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Abstract: We start by considering the Alternate Strike (AS) scheme, a real-life arbitration scheme where two parties

select an arbitrator by alternately crossing off at each round one name from a given panel of arbitrators.  We find out that

the AS scheme is not invariant to “bad” alternatives.  We then consider another alternating-move scheme, the Voting by

Alternating Offers and Vetoes (VAOV) scheme, which is invariant to bad alternatives.  We fully characterize the subgame

perfect equilibrium outcome sets of these above two schemes in terms of the rankings of the parties over the alternatives only.

We also identify some of the typical equilibria of these above two schemes.  We then analyze two additional alternating-move

schemes in which players’ current proposals have to either honor or enhance their previous proposals.  We show that the

first scheme’s equilibrium outcome set coincides with that of the AS scheme, and the equilibrium outcome set of the second

scheme coincides with that of the VAOV scheme.  Finally, it turns out that all schemes’ equilibrium outcome sets converge

to the Equal Area solution’s outcome of cooperative bargaining problem, if the alternatives are distributed uniformly over

the comprehensive utility possibility set and as the number of alternatives tends to infinity.  Journal of Economic Literature

Classification Number: C72.

Keywords: The Federal Mediation and Conciliation Service (FMCS), the Alternate Strike (AS) scheme, the Voting

by Alternating Offers and Vetoes (VAOV) scheme, the Enhancing Past Concessions scheme, the Honoring Past Concessions

scheme, the Equal Area solution.



     1 Except for a few studies in the mid-1980s, the economics literature has entirely ignored the part of the arbitration
process which precedes the appointment of the arbitrator (i.e., the part that involves the selection of arbitrators).  This is
surprising since empirical evidence suggests that arbitrators do not have identical preference functions (Ashenfelter and
Bloom (1984)) and that the parties do not have consensus on the characteristics of “good arbitrators” (Bloom and Cavanagh
(1986)).  The AS scheme is the only scheme that is used by the FMCS in over thirty thousand cases a year, and thus it
possibly affects the lives of about a million employees every year.  Therefore, it would be relevant and useful to analyze it.

     2 Since a scheme such as the AS scheme is one of the alternating-move schemes in this paper, we will use the terms
“arbitrator” and “alternative” interchangeably when we refer to that scheme.

     3 Another motivation for studying the finite case is that two finite bargaining situations that involve different
alternatives can end up being represented by the same utility possibility set of Nash’s bargaining problem (1950).  That is,
that utility possibility set can suppress many relevant differences among substantially different finite bargaining setups.  This
happens because that set utility possibility set is generated by randomization among payoffs of the finite alternatives.

     4 One can imagine a union-management bargaining case where there are a few hourly-wage possibilities (typically
following some prominence levels - see Albers and Albers (1983)).  There can also be a few fringe benefit packages - each
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1. INTRODUCTION

One of the main agencies involved in the appointment of arbitrators in labor-management disputes is the Federal

Mediation and Conciliation Service (FMCS), which nominates arbitrators in over thirty thousand cases per year.  The FMCS

provides the disputing parties with a panel of seven names and allows them to select an arbitrator by alternately crossing off

one name from that list at each round.  This scheme is termed the Alternate Strike (AS) scheme.  We fully characterize the

subgame perfect equilibrium outcome set of this scheme in terms of the rankings of the parties over the arbitrators only.  We

also identify a typical equilibrium.1

It turns out that the AS scheme is not invariant to “bad” alternatives, i.e., to alternatives that are not regarded

highly by any player (to be made precise later).2  We then consider another alternating-move scheme, namely the Voting

by Alternating Offers and Vetoes (VAOV) scheme, which is invariant to bad alternatives.  In the VAOV scheme, the two

players take turns making offers until an alternative is accepted; any offer rejected by a player is taken out of consideration,

and if no offer is accepted, the last remaining alternative is the outcome.  We first characterize the subgame perfect

equilibrium outcome set of this scheme in terms of the rankings of the parties over the alternatives only.  We also identify

a typical equilibrium.

In fact, our setup can also be considered as a finite bargaining setup.  Bargaining theory has traditionally assumed

a continuum of feasible outcomes.  However, many real-life bargaining situations involve a finite number of alternatives, such

as two managers choosing from among a few job candidates, or a husband and her wife choosing from among a few homes

or automobiles.3  Another characteristic of many real-life bargaining situations is that past concessions have significant

relevance.  Either past concessions have to be honored or new offers have to improve upon the past offers.4  We will show



involving a various health insurance possibilities (e.g., PPO and HMO options of a few insurance providers) -, and a few
pension plan possibilities (e.g., TIAA-CREF or some state-funded plan), as well as, say, some dental plan possibilities.  In
many on-going relationships, it is conceivable that each party’s preferences on such finitely many packages can be guessed
rather accurately by the other party.

2

that such alternating-move schemes can provide additional insights concerning the above two schemes, as the next two

paragraphs will indicate.

In the Enhancing Past Concessions scheme, two players take turns making offers until an alternative is accepted; any

rejected alternative is taken out of consideration, and at any stage each Player i’s offer must be preferred by his opponent

Player j to Player i’s previous offers.  If only one unrejected alternative remains, it becomes the outcome.  It turns out that

the subgame perfect equilibrium outcome set of this scheme coincides with that of the AS scheme.

In the Honoring Past Concessions scheme, two players take turns making offers and all offers are on the table until

one is accepted; at any stage, a Player i can either (1) accept the last offer of Player j or (2) accept any of the previous offers

made by Player j (which Player i had not accepted when they were offered) or (3) choose not to accept the current offer as

well as any of the past offers.  If only one rejected alternative remains, the player who is offered that alternative has to either

accept it or accept one of the previous offers made by his opponent.  It turns out that the subgame perfect equilibrium

outcome set of this scheme coincides with that of the VAOV scheme.

Finally, we show that all of the above schemes’ equilibrium outcome sets converge to the Equal Area solution’s

outcome if the alternatives are distributed uniformly over the comprehensive utility possibility set and as the number of

alternatives tends to infinity. (The outcome of the Equal Area solution is the intersection of the Pareto frontier and the

straight line that goes through the disagreement point and cuts S into two equal areas.)

Section 2, analyzes the AS scheme.  Section 3 analyzes the VAOV scheme.  In Section 4, the Enhancing Past

Concessions and the Honoring Past Concessions schemes are analyzed.  In Section 5, we show under what circumstances

all schemes’ equilibrium outcomes converge to the Equal Area solution’s outcome.  Section 6 concludes.  The proofs of our

results are in the Appendix.

2. STRATEGIC ANALYSIS OF THE ‘ALTERNATE STRIKE’ SCHEME

Consider a finite set of alternatives, A.  In the Alternate Strike scheme,  the cardinality of A, #A, is seven.  But our

results will hold for any #A.  We denote the two parties by L and M (“Labor” and “Management”).  Players’ preferences šL

and šM over the alternatives in A are assumed to be complete, transitive and anti-symmetric (i.e., a player is indifferent

between two alternatives a and b iff a = b).  Given a set of alternatives A, and a profile (šL,šM), let (A,šL,šM) denote a



     5 To be sure, one of the most important aspects present in reality is the existence of uncertainty about the other
player’s rankings (especially when the two parties have not dealt with each other sufficiently many times in the past).
Dealing with such uncertainty, however, makes this framework very complicated.  To illustrate the extent of the
complications, consider a problem with four alternatives.  Suppose L knows his own rankings.  Concerning M’s rankings
there can be twelve possibilities.  Given that L assigns a probability distribution over these possibilities, not only M’s ordinal
preferences but also M’s cardinal preferences will be relevant.  But then L will also need to form a probability distribution
over M’s cardinal preferences over these twelve possibilities.  As the number of alternatives grows, this complexity grows
much faster.
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problem.  (We will abbreviate (A,šL,šM) by using (šL, šM) or A only when no confusion will arise from doing so.)

In the Alternate Strike scheme, the sequence of the moves is as follows where i,j = L,M, i … j: Player i first vetoes

some a 0 A.  Then Player j vetoes some b 0 A\{a}.  Player i vetoes some a’ 0 A\{a,b}.  Player j vetoes some b’ 0 A\{a,b,a’}.

Player i vetoes some a” 0 A\{a,b,a’,b’}.  Player j vetoes some b” 0 A\{a,b,a’,b’,a”}.  Then the only remaining arbitrator c

in A\{a,b,a’,b’,a”,b”} is selected to arbitrate the dispute between L and M.

The FMCS provides the two parties with the resumés of the arbitrators (these resumés include information such

as each arbitrator’s training and prior decisions).  It is reasonable to assume that, in many enduring relationships, ‘each party

knows its opponent’s rankings over the arbitrators, but not necessarily the intensity of its opponent’s preferences over any

two arbitrators’ and that ‘these rankings are common knowledge between the parties but are not known to outsiders’.  This

also makes our framework tractable.5

DEFINITION 2.1: Given any (A,šL, šM), let Pi
A(a) = {a’ 0 A * a’ ™i a} be the set of alternatives that a Player i

(strictly) prefers to some a in A, i = L,M.

Observe that given any two a, b 0 A, #Pi
A(a) < #Pi

A(b) means that Player i (strictly) prefers a to b.  #Pi
A(a) will

also represent a Player i’s ranking of an alternative a in some A.  Thus, if #Pi
A(a) = 0, then a is Player i’s most preferred

alternative in A; similarly, if #Pi
A(a) = #A-1, then a is Player i’s least preferred alternative in A.  Let a ™ b denote the

situation where both players (strictly) prefer a to b.  Let A* = {a 0 A* a’ ™ a  Y a’ ó A} be the set of efficient alternatives

in A.

EXAMPLE 2.1: Consider A = {a, b, c, d, e, f, g,} with the profile a ™L b ™L c ™L d ™L e ™L f ™L g and g ™M e ™M

c ™M a ™M b ™M d ™M f.  Alternatively, each a in any problem (A,šL,šM) can be expressed in terms of players’ rankings of a.

The alternatives in this example’s problem (A,šL,šM) can be expressed as a = (0,3), b = (1,4), c = (2,2), d = (3,5), e =

(4,1), f = (5,6), g = (6,0).  The efficient alternatives are a, c, e, and g. 
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_____________________

Insert Figure 1 about here

_____________________

The equilibrium outcome(s) of the AS scheme can be identified using an algorithm, the “Simultaneous Naive

Elimination” algorithm.

DEFINITION 2.2: The Simultaneous Naive Elimination algorithm: Given any (A, šL,šM), let A1 = A.  Let wL
At be

L’s least preferred arbitrator in some At, and wM
At be M’s least preferred arbitrator in some At (observe that wL

At = wM
At is

possible).  For any integer t $ 2, let At = At-1\{wL
At-1,wM

At-1}.  Let t* be the smallest integer such that At* is empty.  We shall

denote by FL
A L’s most preferred alternative in At*-1 and by FM

A M’s most preferred alternative in At*-1.

In Example 2.1, observe that FL
A = FM

A = FA  = a.  To see that note the following: given A1 = A = {a, b, c, d,

e, f, g}, we have wL
A1 = g, wM

A1 = f, and thus, A2 = {a, b, c, d, e}; then, given A2, we have wL
A2 = e, wM

A2 = d, and thus

A3 = {a, b, c}; consequently, given A3, we have wL
A3 = c, wM

A3 = b, and thus A4 = {a}.  Hence, FL
A = FM

A = FA = a.

Thus, t* = 5, since wL
A4 = wM

A4 = a.  At*-1 = A4 = {a}.  Observe that M prefers g, e, and c to FL
A = FM

A = a while L does

not prefer any alternative to FL
A = FM

A = FA = a.

DEFINITION 2.3: Given any (A,šL,šM), suppose a and a’ are alternatives in A such that a ™i a’ and a’ ™j a, i,j =1,2,

i … j.  Then a and a’ are said to be adjacent alternatives iff there is no a 0 A* such that a ™i a  ™i a’ and a’ ™j a  ™j a.

LEMMA 1.  Given any (A,šL,šM),

(1) FL
A and FM

A are well-defined;

(2) FL
A and FM

A are efficient;

(3) FL
A and FM

A are adjacent alternatives when FL
A … FM

A.

The AS scheme is a sequential game of perfect information.  Therefore, here the notion of equilibrium is subgame

perfection; a strategy profile s* is a subgame perfect equilibrium if and only if the strategy of each player is optimal at each

decision node given the strategies of the other player.  The first part of the next result fully characterizes the circumstances

under which each Fi
A becomes the subgame perfect equilibrium outcome.  The second part provides a typical equilibrium.
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THEOREM 1:  Given any (A,šL,šM),

(1) If Fi
A … Fj

A and Player i has the first move, then Fi
A is the outcome of any subgame perfect equilibrium of the AS scheme.

If FL
A = FM

A = F A, then it is the outcome of any subgame perfect equilibrium of the AS scheme regardless of who has the first move.

(2) A subgame perfect equilibrium strategy for Player i = L is as follows: At any stage B, given FL
B … FM

B, veto FM
B. Given

FL
B = FM

B = F B,  veto any alternative that Player M prefers to FB if there is any such alternative; veto any alternative a … F B

otherwise.

Consider Example 2.1.  Suppose L moves first.  L will first veto any of g, e or c (all of which M prefers to FL
B = FM

B

= F B = a).  After L vetoes any of them, it is M’s turn to move.  Since L does not prefer any alternative to FL
B = FM

B = F

B = a, M will veto any of f, d or b.  Suppose L vetoes g and then M vetoes f.  Then at his second move, L will veto any of e

or c.  Following that, at his second move, M will veto any of d or b.  Suppose L vetoes e and then M vetoes d at their second

moves.  Ensuing that, at their final moves, L will veto c and then M will veto b.  The outcome will be a.  If M moves first

instead of L, observe that the outcome will still be a. 

In the remarks below, we will focus on more specific features of this result.

REMARK 2.1: The two possible equilibrium outcomes of the AS scheme are efficient adjacent arbitrators: This follows from

Theorem 1 which has established that the subgame perfect equilibrium outcome of the AS scheme is either FL
A or FM

A when

FL
A … FM

A, and from Part 3 of Lemma 1 which established that they are adjacent efficient arbitrators.

REMARK 2.2: Multiple outcomes and first-mover advantage: Consider (A,šL,šM) = {a = (0,2), b = (1,3), c = (2,0),

d = (3,1)}).  We will first illustrate that the equilibrium outcomes can differ depeding on who moves first.  By Part 2 of

Theorem 1, L will start by vetoing c.  To see why M will not veto a, observe that he knows that in that case L would veto

d next round and consequently make b the outcome, which from M’s perspective is worse than a.  Thus, M will veto b.  Then

L will veto d, and a will become the outcome.  Similarly, c will be the outcome if M has the first move.  Clearly, once the first

mover is known, the equilibrium outcome is unique.  This example also illustrates the first-mover advantage in the AS scheme.

REMARK 2.3: Multiple equilibria with a unique equilibrium outcome: Consider (A,šL,šM) = {a = (0,4), b = (1,3),

c = (2,2), d = (3,1), e = (4,0)}.  Suppose L starts; then L moves at rounds one and three, and M moves at rounds two and

four.  Observe that it does not matter which of d and e Player L will veto first and second; likewise, it does not matter which

of a and b Player M will veto first and second.  The equilibrium outcome will still be c.  Since A is a symmetric set, c is the

equilibrium outcome regardless of who moves first.  This illustrates the presence of multiple equilibria even with a unique

equilibrium outcome.



     6 Here is how FL(A,šL,šM) = b, FM(A,šL,šM) = c, and FL(A’š’L,š’M) = FM(A’š’L,š’M) = b are obtained.  Observe
that, with (A,šL,šM) , first d and a (which are symmetric) are eliminated since d is L’s and a is M’s least preferred arbitrator
among the remaining ones.  This leaves b and c as the possible outcomes.  With (A’,š’L,š’M), first d and e are eliminated
since d is L’s and e is M’s least preferred arbitrator.  Then c and a are eliminated since c is L’s and a is M’s least preferred
arbitrator among the remaining ones. This leaves b as the only possible outcome (i.e., regardless of which party moves first).

     7 Anbarci (1993) shows that (L
A or (M

A are well-defined and that (L
A or (M

A are adjacent efficient alternatives
when (L

A … (M
A.
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REMARK 2.4: A reciprocal elimination of parties’ preferred arbitrators need not occur in the AS scheme:  In some sets,

M’s least preferred arbitrator may coincide with L’s most preferred arbitrator while L’s least preferred arbitrator may coincide

with one of M’s lowest ranked arbitrators.  In Example 2.1, L’s least preferred arbitrator is g while M’s least preferred

arbitrator is f.  Such an unreciprocal elimination of some of M’s preferred arbitrators might take place several times; as a

result (such as in Example 2.1), the most preferred arbitrator of one party can be the outcome regardless of who moves first.

REMARK 2.5: The equilibrium outcome set is not invariant with respect to alternatives that are dominated by both

equilibrium outcomes (i.e., “bad” alternatives):  Consider the following two problems (A,šL, šM) = {a = (0,3), b = (1,2), c =

(2,1), d = (3,0)} and (A’,š’L,š’M) = {a = (0,3), b = (1,2), c = (2,1), e = (3,4), d = (4,0)}.  By Theorem 1, FL(A,šL,šM)

= b, FM (A,šL,šM) = c.  Clearly, the only difference between (A,šL,šM) and (A’,š’L,š’M) is e which is dominated by both

b and c.  Notice, however, that FL(A’,š’L,š’M) = FM(A,’š’L,š’M) = b.6  Remark 2.4 provides an explanation as to what causes

such an unsatisfactory result for the AS scheme.

3. THE ‘VAOV’ SCHEME

Now, we will analyze a scheme that, unlike the AS scheme, is invariant with respect to bad alternatives, namely

the VAOV scheme (see Anbarci (1993)).  In the Voting by Alternating Offers and Vetoes (VAOV) scheme, first, Player i offers

some a 0 A.  Player j can either accept a or veto it and offer some b 0 A\{a}.  If Player j vetoes a and offers b, Player i can

either accept b or veto it and offer some c 0 A\{a,b}, and so on.  This procedure continues either until some alternative in

A is offered and accepted or until only one unvetoed alternative remains in A, which is the outcome.  Consider:

      (L
A = argmin {#PM

A(a)-#PL
A(a)*#PM

A(a)$#PL
A(a)}, (M

A = argmin {#PL
A(a)-#PM

A(a)*#PL
A(a)$#PM

A(a)}.7

   a0A*                 a0A*

Let A*i = {a 0 A**#Pj
A(a) $ #Pi

A(a)}, i,j = L,M, i … j.  That is, any alternative a in A*i is efficient and Player i

prefers fewer number of alternatives to it than Player j does.  Note that (i
A is Player j’s most preferred alternative in A*i.

Observe that, in Example 2.1, A*L = {a,c} and A*M = {c, e, g}; thus, (L
A = (M

A = c (recall that, in the same example,



     8 Suppose that #A*L $ 2 and  #A*M $ 2.  That is, for each player there are two or more efficient alternatives that
he prefers at least as much as his opponent does.  Then observe that the AS scheme is not very conducive to a compromise
in that one of the player’s most preferred alternative can be the outcome (see Example 2.1 for instance).  Given the above
condition, the VAOV scheme outcome, however, can never be any player’s most preferred alternative (it simply follows
from the definitions of (M

A and (L
A, since (M

A is L’s most preferred alternative in #A*M and ( L
A is M’s most preferred

alternative in #A*L).

     9 Anbarci (1993)’s main concern is establishing the link between these outcomes and the Equal Area solution
outcome as the number of alternatives tends to infinity (by using some structure to generate the equilibrium alternatives).
Thus, for that paper’s intent and purpose a result more precise than that is not needed.

     10 There are additional problems when more than two players are considered in all of the schemes analyzed in this
paper.  The first one is that the number of subgame perfect equilibrium outcomes will grow with the number of players, n;
i.e., there can be n possible equilibrium outcomes depending on who starts first.  In addition, especially in the case of the
VAOV scheme, there can several different rules concerning the vetoing of an alternative.  That is, when an alternative is
offered, it can be eliminated after the next player rejects it or it can eliminated after a certain number of players reject it
(possibly all of the other players).

7

FL
A = FM

A = a).8

Theorem 1 in Anbarci (1993) showed that the subgame perfect equilibrium outcome set of the VAOV scheme

contains either (L
A or (M

A or both.  Clearly, this result is not precise.9  When (L
A … (M

A, it does not specify which of these

two alternatives will become the equilibrium outcome under what circumstances.  Thus, our next result is a significantly

sharper version of Theorem 1 in Anbarci (1993).  A problem (A,šL,šM) is balanced iff #PL
A((M

A) = #PM
A((L

A) and

unbalanced iff #Pi
A((j

A) > #Pj
A((i

A) i,j = L,M, i … j.  Let  DA = {a 0 A * (i
A ™ a œi = L,M}.

THEOREM 2:  Given any (A,šL,šM),

(1) Consider the balanced problem where (L
A = (M

A =  (A.  Then  (A is the subgame perfect equilibrium outcome regardless

of who has the first move.  Consider the remaining balanced problem where (L
A … (M

A and suppose Player i has the first move.  Then

the subgame perfect equilibrium outcome is (i
A if #DA is odd, and it is (j

A if #DA is even or zero.  Consider the unbalanced problem

and suppose #Pi
A((j

A) > #Pj
A((i

A).  Then the subgame perfect equilibrium outcome is (i
A regardless of who has the first move, i,j

= L,M, i … j.

(2) A subgame perfect equilibrium strategy for Player i = L is as follows:  Offer some a 0 DB if DB … i.  Otherwise, offer

some a 0 PL
B((M

B)\(L
B if PL

B((M
B)\(L

B … i.  Otherwise, offer (L
B.  If [#PL

B((M
B) $ #PM

B((L
B)] or [#PM

B((L
B) - #PL

B((M
B) =

1 and DB … i], accept any a 0 PL
B((L

B)c(L
B and reject any other a.    If [#PM

B((L
B) - #PL

B((M
B) = 1 and DB = i] and

[#PM
B((L

B) - #PL
B((M

B) > 1],  accept any a 0 PL
B((M

B)c(M
B and reject any other a.10

In the remarks below, we will focus on more specific features of this result.
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REMARK 3.1: The two possible equilibrium outcomes of the VAOV scheme are efficient adjacent arbitrators: This follows

from Theorem 3 above and from Part 3 of Lemma 1 in Anbarci (1993) which established that they are adjacent efficient

alternatives.

REMARK 3.2: Multiple outcomes depending on who moves first: This states the obvious.  Consider (A,šL,šM) = {a

= (0,2), b  = (2,0)} and suppose L starts by offering a.  M will reject a and the outcome will be b.  Likewise, suppose M starts

by offering b.  L will reject b and the outcome will be a.

REMARK 3.3: Multiple equilibria with a unique equilibrium outcome: Consider (A,šL,šM) = {a = (0,2), b = (1,1), c

= (2,0)} and suppose L starts by offering a.  Then M will reject a.  Note that whether M then offers b or c does not matter:

if M offers c, L will reject it and the outcome will be b, and if M offers b, L will accept it, which will thus become the outcome.

REMARK 3.4: No generic first- or second-mover advantage: Consider the situation where the numbers of alternatives

that L and M prefer to (M
A and (L

A respectively are equal.  When #A is even, there is a last-mover advantage: Consider

(A,šL, šM) = {a = (0,2), b = (1,3), c = (2,0), d = (3,1)}; observe that the outcome is c if L makes the first offer, and a if

M makes the first offer.  When #A is odd, there is a first-mover advantage: consider A = {a = (0,1), b = (1,0), c = (2,2)}

and observe that the outcome is a when moves first, and b when M moves first.

REMARK 3.5: The VAOV scheme’s outcome balances the numbers of alternatives that the parties find preferable to it “as

much as possible.”  Unlike the AS scheme (as alluded to in Remark 2.4), in the VAOV scheme, reciprocal elimination of

preferred alternatives must take place.  When (i
A is the outcome regardless of who has the first move, however, one of the

players has more alternatives that he prefers to (i
A than the other player does.  Then the VAOV scheme’s outcome balances

the numbers of alternatives that the parties find preferable to it only “as much as possible.”

REMARK 3.6: The first offer can be accepted in equilibrium: Consider (A,šL,šM) = {a = (0,2), b = (1,1), c = (2,0)}

and suppose L starts by offering b.  Note that, if M rejects b, the outcome will be a.  Thus, M will accept b.

4. THE ‘ENHANCING PAST CONCESSIONS’ AND

‘HONORING PAST CONCESSIONS’ SCHEMES

First consider the Enhancing Past Concessions scheme.  First Player i offers some a 0 A.  Player j can either accept

a or veto it and offer some b 0 A\{a}.  If j vetoes a and offers b, Player i can either accept b or veto it and offer some c 0

A\{a,b}, and so on.  During subsequent rounds, both players are further restricted in that they may not make an offer which,

from the other player’s point of view, is worse than an offer he has already vetoed.  In other words, suppose that at some round

Player i has offered some a’ which consequently got vetoed by Player j; then at any later round Player i has the move, he is

only allowed to offer an alternative a” such that a” ™j a’.  This procedure stops either when an alternative is accepted by one



     11 Nash (1950, 1953) considered bargaining problems between two players and introduced two approaches to
modeling such problems: the strategic (non-cooperative) and axiomatic (cooperative) approaches.  The attempt to combine
them is known as the Nash program, which this paper will try to follow (at the finitely-many-alternatives setup as well as
its relationship with Nash’s cooperative bargaining setup).

     12 Vector inequalities: Given x, x’ 0 ú2
+, x > x’ means xi > xi’ for all i = 1,2; x $ x’ means x > x’ and x … x’; x >

x’ means xi > xi’ for all i = 1,2.
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of the players or there is only one remaining alternative a*, in which case a* becomes the outcome.

THEOREM 3:  The subgame-perfect equilibrium outcome set of the Enhancing Past Concessions scheme coincides with

that of the AS scheme.

Next, consider the Honoring Past Concessions scheme.  First Player i offers some a 0 A.  Player j can either accept

a or reject it and offer some b 0 A\{a}.  If Player j rejects a and offers b, Player i can either accept b or reject it and offer some

c 0 A\{a,b}.  If Player i rejects b and offers c, Player j can either accept an alternative from {a,c} or reject them and offer

some d 0 A\{a,b,c} (i.e., a player has to offer a yet unoffered alternative; also a player can accept an alternative only from

the ones that his opponent has offered up to that point).  Then Player i can either accept an alternative from {b,d} or reject

them, and so on.  This procedure continues until either some alternative is offered and accepted or only one unoffered

alternative a* remains.  Suppose that Player i gets to offer a*, then Player j has to accept either a* or any alternative that

Player i has offered before; the accepted alternative becomes the outcome.

THEOREM 4:  The subgame-perfect equilibrium outcome set of the Honoring Past Concessions scheme coincides with that

of the VAOV scheme.

5. THE EQUILIBRIUM OUTCOMES OF THE ARBITRATION SCHEMES AND 

THE EQUAL AREA SOLUTION OF NASH’S BARGAINING SETUP

Nash’s Bargaining Problem (which is the traditional cooperative bargaining theory)11 is a pair (S,d) where the utility

possibility set, S, is a subset of ú2
+, and d 0 S is the disagreement point such that there is some x 0 S with x > d.12  The agents

receive d unless they unanimously agree on a compromise x in S.  Let B2
0 be the class of pairs (S,d) where d = 0, and S d ú2

+

is convex, compact and comprehensive (comprehensiveness of S in B2
0: If x 0 S, then any 0 # y # x is also in S).  With B2

0, the

notation of Nash’s bargaining problem reduces from the pair (S,d) to S where any x in S is such that x > 0.  Given B2
0, a

solution is a function F associating with every S in B2
0 a point F(S) in S.  Let MS denote the Pareto frontier of S (i.e., the set
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of weakly Pareto optimal points in S); MS = {x 0 S * ò x’ 0 S with x’ > x}.

By Theorem 1, FL
A and  FM

A are the unique subgame-perfect equilibrium outcomes of the AS scheme, and by

Anbarci (1993), (L
A and (M

A are the unique subgame-perfect equilibrium outcomes of the VAOV scheme.  But note that

FL
A and  FM

A (and (L
A and (M

A) can be quite apart from each other for some finite A. This seems problematic since,

depending on the situation, each player would like to be the first- or second-mover.  Anbarci (1993) showed that if the

alternatives in A are selected from S such that they are distributed uniformly over S in a particular way, then they converge

as #A goes to infinity.  Furthermore, they converge to the Equal Area solution "’s outcome "(S), which is the intersection

point of MS and the straight line that goes through 0 and cuts S into two equal areas (see Anbarci (1993) and Anbarci and

Bigelow (1994)).

To generate some A from S, Anbarci (1993) first approximated S with a finite number of cells, and then selected

one point from each cell.  This approximation is created using a grid of rectangular cells that covers S completely.  Let bi =

max {xi * x 0 S}.  Let n = 1,2,3,... denote the grid parameter such that the length of a cell is a1/n and its height is a2/n.  Call

any cell that contains some part of MS a boundary cell; observe that only boundary cells can contain some points outside S (it

can easily be seen that Anbarci (1993)’s result is robust to making the cell length and height equal).

One alternative will be selected from each cell.  To make use of Kuhn’s backward induction theorem here, no player

should be indifferent between two or more alternatives unless the other player is also indifferent between them.  One can

find many procedures to select alternatives to A from S such that Kuhn’s theorem can be utilized.  Anbarci (1993) selected

alternatives by creating a slight bias against the less efficient cells; this is essentially identical to assuming that each Player

i has lexicographic preferences such that he chooses a over a’ if he prefers a over a’ or if he is indifferent between a and a’ and

Player j prefers a over a’ (one can see that Anbarci (1993)’s result would still hold even if the slight bias is created against

more efficient cells, where players have somewhat negatively interdependent lexicographic preferences).

Specifically, there are n rows, R1,...,Rn, and n columns, C1,...,Cn.  R1 contains the origin as well as a1, and C1 contains

the origin and a2.  Let rk denote the boundary cell of Rk, and let ck denote the boundary cell of Ck, k = 1,2,...,n.  Let Mrk denote

Pareto frontier of rk, and let Mck denote the Pareto frontier of ck.  In each Rk, find the point m(Mrk), which bisects the arc-

length of Mrk, and connect m(Mrk) to the southwest corner of Rk through a straight line.  Likewise, in each Ck, find the point

m(Mck), which bisects the arc-length of Mck, and connect it to the southwest corner of Ck through a straight line.  The

intersections of these row lines and column lines provide the set of alternatives A.  Let P* denote this procedure (for more

details of P*, see Anbarci (1993) and the figures therein).

Observe that any a in A selected through P* is either in MS or is strictly dominated by another alternative which

is in MS.  Also observe that, for each n and a given utility profile, #A will be invariant with respect to affine transformations



     13 Uniform distribution of alternatives over S is used to highlight the importance of the Equal Area solution.  In
addition, comprehensiveness of S turns out to be important because, without comprehensiveness of S, the Equal Area
solution outcome need not be efficient whereas the SPE outcomes of the AS and VAOV schemes are efficient.
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of players’ utility functions.  As n goes to infinity, the distance between any two adjacent alternatives becomes insignificant.

Anbarci (1993) showed that, as n tends to infinity, (L
A and (M

A (which are adjacent efficient alternatives) tend to "(S).

Let E(A) ={FL
A, FM

A} and '(A) = {(L
A, (M

A} in any problem (A,šL,šM).  It will turn that FL
A and  FM

A too tend

to "(S), as n tends to infinity.  This seems surprising since for any arbitrary A (i.e., for any A that was not generated through

P*), E(A) and '(A) could be significantly different.  The key to the understanding of why E(A) and '(A) tend to "(S) is

that, in some equilibrium in either scheme, players take turns in removal of alternatives from opposite sides of the line that

connects the origin to "(S).  This becomes identical to removing equal areas from opposite sides of that line.  Since a finer

grid (i.e., a grid with a higher n) approximates S better, the equilibrium outcomes of these schemes approximate "(S) better

as n tends to infinity.

THEOREM 5:  Suppose P* constructs A from S.  As n 6 4, FL
A and  FM

A converge to "(S).

REMARK 5.1: Here we extend the domain of non-cooperative foundations for the Equal Area solution towards a

particular direction: when there is an alternating-move scheme with finitely many alternatives, which are distributed

uniformly over the utility possibility set S, then the subgame-perfect outcome of that scheme converges to the Equal Area

solution outcome.  However, when the alternatives are not uniformly distributed over S, the solution outcomes of these

schemes do not converge to the outcome of the Equal Area solution.13 

REMARK 5.2: Is the above setup the only setup under which the AS and VAOV schemes have the same outcome

sets?  The answer is negative.  The proof of Theorem 5 provides clues about the answer of this question.  If the two players

end up eliminating almost equal numbers of alternatives in DA = {a 0 A * fi(A) ™ a œi = L,M}, then the two schemes will

have the same outcome.  Note that this is possible if either (i) for any wL
At, dominated by both FL

A and  FM
A, wM

At is also

dominated by both FL
A and  FM

A, or (ii) for any wL
At, dominated by both FL

A and  FM
A, if wM

At is not dominated by both FL
A

and  FM
A,.there is another wM

At’ that is dominated by both FL
A and  FM

A and wL
At’ is not dominated by both FL

A and  FM
A.

6. CONCLUDING REMARKS

To summarize, this paper studies alternating-move bargaining situations and arbitration schemes in which only a

finite set of feasible alternatives is present.  Many real-life bargaining situations have this feature, but the literature has mainly
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dealt with the case of infinite choice sets.  The two main contributions of this paper are, first, to study the of finite alternating-

move bargaining situations (arbitration schemes); and, second, to provide a general link between the finite-alternatives

bargaining situations and the infinite-alternatives bargaining situations and consequently to provide robust non-cooperative

foundations for the Equal Area solution.
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APPENDIX

PROOF OF LEMMA 1: (1) Observe that at each round of the Simultaneous Naive Elimination algorithm, at least

one and at most two alternatives are eliminated before the last stage t*- 1 is reached.  Consequently, at least one and at most

two efficient alternatives reach t*-1 (efficiency of the alternatives in the outcome set is established in Part 2 of this lemma).

(2) Without loss of generality, suppose that FL
A is not efficient.  Then there must be some a 0 A such that a ™ FL

A.  But since

a ™L FL
A, then FL

A would be eliminated before a gets eliminated or a = FM
A; i.e., in either case, FL

A would not be an outcome

of the Simultaneous Naive Elimination algorithm, a contradiction.

(3) Suppose FL
A and FM

A are not adjacent.  Then there is some a 0 A such that FL
A ™L a  ™L FM

A and FM
A ™M a ™M FL

A.  But

then either FL
A or FM

A or both would be eliminated before a gets eliminated, a contradiction.   '

PROOF OF THEOREM 1: We will need the following lemma (the proofs of Parts (i) and (ii) are straightforward

and, thus, will be omitted):

LEMMA A1.1. Consider the Simultaneous Naive Elimination algorithm on two problems (B,šL,šM) and (B\a,šL,šM).

(i) Suppose that FL
B … FM

B.  Suppose B\a is such that FL
B is removed from B.  Then FM

B becomes FB\a.

(ii) Suppose that #B > 1 and FL
B = FM

B = FB.  Suppose B\a is such that FB is removed from B.  Then wL
Bt*-2 becomes FM

B\a

and wM
Bt*-2 becomes FL

B\a.

(iii) Regardless of whether FL
B … FM

B or FL
B = FM

B = FB, suppose that B\a is such that some wL
Bt with wL

Bt = wM
Bt for any

t, t < t*-1, is removed from B.  Then each Fi
B becomes Fi

B\a.

(iv) Suppose that FL
B … FM

B.  Suppose that B\a is such that some wL
Bt with wL

Bt … wM
Bt for any t, t < t*-1, is removed from

B.  Then either [each Fi
B becomes Fi

B\a] or [FL
B becomes FB\a and FM

B becomes wL
(B\a)t*-2].

(v) Suppose that FL
B = FM

B = FB.  Suppose that B\a is such that some wL
Bt with wL

Bt … wM
Bt for any t, t < t*-1, is removed

from B.  Then either [FB becomes FB\a] or [FB becomes FM
B\a and wM

Bt*-2 becomes FL
B\a].

PROOF OF LEMMA A1.1: (iii) Note that, if some wL
Bt such that wL

Bt = wM
Bt for any t, t < t*-1, is removed from

B, then each wi
Bt’ for any t’, t < t’, becomes wi

(B\a)t’+1 at B\a.  Then, clearly, each Fi
B becomes Fi

B\a.

(iv) and (v) Note that when some wL
Bt such that wL

Bt … wM
Bt for any t, t < t*-1, is removed from B, then either wM

Bt  will

become wL
(B\a)t = wM

(B\a)t or wL
Bt+1 will become wL

(B\a)t … wM
(B\a)t =  wM

Bt.  If the former case holds, trivially [each Fi
B becomes

Fi
B\a] in (iv) and [FB becomes FB\a] in (v).  If the latter case holds, then we are back to our starting point with the difference

that t is replaced with t+1.  Thus, we only have to focus on the case t = t*-2.

Consider (iv).  Suppose wL
Bt*-2 … wM

Bt*-2 and FM
B ™ wM

Bt*-2 at B, then wM
Bt*-2 becomes wL

(B\a)t*-2 = wM
(B\a)t*-2 in which

case we have [each Fi
B becomes Fi

B\a].  Now consider the remaining situation wL
Bt*-2 … wM

Bt*-2 and FM
B å wM

Bt*-2 at B.   Then

by definition of any Fi
B and wM

Bt*-2, we have wM
Bt*-2 ™L FM

B (and, of course, FM
B ™M wM

Bt*-2).   Then we will have [FL
B becomes

FB\a and FM
B becomes wL

(B\a)t*-2].

Consider (v).  Suppose wL
Bt*-2 … wM

Bt*-2 and FB ™ wM
Bt*-2 at B, then wM

Bt*-2 becomes wL
(B\a)t*-2 = wM

(B\a)t*-2 in which case

we have [FB becomes FB\a].  Now consider the remaining situation wL
Bt*-2 … wM

Bt*-2 and FB å wM
Bt*-2 at B.  Then by definition
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of FB and wM
Bt*-2, we have wM

Bt*-2 ™L F
B.  Then we will have [FB becomes FM

B\a and wM
Bt*-2  becomes FL

B\a].   '

(1) We will use an inductive argument.  Clearly, given any (B,šL,šM), the result is correct if B contains only two

efficient alternatives, and there is no arbitrator selection problem when B is a singleton.  We suppose that our claim has been

established for B\a and we want to establish it for B.  Suppose that L uses the following strategy: if FL
B = FM

B = FB, veto wL
Bt*-

2; if FL
B … FM

B, veto FM
B.

We will first show that when, without loss of generality, L moves at B, he will be able to make FL
B the outcome

against an opponent who follows a SPE strategy.

Suppose that FL
B … FM

B.

Suppose that L vetoes FM
B.  Then by Lemma A1.1(i), FL

B will become FB\a at B\a.  

Suppose that FL
B = FM

B = FB.

Suppose that L vetoes wL
Bt*-2.  Then by Lemma A1.1(v), either [FB becomes FM

B\a and wM
Bt*-2  becomes FL

B\a] or [FB

becomes FB\a].

Now, we will show that, when a SPE-following M moves at B, FL
B\a (including the possibility  FL

B\a = FM
B\a = FB\a)

will become the outcome.

Suppose that FL
B … FM

B.

Suppose that M vetoes FL
B at B.  Then, by Lemma A1.1(i), FM

B becomes FB\a; thus by our induction hypothesis, FM
B

(and hence FB\a = FL
B) will become the outcome.

Suppose that M vetoes some wL
Bt such that wL

Bt = wM
Bt.  Then, by Lemma A1.1(iii), FL

B and FM
B will become FL

B\a

and FM
B\a respectively; thus, by our induction hypothesis, F L

B (and hence F L
B\a) will become the outcome.

Suppose that M vetoes some wM
Bt such that wM

Bt … wL
Bt.  Then, by Lemma A1.1(iv), either [each Fi

B becomes Fi
B\a]

or [F L
B becomes FB\a and F M

B becomes w L
(B\a)t*-2].  Thus, by our induction hypothesis, F L

B (and hence FL
B\a) will become the

outcome.

Suppose that M vetoes some wL
Bt such that wL

Bt … wM
Bt.  Then, by Lemma A1.1(iv), either [each Fi

B becomes Fi
B\a]

or [FM
B becomes FB\a and FL

B becomes wM
(B\a)t*-2].  Thus, by our induction hypothesis, either FL

B or FM
B (but in any case, FL

B\a)

will become the outcome.

Thus, overall, when FL
B … FM

B, a rational M will veto FL
B since it unambiguously makes FM

B (and hence FB\a = FL
B)

the outcome by our induction hypothesis.  Vetoing anything else either can make or will make FL
B the outcome.

Suppose that FL
B = FM

B = FB.

Suppose that M vetoes FB.  Then, by Lemma A1.1(ii), wL
Bt*-2 becomes FM

B\a and wM
Bt*-2 becomes FL

B\a; thus, by our

induction hypothesis, wM
Bt*-2 (and hence FL

B\a) will become the outcome.  (By definition, FB ™M  wM
Bt*-2.)

Suppose that M vetoes some wL
Bt such that wL

Bt = wM
Bt.  Then, by Lemma A1.1(iii), FB will become FB\a; thus, by

our induction hypothesis, FB (and hence FB\a) will become the outcome.

Suppose that M vetoes some wM
Bt such that wM

Bt … wL
Bt.  Then, by Lemma A1.1(v), either [FB becomes FB\a] or

[wL
Bt*-2 becomes F M

B\a and FB becomes FL
B\a].  Thus, by our induction hypothesis, FB (and hence FL

B\a) will become the

outcome.
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Suppose that M vetoes some wL
Bt such that wL

Bt … wM
Bt.  Then, by Lemma A1.1(v), either [FB becomes FB\a] or

[wM
Bt*-2 becomes F L

B\a and FB becomes FM
B\a].  Thus, by our induction hypothesis, FB or wM

Bt*-2  (but in any case, FL
B\a) will

become the outcome.

Thus, overall,  when FL
B = FM

B = FB, M will veto some w M
Bt (regardless of w M

Bt … w L
Bt or  wM

Bt = wL
Bt) since this

move unambiguously makes FB the outcome by our induction hypothesis.  Vetoing FB will make  wM
Bt*-2 the outcome.

Vetoing some wL
Bt such that wL

Bt … wM
Bt can make wM

Bt*-2 or FB the outcome.

(2) When FL
B … FM

B, this strategy is the same as L’s strategy in the proof of Part 1 of this theorem.

When FL
B = FM

B = FB,  by the proof of Part 1 of this theorem, against a SPE-following opponent M, L cannot make

any a ™L F
B the outcome.  On the other hand, wL

Bt*-2 is not the only possible alternative that he must veto.  He can prevent

any alternative b ™M FB from becoming the outcome by vetoing such alternatives in no particular order.  This is because, by

definition of FB, L will have sufficient number of moves to veto all wL
Bt such that wL

Bt … wM
Bt even if wL

Bt ™M FB for all such

wL
Bt and even if there are no wL

Bt such that wL
Bt = wM

Bt (any wL
Bt such that wL

Bt = wM
Bt is dominated by FB by the

Simultaneous Naive Elimination algorithm).  Clearly, once there are no such alternatives, L can veto any alternative but FB.

 '

PROOF OF THEOREM 2:  In this proof (and Theorem 3's proof), (A will abbreviate (L
A = (M

A.  First we need the

following definitions and Lemma A2.1.  Recall DA = {a 0 A * (i
A ™ a œi = L,M}.  Let Qi

A = {a 0 A*a ™i (j
A and (i

A ™ a,

i,j = L,M, i … j}.

LEMMA A2.1: (i) Suppose that (L
A = (M

A.  Then QL
A = QM

A = i and #PL
A((A) = #PM

A((A).

(ii) Suppose that (L
A … (M

A.  Then PM
A((L

A), PL
A((M

A) and DA partition A, and (i
A 0 Pi

A((j
A).  Suppose that (L

A = (M
A.

Then PM
A((A), PL

A((A), (A and DA partition A.

(iii) Suppose that (L
A … (M

A.  Then each Pi
A((j

A) is partitioned by Pi
A((i

A), (i
A and Qi

A.

PROOF OF LEMMA A2.1: (i) By definition, each Qi
A = i is when '(A) = {(A}.  #PL

A((A) = #PM
A((A) follows

from the definition of '(A) when '(A) = {(A}.

(ii) This is Lemma A1(i) in the Appendix of Anbarci (1993).

(iii) It follows from the definitions of (i
A, Pi((i

A), and Qi.

We will also need the next lemma which follows from Lemma A2.1 and definitions (thus, its lengthy but

straightforward proof will be omitted).

LEMMA A2.2. Consider two problems (B,šL,šM)  and (B\a,šL,šM).

(i) Suppose that (L
B … (M

B and #Pi
B((j

B) = #Pj
B((i

B), i,j = L,M, i … j.  Suppose B\a is such that (i
B is removed from B.

Then some ai 0 Pi
B((j

B)\(i
B becomes (i

B\a and (j
B becomes (j

B\a such that #Pi
B\a((j

B\a) < #Pj
B\a((i

B\a).

(ii) Suppose that (L
B … (M

B and #Pi
B((j

B) > #Pj
B((i

B), i,j = L,M, i … j.  Suppose B\a is such that (i
B is removed from B.

Then some ai 0 Pi
B((j

B)\(i
B becomes (i

B\a and (j
B becomes (j

B\a such that #Pi
B\a((j

B\a) $ #Pj
B\a((i

B\a).
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(iii) Suppose that (L
B … (M

B and #Pi
B((j

B) > #Pj
B((i

B), i,j = L,M, i … j.  Suppose B\a is such that (j
B is removed from B.

Then some aj 0 Pj
B((i

B)\(j
B becomes (j

B\a and (i
B becomes (i

B\a such that #Pi
B\a((j

B\a) > #Pj
B\a((i

B\a).

(iv) Suppose B\a is such that some a 0 DB is removed from B.  Then each (j
B becomes (j

B\a such that still #Pi
B\a((j

B\a) =

#Pi
B((j

B), i,j = L,M.

(v) Suppose that (L
B … (M

B and #Pi
B((j

B) = #Pj
B((i

B), i,j = L,M, i … j.  Suppose B\a is such that ai 0 Pi
B((j

B)\(j
B is

removed from B.  Then each (j
B becomes (j

B\a such that #Pi
B\a((j

B\a) < #Pj
B\a((i

B\a).

(vi) Suppose that (L
B … (M

B and #Pi
B((j

B) > #Pj
B((i

B), i,j = L,M, i … j.  Suppose B\a is such that ai 0 Pi
B((j

B)\(j
B is

removed from B.  Then each (j
B becomes (j

B\a such that #Pi
B\a((j

B\a) $ #Pj
B\a((i

B\a).

(vii) Suppose that (L
B … (M

B and #Pi
B((j

B) > #Pj
B((i

B), i,j = L,M, i … j.  Suppose B\a is such that aj 0 Pj
B((i

B)(j
B is

removed from B.  Then each (j
B becomes (j

B\a such that #Pi
B\a((j

B\a) < #Pj
B\a((i

B\a).

(1) We will use an inductive argument.  Clearly, given any (B,šL,šM), the result is correct if B contains only two

efficient alternatives, and there is no arbitrator selection problem when B is a singleton.  We suppose that our claim has been

established for B\a and we want to establish it for B.  Without loss of generality, let i = L and j = M.  Suppose that L uses

the following strategy: Offer some a 0 DB if DB … i.  Otherwise, offer some a 0 PL
B((M

B)\(L
B if PL

B((M
B)\(L

B … i.  Otherwise,

offer (L
B.  If [#PL

B((M
B) $ #PM

B((L
B)] or [#PM

B((L
B) - #PL

B((M
B) = 1 and DB … i], accept any a 0 PL

B((L
B)c(L

B and reject

any other a.    If [#PM
B((L

B) - #PL
B((M

B) = 1 and DB = i] and [#PM
B((L

B) - #PL
B((M

B) > 1],  accept any a 0 PL
B((M

B)c(M
B

and reject any other a.

We will first show that, against an M who follows a SPE strategy, when M offers at B, L will be able to make (L
B the

outcome if [#PL
B((M

B) > #PM
B((L

B)] and [#PL
B((M

B) = #PM
B((L

B) and #DB is even], and L will be able to make (M
B the

outcome otherwise.  Then we will show that, against an M who follows a SPE strategy, when L offers at B, L will be able to

make (L
B the outcome if [#PL

B((M
B) > #PM

B((L
B)] and [#PL

B((M
B) = #PM

B((L
B) and #DB is odd], and L will be able to

make (M
B the outcome otherwise.

We will not consider the case (L
B = (M

B = (B which has been considered in the proof of Theorem 1 in Anbarci

(1993).  We will consider the remaining two cases: (1) (L
B … (M

B and #PL
B((M

B) = #PM
B((L

B), and (L
B … (M

B and #PL
B((M

B)

> #PM
B((L

B).

Case 1: (L
B … (M

B and #PL
B((M

B) = #PM
B((L

B).

Suppose M offers some a 0 DB.  If L vetoes it, by Lemma A2.2(iv), each (j
B becomes (j

B\a, i,j = L,M.  Since, by

definition, L prefers any (j
B to any a 0 DB, he will veto it.  If #DB is even, then #DB\a will be odd.  Thus, by our induction

hypothesis, (L
B = (L

B\a will become the outcome.  If #DB is odd, then #DB\a will be even or zero.  Thus, by our induction

hypothesis, (M
B = (M

B\a will become the outcome.

Suppose M offers some a 0 PM
B((L

B)\(M
B.  Then L will veto it since by Lemma A2.2(v), (M

B will become (M
B\a and

(L
B will become (L

B\a such that #PL
B\a((M

B\a) > #PM
B\a((L

B\a).  Thus, by our induction hypothesis (L
B = (L

B\a will become the

outcome.  Hence, a rational M would not offer some a 0 PM
B((L

B)\(M
B if #DB is odd (recall that “if #DB is odd, then #DB\a

will be even or zero; by our induction hypothesis, (M
B = (M

B\a becomes the outcome.”)

Suppose M offers (M
B.  Then L will veto it since, by Lemma A2.2(i), some  ai 0 PM

B((L
B)\(M

B becomes (M
B\a and (j

B
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becomes (j
B\a such that #PM

B\a((L
B\a) < #PL

B\a((M
B\a).  Thus, by our induction hypothesis, (L

B will become the outcome.

Hence, again a rational M would not offer some a 0 PM
B((L

B)\(M
B if #DB is odd.

Suppose M offers (L
B.  Then L will accept it since, by Lemma A2.2(i), otherwise #PL

B\a((M
B\a) < #PM

B\a((L
B\a) will

hold, and, by our induction hypothesis, (M
B = (M

B\a will become the outcome.  By definition, L prefers (L
B to (M

B and M

prefers (M
B to (L

B.  Hence, again a rational M would not offer some a 0 PM
B((L

B)\(M
B if #DB is odd.

Suppose M offers some a 0 PL
B((M

B)\(L
B.  Then L will accept it, since, by Lemma A2.2(v), otherwise #PL

B\a((M
B\a)

< #PM
B\a((L

B\a) would hold, and, by our induction hypothesis, (M
B = (M

B\a would become the outcome.  By definition, L

prefers such an alternative a 0 PL
B((M

B) to (M
B and M prefers (L

B to any a 0 PL
B((M

B)\(L
B.  Thus, a rational M would not offer

a 0 PL
B((M

B)\(L
B.

Thus, when #PL
B((M

B) = #PM
B((L

B), against a rational M who makes the offer at some B, L can make (L
B the

outcome if #DB is even or zero, and (M
B otherwise.

Suppose DB … i.  Suppose L offers some a 0 DB.  If M vetoes such an a, by Lemma A2.2(iv), each (i
B becomes (i

B\a

at B\a when some a 0 DB is removed from B, i,j = L,M.  Since M prefers any (i
B to such an a, M will veto it.  Thus, if #DB

is even, (M
B will become the outcome by our induction hypothesis.  Otherwise, (L

B will become the outcome.

Suppose DB = i.  Suppose PL
B((M

B)\(L
B is non-empty.  Suppose L offers some a 0 PL

B((M
B)\(L

B.  If M vetoes such

an a, by Lemma A2.2(v) (M
B will become (M

B\a and (L
B will become (L

B\a such that #PL
B\a((M

B\a) < #PM
B\a((L

B\a).  Since M

prefers any (i
B to such an a, a rational M will veto it.  Thus, by our induction, hypothesis (M

B = (M
B\a will become the

outcome.

Suppose DB = i.  Suppose PL
B((M

B)\(L
B = i; then clearly PM

B((L
B)\(M

B = i too since our case presumes PL
B((M

B)

= PM
B((L

B).  Hence, (L
B and (M

B will be the only alternatives left.  Then, by our induction, (M
B will become the outcome.

Thus, when #PL
B((M

B) = #PM
B((L

B), against a rational M, L can make (L
B the outcome when he has the offer at

B unless #DB is even or zero.

Case 2: (L
B … (M

B and #PL
B((M

B) > #PM
B((L

B).

Suppose M offers some a 0 DB.  By definition, L prefers any (j
B to any a 0 DB.  Then L will veto it since, by Lemma

A2.2(iv), each (j
B becomes (j

B\a, i,j = L,M and by our induction hypothesis, (L
B will become the outcome.

Suppose M offers some a 0 PM
B((L

B)\(M
B.  By definition, L prefers any (L

B to any a 0 PM
B((L

B).  Then L will veto

it since, by Lemma A2.2(vii), each (j
B becomes (j

B\a, i,j = L,M such that #PL
B\a((M

B\a) > #PM
B\a((L

B\a).  Thus by our induction

hypothesis (L
B will become the outcome.

Suppose M offers (M
B.  By definition, L prefers any (L

B to any a 0 PM
B((L

B).  Then L will veto (M
B, since, by Lemma

A2.2(iii), some a 0 PM
B((L

B)\(M
B becomes (M

B\a and (L
B becomes (L

B\a such that #PL
B\a((M

B\a) > #PM
B\a((L

B\a), and by our

induction hypothesis, (L
B will become the outcome.

Suppose M offers (L
B.  By definition, L prefers (L

B to (M
B.  Suppose L vetoes it. Then, by Lemma A2.2(ii), some a

0 PL
B((M

B)\(L
B would become (L

B\a and (M
B would become (M

B\a such that #PL
B\a((M

B\a) $ #PM
B\a((L

B\a).  Suppose

#PL
B\a((M

B\a) = #PM
B\a((L

B\a) would hold.  In that case, by our induction hypothesis, if #DB is even or zero, (M
B would become

the outcome; if #DB is odd, (L
B\a would become the outcome.  Suppose #PL

B\a((M
B\a) > #PM

B\a((L
B\a) would hold.  Then by

our induction hypothesis, (L
B would become the outcome.  However, if L accepts (L

B, it will become the outcome.  Thus,



     14 To see that s is not an equilibrium strategy, consider A = {a,b} and suppose that a ™L b and b ™M a, and
suppose that L has the first move and offers a.  Observe that s dictates that M accepts a.
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L will accept (L
B except in the case where some (L

B\a which L prefers to (L
B will become the outcome.

Suppose M offers some a 0 PL
B((M

B)\(L
B.  By Lemma A2.2(vi), if such an a is vetoed, then each (j

B would become

(j
B\a such that #PL

B\a((M
B\a) $ #PM

B\a((L
B\a).  If L prefers such an a to (L

B, then L will accept it.  But clearly by definition M

prefers (L
B to any such a, and, say, by offering some a 0 PM

B((L
B)\(M

B or (L
B, M could make (L

B the outcome; thus, a rational

M would not offer any a that L prefers to (L
B.  Thus, this only leaves the possibility that L prefers (L

B to such an a.  Then L

will accept it if #PL
B((M

B) - #PM
B((L

B) = 1 and #DB is even or zero, since otherwise by our induction hypothesis (M
B would

become the outcome.  L will reject such an a if [#PL
B((M

B) - #PM
B((L

B) = 1 and #DB is even or zero] does not hold (i.e., if

either [#PL
B((M

B) - #PM
B((L

B) > 1] or [#PL
B((M

B) - #PM
B((L

B) = 1 and #DB is odd] holds), since in that case by our

induction hypothesis (L
B will become the outcome.

Thus, when #PL
B((M

B) > #PM
B((L

B), against a rational M who makes the offer at some B, L can make (L
B the

outcome.

Suppose DB … i.  Suppose L offers some a 0 DB.  If M vetoes such an a, by Lemma A2.2(iv), each (i
B becomes (i

B\a

at B\a when some a 0 DB is removed from B, i,j = L,M.  Since M prefers any (i
B to such an a, M will veto it.  Thus, (L

B will

become the outcome by our induction hypothesis.

Suppose DB = i.  Suppose PL
B((M

B)\(L
B is non-empty.  Suppose L offers some a 0 PL

B((M
B)\(L

B.  If M vetoes such

an a, by Lemma A2.2(vi), (M
B will become (M

B\a and (L
B will become (L

B\a such that #PL
B\a((M

B\a) $ #PM
B\a((L

B\a) with DB

= i.  Thus, by our induction, hypothesis (L
B will become the outcome.

Thus, when #PL
B((M

B) > #PM
B((L

B), against a rational M, L can make (L
B the outcome when he has the offer at

B.

(2) It directly follows from the proof of Part 1 of this Theorem.   '

PROOF OF THEOREM 3:  Consider the following strategy s, which is a non-equilibrium strategy for Player i: if

offered, accept either Fj
A or any a 0 Pi

A(Fj
A) and veto any other alternative; if with the move, offer Player j’s least preferred

alternative.14  It is straightforward to verify that, against a player who follows a subgame-perfect equilibrium strategy, L can

guarantee FM
A and M can guarantee FL

A by using s.  Thus, at any B a Player i can secure Fj
A at worst and Fi

A at best against

a Player j who follows a subgame-perfect equilibrium strategy.  This, will suffice to prove our theorem since by Lemma 1(iii)

there is no efficient a 0 B such that Fi
A ™i a ™ Fj

A, i,j = L,M, i … j.   '

PROOF OF THEOREM 4:  A minor modification of the proof of Theorem 2 above will suffice; it will be omitted

here.   '

PROOF OF THEOREM 5:  As n tends to infinity, FL
A and  FM

A, will converge when FL
A … FM

A since (i) by Lemma

1(3), FL
A and  FM

A are adjacent alternatives when FL
A … FM

A, and (ii) any two adjacent alternatives will converge as n tends
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to infinity.  Now we need to show that they will converge to ".  Suppose L is the first-mover and his utility in S is measured

on the horizontal axis.

By the Simultaneous Naive Elimination algorithm (which identifies FL
A and FM

A), L will start eliminating the

alternatives (and thus cells) in C1, beginning with the cell closest to the horizontal axis and continuing with the adjacent cell,

and so on; then he will eliminate cells in C2, beginning with the cell closest to the horizontal axis and continuing with the

adjacent cell, and so on.  M will start eliminating the alternatives (and thus cells) in R1 first, beginning with the cell closest

to the vertical axis and continuing with the adjacent cell, and so on; then he will eliminate cells in R2 beginning with the cell

closest to the vertical axis and continuing with the adjacent cell, and so on.  (At some stages, observe that they may eliminate

the same alternative by the Simultaneous Naive Elimination algorithm.)

By the Simultaneous Naive Elimination algorithm, either FL
A or  FM

A will remain at the end.  Note the following

facts: (1) Due to the pattern of elimination of alternatives (and thus cells) by the players given by the Simultaneous Naive

Elimination algorithm, until either FL
A or FM

A remains, trivially both players will have removed equal numbers of alternatives

less preferred than FL
A or  FM

A by one or both players.  (2) In particular, “the number of alternatives that are less preferred

than FL
A by both players” and “the number of alternatives that are less preferred than FM

A by both players will converge” since

(i)  FL
A and  FM

A converge as n tends to infinity, (ii) the alternatives that are jointly dominated by FL
A and FM

A are uniformly

distributed in S (by P*), and (iii) players follow the pattern of elimination of alternatives described above.

Thus, as n tends to infinity, (1) and (2) above imply that “the number of alternatives that L prefers to FM
A and M

does not prefer to FM
A” and “the number of alternatives that M prefers to FL

A and L does not prefer to  FL
A” must converge

too since, until either FL
A or  FM

A remains, trivially both players will have removed equal numbers of alternatives, which are

less preferred than FL
A or  FM

A by one or both players (also, since  FL
A and  FM

A converge as n tends to infinity, “the number

of alternatives that L prefers to FL
A and M does not prefer to FL

A” and “the number of alternatives that M prefers to FM
A and

L does not prefer to FM
A” must converge too).  But, by Anbarci (1993), we know that, as n tends to infinity, “the number of

alternatives that L prefers to (M
A and M does not prefer to (M

A” and “the number of alternatives that M prefers to (L
A and

L does not prefer to (L
A” converge too.  Since, by Anbarci (1993) (L

A and (M
A converge to ", so must FL

A and  FM
A.   '
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