

equations (8, 10) and (11, 13), especially for the non-Gaussian model, we simplify by ignoring

dividends data while estimating the long run risks component xt. Thus, we estimate Equa-

tions (8-9) and (11-12), obtain filtered mean of xt, and use these values to run regressions

in Equations (10) and (13). To check robustness of our results, however, we also reverse

the roles of consumption and dividends data in model estimation. We report results for this

latter case in subsection 4.4.

In estimating the DPL model, we employ a Bayesian filtering technique proposed by

Sorenson and Alspach (1971), which boils down to the Kalman filter under Gaussian innova-

tions, but unlike the latter, is efficient under non-Gaussian innovations as well. The following

describes the filtering procedure using consumption process as the observation equation. De-

note Gc,t as the history of consumption growth up to time t, comprising of gc,1, gc,2, ..., gc,t.

The predictive and filtering densities of xt are obtained by the following rules derived from
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Bayes’ theorem:

p(xt | Gc,t−1) =

∫ ∞

−∞

p(xt | xt−1)p(xt−1 | Gc,t−1)dxt−1 (14)

p(xt | Gc,t) = p(gc,t | xt)p(xt | Gc,t−1)/p(gc,t | Gc,t−1) (15)

p(gc,t | Gc,t−1) =

∫ ∞

−∞

p(gc,t | xt)p(xt | Gc,t−1)dxt (16)

The log likelihood function is ln[p(gc,1, ..., gc,T )] =
∑T

t=1 ln[p(gc,t | Gc,t−1)]. Maximizing

the log likelihood function yields the parameter estimates.

3.3 Estimation Results

In this section, we first report maximum likelihood parameter estimates of consumption

growth process. We compare the fit of the benchmark model (Equations 8-9) with that of

the unrestricted DPL model (Equations 11-12). We also consider the fit of three important

restricted versions of the DPL model. We then report estimates of the dividend regression

(Equations 10 and 13).

Table 2 reports maximum likelihood estimates for the consumption growth process. The

benchmark fully Gaussian model estimates are reported in the first row. The second row

reports results for the unrestricted DPL model. Rows 3-5 report results for three restricted

versions of the DPL model as follows. The third row reports estimates for the “symmetric

dampening” model, obtained by setting βc+ = βc−. The fourth row is the “symmetric scale”

model, obtained by restricting γc+ = γc−. The fifth row reports estimates for the “symmetric

dampening and scale” model, with βc+ = βc− and γc+ = γc−.

Briefly, the main findings from the table can be summarized as follows for all the models

reported there. All statistical inferences are reported at the 0.05 significance level, with some

exceptions noted below. The time-invariant mean µc is significantly positive for both the

benchmark and DPL models. The coefficient αc is significantly less than 2 for all the DPL

models, which ensures fat-tails for the DPL process. Dampening coefficients βc+ and βc− are
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found to be significantly positive. This guarantees finiteness of moments of all orders for

the DPL process, thus ensuring finiteness of equilibrium asset prices. The persistence of the

long run component ρ is significantly less than 1 for all the models. This is in contrast to

the close-to-one value of 0.979 for ρ calibrated by Bansal and Yaron (2004).

An LR test for the benchmark fully Gaussian model versus the unrestricted DPL model

rejects at the 0.05 significance level using the χ2 distribution with three degrees of freedom.

The benchmark model is also rejected versus any of the three restricted versions at the 0.05

significance level.

We also performed likelihood ratio (LR) tests, with each of the three restricted DPL

models in turn as the null model versus the most general unrestricted DPL model given in

Equations (11-13) as the alternative model. In addition, we performed in turn an LR test

with the “symmetric dampening and scale” model as the null model versus the “symmetric

dampening” and “symmetric scale” models. In every case, we used critical values from the

χ2 distribution with degrees of freedom equal to the number of restrictions needed on the

alternative DPL model to obtain the null model under consideration. A 0.05 significance

level is used for each of the tests to draw statistical inference. We next discuss each of these

hypotheses tests.

(1) symmetric dampening

The null hypothesis of “symmetric dampening” tests the restriction βc+ = βc−. With sym-

metric dampening coefficient βc, a larger negative jump scale estimate γc− versus a smaller

positive jump scale estimate γc+ results in negative skewness in the innovations. The esti-

mates are consistent with negative skewness (-0.7389) in the consumption growth data. The

LR test statistic for this case is 0.0178 which fails to be rejected.

(2) symmetric scale

The null hypothesis of “symmetric scale” tests the restriction γc+ = γc−. With symmetric

jump scales, a larger positive dampening coefficient βc+ versus a smaller negative dampening

coefficient βc− leads to negative skewness of innovations to the consumption growth process.
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Again, the estimates are consistent with the statistical properties of the consumption growth

data. The LR test statistic for this hypothesis is 1.6512 which fails to be rejected.

(3) symmetric dampening and scale

The “symmetric dampening and scale” model is obtained by setting βc+ = βc− and γc+ = γc−.

The model features symmetric innovations to the consumption growth process. An LR test

statistic for this null hypothesis against the unrestricted DPL model is 4.1410 which fails to

be rejected. Also, an LR test statistic of 2.4858 against the “symmetric scale” alternative

model too cannot be rejected. However, an LR test statistic of 4.1232 against the “symmetric

dampening” alternative model is rejected at the 0.05 level.

In summary, we cannot reject any of the three restricted cases when tested against the

unrestricted DPL model at the 0.05 significance level. The “symmetric dampening and scale”

model is rejected against the “symmetric dampening” model. In what follows, we choose

the “symmetric dampening” model to capture fat tails in the consumption and dividends

growth rates process and study its asset pricing implications.

The upper panel of Figure 2 plots the observed and the filtered mean of consumption

growth rates (Equation (8)) for the benchmark model. The upper panel of Figure 3 plots

similar quantities for the selected DPL model. These panels show that both models capture

trend consumption growth fairly well.

We report maximum likelihood parameter estimates of dividends growth rate processes

given in Equations (10) and (13) in Table 3. As indicated at the beginning of subsection

3.2, we use the filtered mean of xt from the benchmark and DPL models as a proxy for

the unobservable persistent component that appears on the right hand sides of these two

equations. Results are presented for both the benchmark model as well as for various ver-

sions of the DPL model, as in Table 2 for consumption growth process. For simplicity, we

assume a similar DPL structure for innovations to dividends growth as that of innovations to

consumption growth. Note that regressions for the alternative models are based on different

xt, filtered from the first step of the estimation procedure. Thus, parameter estimates for

14



the various models exhibit clear differences. Also, a higher likelihood does not necessarily

mean a better fit due to the differing xt for each alternative model.

The lower panel of Figure 2 plots observed dividends and their fitted values in a regression

of the former on the filtered mean of the persistent component for the benchmark model.

The figure shows that the benchmark model is unable to capture very well fluctuations in

dividends growth. The benchmark model overestimates growth during some years, while

underestimating variability for most of the sample. The lower panel of Figure 3 plots similar

quantities for the selected DPL model. The DPL model produces a more reasonable fit to

the data, with a somewhat poor fit at the beginning and end of the sample period.

4 Asset Pricing Implications

In this section, we first discuss model parameterization. We then proceed to computing

numerically the equilibrium asset prices and returns implied by our model. We compare our

benchmark model implications to the no-fluctuating-uncertainty case in Bansal and Yaron

(2004). We then examine whether the DPL model exhibits significant improvement over the

benchmark model. We also report our results under an alternative method for estimating

the long run component by filtering dividends data.

4.1 Model Parameterization

Asset pricing formulae summarized in subsection 2.3 show that equilibrium returns and other

quantities of interest involve three type of parameters: preference parameters that appear in

Equation (1), parameters of the stochastic processes for consumption and dividends growth

rates that appear in Equations (11-13), and endogenous (implied) parameters that appear

in the approximations to the price-dividend ratios on consumption and market portfolios in

Equations (6-7). Stochastic process parameter estimates were reported in subsection 3.3. In

this subsection, we elaborate on our choice of preference parameters and our methodology
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for computing endogenous parameters of price-dividend ratios.

Preference parameters include the risk aversion coefficient γ, the intertemporal elasticity

of substitution (IES) ψ, and the time discount factor δ. Our choice of values for these

parameters is largely dictated by those used by Bansal and Yaron (2004). The time discount

factor δ is set at 0.998 for decisions made at quarterly intervals. In the next two subsections,

we discuss asset pricing implications for various alternative values of γ and ψ.

Sections A1, A2, B1 and B2 in the Appendix discuss how to compute endogenous values

for the parameters that appear in the approximations to the gross rates of return to the

aggregate consumption and market portfolios appearing in Equations (6-7). These are the

average values for the price-dividend ratios z and zm, and the constants k0, k1, k0m, and

k1m. Table 4 reports these computations for various alternative values of the preference

parameters γ and ψ. The upper panel reports values for the benchmark model and the lower

panel for the DPL model. It can be seen that all values for the benchmark model are similar

to those for the DPL model.

It is worthwhile to compare our parameter values for the benchmark model to those

for the no-fluctuating-uncertainty case in Bansal and Yaron (2004). We choose the case of

γ = 10 and ψ = 1.5 for ease of comparison. In what follows, we briefly report our param-

eter values followed by those employed by Bansal and Yaron (2004) in parentheses. 3 (1)

Consumption dynamics: µc = 0.0192(0.018), σc = 0.0102(0.027); (2) Long-run risks: ρ =

0.6857(0.979), σe = 0.006(0.0012); (3) Dividend dynamics: µd = 0.0228(0.018), φ = 1.095(3),

σd = 0.0346(0.122); (4) Price-dividend ratios: z = 7.644(6.9068), k0 = 0.004(0.0079),

k1 = 0.9995(0.999), zm = 6.889(5.7105), k0m = 0.008(0.0222), and k1m = 0.999(0.9967).

Parameter values for our benchmark model are clearly different from those of the equivalent

model in Bansal and Yaron (2004).4 The latter study uses twice the value of σc and thrice

the value of σd and φ than in our model. Differences in all these values have significant

3We thank Dana Kiku for kindly providing these values to us.
4Main reasons are twofold: we use different data and we use the estimated (low) value for the persistence

of the long run risks component instead of calibrating it to a value of 0.979.
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impact on asset pricing implications which we will detail in the following section.

4.2 Benchmark Model

Moments of the model-implied rates of return and price-dividend ratio from the benchmark

model are reported in Table 5. These are the unconditional means and volatilities of the

market risk premium and the risk free rate, and the volatility of the price-dividend ratio.

These statistics are reported for various values of the risk-aversion coefficient γ and the

intertemporal elasticity of substitution (IES) parameter ψ.

The expected market risk premium in the benchmark model is no greater than 0.417 per-

cent per annum for any combination of γ and ψ values considered in the table. The reported

implied moments are quite low, compared to an annualized expected risk premium of 4.2

percent reported in the no-fluctuating-uncertainty case by Bansal and Yaron (2004). There

are several factors that account for this. The market risk premium is primarily determined

by the variances of the innovations to the persistent component σ2
e and dividend growth σ2

d,

the persistence of the long run component ρ and the loading factor on the long run compo-

nent in dividend growth φ. This is evident from the formula for the market risk premium

given in Equation (A14) in the Appendix, and from examining the numerical values of all

the other terms that appear in that formula. As noted in previous section, our model has

lower σd and lower ρ, which contribute to lower risk premium in our model. The results

are intuitive, since (1) lower variance of innovations to dividend growth are in alignment

with lower risk premium; (2) less persistence ρ lowers long run risks in the economy, thereby

lowering the premium needed to hold risky assets; (3) lower factor loading of long-run risks

component on dividend growth φ leads to lower market risk premium.

The expected risk free rate in the benchmark model is no lower than 1.562 percent per

annum for any combination of γ and ψ considered in the table. All values for ψ = 1.5

are higher than those reported in the no-fluctuating-uncertainty case by Bansal and Yaron

(2004). The expected risk free rate in the benchmark is negatively dependent on variances

17



of innovations to consumption growth σ2
c and long run risks σ2

e as evident from Equation

(A19) when θ is negative, or equivalently γ > 1 and ψ > 1. Lower variances of the two

components in our sample data contribute to a relatively higher expected risk free rate.

The unconditional volatility of the market return is reported in the third column of Table

5. It is no greater than 4.197 percent per annum for any combination of γ and ψ considered

in the table. This is quite low, compared to 16.21 percent reported in the no-fluctuating-

uncertainty case by Bansal and Yaron (2004). The market return volatility formula is given

in Equation (A16) in the Appendix. It is primarily determined by the variances of the short

run innovations to the long run component σ2
e and the dividends growth rate σ2

d, with the

magnitude of the latter being dominantly larger. σ2
d is considerably lower in our quarterly

dataset (0.013 annualized) than its value estimated from annual datasets (0.12 annualized

in Bansal and Yaron (2004)).

The unconditional volatility of the risk free rate is reported in the fourth column of Table

5. The values for different combination of preferences are slightly higher than those reported

by Bansal and Yaron (2004), which is due to lower ρ and higher σe in our model.

The unconditional volatility of the market price-dividend ratios is reported in the last

column of Table 5. These are lower than the values reported by Bansal and Yaron (2004)

because of our lower ρ and higher σe.

In summary, compared to the no-fluctuating-uncertainty model in Bansal and Yaron

(2004), our benchmark model produces lower expected risk premia, higher but comparable

risk free rate, lower volatilities of risk premium and price-dividend ratios. Most of these

differences can be directly traced to the lower variances of consumption and dividend growth

rates in our data, and to our use of a lower estimated value of ρ.

4.3 DPL Model

Moments of the model-implied rates of return and price-dividend ratio from the DPL model

are reported in Table 6. These are the unconditional means and volatilities of the market risk
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premium and the risk free rate, and the volatility of the price-dividend ratio. These statis-

tics are reported for various values of the risk-aversion coefficient γ and the intertemporal

elasticity of substitution (IES) parameter ψ.

The expected market risk premium in the DPL model is as high as 1.917 percent per

annum for a combination of γ = 35 and ψ = 1.5 considered in the table. This is significantly

higher, compared to a maximum annualized expected risk premium of 0.417 percent reported

in the benchmark model. Thus, the DPL model can significantly improve the magnitude of

implied risk premia over the benchmark model for the same preference combination.

There are several factors that account for this. The market risk premium is primarily

determined by the variances of the innovations to the long run component σ2
e and to the

dividend growth σ2
d, and the coefficients on these variances. Among their coefficients, φ and

ρ positively affect the market risk premium. This is evident from the formula for the market

risk premium given in Equation B23 in the Appendix. However, estimated values of these

two variances are seen to be similar in magnitude for both models from Table 2-3. The

estimated values of ρ for the two models are only marginally different. The higher loading

factor on long run risks φ in dividends growth contributes to the consistently higher risk

premia for the DPL model.

The expected risk free rate in the DPL model is reported in the fourth column of Table

6. This is lower than in the benchmark model for ψ = 1.5. With the same time discount

factor δ and the same estimated value of µc in both models, the lower estimate of σe leads

to a lower value in the DPL model as seen in Equation (B19).

The unconditional volatility of the market return is reported in the fifth column of Table 6.

The values for the DPL model are comparable to those for the benchmark model. Equation

(B25) shows that lower ρ and σe estimated in the DPL model contribute to lower volatility

of the market return while higher variance of innovations to dividend growth in the DPL

model increases the volatility of the market return.

The unconditional volatility of the risk free rate is reported in the sixth column of Table

19



6. They are marginally lower in the DPL model compared to the benchmark model. As seen

in Equation (B20), lower ρ and σe contribute to the lower volatility for the DPL model.

The unconditional volatility of the market price-dividend ratios is reported in the last

column of Table 6. These are higher in the DPL model for ψ = 1.5. Equation (B12) reveals

that the significantly larger loading factor φ on long-run risks in dividend growth in the DPL

model combined with the slightly lower ρ and σe leads to higher volatility of price-dividend

ratio for the DPL model.

In summary, compared to the benchmark model, our DPL model produces significantly

higher expected equity risk premium and higher volatilities of the price-dividend ratios, and

comparable magnitudes of the risk free rate and its volatility and that of the market return,

4.4 Filtering xt Using Dividends Data

The discussion so far on the benchmark and DPL models is based on estimating the long

run component xt through Bayesian filtering using the consumption growth process as the

observation equation and the process for xt as the state transition equation. We now study

the robustness of our results to an alternative way of estimating xt using the dividends

growth process, instead of the consumption growth process, as the observation equation.

Maximum likelihood estimation results of the model using dividends process as the ob-

servation equation and the xt process as the state transition equation are reported in Table

7. The table reports results for the benchmark Gaussian model and several versions of the

DPL model, as in Table 2. Extensive hypotheses testing along the lines reported for that

table in subsection 3.3 pin down the “symmetric dampening and scale” DPL model as giving

the best fit. We therefore pursue study of asset pricing implications with this version of the

DPL model as the candidate model capturing fat tails.

Maximum likelihood estimation results of the consumption regression equation using xt

obtained by filtering dividends data are reported in Table 8. The table once again reports

results for the benchmark Gaussian model and several versions of the DPL model.
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To illustrate the asset pricing implications with this alternative approach for estimating

xt, we mainly report results for the parameter combination γ = 35 and ψ = 1.5 for the

sake of brevity. The benchmark model under the alternative approach (see Table 9) can

generate 2.95 percent equity risk premium (significantly higher than 0.42 percent reported

in the earlier benchmark case by filtering consumption growth data for xt), 1.42 percent risk

free rate (compared to 1.56), 5.42 percent volatility of market return (compared to 3.58),

0.51 percent volatility of risk free rate (compared to 0.55), and 0.036 percent volatility of

price-dividend ratio (significantly higher than 0.005).

The DPL model under the alternative approach also shows similar improvement over

the earlier DPL model based on a comparison of analogous quantities between Table 6 and

Table 10. Most significantly, the DPL model under this alternative approach is now able to

generate 6.24 percent equity risk premium and 1.03 percent risk free rate, which are close to

market data. The main reason for this improvement is that the alternative DPL model now

exhibits significantly higher persistence of long-run risks ρ.

We now compare our results to those in Shaliastovich and Tauchen (2008) and Bidarkota

and Dupoyet (2007). The former study reports 4.51 percent per annum implied risk premium

for their Lévy-process-based model with risk aversion γ = 50. The latter documents 2.72

percent per annum risk premium with risk aversion γ = 7 assuming the market portfolio

pays aggregate consumption as its dividend. Our DPL model with filtering from consumption

data cannot generate high enough equity risk premium as reported earlier. However, the

premium for the alternative DPL model with filtering from dividends data is computed to

be 6.24 percent per annum with γ = 35 and ψ = 1.5.

Thus, as we have seen above, this alternative approach to estimating xt produces signifi-

cantly better empirical results on asset pricing for both the benchmark and DPL models. The

results also reaffirm the earlier conclusion that the DPL model represents a clear improve-

ment over the benchmark model. However, our mixed results based on univariate filtering

(using either consumption or dividends data alone) highlight the need for entertaining bi-
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variate filtering with DPL innovations to consumption and dividends growth rates, which

we leave for future research.

5 Conclusions

In this paper, we explore the effects of fat tails on an asset pricing model with long-run

risks and recursive utility. Following Bansal and Yaron (2004), we model consumption and

dividend growth processes with persistent long run components. Given the evidence of

leptokurtosis in consumption and dividends data, we introduce non-normality in shocks to

their growth rates via a Lévy process, namely the dampened power law (DPL). We derive

the asset pricing implications of the resulting model and study the quantitative importance

of modeling fat tails empirically.

When we extract the long run risks component by filtering consumption data, fat tails

generate 1.92% expected market risk premium and 0.61% expected risk free rate with the

magnitudes of risk aversion and intertemporal elasticity of substitution being 35 and 1.5,

respectively. By contrast, when we extract the long run risks component by filtering divi-

dends data, the risk premium and risk free rate become 6.24% and 1.03%, both of which are

comparable to those observed in the market. Modeling fat tails leads to clear improvement

in implied risk premia and volatility of price-dividend ratios, without deterioration in the

magnitudes of other moments of interest. Although the asset pricing model with DPL fat

tails can generate higher volatility of market returns, its magnitude (3.77% with consump-

tion filtering and 7.04% with dividend filtering) is well shy of the observed value. This is

partly due to the relative smoothness of post-war consumption and dividends growth data

compared to pre-war data. Inclusion of pre-war data would undoubtedly generate higher

volatility.

Extracting the long-run risks component using both consumption and dividends data

is more efficient but involves complications arising from consideration of a bivariate DPL
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and/or filtering process. Also, our asset pricing model assumes that agents not only observe

the growth rates of consumption and dividends but also their long run persistent component

xt (although it is assumed in estimation that econometricians do not actually observe the

true value of xt but have to learn about it through a Bayesian filtering process). This may

not be entirely realistic (Croce, Lettau, and Ludvigson (2006)). It is worth exploring the

effects of fat tails on the long run risks model that treats xt as unobservable even by agents

in the model. Solving the asset pricing model in such an incomplete information setting with

fat tails poses a challenge. Bidarkota, Dupoyet, and McCulloch ((2007)) study such a model

but without long run risks or recursive utility.
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APPENDIX

A Benchmark Model Solution

The benchmark model is represented by the following set of equations:

gc,t+1 = µc + xt + ηc,t+1 (A1)

xt+1 = ρxt + et+1 (A2)

gd,t+1 = µd + φxt + ηd,t+1 (A3)

where ηc,t+1 ∼ iidN(0, σ2
c ), et+1 ∼ iidN(0, σ2

e), and ηd,t+1 ∼ iidN(0, σ2
d).

A.1 Price-Consumption Ratio

The price-consumption and price-dividend ratios zt and zm,t are the only endogenous vari-

ables in the model. Once we solve for these, all other equilibrium quantities of interest can

be readily derived. We briefly summarize the procedure for deriving zt here and zm,t in the

next section of the Appendix.

The first-order condition for the representative agent given as Equation (2) in the text

can be rewritten for returns on the aggregate consumption portfolio as:

Et[exp(θlnδ −
θ

ψ
gc,t+1 + θra,t+1)] = 1 (A4)

We substitute for ra,t+1 from Equation 6 and gc,t+1 from Equation A1 into the above first-

order condition.

Bansal and Yaron (2004) conjecture the following linear solution for the price-consumption

ratio as a function of the single state variable xt in the model: zt = b0 + bxxt where b0 and

bx are constants to be determined. We now substitute this conjectured solution for zt into

the resulting first-order condition, and then solve for the constants b0 and bx through the
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method of undetermined coefficients. The solutions for b0 and bx are as follows:

b0 =
lnδ + (1 − 1

ψ
µc + k0 + 0.5θ(1 − 1

ψ
)2σ2

c + 0.5(θk1bxσe)
2)

1 − k1
(A5)

bx =
1 − 1

ψ

1 − k1ρ
(A6)

The approximating constants appearing in Equation (3) in the text k0 and k1 are functions

of the average level of the price-consumption ratio z̄. Evaluating zt = b0 + bxxt at z̄ and

recognizing from Equation A2 that the average value of xt is zero yields z̄ = b0.

Thus, replacing the lhs of Equation A5 with z̄ and substituting for bx from Equation A6

into the rhs gives us a (highly) nonlinear equation in z̄. We can easily solve this equation

numerically for z̄. Given z̄, k0 and k1, and hence b0 and bxare readily obtained.

A.2 Price-Dividend Ratio

We briefly summarize the procedure for deriving the price-dividend ratio zm,t on the market

portfolio here.

The first-order condition for the representative agent given as Equation (2) in the text

can be rewritten for returns on the market portfolio as:

Et[exp(θlnδ −
θ

ψ
gc,t+1 + (θ − 1)ra,t+1 + rm,t+1)] = 1 (A7)

We substitute for ra,t+1 from Equation 6 and rm,t+1 from Equation 7, gc,t+1 from Equation

A1 and gd,t+1 from Equation A3 into the above first-order condition.

Bansal and Yaron (2004) once again conjecture the following linear solution for the price-

dividend ratio as a function of the state variable xt in the model: zm,t = b0m + bxmxt where

b0m and bxm are constants to be determined. We substitute this conjectured solution for zm,t

into the resulting first-order condition, and then solve for the constants b0m and bxm through
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the method of undetermined coefficients. The solutions for b0m and bxm are as follows:

b0m =
1

1 − k1m
{θlnδ −

θ

ψ
µc + (θ − 1)[k0 + (k1 − 1)b0 + µc] + k0m + µd

+ 0.5(θ −
θ

ψ
− 1)2σ2

c + 0.5[(θ − 1)k1bx + k1mbxm]2σ2
e + 0.5σ2

d} (A8)

bxm =
(θ − 1)(k1bxρ− bx + 1) − θ

ψ
+ φ

1 − k1mρ
(A9)

The approximating constants appearing in Equation (4) in the text k0m and k1m are

functions of the average level of the price-dividend ratio z̄m. Evaluating zm,t = b0m + bxmxt

at z̄m and recognizing from Equation A2 that the average value of xt is zero yields z̄m = b0m.

Thus, replacing the lhs of Equation A8 with z̄m and substituting for bxm from Equation

A9 into the rhs gives us a nonlinear equation in z̄m. We can solve this equation numerically

for z̄m. Given z̄m, k0m and k1m, and hence b0m and bxm are readily obtained.

A.3 Equilibrium Quantities of Interest

The following results are specializations (to the homoskedastic case) of the more general

fluctuating-uncertainty model solution derived in the appendix to Bansal and Yaron (2004).

These formulae are reproduced here using the notation adopted in our paper for easy refer-

ence and for comparison with the solution to the DPL model derived in the next section of

the Appendix.
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Price-consumption and price-dividend ratios:

ra,t+1 ≃ k0 + k1zt+1 − zt + gc,t+1 (A10)

zt = b0 + bxxt (A11)

bx =
1 − 1/ψ

1 − k1ρ

rm,t+1 ≃ k0m + k1mzm,t+1 − zm,t + gd,t+1 (A12)

zm,t = b0m + bxmxt (A13)

bxm =
φ− 1/ψ

1 − k1mρ

Risk premia, risk free rate and volatilities:

Et[rm,t+1] − rf,t = βm,eλm,eσ
2
c − 0.5V art(rm,t+1) (A14)

V art(rm,t+1) = β2
m,eσ

2
c + σ2

d (A15)

V ar(rm,t+1) = β2
m,eσ

2
c + σ2

d +
σ2
e

(1 − ρ2)ψ2
(A16)

Et[ra,t+1] − rf,t = −λm,ησ
2
c +

λ2
m,e

1 − θ
σ2
c − 0.5V art(ra,t+1) (A17)

V art(ra,t+1) = σ2
c + (k1bxσe)

2 (A18)

E[rf,t] = −lnδ + µc/ψ +
1 − θ

θ
[Et[ra,t+1] − rf,t] −

λ2
m,η + λ2

m,e

2θ
σ2
c

= −lnδ + µc(
1

ψ
+ xt) + 0.5(θ − 1 −

θ

ψ2
)σ2

c + 0.5(θ − 1)(k1bx)
2σ2

e (A19)

V ar(rf,t+1) =
σ2
e

ψ2(1 − ρ2)
(A20)

V ar(zm,t) =
(bxmσe)

2

1 − ρ2
(A21)
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where

βm,e = k1mbxmσe/σc =
k1m(φ− 1/ψ)σe
(1 − k1mρ)σc

λm,e = (1 − θ)k1bxσe/σc =
(1 − θ)k1(1 − 1/ψ)σe

(1 − k1ρ)σc

λm,η = −
θ

ψ
+ θ − 1 = −γ

B DPL Model Solution

The DPL model is represented by the following set of equations:

gc,t+1 = µc + xt + ηc,t+1

xt+1 = ρxt + et+1

gd,t+1 = µd + φxt + ηd,t+1

where et ∼ iidN(0, σ2
e), ηc,t ∼ iidDPL(γc+, γ

c
−, β

c
+, β

c
−, α

c), and ηd,t ∼ iidDPL(γd+, γ
d
−, β

d
+, β

d
−, α

d).

The DPL processes are defined immediately following Equations (11-13) in the main text.

B.1 Price-Consumption Ratio

The price-consumption and price-dividend ratios zt and zm,t are the only endogenous vari-

ables in the model. Once we solve for these, all other equilibrium quantities of interest can

be readily derived. We briefly summarize the procedure for deriving zt here and zm,t in the

next section of the Appendix.

The first-order condition for the representative agent given as Equation (2) in the text can

be rewritten for returns on the aggregate consumption portfolio as: Et{exp[θlnδ−
θ
ψ
gc,t+1 +

(θ − 1)ra,t+1]} = 1

We substitute for ra,t+1 from Equation (6) and gc,t+1 from Equation (11) into the above

first-order condition to obtain: Et{exp[θlnδ+(θ− θ
ψ
)(µc+xt+ηc,t+1)+θ(k0+k1zt+1−zt)]} = 1.
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As in the benchmark model, we conjecture the following linear solution for the price-

consumption ratio as a function of the single state variable xt in the model: zt = b0 + bxxt,

where b0 and bx are constants to be determined.

We substitute this conjectured solution for zt and the process for the long run component

xt from Equation (12) into the resulting first-order condition to obtain:

1 = Et{exp[θ(lnδ + (1 −
1

ψ
)µc + k0 + (k1 − 1)b0)

+ (θ −
θ

ψ
+ θk1bxρ− θbx)xt

+ (θ −
θ

ψ
)ηc,t+1 + θk1bxσeet+1]}

Denote

A0 = θ(lnδ + (1 −
1

ψ
)µc + k0 + (k1 − 1)b0)

Ax = θ −
θ

ψ
+ θk1bxρ− θbx

Aη = θ −
θ

ψ

Ae = θk1bxσe

We can now rewrite the first-order condition in a simpler way using the above notation

as:

Et{exp[A0 + Axxt + Aηηc,t+1 + Aeet+1]} = 1 (B1)

The conditional expectation term on the lhs of the above equation can be evaluated using

the moment generating function (mgf) of innovations following the normal distribution and

the more general DPL process considered here. These are given as:
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Et[exp(Aeet+1)] = exp[0.5θ2k2
1b

2
xσ

2
e ] (B2)

Et[exp(Aηηt+1)] = exp{△t[κ(Aη)]} (B3)

κ(Aη) = Γ(−αc)γc+[(βc+ − Aη)
αc − (βc+)α

c

] + Γ(−αc)γc−[(βc− + Ae)
αc − (βc−)α

c

] + AeQ

(B4)

Q = γc+(βc+)α
c−1[Γ(−αc)αc + Γ(1 − αc, βc+)] − γc−(βc−)α

c−1[Γ(−αc)αc + Γ(1 − αc, βc−)]

(B5)

The cumulant exponent of the DPL innovation κ(Aη) is derived in Wu (2006a). In our

numerical calculations, we set △t to 0.25 since we use data sampled at quarterly frequency.

We can substitute the above formulae for the mgf’s into the simplified first-order con-

dition in Equation B1, and then solve for the constants b0 and bx through the method of

undetermined coefficients. The solutions for b0 and bx are as follows:

b0 =
θ(lnδ + k0 + µc(1 − 1/ψ)) + 0.5(θk1bxσe)

2 + △tκ(Aη)

θ(1 − k1)
(B6)

bx =
1 − 1/ψ

1 − k1ρ
(B7)

As can be readily seen, the solution for bx in the DPL model is identical to that in the

benchmark model derived in Appendix A.

The approximating constants appearing in Equation (6) in the text k0 and k1 are functions

of the average level of the price-consumption ratio z̄. Evaluating zt = b0 + bxxt at z̄ and

recognizing from Equation (12) that the average value of xt is zero yields z̄ = b0.

Thus, replacing the lhs of Equation B6 with z̄ and substituting for bx from Equation B7

into the rhs gives us a (highly) nonlinear equation in z̄. We can easily solve this equation

numerically for z̄. Given z̄, k0 and k1, and hence b0 and bxare readily obtained.
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B.2 Price-Dividend Ratio

We briefly summarize the procedure for deriving the price-dividend ratio zm,t on the market

portfolio here.

The first-order condition for the representative agent given as Equation (2) in the text

can be rewritten for returns on the market portfolio as:

Et[exp(θlnδ −
θ

ψ
gc,t+1 + (θ − 1)ra,t+1 + rm,t+1)] = 1 (B8)

We first substitute the solution to price-consumption ratio zt = b0 + bxxt from previous

subsection and gc,t+1 from Equation 11 into Equation 6 to obtain returns on the aggregate

consumption portfolio ra,t+1 as follows:

ra,t+1 = B0a +Bxaxt +Beaet+1 + ηc,t+1

where

B0a = k0 + (k1 − 1)b0 + µc

Bxa = k1bxρ− bx + 1 =
1

ψ

Bea = k1bxσe

We substitute for ra,t+1 from the resulting equation and rm,t+1 from Equation 7, gc,t+1

from Equation 11 and gd,t+1 from Equation 13 into the above first-order condition.

As in the benchmark model, we conjecture the following linear solution for the price-

dividend ratio as a function of the state variable xt in the model: zm,t = b0m + bxmxt where

b0m and bxm are constants to be determined. Substituting this conjectured solution for zm,t
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into the resulting first-order condition yields:

Et[exp[θlnδ −
θ

ψ
gc,t+1 + (θ − 1)ra,t+1 + rm,t+1]] = 1

Et[exp[θlnδ −
θ

ψ
µc + (θ − 1)B0a + k0m + µd + (k1m − 1)b0m

+ [(θ − 1)Bxa −
θ

ψ
+ φ+ k1mbxmρ− bxm]xt

+ [(θ − 1)Bea + k1mbxmσe]et+1 + (θ − 1 −
θ

ψ
)ηc,t+1 + ηd,t+1]] = 1 (B9)

This can be abbreviated as:

Et[exp[A0m + Axmxt + Aemet+1 + Aηmηc,t+1 + ηd,t+1]] = 1

where

A0m = θlnδ −
θ

ψ
µc + (θ − 1)B0a + k0m + µd + (k1m − 1)b0m

Axm = (θ − 1)Bxa −
θ

ψ
+ φ+ k1mbxmρ− bxm

Aem = (θ − 1)Bea + k1mbxmσe

Aηm = θ − 1 −
θ

ψ

The constants b0m and bxm can then be solved by the method of undetermined coefficients:

bxm =
(θ − 1)Bxa

θ
ψ

+ φ

1 − k1mρ
=

(θ − 1) θ
ψ2 + φ

1 − k1mρ
(B10)

b0m =
θlnδ − θ

ψ
µc + (θ − 1)B0a + k0m + µd + 0.5A2

em + △tκc(Aηm) + △tκd(1)

1 − k1m
(B11)

where κc(Aηm) is the cumulant exponent of the DPL innovation to consumption. The ap-

proximating constants appearing in Equation 7 in the text k0m and k1m are functions of

the average level of the price-dividend ratio z̄m. Evaluating zm,t = b0m + bxmxt at z̄m and
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recognizing from Equation 12 that the average value of xm,t is zero yields z̄m = b0m.

Thus, replacing the lhs of Equation B11 with z̄m and substituting for bxm from Equation

B10 into the rhs gives us a nonlinear equation in z̄m. We can solve this equation numerically

for z̄m. Given z̄m, k0m and k1m, and hence b0m and bxm are readily obtained.

Given zm,t = b0m + bxmxt, variance of price-dividend ratio zm,t can be easily obtained as

V ar(zm,t) = b2xmV ar(xt) (B12)

B.3 Returns on Aggregate Consumption Portfolio

Returns on the aggregate consumption portfolio ra,t+1 are given in Equation (6). Using

zt = b0 + bxxt and the DPL process for gc,t+1 from Equation (11) yields:

ra,t+1 = k0 + (k1 − 1)b0 + µc + (k1bxρ− bx + 1)xt + k1bxσeet+1 + ηc,t+1

= B0a +Bxaxt +Beaet+1 + ηc,t+1 (B13)

where

B0a = k0 + (k1 − 1)b0 + µc

Bxa = k1bxρ− bx + 1 =
1

ψ

Bea = k1bxσe

Innovations to returns on the aggregate consumption portfolio ra,t+1 − E[ra,t+1] can be
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expressed as:

ra,t+1 = k0 + k1zt+1 − zt + gc,t+1

E[ra,t+1] = k0 + k1E[zt+1] − E[zt] + E[gc,t+1]

ra,t+1 − E[ra,t+1] = k1(zt+1 − E[zt+1]) − (zt − E[zt]) + (gct+1 −E[gc,t+1])

Substituting the conjectured solution for zt into the above equation and recognizing that

xt+1 − E[xt+1] = et+1 −E[et+1] = et+1 yields:

ra,t+1 − E[ra,t+1] = k1bx(xt+1 − E[xt+1]) + ηc,t+1

= k1bxσeet+1 + ηc,t+1 (B14)

B.4 Pricing Kernel (IMRS)

The (logarithm of the) pricing kernel mt+1 is given in Equation (5) in the main text. Sub-

stituting for the DPL consumption process from Equation (11) and ra,t+1 from Equation

(B13) derived in the previous section of this Appendix into the formula for the pricing kernel

yields:

mt+1 = θlnδ −
θ

ψ
gc,t+1 + (θ − 1)ra,t+1

= θlnδ −
θ

ψ
(µc + xt + ηc,t+1) + (θ − 1)(B0a +Bxaxt +Beaet+1 + ηc,t+1)

= θlnδ −
θ

ψ
µc + (θ − 1)B0a + ((θ − 1)Bxa −

θ

ψ
)xt + (θ − 1)Beaet+1 + (θ − 1 −

θ

ψ
)ηc,t+1

(B15)

Innovations to the pricing kernel are given as:

mt+1 −Et(mt+1) = [(θ − 1)k1bx −
θ

ψ
]σeet+1 + (θ − 1 −

θ

ψ
)ηc,t+1 (B16)
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The conditional variance of the pricing kernel can then be obtained as:

V art(mt+1) = Et[(mt+1 −Et(mt+1))
2]

= [(θ − 1)k1bx −
θ

ψ
]2σ2

e + (θ − 1 −
θ

ψ
)2σ2

η (B17)

where σ2
η = △tΓ(2−α)(γ+β

α−2
+ + γ−β

α−2
− ) is the second moment of the innovation following

the DPL process.

B.5 Risk Free Rate

The risk free asset pays one unit of consumption good as dividends every period. The first-

order condition for the representative agent given as Equation (2) in the text can be rewritten

for risk free returns as: Et[exp(mt+1rf,t+1)] = 1. Recognizing that the risk free rate rf,t+1 is

known as of time t, and using Equation (B15) for mt+1 and Equation (B13) for ra,t+1, we

can derive the risk free rate as:

exp(rf,t+1) = 1/Et{exp[θlnδ + (θ − 1)(k0 + k1b0 − b0) + µc(θ − 1 −
θ

ψ
)

+ [(θ − 1)(k1bxρ− bx + 1) −
θ

ψ
]xt

+ (θ − 1)k1bxσeet+1 + (θ − 1 −
θ

ψ
)ηc,t+1]}

rf,t+1 = −B0f − 0.5B2
ef −△tκ(Bηf ) −Bxfxt (B18)
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where

B0f = θlnδ + (θ − 1)(k0 + k1b0 − b0) + µc(θ − 1 −
θ

ψ
)

= lnδ −
µc
ψ

+ 0.5(1 − θ)θ(k1bxσe)
2 +

1 − θ

θ
△tκ(Aη)

Bxf = (θ − 1)(k1bxρ− bx + 1) −
θ

ψ

Bef = (θ − 1)k1bxσe

Bηf = θ − 1 −
θ

ψ
= γ

The second equality for B0f is obtained by substituting Equation (B6) for b0 into the rhs of

the first equation.

Using E[xt] = 0 and Aη = θ − θ
ψ

= 1 − γ, the unconditional expectation of the risk free

rate E[rf,t] is given by:

E[rf,t+1] = −B0f − 0.5B2
ef −△tκ(Bηf )

= −lnδ +
µc
ψ

+ 0.5(θ − 1)θ(k1bx)
2σ2

e + △t[(1 −
1

θ
)κ(1 − γ) − κ(γ)] (B19)

Unconditional variance of the risk free rate V ar(rf,t+1) can be easily obtained from Equa-

tion (B18) as:

V ar(rf,t+1) = B2
xfV ar(xt) =

B2
xf

1 − ρ2
σ2
e (B20)

where V ar(xt) = 1
1−ρ2

σ2
e as a straightforward result of xt+1 = ρxt + et+1.
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B.6 Market Risk Premium

Returns on the market portfolio rm,t+1 are given in Equation (7). Using zm,t = b0m + bxmxt

and substituting Equations (11) and (13) for gc,t+1 and gd,t+1 respectively yields:

rm,t+1 = k0m + (k1m − 1)b0m + µd + (k1mbxmρ− bxm + φ)xt + k1mbxmσeet+1 + ηd,t+1

= B0m +Bxmxt +Bemet+1 + ηc,t+1 (B21)

where

B0m = k0m + (k1m − 1)b0m + µd

Bxm = k1mbxmρ− bxm + φ

Bem = k1mbxmσe

Subtracting the expected risk free rate in Equation (B19) from returns on the market

portfolio in Equation B21 yields conditional market risk premium:

Et[rm,t+1 − rft] = k0m + k1mb0m − b0m + µd +B0f

+ 0.5((θ − 1)k1bxfσe)
2 + κc(Bηf )

+ (k1mbxmρ− bxm + φ+Bxf)xt (B22)

and unconditional market risk premium:

E[rm,t+1 − rft] = k0m + k1mb0m − b0m + µd +B0f

+ 0.5((θ − 1)k1bxfσe)
2 + κc(Bηf )

= [(1 − θ)k1bx − 0.5k1mbxm]k1mbxmσ
2
e −△tκd(1) (B23)

where the cumulant exponent κd(1) is computed through Equation B4, but with the DPL
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parameters to the innovation to consumption growth γc+, γ
c
−, β

c
+, β

c
−, α

c being replaced by the

parameters to dividend growth γd+, γ
d
−, β

d
+, β

d
−, α

d.

B.7 Variance of Market Returns

We can derive the conditional innovations to excess market returns as: rm,t+1 −Et[rm,t+1] =

k1mbxmσeet+1 + ηd,t+1.

The conditional and unconditional variances of market returns can then be obtained as

follows:

V art(rm,t+1) = Et[rm,t+1 − Et[rm,t+1]]
2

= k2
1mb

2
xmσ

2
e + V ard (B24)

V ar(rm,t+1) = (k1mbxmρ− bxm + φ)V ar(xt) + k2
1mb

2
xmσ

2
e + V ar(ηd)

=
1

ψ2
V ar(xt) + k2

1mb
2
xmσ

2
e + V ar(ηd) (B25)

where V ar(xt) = σ2
e/(1 − ρ2) and V ar(ηd) = △tΓ(2 − αd)[γd+(βd+)α

d−2 + γd−(βd−)α
d−2].
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Figure 1: Quarterly consumption and dividends growth rates

Quarterly consumption and dividends growth rates span the period 1947:I through 2007:IV.
Consumption includes non-durable goods and services from the NIPA tables. Dividends,
paid toward the S&P 500 index, are obtained from Robert Shiller’s website. Nominal
consumption and dividends are deflated by the CPI series to obtain real quantities.
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Figure 2: Filtered consumption and fitted dividend growth: the benchmark model
The upper panel plots observed consumption and its filtered mean for the benchmark model,
where all innovations are assumed to be Gaussian. The lower panel plots observed dividends
and their fitted values in a regression of the former on the filtered mean of the persistent
component (this is the filtered mean series plotted in the upper panel, adjusted for a non-zero
time-invariant mean as in Equation (8)).
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Figure 3: Filtered consumption and fitted dividend growth: the DPL model
The upper panel plots observed consumption and its filtered mean for the DPL model,
where iid innovations to consumption growth rates (but not to the persistent component)
are assumed to follow the dampened power law. The lower panel plots observed dividends
and their fitted values in a regression of the former on the filtered mean of the persistent
component (this is the filtered mean series plotted in the upper panel, adjusted for a non-zero
time-invariant mean as in Equation (11)).
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Table 1: Summary Statistics for Consumption and Dividends

Mean Std. Dev. Skewness Kurtosis J-B Test

Consumption Growth Rates
0.0047 0.00662 -0.7389 4.8688 57.4736
(0.0004) (0.0008) (0.0000) (0.0000) (0.0000)

Dividends Growth Rates
0.0057 0.01764 0.6914 6.9019 173.5148
(0.0011) (0.0008) (0.0000) (0.0000) (0.0000)

The table presents summary statistics for quarterly real per capita consumption and
dividends growth rates over the period 1947:I-2007:IV. Numbers in parentheses are
standard errors for columns 1 and 2, and p-values for columns 3-5. Consumption
data, for non-durable goods and services, are obtained from NIPA tables. Dividends,
paid toward the S&P 500 index, are obtained from Robert Shiller’s website.
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Table 2: Maximum Likelihood Parameter Estimates of Consumption Growth Process

Model µc σc ρ σe LogL
Benchmark 0.0048 0.0052 0.6857 0.0030 881.0295

0.0007 0.0006 0.1669 0.0011
DPL µc σe ρ γc+ γc− γc+ = γc− βc+ βc− βc+ = βc− αc LogL
Unrestricted 0.0049 0.0026 0.6701 0.0006 0.0017 68.3914 67.5682 1.2617 891.8692
DPL 0.0006 0.0000 0.0088 0.0004 0.0005 0.0013 0.0071 0.0000
Sym. Damp. 0.0049 0.0026 0.6708 0.0006 0.0017 68.2415 1.2569 891.8603

0.0006 0.0000 0.0688 0.0011 0.0021 1.8168 0.2232
Sym. Scale 0.0049 0.0016 0.7821 0.0009 121.6673 38.5114 1.3240 891.0436

0.0006 0.0000 0.0557 0.0001 0.0470 0.0553 0.0038
Sym. Damp. 0.0053 0.0016 0.7781 0.0041 97.0592 1.1000 889.7987
and Scale 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

1 Consumption Growth Process: gc,t+1 = µc + xt + ηc,t+1

DPL model: ηc,t+1 ∼ iidDPL(γc+, γ
c
−, β

c
+, β

c
−, α

c)
Benchmark model: ηc,t+1 ∼ iidN(0, σ2

c )

2 State transition: xt+1 = ρxt + et+1. et+1 ∼ iidN(0, σ2
e).

3 For each model, parameter estimates are reported in the first row, and standard errors in the second.

4 “Sym. Damp.” refers to the DPL model with “Symmetric Dampening”.
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Table 3: Maximum Likelihood Parameter Estimates of Dividend Growth Process

Model µd φ σd LogL
Benchmark 0.0057 1.0950 0.0173 640.6437

0.0011 0.3926 0.0008
DPL µd φ γd+ γd− γd+ = γd− βd+ βd− βd+ = βd− αd LogL
Unrestricted 0.0047 3.0956 0.0018 0.0013 10.2087 9.6859 1.4444 667.7964
DPL 0.0000 0.0001 0.0003 0.0003 0.0211 0.0351 0.0013
Sym. Damp. 0.0043 3.0120 0.0942 0.0769 43.3669 0.7052 668.6691

0.0000 0.0000 0.0018 0.0000 0.0106 0.0143
Sym. Scale 0.0045 3.1008 0.0086 20.1681 35.8592 1.1405 670.7876

0.0000 0.0000 0.0003 3.8624 7.4751 0.0023
Sym. Damp. 0.0043 3.0074 0.0061 18.9258 1.1895 667.9971
and Scale 0.0000 0.0003 0.0004 4.5241 0.0338

1 Dividend Growth Process: gd,t+1 = µd + φxt + ηd,t+1

DPL model: ηd,t+1 ∼ iidDPL(γd+, γ
d
−, β

d
+, β

d
−, α

d)
Benchmark model: ηd,t+1 ∼ iidN(0, σ2

d)

2 For each model, parameter estimates are reported in the first row, and standard errors in the second.

3 “Sym. Damp.” refers to the DPL model with “Symmetric Dampening”.
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Table 4: Parameters Determining Price-Consumption and
Price-Dividend Ratios

γ ψ z̄ k0 k1 z̄m k0m k1m

Benchmark Consumption
gamma psi z k0 k1 zm k0m k1m
7.5 0.5 5.044 0.039 0.9936 5.248 0.033 0.995
7.5 1.5 7.543 0.005 0.9995 3.307 0.153 0.965
10 0.5 5.066 0.038 0.9937 5.286 0.032 0.995
10 1.5 7.454 0.005 0.9994 3.309 0.153 0.965
25 0.5 5.215 0.034 0.9946 5.545 0.025 0.996
25 1.5 7.044 0.007 0.9991 3.321 0.151 0.965
35 0.5 5.328 0.031 0.9952 5.766 0.021 0.997
35 1.5 6.841 0.008 0.9989 3.328 0.150 0.965
DPL Consumption
7.5 0.5 5.056 0.038 0.994 4.983 0.041 0.993
7.5 1.5 7.496 0.005 0.999 6.848 0.008 0.999
10 0.5 5.090 0.037 0.994 5.011 0.040 0.993
10 1.5 7.375 0.005 0.999 6.753 0.009 0.999
25 0.5 5.329 0.031 0.995 5.208 0.034 0.995
25 1.5 6.847 0.008 0.999 6.351 0.013 0.998
35 0.5 5.533 0.026 0.996 5.391 0.029 0.995
35 1.5 6.600 0.010 0.999 6.205 0.015 0.998
1 z̄ and z̄m are the average values of the price-consumption

and price-dividend ratios for the aggregate consumption
and market portfolios, respectively.

2 k0, k1, k0m, and k1m are the constants appearing in the
approximate equations for the gross returns to the con-
sumption and market portfolios in Equations (6-7).
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Table 5: Asset Pricing Implications - Benchmark Model

γ ψ E(rm − rf) E(rf) σ(rm) σ(rf) σ(p− d)
7.5 0.5 -0.249 4.626 4.192 1.649 0.012
7.5 1.5 0.033 1.975 3.579 0.550 0.005
10 0.5 -0.329 4.629 4.193 1.649 0.012
10 1.5 0.068 1.938 3.579 0.550 0.005
25 0.5 -0.811 4.651 4.195 1.649 0.012
25 1.5 0.277 1.712 3.579 0.550 0.005
35 0.5 -1.136 4.667 4.197 1.649 0.012
35 1.5 0.417 1.562 3.579 0.550 0.005

The table reports implied expected market risk pre-
mium and the risk free rate along with their volatilities,
and the volatility of the implied price-dividend ratio for
the benchmark fully Gaussian model for various values
of the risk aversion coefficient γ and the intertemporal
elasticity of substitution ψ.
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Table 6: Asset Pricing Implications - DPL Model

γ ψ E(rm − rf) E(rf) σ(rm) σ(rf) σ(p− d)
7.5 0.5 0.117 4.336 2.199 1.402 0.011
7.5 1.5 0.326 1.819 3.778 0.467 0.025
10 0.5 0.178 4.200 2.199 1.402 0.011
10 1.5 0.471 1.716 3.777 0.467 0.025
25 0.5 0.546 3.358 2.203 1.402 0.011
25 1.5 1.340 1.077 3.770 0.467 0.025
35 0.5 0.796 2.743 2.206 1.402 0.011
35 1.5 1.917 0.610 3.767 0.467 0.025

The table reports implied expected market risk pre-
mium and the risk free rate along with their volatilities,
and the volatility of the implied price-dividend ratio for
the DPL model for various values of the risk aversion
coefficient γ and the intertemporal elasticity of substi-
tution ψ.
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Table 7: Maximum Likelihood Parameter Estimates of Dividend Growth Process with Div-
idend Filtering

Model µd φ σd σe ρ LogL
Benchmark 0.0069 3.7387 0.0065 0.0028 0.6754 699.2127

0.0021 0.7071 0.0033 0.0008 0.0881
DPL µd φ σe ρ γd+ γd− γd+ = γd− βd+ βd− βd+ = βd− αd LogL
Unrestricted 0.0051 3.1003 0.0019 0.8709 0.0297 0.0172 24.8812 19.8334 0.6613 733.9235
DPL 0.0000 0.0000 0.0000 0.0355 0.0008 0.0033 5.6452 0.0018 0.0006
Sym. Damp. 0.0051 3.1017 0.0021 0.8394 0.0088 0.0047 9.0270 0.8465 732.8834

0.0000 0.0000 0.0000 0.0329 0.0000 0.0009 0.0000 0.0285
Sym. Scale 0.0052 3.0196 0.0025 0.8076 0.0065 3.6454 23.327 0.8380 731.3902

0.0000 0.0000 0.0000 0.0433 0.0009 0.0012 0.0023 0.0000
Sym. Damp. 0.0052 3.0212 0.0021 0.8595 0.0023 3.4880 1.0833 731.1811
and Scale 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

1 Dividend Growth Process: gd,t+1 = µd + φxt + ηd,t+1

DPL model: ηd,t+1 ∼ iidDPL(γd+, γ
d
−, β

d
+, β

d
−, α

d)
Benchmark model: ηd,t+1 ∼ iidN(0, σ2

d)

2 State: xt+1 = ρxt + et+1. et+1 ∼ iidN(0, σ2
e).

3 For each model, parameter estimates are reported in the first row, and standard errors in the second.

4 “Sym. Damp.” refers to the DPL model with “Symmetric Dampening”.
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Table 8: Parameter Estimates of Consumption Growth Process with Dividend Filtering

Model µc σc LogL
Benchmark 0.0050 0.0069 864.0457

0.0004 0.0003
DPL µc γc+ γc− γc+ = γc− βc+ βc− βc+ = βc− αc LogL

Unrestricted 0.0040 0.0156 0.0068 194.8290 36.4532 0.9932 877.5458
DPL 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

Sym. Damp. 0.0035 0.3498 1.0279 181.05 0.3329 874.9804
0.0000 0.0000 0.0000 0.0000 0.0000

Sym. Scale 0.0047 0.0217 151.66 97.099 0.8763 878.0937
0.0000 0.0017 0.0000 0.0018 0.0000

Sym. Damp. 0.0050 0.0195 107.45 0.8858 873.7761
and Scale 0.0000 0.0005 9.7561 0.0009

1 Consumption Growth Process:
gc,t+1 = µc + xt + ηc,t+1; DPL model: ηc,t+1 ∼ iidDPL(γc+, γ

c
−, β

c
+, β

c
−, α

c)
Benchmark model: ηc,t+1 ∼ iidN(0, σ2

c )
2 Assuming consumption growth process share the same DPL structure with dividends growth pro-

cess.
3 For each model, parameter estimates are reported in the first row, and standard errors in the second.
4 “Sym. Damp.” refers to the DPL model with “Symmetric Dampening”.
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Table 9: Asset Pricing Implications - Benchmark Model
with Dividend Filtering

γ ψ E(rm − rf) E(rf) σ(rm) σ(rf) σ(p− d)
7.5 0.5 0.222 4.684 3.564 1.519 0.020
7.5 1.5 0.436 1.988 4.931 0.506 0.033
10 0.5 0.347 4.649 3.562 1.519 0.020
10 1.5 0.662 1.936 5.115 0.506 0.034
25 0.5 1.094 4.436 3.553 1.519 0.020
25 1.5 2.057 1.624 5.444 0.506 0.036
35 0.5 1.591 4.296 3.546 1.519 0.020
35 1.5 2.946 1.416 5.418 0.506 0.036

The table reports implied expected market risk pre-
mium and the risk free rate along with their volatilities,
and the volatility of the implied price-dividend ratio for
the benchmark fully Gaussian model for various values
of the risk aversion coefficient γ and the intertemporal
elasticity of substitution ψ.
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Table 10: Asset Pricing Implications - DPL Model with
Dividend Filtering

γ ψ E(rm − rf) E(rf) σ(rm) σ(rf) σ(p− d)
7.5 0.5 0.336 4.820 4.347 1.643 0.029
7.5 1.5 1.090 1.914 7.488 0.548 0.068
10 0.5 0.542 4.848 4.339 1.643 0.028
10 1.5 1.593 1.835 7.441 0.548 0.067
25 0.5 1.766 5.027 4.295 1.643 0.028
25 1.5 4.456 1.357 7.187 0.548 0.065
35 0.5 2.571 5.151 4.267 1.643 0.028
35 1.5 6.238 1.028 7.043 0.548 0.064

The table reports implied expected market risk pre-
mium and the risk free rate along with their volatilities,
and the volatility of the implied price-dividend ratio for
the DPL model for various values of the risk aversion
coefficient γ and the intertemporal elasticity of substi-
tution ψ.
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