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Abstract

In this paper, we develop a parametric test procedure for multiple hori-
zon ”Granger” causality and apply the procedure to the well established
problem of determining causal patterns in aggregate monthly U.S. money
and output. As opposed to most papers in the parametric causality lit-
erature, we are interested in whether money ever "causes" (can ever be
used to forecast) output, when causation occurs, and how (through which
causal chains). For brevity, we consider only causal patterns up to horizon
h = 3. Our tests are based on new recursive parametric characterizations
of causality chains which help to distinguish between mere noncausation
(the total absence of indirect causal routes) and causal neutralization, in
which several causal routes exists that cancel each other out such that
noncausation occurs. In many cases the recursive characterizations imply
greatly simplified linear compound hypotheses for multi-step ahead cau-
sation, and permit Wald tests with the usual asymptotic χ2-distribution.

A simulation study demonstrates that a sequential test method does
not generate the type of size distortions typically reported in the literature,
and null rejection frequencies depend entirely on how we define the "null
hypothesis" of non-causality (at which horizon, if any).

Using monthly data employed in Stock and Watson (1989), and others,
we demonstrate that while Friedman and Kuttner’s (1993) result that
detrended money growth fails to cause output one month ahead continues
into the third quarter of 2003, a significant causal lag may exist through
a variety of short-term interest rates: money appears to cause output
after at least one month passes, although in some cases using recent data
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conflicting evidence suggests money may never cause output and be truly
irrelevant in matters of real decisions.

1. Introduction We are interested in testing for linear causal patterns
over multiple horizons within aggregate measures of output, money supply and
interest rates. In particular, we test for the precise horizon at which the growth
of the money supply causes output growth; for the possibility of causal neutral-
ization, defined below; and we characterize through which indirect route, in-
volving aggregate prices and interest rates, money causes output when evidence
suggests causation occurs. In order to do so, we develop recursive techniques for
characterizing typically nonlinear causality chains in terms of linear parametric
restrictions.
Following Granger’s (1969) and Sims’ (1972) seminal studies, Lütkepohl

(1993), Sims (1980) and Renault and Szafarz (1991) point out that indirect
multi-step ahead causality from Y to X is possible in multivariate systems
with auxiliary variables Z. Dufour and Renault (1998) set out a broad non-
parametric and parametric theory of general horizon causality in Hilbert space.
The existence of causality chains in multivariate time series processes allows

for multi-period causation delays: periods of noncausation followed by causa-
tion, a property conformable with the sluggishness of many macroeconomics
events; and causal neutralization: multiple causal routes at some time horizon
h > 1 may exist through Z, yet cancel each other out such that noncausation
holds. Thus, in what sense Y causes X depends intimately on time horizon and
the presence of auxiliary variables Z.
A simple, efficient, and asymptotically standard test procedure for multi-

step ahead causation which can be employed to characterize causality chains and
causal neutralization, however, has yet to be established. Lütkepohl and Müller
(1994) and Lütkepohl and Burda (1997), for example, develop a Wald-type
test for the highly non-linear parametric VAR conditions established by Dufour
and Renault (1998). Due to matrix nonlinearities under the null hypothesis of
noncausation, however, the limit distribution of the test statistic need not be
standard : their solution is to add an arbitrary degree of noise to the estimated
coefficients, severely effecting empirical power.
Using a more intuitive approach, Dufour et al (2003) utilize an h-step ahead

VAR model in which some vector processWt+h is regressed on (Wt, ...,W1). Af-
ter accounting for serial correlation in the resulting innovations series, a direct
test of linear coefficient restrictions is all that is required to test for noncausa-
tion at one specific horizon h ≥ 1. This procedure provides an elegantly simply
method for testing multivariate noncausation at arbitrary time horizons, but
entails several notable shortcomings. First, because the method by construc-
tion allows for a test of noncausality only at one horizon at a time, it follows
that an efficient compound test of multiple horizon noncausality is infeasible.
Indeed, second, a new VAR model must be estimated for each test making test
result comparisons across horizons particularly difficult, even if a probability
bounds scheme is employed. Third, the method usually cannot itself be used
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to distinguish between simple noncausation (the total absence of indirect causal
routes) and causal neutrality. For example, if we find noncausation from Y to X
(with a multivariate auxiliary variable Z) for the individual horizons h = 1...3,
it is impossible to tell whether noncausality was absolute at h = 3, or whether
multiple causal routes through Z cancelled each other out1.
Moreover, the recursive causality chain representations presented here make

it clear that noncausation over horizons 1...h followed by causality at h + 1 can
occur if and only if an indirect causality chain exists. The procedure of Dufour
et al (2003), however, does not provide a means to ensure such a logical outcome
is analyzed2. Chao et al (2001), by comparison, consider an out-of-sample
forecast improvement approach to testing non-causality. While this technique
matches Granger’s (1969, 1980), cf. Wiener (1956), original operational version
of testing for causal patterns in time-series, this method, like Dufour et al ’s
(2003), only tests for non-causality at a particular horizon, and cannot be used
in a simple efficient fashion to address causal chains.
In this paper, we develop new recursive parametric representations of causal-

ity chains which in many cases allow for clear horizon-to-horizon characteriza-
tions of causal delays and neutralization. The recursions developed here in
many cases imply greatly simplified sequential linear restrictions for testing
non-causality at arbitrary time horizons. When nonlinear restrictions cannot
be avoided, however, in many cases Wald tests with standard distribution lim-
its are still available. A relatively straightforward Bonferroni-type bounds can
be applied to analyze the sequential test size.
For the sake of brevity, we consider causal patterns only up to horizon h =

3. Consult Hill (2005) for an expanded version of the present paper in which
general results for arbitrary horizons h ≥ 1 are developed.
A simulation study demonstrates that a sequential test method does not

generate the type of size distortions in benchmark cases typically reported in
the literature, and null rejection frequencies depend entirely on how we define
the "null hypothesis" of non-causality. We show, evidently for the first time,
that sequentially testing for non-causation h-steps ahead only if we reject tests of
non-causation at all horizons essentially tames much of the distortion of classic
tests of 1-step ahead non-causality commonly found in Wald tests. Nonetheless,
in several cases we find that size distortions still persist, however the distortions

1 It seems, however, that some information regarding causal neutralization can de adduced
from their approach by incorporating methods developed here. Using their approach verbatim,
however, does not lead to an understanding of causal neutralization in the case described
above.

2For example, in their study of monthly GDP (X), the federal funds rate (Y ), and the
GDP deflator and non-borrowed reserves (Z), horizon specific tests suggest Y fails to cause X
for horizons 1 and 2, and causes X at horizon h = 3. This is possible only if an indirect causal
route Y → Z → X exists where causation occurs one-month ahead: see Theorems 2 and 4,
below. However, their test procedure reveals that Y fails to cause Z one-month ahead and Z
fails to cause X one month ahead, a characteristic that implies noncausation at all horizons,
which contradicts their conclusion. Their finding, moreover, is robust to the possibility that
the multivariate process X,Y, Z is nonstationary: see Tables 4 and 7 of Dufour et al (2003).
A compound multiple horizon test procedure sensitive to causal chain structure will diminish
the likelihood that such contradictory conclusions are made.
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favor detecting causation sooner than it actually occurs.
When applied to the now classic monetarist question of whether and how

monthly money statistically influences aggregate output, we are able to detect
significant causal delays from money growth to growth in output through a
variety of interest rates and inflation. In a seminal paper, Stock and Wat-
son (1989) address deterministic and stochastic trend components in monthly
money, output, inflation and the Treasury bill rate, and find significant evi-
dence that detrended money growth causes output growth during the period
of January 1959 - December 1985. Friedman and Kuttner (1993) then extend
the sample period used in Stock and Watson (1989) through 1990 for the same
variables and find detrended money growth fails to cause output growth one
month ahead. Moreover, using the same sample period as Stock and Watson
(1989), Friedman and Kuttner (1993) replace the essentially risk-free Treasury
bill rate with the commercial paper rate and again find money likely does not
cause output. In particular, the commercial paper-Treasury bill rate spread
appears to contain the most predictive power in their preferred system of vari-
ables. See, also, Friedman and Kuttner (1992); and see Chao et al (2001) and
Rothman et al (2001) for alternative treatments of 1-step ahead causality in
money-output/income3.
It is important to point out that in none of the above studies is there a

rigorous statistical analysis, or even mention, of the possibility of an indirect
causal link from money to interest and interest to output, arguably the most
obvious transmission mechanism by which fluctuations in the money supply
will eventually impact real decisions. Dufour et al (2003), however, do discuss
indirect causal chains from non-borrowed reserves to GDP through the federal
funds rate, however their conclusion is not supported by their own analysis.
They point out that non-borrowed reserves causes the federal funds rate one-
month ahead, and the rate causes GDP 3-months ahead, and deduce a causal
chain exists. However, as discussed above, their study does not reveal how the
federal funds rate causes GDP 3-months ahead because evidence suggests no
causal chains exist from the rate to GDP: the federal funds rates does not cause
anything one-step ahead, and therefore it is difficult to reconcile their conclusion
of "indirect causality" from non-borrowed reserves to GDP through the interest
rate.
In our study, we employ Stock and Watson’s (1989) and Friedman and Kut-

tner’s (1993) data samples, and an extended sample through August 2003. We
typically find that money matters after at least a one-month lag: contrary to
Friedman and Kuttner’s (1993) finding that the ”role of money...is trivial” in
the presence of the Treasury bill or commercial paper rates before 1991, money

3Causal patterns will clearly be sensitive to functional specification, specification of the
causal moment (mean, variance, etc), and in-sample versus out-of-sample methods are em-
ployed. Following Stock and Watson (1989), Friedman and Kuttner (1993), and many others,
we employ linear VAR models for our analysis of multi-step ahead causation. For studies of
nonlinear causation in mean between money and output, see, e.g., Rothman et al (2001) who
use multivariate smooth transition autoregressive models (STAR). For out-of-sample methods,
see Swanson (1998) and Chao et al (2001).
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growth is apparently imperative for forecasting output growth as early as two
months ahead, and therefore money growth may contain predictive information
for forecasting output growth one-quarter ahead. In models of money supply
growth ∆m, output growth ∆y, inflation ∆p, fluctuations in an interest rate ∆r
and a rate spread rr, however, we find only one case in which evidence suggests
causal neutralization occurs, and the evidence is quite weak once size bounds
are accounted for. In every model and period considered in this paper, when a
causal delay from money to output is detected it is significantly manifest in a
short chain through interest rates, ∆m → ∆r → ∆y, or in a longer sequence of
multiple chains through interest and a rate spread, ∆m → (∆r, rr) → ∆y.
It is notable that in only a few models treated in our study do we find sig-

nificant evidence in favor of causation exactly 3-months (one-quarter) ahead,
although evidence strongly suggests causation 1 or 2 months ahead4. Thus, al-
though our study in general strengthens the claims that money does not cause
output exactly one-quarter ahead5, we do find evidence causation occurs about
one quarter ahead, which demonstrates the empirical weakness of focusing en-
tirely on one-step ahead causation.
There are, however, notable limitations of our parametric approach. First,

we do not deconstruct all nonlinear noncausality conditions which do have re-
cursive linear presentations: there are many cases we must omit for the sake of
brevity, and which can be deduced by imitating the ideas developed here. In-
deed, we focus on linear conditions for multi-step ahead noncausation through
3-steps ahead which are particularly useful in our study of money and output,
and reasonably expansive enough to be useful in many other empirical applica-
tions. Second, there are many cases in which recursive necessary and sufficient
linear parametric conditions for noncausation do not exist: depending on the
horizon, the dimension of Z and the relationships from Y to Z and Z to X,
there are many contexts in which we are forced to face Wald tests of nonlinear
hypotheses that may result in non-standard limit distributions. In these cases,
assuming we have exhausted simple recursive linear conditions for noncausation
and can no longer (simply) ascertain whether absolute noncausation of causal
neutralization may be occurring, a test method like Dufour et al ’s (2003) or
Lütkepohl and Burda’s (1997) appears to be all that is left.
This is not a limitation of our study per se, but the limitations of VAR para-

4Of the combined 12 models and sample periods studied, we find three cases in which
evidence points to causation exactly one-quarter ahead, and two of those occur in Friedman
and Kuttner’s (1993) sample period and chosen models. Furthermore, all three cases occur
in Stock and Watson’s (1989) and Friedman and Kuttner’s (1993) samples with the latter’s
chosen augmented model with the Treasury bill and commercial paper rate spread, evidence
which arguably contradicts Friedman and Kuttner’s (1992) own finding that quarterly money
fails to cause real income one-quarter ahead.

5For example, Feige and Pearce (1979) perform standard Granger tests, as well as employ
Sims (1972) distibuted lag and AR(2) pre-filter method, and find money fails to cause GNP one
quarter ahead. It should be noted that Friedman and Kuttner (1992) employ data measured in
quarterly increments, and causal patterns at the monthly level for monthy data need not match
patterns at the quarterly level for quarterly data. The discrepency lies in the complexities
involved with time aggregration of stock and flow variables, an issue which has not been
thoroughly analyzed in the metric projection theory literature.
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metric recursions in multivariate settings. In general, in VAR systems with low
dimension auxiliary processes (e.g. 1-4 components of Z), the results contained
here will often be comprehensive enough to analyze completely multi-step ahead
multivariate causal routes. Indeed, when there is only one auxiliary variable (i.e.
Z is scalar-valued), a very simple linear compound necessary and sufficient con-
dition exists for noncausation. In any event, in our empirical study of a popular
data set including money and income, in which Z contains either 2 or 3 variables
(inflation, interest and the spread between risky and risk-free rates), we never
come across a model or sample period in which non-standard Wald tests are
implied.
The rest of the paper contains the following topics. In Section 2 we briefly

define prediction-based causality, and detail parametric representations of causal
chains in Section 3. Section 4 contains details on the test approach, Section
5 discusses test size bounds and size distortions, and Section 6 contains the
empirical study. Concluding remarks are left for Section 7. Appendix 1 contains
tables; Appendix 2 contains a small simulation study; and Appendix 3 contains
all proofs..
Throughout, we employ the following notation conventions. For Hilbert

spaces A and B, we write A + B to denote the Hilbert space spanned by all
components of A and B. We write Ut⊥Vt for m-vector processes Ut and Vt to
denote orthogonality between all scalar components for all t, ui,t⊥vj,t, i, j =
1...m, which in L2(Ω,Ft,Q) implies E (ui,tvj,t) = 0 for every i, j = 1...k and
every t. For an m-vector-process {Wt : t ∈ Z}, let sp(Ws : s ≤ t) = sp(Wi,s : i
= 1...m, s ≤ t) denote the closed linear span.

2. Causality Preliminaries We define non-causality in the manner of
Granger (1969), which was augmented to a multiple horizon parametric frame-
work by Dufour and Renault (1998). Consider some m-vector processes {Wt}
with trivariate representation Wt = (X 0

t, Y
0
t , Z

0
t)
0, where Xt, Yt, and Zt have

dimensions mx ≥ 1, my ≥ 1 and mz ≥ 0 respectively, and m = mx + my +
mz ≥ 2. We assume Wt is defined in the Hilbert space L2(Ω,Ft, Q), where Ft
denotes an increasing σ-field of all past and present information at time t, Ft
= σ(Ws : s ≤ t), and Q denotes a proper probability measure. Denote by I an
information universe, and let IXZ = sp(Xs : s ≤ t) + sp(Zs : s ≤ t) for an
arbitrary time period t.
In principle, none of the following results rely on stationarity assumptions.

For example, we may allow time to be bounded in the finite past. For brevity,
we consider only an unbounded past.
We say the subvector Yt "does not cause"Xt at horizon h > 0 in some Hilbert

space (denoted Y
h9 X|IXZ) if inclusion of sp(Ys : s ≤ t) does not improve the

metric projection of Xt+h for all t (i.e. the normed prediction error remains

unchanged); Yt "does not cause" Xt up to horizon h > 0 (denoted Y
(h)9 X|IXZ)

if inclusion of sp(Ys : s ≤ t) does not improve the metric projection of Xt+k,
for each k = 1...h and for all t; and Yt "does not cause" Xt at any horizon h

> 0 (denoted Y
(∞)9 X|IXZ) if inclusion of sp(Ys : s ≤ t) does not improve the
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metric projection of Xt+h, for every h > 0 and for all t. In L2(Ω,Ft, Q), forecast
improvement is measured by a diminishment in the mean-squared-forecast-error.
It is important to point out that the definition of non-causality implies cau-

sation Y
h→ X occurs if and only if at least one scalar component of the closed

linear span of Yi,s, i = 1...my, s ≤ t, improves a forecast of at least one scalar
component Xj,t+h, j = 1...mx.
The following result will be useful for subsequent discourse, and follows

straightforwardly from Proposition 2.3 of Dufour and Renault (1998).

Theorem 1 Consider the VAR process (2), define Z = (U 0, V 0)0. i. If Y 19
(X,Z)|IXZ , or (Y,Z)

19 X|IXZ , then Y
(∞)9 X|IXZ ; ii. If (Y,U)

19 (X,V )|IXV ,

then Y
(∞)9 X|IXZ ; iii. In order for non-causation Y

19 X|IXZ to be followed

by causation Y
h→ X|IXZ , for some h > 1, it is necessary for Y 1→ Z

1→ X.

Remark 1: If the auxiliary process Z affords the partition Z = (U 0, V 0)0

such that (Y,U) 19 (X,V )|IXV , then no form of causal chain can exist, and Y
(∞)9 X|IXZ : even if Y

1→ U and/or V 1→ X, causal-chains are broken by Y 1→ U
19 X or Y 19 V

1→ X or Y 1→ U
19 V

1→ X, etc. Similarly, if non-causation Y
19 X|IXZ holds, and Y

19 Z|IXZ or Z
19 X|IXZ holds, then a broken causal

chain exists, and non-causation for all horizons exists.

Remark 2: Because Y 19 (X,Z) or (Y,Z) 19 X are sufficient for Y
(∞)9 X,

non-causation Y
19 X|IXZ followed by causation Y

h→ X|IXZ , h ≥ 2, can only
occur if a causal-chain exists, Y 1→ Z

1→ X. However, except in the univariate
Z case (see Theorem 4.i, below), a "causal chain", Y 1→ Z

1→ X, is generally not

sufficient for causation Y
h→ X|IXZ , h ≥ 2, due to the multiplicity of possible

causal routes which may cancel out.
Assume Wt has an autoregressive representation

Wt =
X∞

i=1
πiWt−i + t, t⊥sp(Ws : s ≤ t), (1)

where t denotes an L2(Ω,Ft,Q)m-vector with zero mean, non-singular moment
matrix E [ t

0
t], and is L2(Ω,Ft, Q) orthogonal to the span sp(Ws : s ≤ t).

The coefficients πi are real-valued m ×m matrices for each i, and the infinite
series

P∞
i=1 πiWt−i is assumed to converge in mean-square. Most L2(Ω,Ft, Q)

processes of interest will have a representation (1) either in levels, or after some
standard transformation, e.g. first differencing6.
By Hilbert projection operator linearity and orthogonality, (1), the h-step

ahead projection ofWt+h onto the sub-space sp(Ws : s≤ t) satisfies the recursion

Ŵt+h =
X∞

i=1
πiŴt+h−i =

X∞
i=1

π
(h)
i Wt+1−i, (2)

6 In what follows, we explicitly ignore the issue of cointegration and VECM’s, however only
slight modifications to (1) and the following discourse is required to include this case.
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where Ŵt+h−i ≡ Wt+h−i∀i ≥ h, and the coefficient matrix sequence {π(h)i }∞i=1
is defined by the recursive relationship

π
(0)
1 = Im, π

(1)
j = πj , π

(h+1)
j = π

(h)
j+1 + π

(h)
1 πj . (3)

See, e.g., Dufour and Renault (1994).
Consider the (X 0, Y 0, Z0)0-conformable partition of the coefficient sequence

π
(h)
j =

 π
(h)
XX,j π

(h)
XY,j π

(h)
XZ,j

π
(h)
Y X,j π

(h)
Y Y,j π

(h)
Y Z,j

π
(h)
ZX,j π

(h)
ZY,j π

(h)
ZZ,j

 . (4)

For example, for every j ≥ 1, π(h)XY,j denotes an mx × my matrix of constant
real numbers.
The following theorem, due to Dufour and Renault (1998: Theorem 3.1),

provides a nonlinear basis for parametric tests of noncausality h-steps ahead.

Theorem 2 (VAR(∞) Non-Causality at h ≥ 1) Consider anym-vector process
Wt = (X 0

t, Y
0
t , Z

0
t)
0 such that assumptions (2) and (3) hold. Then, Y h9 X|IXZ

if and only if π(h)XY,j = 0, ∀j = 1, 2, ...

3. Causality Chains and Neutralization Because Y 19 X|IXZ and Y
19 Z|IXZ will imply non-causation at all horizons, Y

(∞)9 X|IXZ (cf. Theorem

1), we assume causation Y
1→ Z|IXZ throughout the remainder of the paper,

unless otherwise noted.
Notice that non-causality at horizon h = 1 is not in general synonymous with

non-causality at every horizon h ≥ 1 due to the presence of auxiliary variates.
Indeed, the coefficient recursion (3) renders the XY th-block of πj as

π
(h+1)
XY,j = π

(h)
XY,j+1 + π

(h)
XX,1πXY,j + π

(h)
XY,1πY Y,j + π

(h)
XZ,1πZY,j . (5)

It follows that if non-causality up to horizon h is true, Y
(h)9 X|IXZ , then, cf.

Theorem 2, π(k)XY,j = 0 for each k = 1...h, and subsequently, cf. (5) and Theorem

2, Y h+19 X|IXZ if and only if

π
(h+1)
XY,j = π

(h)
XZ,1πZY,j = 0,∀j ≥ 1. (6)

Thus, non-causality up to horizon h ≥ 1 and causality at h + 1 can only occur
if a causality chain exists such that π(h)XZ,1πZY,j 6= 0, for some j ≥ 1. Provided
Y

1→ Z|IXZ , then some scalar component of πZY,j is non-zero for some j ≥
1. However, from (6) clearly π

(h)
XZ,1 = 0 is not necessary for Y h+19 X|IXZ due

to the nonlinear row-column combinations that may yet imply π(h)XZ,1πZY,j = 0

with π
(h)
XZ,1 6= 0.
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Because π(h)XZ,1πZY,j = 0 is possible by numerous nonlinear row-column com-
binations if Z has dimension greater than 1, we seek simplifying conditions that
involve linear coefficient restrictions. Without loss of generality, assume X and
Y are univariate7. We can simplify matters if we partition Zt = (U 0t , V 0

t )
0 , where

Ut and Vt are mu and mv-vectors respectively, in such a way that provided Y
1→

Z|IXZ , then Y
1→ U |IXZ and Y

19 V |IXZ . It is possible to have mv = 0 (i.e.

Y
1→ U = Z), in which case by convention it is understood that all V -related

coefficients are identically zero (e.g. πXV,j = 0).

The condition Y
19 V |IXZ implies πV Y,j = 0, ∀j ≥ 1, and

π
(h)
XZ,1πZY,j =

h
π
(h)
XU,1|π(h)XV,1

i · πUY,j
πV Y,j

¸
= π

(h)
XU,1πUY,j . (7)

Thus, if Y
(h)9 X|IXZ and Y

1→ U |IXZ are true, (6) and (7) imply Y
h+19 X|IXZ

if and only if π(h)XU,1πUY,j = 0, ∀j ≥ 1.
We have two cases to consider. Provided mu = 1, then a relatively simple

recursion exists for determining non-causation multiple-steps ahead. The mul-
tivariate case, mu > 1, proves to be somewhat more challenging. We consider
the cases in turn.
3.1 Univariate U, π

(h)
XU,1 = 0

Let mu = 1 (mv ≥ 0), and assume Y (h)9 X|IXZ and Y
1→ U |IXZ are true.

Notice that Y 1→ U |IXZ implies at least one πUY,j 6= 0, and because we assume
U is univariate, we deduce π(h)XU,1πUY,j = 0 for every ∀j ≥ 1 if and only if π(h)XU,1

= 0.

Lemma 3 Consider the VAR process (2), define Z = (U 0, V 0)0, assume Y
1→

U |IXZ and Y
19 V |IXZ , and let mu = 1. Assume Y

(h)9 X|IXZ for some h ≥
2.
i. Y

(h+1)9 X|IXZ if and only if π
(h)
XU,1 = 0;

ii. π
(h)
XU,1 = πXU,h +

Ph−1
i=1 π

(h−i)
XX,1πXU,i +

Ph−1
i=1 π

(h−i)
XV,1 πV U,i;

iii. If πXU,i = πV U,i = 0, i = 1...h − 1, then π
(h)
XU,1 = πXU,h.

Theorem 4 Consider the VAR process (2), define Z = (U 0, V 0)0. Assume Y 19
X|IXZ , Y

19 V |IXZ and Y
1→ U |IXZ , with mu = 1.

i. If mz = 1 (hence U = Z) and Y
(h)9 X|IXZ for any h ≥ 1, then Y

(h+1)9
X|IXZ if and only if πXZ,h = 0;
For all remaining results, let mz > 1 and mu = 1 :

ii. Y
(2)9 X|IXZ if and only if πXU,1 = 0;

7Dufour and Renault (1994, 1998) prove that noncausation from vector process Y to vec-
tor process X is equivelant to noncausation from each scalar component Yi to each scalar
component Xj . Thus, it suffices to consider the causal structure from Y to X by considering
the scalar components individually.
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iii. If Y
(2)9 X|IXZ and U

19 V |IXY V , then Y
(3)9 X|IXZ if and only if πXU,2

= 0;

iv. If Y
(2)9 X|IXZ and V

19 (X,U)|IXY U , then Y
(3)9 X|IXZ if and only if

πXU,2 = 0.

Remark 1: From Lemma 3, sequentially if Y
(h)9 X|IXZ , then the total

impact of U on X at h + 1-steps ahead is accumulated in π
(h)
XU,1 = πXU,h +Ph−1

i=1 π
(h−i)
XX,1πXU,i +

Ph−1
i=1 π

(h−i)
XV,1 πV U,i. For example, Y may cause X at h + 1

= 2 through Y → U → X, or at horizons h + 1 = 3 by multiple routes, Y → U
→ X → X and Y → U → V → X and Y → U → X → X. If the multiple
causal routes cancel each other out such that noncausation holds at horizon h
+ 1 (i.e. π

(h)
XU,1 = 0), we say "causal neutralization" has occurred. Moreover,

notice that causal neutralization can only occur for horizons h ≥ 3: at horizon
h = 2, too little time has passed for multi-path complexities to develop, and
causation occurs only through Y

1→ U
1→ X: thus πXU,1 = 0 is necessary and

sufficient for noncausation up to 2-steps ahead.
Remark 2: By result (i) of Theorem 4, if the auxiliary process Z is uni-

variate, then there is only one indirect route by which Y can cause X, thus it
is necessary and sufficient to analyze only πXZ,h = 0 sequentially for each h =
1, 2, ...
Remark 3: From result (iii), if the indirect link via U to V does not exist,

then for Y
(3)9 X|IXZ it suffices merely to check Y → U → X by sequentially

inspecting πXU,i = 0, i = 1, 2, ... Likewise, by result (iv), if the indirect chains
implied from V to U and V to X do not exist, then again it suffices to check

sequentially πXU,i = 0. Either case represents complete non-causality, Y
(3)9

X|IXZ .
Remark 4: Results (iii) and (iv) extend to the general horizon case. For

example, if Y 19 V |IXZ , Y
(2)9 X|IXZ and U

19 V |IXY V , then Y
(h)9 X|IXZ if

and only if πXU,i = 0, i = 1...h − 1, for any h ≥ 2. See Hill (2005).
Notice that the conditions for Theorem 4.i,ii are necessary and sufficient, but

the conditions for Theorem 4.ii,iv are only sufficient. If the sufficient conditions

for Y
(3)9 X|IXZ in Theorem 4.iii,iv fail to exist, we are left with testing the

necessary and sufficient condition π
(2)
XU,1 = 0 directly.

In this case Theorem 4.ii and Lemma 3.ii are sequentially helpful: if Y
19 X|IXZ and πXU,1 = 0, then we deduce both that Y

(2)9 X|IXZ , and π
(2)
XU,1

reduces to

π
(2)
XU,1 = πXU,2 + πXX,1πXU,1 + πXV,1πV U,1 = 0 (8)

= πXU,2 + πXV,1πV U,1.

Corollary 5 Consider the VAR process (2), and define Z = (U 0, V 0)0. Assume

Y
(2)9 X|IXZ , Y

19 V |IXZ and Y
1→ U |IXZ , with mu = 1. Assume πXU,2 6= 0

and/or πV U,1 6= 0. Then
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i. Y
(3)9 X|IXZ if and only if πXU,2 + πXV,1πV U,1 = 0;

ii. If πXU,2 6= 0 and (πV U,1 = 0 or πXV,1 = 0), then Y
(3)→ X|IXZ ;

iii. If πXU,2 = πXV,1 = 0 then Y
(3)9 X|IXZ , and Y

(4)9 X|IXZ if and only if

πXU,3 + πXV,2πV U,1 = 0; (9)

iv. If πXU,2 = πV U,1 = 0 then Y
(3)9 X|IXZ , and Y

(4)9 X|IXZ if and only if

πXU,3 + πXV,1πV U,2 = 0; (10)

Remark 1: Result (ii) rules out causal neutralization at horizon h = 3
such that causation occurs. Results (iii)-(iv) rule out immediate causal links
from U to V to X, and U to X, such that non-causation occurs but not neu-
tralization. We consider the possibility of neutralization in the subsequent sub-
section.
3.2 Causal Neutralization at h = 3 and Nonlinear Hypotheses
The above cases (Theorem 4.ii-iv and Corollary 5.ii-iv) cover every (non-

redundant) possibility for Y
(2)9 X|IXZ sequentially to imply Y

(3)9 X|IXZ , except
for cases where V is multivariate and causal neutralization occurs at horizon h
= 3.
The omitted cases are (v) πV U,1 6= 0, πXV,1 6= 0, with possibly πXV,1πV U,1

= 0 when mv > 1; and (vi) πXU,2 6= 0, πV U,1 6= 0 and πXV,1 6= 0, where
πXU,2 + πXV,1πV U,1 = 0 is possible.

In case (v) if πXU,2 = πXV,1πV U,1 = 0, then noncausality Y
(3)9 X|IXZ

follows, and we proceed (in principle) to inspect conditions for subsequent non-
causality at horizon h > 3. The fact that πXU,2 = 0, πV U,1 6= 0, πXV,1 6= 0,
and πXV,1πV U,1 = 0 implies possible causal neutralization: for example, U may
cause X through multiple routes by different components of V all of which can-
cel each other out. However, the variable U may cause components of V which
do not cause X: in this case, neutralization has not taken place.
In the second omitted case, (vi), there are connections from Y to U to X,

and from Y to U to V to X, where the immediate dual causal routes from
U to V to X, and U to X, cancel out such that causal neutralization occurs
unambiguously.
In either case, the most efficient strategy is to check directly the nonlinear

combination πXU,2 + πXV,1πV U,1, cf. (8). Thus, if all of the linear sufficient
conditions of Theorem 4 and Corollary 5 fail to hold, the only remaining con-
dition is, indeed, nonlinear, and necessary and sufficient, cf. Corollary 5.i: if Y
(2)9 X|IXZ , Y

19 V |IXZ , Y
1→ U |IXZ , with mu = 1, then Y

(3)→ X|IXZ if and
only if πXU,2 + πXV,1πV U,1 = 0.
Importantly, the nonlinear compound hypothesis H0 : πXU,2 + πXV,1πV U,1

= 0 will always lead to a test statistic with standard chi-squared limiting distri-
bution as long as we employ a VAR model of order p ≥ 2, even when the true
order is p = 1. Consider, for example, a VAR(p) model, put p ≥ 2, define π ≡
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(π1, ..., πp), an m × mp matrix, and define Π ≡ vec(π), an m2p × 1 vector that
vertically stacks the columns of π. Denote the nonlinear restriction (8) as

r(Π) = πXU,2 + πXV,1πV U,1 = 0, (80)

an mx × mu matrix. Then, for univariate X and U , for example,

(∂/∂Π)r(Π) = (0, .., πV U,1, ..., πXV,1, ..., 1, ..., 0)
0, (800)

a gradient which will lead to a nonsingular Wald statistic covariance matrix,
irrespective of the coefficient magnitudes πV U,1 and πXV,1. The result similarly
holds for multivariate X and U . Thus, even if the true VAR order satisfies p
= 1 such that πXU,2 = 0, we can always perform a test of the given nonlinear
restriction, (8). In our empirical study, because we never obtain an optimal
VAR order less than p = 6, we are therefore easily able to test for noncausation
through at least h = 3 months ahead.
Unfortunately, if we detect causal neutralization at horizon h = 3, it becomes

prohibitively difficult to establish causal properties at subsequent horizons h >
3. Consult Hill (2005) for details of possible strategies in this case.
3.3 Compound Linear Conditions for Multi-Step Ahead Non-

Causation
Together, Theorem 4 and Corollary 5 imply compound sufficient, and nec-

essary and sufficient, conditions for non-causation up to horizon h = 2 or 3. As
usual, assume Y 19 X|IXZ , and partition Z = (U 0, V 0)0.

Theorem 6 Consider the VAR process (2), define Z = (U 0, V 0)0 such that Y
1→ U |IXZ , mu = 1. Then,

i. Y
(2)9 X|IXZ if and only if Y

19 (X,V )|IXZ , πXU,1 = 0;

ii. Y
(3)9 X|IXZ if and only if Y 19 (X,V )|IXZ , πXU,1 = 0, πXU,2 +

πXV,1πV U,1 = 0.

Moreover, each of the following are sufficient conditions for complete Y
(3)9

X|IXZ :

iii. Y
19 (X,V )|IXZ , U

19 V |IXZ , πXU,i = 0, i = 1...2;

iv. Y
19 (X,V )|IXZ , V

19 (X,U)|IXZ , πXU,i = 0, i = 1...2.

3.4 Multivariate U and Z → X

Let Y 19 X|IXZ , Y
(h)9 X|IXZ , h ≥ 1, and Y 1→ U |IXZ . In the multivariate

case (mu > 1), even if Y 1→ U |IXZ such that at least one πUY,j 6= 0, it is no

longer implied recursively that Y h+19 X if and only if π(h)XU,1 = 0. In this case,

in general π(h)XU,1πUY,j = 0 can clearly occur with π
(h)
XU,1 6= 0 due to the nonlinear

row-column combinations.
While π(h)XU,1 = 0 is no long necessary for noncausality, it is sufficient. With

this in mind, and with small modifications to the statement and proof of Lemma
3, each result contained in Theorems 4 and 6, and Corollary 5, holds sequentially
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as sufficient conditions for π(h)XU,1 = 0. Therefore, use of the compound restric-
tions detailed in Theorem 6 as a basis for test hypotheses should be guarded:
rejection of any such hypothesis cannot be interpreted as evidence in favor of
causation, because causal neutralization may hold.
There are still, however, many ways to inspect simplifying linear sufficient

conditions. For example, delineating U = (U1, ..., Umu), if Ui
19 X for each i

except Uk
1→ X, then Y

(h+1)9 X|IXZ if and only if πXUk,i = 0, i = 1...h.

As another example, rather than define Z = (U 0, V 0)0 based on Y
1→ Z, we

may inspect the causal route from Z to X. Provided Z
1→ X|IXY , partition

Z into the sub-vectors Z = (S0, T 0)0 where S 1→ X|IXY T , T
19 X|IXY S and

mt = 0 is possible. If ms = 1 and Y
1→ S|IXZ , then Theorem 4.i holds with

U replaced by S. The following result can be proved a the manner similar to
Lemma 3 and Theorem 4: see Hill (2005).

Corollary 7 Consider the VAR process (2), and partition Z = (S0, T 0)0 such

that S 1→ X|IXY T . Assume Y
1→ S|IXZ , ms = 1 and Y

(h)9 X. Then Y
(h+1)9

X if and only if πXS,h = 0.

3.5 Multivariate U , S
If both processes U and S are multivariate, then causal neutralization be-

comes an imposing issue, and rejection of noncausality sufficient conditions can-
not be equated to causality. In this case, nonlinear parametric conditions for
noncausality are likely to pervade. However, as pointed out above, there are still
cases in which U and S are multivariate and linear conditions for noncausation
can be established, depending on the causal relationships within and between
the components of U and S.

4. Tests for Causation at Multiple Time Horizons We now con-
struct a strategy for testing noncausality up to horizon h = 3. Consult Tables
1-2 of Appendix 1 for a consolidated list and detailed orders of the enumerated
hypotheses and equivalent tests detailed in this section. Similarly, because every
case in our study of Section 6 involves an evidently univariate U , we tabulate
the following test details in Table 3 for this univariate U -case in terms of Models
1 and 2 (∆m,∆y,∆p,∆r) of Section 6.

1: Initial Tests 0.1-0.2 (Y
(∞)9 X), Test 1.0∗ (Y 19 X)

Either condition Y
19 (X,Z) or (Y,Z) 19 X is sufficient for non-causation

at all horizons, cf. Theorem 2. Evidence in favor of either hypothesis provides

evidence in favor of Y
(∞)9 X|IXZ , and we stop the test procedure. If we reject

both sufficiency conditions, we test8

Y
19 X. (Test 1.0∗)

8We use an asterisk to denote tests that represent conditions which are necessary and

sufficient for noncausation Y
(h)9 X. The condition of Test 1.0∗ is by definition necessary and

sufficient for Y 19 X.
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If we find evidence in favor one-step ahead non-causation, we proceed.
2.A (Univ. Z): Test πXZ,h = 0
By Theorem 4, sequential evidence in favor of πXZ,h = 0, is evidence in favor

of non-causation up to horizon h + 1. No further steps are required: test the
linear compound hypotheses

H0 : Y
19 X,πXZ,i = 0, i = 1...h

for each h = 1, 2, ... Failure to reject provides evidence in favor of Y
(h+1)9 X.

2.B (Mult. Z): Intermediary Tests 1.1-1.2 (Y 19 V )
In order to proceed with multiple horizon tests and multiple possible causal

chain structures, we need to know which processes Y causes (the U 0s), and
which cause X (the S0s). We therefore perform intermediary one-step ahead
causality tests. We test

Y
19 Zi (Test 1.1)

for each i = 1...mz, and collect U = (Zi) for each Zi such that we reject Y
1→

Zi. Then, test each
Zi

19 X (Test 1.2)

and collect S = (Zi) for each Zi such that we reject Zi
1→ X. We proceed to

Step 3.A or 3.B depending on the dimension of U9 .

3.A (Univariate U): Compound Tests Hh
0 : Y

(h)9 X

3.A.1 Test 2.0∗ (Y
(2)9 X)

With the sub-vectorization Z = (U 0, V 0)0 in hand, and mu = 1, we may
immediately test for noncausation through horizon h = 2. From Theorem 6, a
compound test of

H0 : Y
19 (X,V ), πXU,1 = 0 (Test 2.0∗)

is a necessary and sufficient test of H0 : Y
(2)9 X. If we fail to reject, we proceed

to Step 3.A.2.

3.A.2 Compound Tests 2.1-2.2, and Tests 3.1-3.2 (Y
(3)9 X)

For tests of Y
(3)9 X, we first approach sufficient conditions which help

establish a lack of causal neutralization (and therefore complete noncausation)
by performing the compound tests of

H0 : Y
19 (X,V ), U

19 V (Test 2.1)

and
H0 : Y

19 (X,V ), V
19 (X,U). (Test 2.2)

9 If we detect Y
19 Zi for each i = 1...mz such that mu = 0, in the present section by

convention we assume the test process is stopped. We proceed to test Y
(h)
9 X, h ≥ 2, only

if evidence of a causal chain is present (in particular only if we detect Y
1→ Zi for some i).
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If we fail to reject either Test 2.1 or 2.2, from Theorems 4 and 6 compound tests
of

H0 : Y
19 (X,V ), U

19 V, πXU,1 = πXU,2 = 0 (Test 3.1)

or
H0 : Y

19 (X,V ), V
19 (X,U), πXU,1 = πXU,2 = 0 (Test 3.2)

are tests of complete H0 : Y
(3)9 X. Failure to reject either Test 3.1 or 3.2 suggests

noncausation up to horizon h = 3 without causal neutralization (because links

Y
1→ V , U 1→ V or V 1→ (X,U) do not exist). Rejection of Test 3.1 or 3.2 after

a failure to reject the necessary and sufficient Test 2.0∗, and a failure to reject

Test 2.1 or 2.2, implies Y
(2)9 X and Y

3→ X.
For the sake of convention, if we fail to reject Test 2.1, then we simply

perform Test 3.1 and stop. If we reject Test 2.1, then we perform Test 2.2 and
proceed.
Rejection of both compound Tests 2.1 and 2.2 implies we must inspect the

necessary and sufficient for Y
(3)9 X, and consider causal neutralization: in this

case, we proceed to the Step 3.A.3.

3.A.3 Tests 3.3∗ (Y
(3)9 X)

If we fail to reject Test 2.0∗ (Y
(2)9 X), then Y

19 (X,V ), πXU,1 = πXU,2 +

πXV,1πV U,1 = 0 is necessary and sufficient for Y
(3)9 X. We test

H0 : Y
19 (X,V ) (Test 3.3∗)

πXU,1 = 0, πXU,2 + πXV,1πV U,1 = 0.

Rejection implies Y
(2)9 X and Y

(3)→ X. Failure to reject implies Y
(3)9 X with

possible causal neutralization, hence we proceed.

3.A.4 Tests 3.4-3.6 (Y
(3)9 X and causal neutralization)

We have arrived here if we fail to reject each of Y 19 X (Test 1.0∗), the

necessary and sufficient condition for Y
(2)9 X (Test 2.0∗), and the necessary

and sufficient condition for Y
(3)9 X (Test 3.3∗). We now test

H0 : Y
19 (X,V ), πXU,1 = πXU,2 = 0 (Test 3.4)

H0 : Y
19 (X,V ), πXU,1 = πXU,2 = πV U,1 = 0 (Test 3.5)

H0 : Y
19 (X,V ), πXU,1 = πXU,2 = πXV,1 = 0. (Test 3.6)

If we fail to reject Tests 3.3∗, 3.4 and either 3.5 or 3.6, then we have evidence
that πXU,2 + πXV,1πV U,1 = 0, πXU,2 = 0 and πV U,1 = 0 and/or πXV,1 = 0. In

this case, causal neutralization is ruled out, and we conclude Y
(3)9 X completely.
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If we fail to reject Tests 3.3∗, 3.4 and reject both Tests 3.5 and 3.6, then we
have evidence πXU,2 + πXV,1πV U,1 = 0 and πXU,2 = 0, implying πXV,1πV U,1 =
0, hence πV U,1 6= 0 and πXV,1 6= 0 implies causal neutralization is possible. If
mv = 1, then causal neutralization has occurred. If we fail to reject Test 3.3∗,
but reject each of Tests 3.4-3.6, we conclude causal neutralization has occurred
at horizon h = 3.
Test sequences in the univariate U -case are summarized in Table 1, below:

Table 1: Test Sequences

Test 0.1
fa i l t o r e j e c t→ s t o p

Test 0.2
fa i l t o r e j e c t→ s t o p

r e j e c t

↓
Test 1.0∗ r e j e c t→ s t o p

fa i l t o r e j e c t

↓
Test 1.1a

mu=0→ s t o p

mu=1↓
Test 1.2

Test 2.0∗ r e j e c t→ s t o p

fa i l t o r e j e c t

↓
Test 2.1

re je c t→ Test 2.2
re je c t→ Test 3.3∗ r e j e c t→ s t o p

fa i l t o r e j e c t

↓
f a i l t o r e j e c t

↓
f a i l t o r e j e c t

↓
Test 3.1 Test 3.2 Test 3.4

s to p s t o p Test 3.5
Test 3.6

Notes: a. If we detect mu > 1 and decide to proceed to Tests 1.2-3.6, then it is
understood that the test hypotheses represent sufficient conditions only.

3.B (Multivariate U)
In this case, the sequence of hypotheses of Step 3.A can be used to test the

sufficient condition π
(h)
XU,1 = 0 for noncausality. Rejection, however, of either

any of Tests 2.0∗-3.3∗ cannot be interpreted as evidence in favor of causality.
It would be worthwhile then to pursue the logic of Section 3 in order to de-
duce further possible linear sufficient conditions, or consider the direct h-step
ahead test procedure of Dufour et al (2003) in the event we exhaust the possi-
bility of analyzing in a simple way causal neutralization and its implications for
subsequent nonlinear coefficient zero conditions.

5. Size Bounds and Size Distortions
5.1 Size Bounds
Consider testing for Y

(2)9 X. By convention, we proceed to multiple-horizon
tests only if we detect a causal chain through Z (i.e. only if we detect mu ≥
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1). The necessary and sufficient condition is Y 19 (X,V ), πXU,1 = 0, for some

mutually exclusive sub-vectorization Z = (U 0, V 0)0, Y 1→ U , provided mu = 1.

We sequentially choose U and V based on preliminary tests of Y 19 Zi for each i
= 1...mz

10 . If V contains elements caused by Y , then Y 19 (X,V ) cannot hold:
in this case, a consistent test method will detect with asymptotic probability of

one that Y 1→ (X,V ) even if Y
(2)9 X is true.

Of course, if Y 19 Zi for some Zi, we will incorrectly reject Y
19 Zi asymp-

totically with probability, say, αz. For example, let U = Z1. If a consistent test
method is used, then asymptotically there is a probability one that we detect
Y

1→ Z1, but suppose that we detect Y
1→ Zi for i = 1, 2 (i.e. we use U =

[Z1, Z2]). In this case the methodology of Section 4 remains valid as tests of

sufficient conditions for non-causation Y
(h)9 X.

However, Y
(2)9 X can be true with πXU2,1 6= 0 (we only require πXU1,1 =

0, cf. Lemma 3, given Y
1→ Zi for only Z1). In this case, if we test Y

(2)9 X

by testing Y 19 (X,V ), πXU,1 = [πXU1,1, πXU2,1] = 0, and if a consistent test

method is used, asymptotically there is a probability one that we reject Y
(2)9

X, and the probability that we reach this point is the probability we incorrectly
reject any Y

19 Zi. Of course, this is a moot subject if we do not pursue the
test strategy of Section 4 in the case of a detected mu > 1.
If mz ≤ 3, as in our study of money and income, then we have the following

result. Consult Hill (2005) for a proofs of Lemmas 8 and 9.

Lemma 8 Denote by αz the common nominal size of each individual test of
Y

19 Zi, i = 1...mz. Then i. if mu = 0, there is at most a probability of
mz × αz that we detect mu > 0. Furthermore, ii. if mu = 1 and mz ≤ 3,
the likelihood that we correctly select U is at least as large as 1 − (mz − 1)αz
provided a consistent test method is employed.

Remark 1: It is recommended that we set the size of tests of Y 19 Zi
very low (e.g. αz = .01): with αz = .01, mz = 3, and mu = 1 there is at least
a 98% likelihood that we correctly specify U .
With respect to performing sequential tests in order to arrive at tests of

Y
(2)9 X or Y

(3)9 X, a Bonferroni-type bounds suffices for analyzing test size.

Lemma 9 Let α#,# denote the nominally chosen significance level for Test

#.#. For each h = 1, 2, 3, define the hypothesis H(h)
0 : Y

(h)9 X. Assume U is

10While it is interesting in its own right whether Y
19 Z jointly (which we test for in any

case, and is sufficient for non-causality at all horizons), we must necessarily perform individual

tests of Y 19 Zi in order precisely to adduce U = (Zi) based on evidence in favor of Y
1→ Z.

The individual tests of Y
19 Zi are not treated as a sequential substitute for testing the joint

hypothesis of Y
19 Z.
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correctly selected, and mu = 1. Then if a consistent test method employed, as
n → ∞

P
³
reject H(1)

0 |H(1)
0 is true

´
≤ α1.0 (11)

P
³
reject H(2)

0 |H(2)
0 is true

´
≤ α1.0 + α2.0

P
³
reject H(3)

0 |H(3)
0 is true

´
≤ α1.0 + α2.0 + α3.1 + α3.2 + α3.3.

Remark 1: The test for Y 19 X has a bounded size of α1.0 because we

only perform Test 1.0∗ if we reject both sufficient conditions for Y
(∞)9 X, cf.

Tests 0.1 and 0.2.
Remark 2: Assuming U is correctly selected and mu = 1, if we set α1.0

= α2.4 = α3.1 = α3.2 = α3.3 = α, say, then P (reject H(3)
0 |H(3)

0 is true) ≤ 5 ×
α. If we set each nominal level to .01-.02, then assuming U is correctly selected
and mu = 1 the upper bound probability of a Type I error for a test of H

(3)
0 :

Y
(3)9 X is 5%-10%.
Remark 3: If mu ≥ 1 is true andmu > 1 detected, the hypotheses associ-

ated with Y
(h)9 X, h ≥ 2, cf. Section 4, are still valid as sufficient conditions for

non-causality. If we reject any of Tests 2.0∗-3.3∗, we cannot conclude causation,
and any conclusion of causation as a matter of practice necessarily increases the
probability of a Type I error. In this case, the above bounds are not valid and
can be straightforwardly evaluated in manner similar to the line of proof.

Finally, suppose complete noncausation Y
(3)9 X is true. Then by Theorem

4.ii, πXU,1 = 0, by Corollary 5.i, πXU,2 + πXV,1πV U,1 = 0, and by completeness
it must be the case that πXU,2 = 0, and πXV,1 = 0 and/or πV U,1 = 0. The
following result can be proved using logic identical to the line of proof of Lemma

9. We reject complete noncausation Y
(3)9 X if we reject noncausation Y

(3)9 X,

or accept Y
(3)9 X but deduce there is neutralization.

Lemma 10 Let H(3,c)
0 denote the hypothesis that Y

(3)9 X occurs completely,
and without causal neutralization. Assume U is correctly selected, and mu = 1.
Then if a consistent test method employed, as n → ∞

P
³
reject H(3,c)

0 |H(3,c)
0 is true

´
≤ α1.0 + α2.0 + α3.1 + α3.2 (12)

+α3.3 + α3.4 +min{α3.5, α3.6}.
5.2 Size Distortions
It is well known that Wald tests based on multivariate time-series models

tend to lead to over rejections of true null hypotheses when either the chi-
squared or F distribution is used, (e.g. Dufour et al, 2003; Dufour and Jouini,
2003; Lütkepohl and Müller, 1994; Lütkepohl and Burda, 1997). However, these
studies do not use the type of sequential hypotheses proposed here, nor do they
consider the performance of multi-step ahead causality tests when non-causation
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truly occurs at all horizons or after discrete delays. Consult Appendix 2 in which
we perform a broad simulation study using VAR(6) m-vector processes, m = 5.
We demonstrate that a sequential test, based on pre-testing for non-causation
at all horizons, essentially eliminates size distortions with respect to the classic
test of 1-step ahead non-causation when causation never occurs; tames size
distortions of tests of Y 19 X when causation truly occurs at horizon h > 1;
and can be argued to improve power with respect to the detection of causation11.

6. Money and Output We now employ the set of variables studied in
the widely cited works of Stock and Watson (1989) and Friedman and Kuttner
(1993), and others (see also, e.g., Swanson, 1998). For the period Jan. 1959 -
Aug. 2003, we use the logarithm of monthly, seasonally adjusted, nominal M1
(m), the logarithm of unadjusted output measured by the industrial production
index (y), the logarithm of the wholesale price index (p), the 90-day Treasury
bill rate (rb), and the 90-day commercial paper rate (rp).
Except for the commercial paper rate, all data are taken from the databases

made publicly available by the Federal Reserve Bank of Saint Louis, and seasonal
adjustment, where applicable, was performed at the source. The commercial pa-
per rate was taken from the NBER data archive for the period 1959:01-1971:12,
and from the Federal Reserve Bank of Saint Louis for the period 1972:01-2003:08.
All variables are differenced once based on significant evidence in favor of one
positive unit root in each series, giving ∆m,∆y,∆p,∆rb,∆rp. Moreover, fol-
lowing Friedman and Kuttner (1992, 1993) we also consider the commercial
paper-bill rate spread rrpb = rp − rb in levels: unit-root tests suggest the two
series rp are cointegrated such that rp − rb is I(0), hence differencing is not
required.
In order to control for any apparent trend in any sample period considered,

we opt to pass all 5 processes ∆m,∆y,∆p,∆rb,∆r and the rate spread rp − rb
though linear trend filters. Test results for processes passed through quadratic
trend filters are nearly identical to those reported below for linearly detrended
processes12 .

11 In simulations not reported here we also consider a parametric bootstrap technique to
better approximate test statistic p-values. Gor a given nominal size, the parametric bootstrap
in general leads to sharp emprical size improvements, but at a non-neglibile drop in empirical
power. See, e.g., Hill (2004) for evidence of the parametric bootstrap in triviate causal systems.
Separately, we considered 5-vector systems identical to the processes considered in Appendix
2, below, and find empirical sizes of sequential tests reasonably near nominal levels, once
size bounding is acounted for. However, obvious power limitations exist with respect to the
detection of causation at h ≥ 2. Because asymptotic tests do not demonstrate distortions with
respect to tests of Y 19 X when non-causation occurs at all horizons and we pre-test for Y

(∞)
9

X, and generate near perfect power when Y
1→ X, we do not find the parametric bootstrap a

convincing alternative to standard test techniques when a sequential test method is employed.
Because of space limitations, we leave for future research a study of the performance of the
parametric bootstrap for sequential tests of multiple horizon non-causation.
12 It is interesting to point out that the primary trend arguments of Stock and Watson (1989)

are no longer significant from a statistical perspective. Their argument that detrended money
growth is the imperative measure of money in the money-income model, due to significant
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Following Stock and Watson (1989) and Friedman and Kuttner (1992, 1993),
we consider 4-variable models of money growth, income growth, inflation, and
fluctuations in interest rates; and 5-variable models with the rate spread in-
cluded in order to control for the apparent predictive power of the commercial
paper rate. In order to allow for direct comparisons with existing studies, we
consider sample periods studied in Stock and Watson (1989): 1959-1985; Fried-
man and Kuttner (1993): 1959-1990; and an extended sample period from 1959
through August of 2003.

6.1 Money, Output, Inflation, Interest We first consider the four-
variable system of money growth ∆m, output growth ∆y, inflation ∆p, and
interest fluctuation ∆r, where r denotes either the Treasury bill or commercial
paper rates. The models are respectively Model 1 (∆m,∆y,∆p,∆rb) and Model
2 (∆m,∆y,∆p,∆rp).
For each period, we estimate a VAR model, where the ∆y-representation

follows,

∆yt =
Xp

i=1
πyy,i∆yt−i +

Xp

i=1
πym,i∆mt−i (13)

+
Xp

i=1
πyr,i∆rt−i +

Xp

i=1
πyp,i∆pt−i + y,t.

The order p is selected by minimizing the AIC, subject to reasonably noisy
residuals13 . In general, we follow the model selection methods of Tiao and Box
(1981) and Lütkepohl (1991)14.

evidence that money growth was increasing over time, while important in its time no longer
statistically captures the basic traits of the data. In the extended period 1959-2003, we
find that money growth now demonstrates a slight, but significant, inverted quadratic trend,
undoubtedly a remnant of spurious cycle properties of the 1990’s. Similar evidence exists
for the wholesale price index, however evidence of either linear or quadratic trend in each
differenced interest rate series is insignificant at the 5%-level.
The level rate spread rrpb however, demonstrates a significant positive trend with rb,t −

rp,t < 0 substantially in the 1980’s, nearing 0 in the 1990’s. This can be explained by the
recessionary periods of the mid-1970’s and mid-1980’s during which time bankruptcies lead
to a trend of decreased bond ratings for firms and therefore a tendency for the commercial
paper rate to increase; and the decrease risk associated with the rampant growth period of the
1990’s. It could be argued that the trend will not continue (rb,t − rp,t > 0 is highly unlikely),
and any statistical detection is spurious to the chosen sample.
13The SIC never leads to a VAR model with sufficiently noisy residuals. We opt, therefore,

only to use the AIC.
14For the system including the Treasury bill rate, ∆m,∆y,∆p,∆rb, and for both truncated

periods through 1985 and 1990, a VAR(6) model was found to be optimal: both the AIC was
minimized and the standard vector-version of the Ljung-Box test failed to reject the white-
noise null at the 10% level in which 12 and 24 residual autocorrelations were used. For the
extended period through Aug. 2003, the minimum AIC model occurred with p = 13, however
evidence of linear dependence exists in the residuals. Models with orders 18 and 24, however,
were only slightly sub-optimal relative to the AIC, and we failed to reject the hypothesis of
white-noise at the 5% and 8%-levels, respectively. Because a slight improvement with respect
to residual noisiness occurs with order p = 12, and all subsequent substantive results remain
the same, we opt for this latter specification. In any case, for all VAR models of orders less
than 14 and for all periods discussed above or below, VAR polynomials are stable.
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Simulated size distortions do not exist for tests for noncausation 1-step ahead
when non-causation never occurs for moderate sample sizes, or when they do
exist they favor correctly detecting causation if it occurs at all (although, po-
tentially earlier than when it occurs: see Appendix 2). Moreover, a parametric
bootstrap generates a non-negligible reduction in empirical power15. Taking
these two issues into consideration as well as space considerations, and in order
to improve comparability with Stock and Watson’s and Friedman and Kut-
tner’s original results, we perform all tests using a degree-of-freedom corrected
Wald statistic, we compute p-values based on the F distribution using Lütke-
pohl’s (1991) suggestions for degrees of freedom corrections, and we consider
size bounds implied by Section 5.1.
Because we always find significant evidence in favor of mu = 1, we do not

pursue further discussion concerning the likelihood of detecting mu > 1.
6.1.1 Causation Results: Model 1 (∆m,∆y,∆p,∆rb)
Consider the model with the Treasury bill rate ∆rb: results are contained

in Table 4.1 in Appendix 1. Tables 4.1-4.4 contain composite test results for

all initial tests in the first three rows (i.e. ∆m
(∞)9 ∆y and ∆m 19 ∆y), all

intermediary tests (e.g. ∆m 19 (∆y,∆p)) and all compound tests of multiple

horizon noncausation in the bottom rows (i.e. ∆m
(2)9 ∆y and ∆m

(3)9 ∆y).
Consult Tables 1-3 for test details and sequential orders in terms of X,Y,Z and
∆m,∆y,∆p,∆r. Within each of Tables 4.1-4.4, we remark on the specific test
order used based on sequential test results. Our aim is to perform the minimum
number of tests required to ascertain plausible causal routes, if any, and whether
causal neutralization has occurred. Thus, for each period and each model we
do not present results for all tests presented in Tables 1-3.

Model 1: 1959-1985
∆m

1→ ∆y vs. ∆m 2→ ∆y
For the truncated period16 1959:01-1985:12 a la Stock and Watson (1989)

we reject initial sufficient conditions for ∆m
(∞)9 ∆y at the 5%-level (Test 0.1:

.0000; Test 0.2: .0455)17, and reject the classic null hypothesis ∆m 19 ∆y that
money growth does not cause real income growth (Test 1.0∗: .0181). For the
intermediate period 1959-1990, a la Friedman and Kuttner (1993), we fail to

For VAR systems including the commercial paper rate, ∆m,∆y,∆p,∆rp, for each sample
period we found VAR(6), VAR(6) and VAR(8) models, respectively, to be superior. Both
truncated periods rendered sufficiently noisy residuals, however for the extended period the
largest Ljung-Box p-value was roughly 4%, obtained for a VAR(18) model. The VAR(8) model
generated only slightly more noisy residuals, and obtained the lowest AIC: we again side with
parsimony, and employ the order p = 8.
15 See footnote 11.
16Due to the removal of observations that naturally occurs when lagging for estimation,

the resulting sample period is 1959:07-1985. However, for simplicity we refer to the orignal
pre-esimation periods.
17Parenthetic values denote ennumerated test, cf. Tables 1-3, and p-values.
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reject the claim that money does not cause real income at any standard level
of significance (Test 1.0∗: .3580). This confirms the substantive results of those
separate papers: simply extending the data sample through 1990 renders money
a statistically non-influential factor for forecasting output one month ahead.
Moreover, for the intermediate period 1959-1990, we fail to reject a sufficient

test of ∆m
(∞)9 ∆y (Test 0.2: .1205) at the 10%-level weakly suggesting non-

causation at all horizons.
For the extended period 1959-2003:08 we reject conditions for ∆m

(∞)9 ∆y
(Test 0.1: .0155; Test 0.2: .0049), and we again fail to reject the hypothesis
that money does not cause real income at any standard level of significance
(Test 1.0∗: .6794). Indeed, in this case the test p-value substantially increases
relative to the 1959-1990 period, loosely suggesting money is now "more trivial"
for one-month ahead forecasting of output. In this extended period, we reject

each sufficient condition for ∆m
(∞)9 ∆y at below the 1%-level.

For the initial period 1959-1985, rejection of ∆m 19 ∆y occurs at the 2%-
level (Test 1.0∗: .0181). In lieu of test size bounds issues, if we opt to fail to
reject this test at the 1%-level, say, as a matter of course then subsequent tests
suggest a short causal delay. We find ∆m 1→ ∆rb at a level safely under 1%
(Test 1.1.b: .0000) and likely ∆rb

19 ∆y (Test 1.2.b: .1596). Even with this
weak evidence in support of a causal link from money to output, if we put U

= ∆rb we reject the necessary and sufficient condition for ∆m
(2)9 ∆y (Test

2.0∗: .0024), undoubtedly due to the joint presence of coefficient terms for the
embedded test of ∆m 19 ∆y. If we perform both tests of ∆m 19 ∆y and ∆m
(2)9 ∆y sequentially at the 1%-level, we safely reject ∆m

(2)9 ∆y at the 2%-level.
Either way, we have evidence in favor of ∆m 1→ ∆y at the 2%-level, or ∆m 19
∆y and ∆m 2→ ∆y at the 2%-level.

Model 1: 1959-1990
∆m

(∞)9 ∆y vs. ∆m 2→ ∆y

Because evidence in favor of ∆m
(∞)9 ∆y is rather weak or strongly rejected

(e.g. Test 0.2: .1205), we pursue tests of ∆m
(h)9 ∆y. Evidence supports a

broken causal chain in general, ∆m 1→ (∆p,∆rp)
19 ∆y, specifically via ∆m

1→ ∆rp
19 ∆y18. From Theorem 2, this provides moderate evidence not only

that money growth fails to cause output growth one-month ahead, but the far

18We find evidence that ∆m
1→ (∆p,∆rp) only though the Treasury bill rate ∆rp: we reject

∆m
19 (∆p,∆rp) (Test 1.1: .0000) and reject only ∆m

19 ∆rp safely under the 1%-level (Test
1.1.b: .0000). However, we fail to reject the hypothesis that all of the auxiliary information
Z = (∆rb,∆p) is non-causal for output growth ∆y (Test 1.2: .1371): thus, evidence suggests

(∆p,∆rb)
19 ∆m (i.e. Z

19 X). In particular, we fail to reject the hypothesis that the
Treasury bill rate ∆rb causes output growth ∆y at about the 10%-level (Test 1.2.b: .1009).
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stronger claim that money growth never causes output growth, ∆m
(∞)9 ∆y.

Coupled with a sufficient condition test for ∆m
(∞)9 ∆y (Test 0.2: .1205), this

strengthens the claim of the "trivial" role of money made by Friedman and
Kuttner (1993) for their chosen period.
Note that the levels of hypothesis acceptance above are in the range 10%-

15%, hence we could posit hypothesis rejections at these relatively large signifi-

cance levels. Indeed, we do reject an initial sufficient condition for ∆m
(∞)9 ∆y

at the 15%-level (Test 0.2: .1205), and specifically the hypothesis that fluctua-
tions in the Treasury bill rate ∆rb do not cause output growth ∆y at roughly
the 10%-level (Test 1.2.b: .1009). Thus, we have (admittedly, very) weak ev-

idence of an indirect causal chain ∆m 1→ ∆rp
1→ ∆y, and therefore evidence

that money growth eventually causes output growth.
We define19 U = ∆rb and V = ∆p (i.e. evidence suggests ∆m 1→ ∆rb and

∆m
19 ∆p), such thatmu = 1, and proceed with compound tests. We reject the

hypothesis of non-causation up to horizon h = 2, ∆m
(2)9 ∆y, at the 10%-level

using the necessary and sufficient condition (Test 2.0∗: .0723). Thus, evidence
points to causation from money growth to output growth two-months ahead,
∆m

19 ∆y and ∆m 2→ ∆y. Performing Test 1.0∗ at the 1%-level and Test 2.0∗
at the 8%-levels implies a size bounds of 9%, cf. Lemma 920.
In summary, for Friedman and Kuttner’s (1993) selected sample period ev-

idence in favor of either noncausality at all horizons or a causation delay is

rather ambiguous. We fail to reject ∆m
(∞)9 ∆y at the 15% level based on the

intermediary test of (∆p,∆rb)
19 ∆m (i.e. Z 19 X), or at the 10%-level using

the efficient initial test ∆m
(∞)9 ∆y (Test 0.2: .1205). If the decision is to reject

these hypotheses at their respective high levels, we fail to reject ∆m 19 ∆y and
deduce ∆m 2→ ∆y at the bounded 11%-level using a compact necessary and
sufficient condition (Test 2.0∗: .0723).

Model 1: 1959-2003
19 It is important to point out that we never find mu > 1 for any time period or any model

considered in this paper. Indeed, in separate work not reported here in which we study the
same data set over rolling windows of increasing and fixed widths set to the sample lengths
of Stock and Watson’s (1989) and Friedman and Kuttner’s (1993) sample periods, we find
mu = 2 in under 3% of all windows for all models. When mu = 1, it is always the case
that U = ∆r, depending on which rate is included, with test rejections occuring under the
1%-level. However, we frequently encounter a multivariate S, thus all compound hypotheses
are constructed according to U .
20For the sake of fluidity, we will not repeatedly comment on sequential test size issues

associated with pre-testing for U . There exists overwhelming evidence that mu ≤ 1 in all
periods for all models; Wald statistics have demonstrated power under standard conditions;
and we never perform tests of multiple-horizon non-causation for a case where mu > 1 (simply
because we never detect mu > 1). Thus, it is highly unlikely the true U is multivariate, and
it is highly likely we have selected the true U ; and we defer to the size bounds characterized
by Lemmas 9 and 10.
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∆m
2→ ∆y

Recall that for the extended period 1959-2003:08, we reject both sufficient

conditions for ∆m
(∞)9 ∆y (Test 0.1: .0155; Test 0.2: .0049), and fail to reject

the classic hypothesis ∆m 19 ∆y (Test 1.0∗: .6794). We again find strong

evidence that ∆m 1→ (∆p,∆rb) (Test: 1.1: .0023) only though the Treasury
bill rate ∆rb (Test 1.1.b: .0002). However, we now find significant evidence
that fluctuations in the Treasury bill rate causes output growth ∆y (Test 1.2.b:
.0004, compared to .1009 for 1959-1990). This suggests a significant indirect
causal chain ∆m→ ∆rb → ∆y exists through the Treasury bill (i.e. U = ∆rb).
Similar to the intermediate period 1959-1990, we find borderline evidence of
causation two months ahead: we reject the necessary and sufficient condition

for ∆m
(2)9 ∆y (Test 2.0∗: .0899). If we perform Test 1.0∗ at the 1%-level and

Test 2.0∗ at the 9%-level, there is a bound of 10% for a Type I error. Thus,
evidence is again not strong but certainly worthy of reporting21.

6.1.2 Causation Results: Commercial Paper Rate
Following Friedman and Kuttner (1993), we substitute the Treasury bill rate

for the commercial paper rate, ∆rp, in the VAR model (17). Test results can
be found in Table 4.2. For the truncated period 1959-1985 we again reject
non-causality 1-month ahead at the 3%-level (Test 1.0∗: .0243)22.

Model 2: 1959-1990
∆m

(∞)9 ∆y vs ∆m
(3)9 ∆y

For the 1959-1990 period and the extended period through 2003:08, however,
evidence strongly supports the claim that money is trivial in one-step ahead

prediction of output. We reject both sufficient conditions for ∆m
(∞)9 ∆y (Test

0.1: .0000, Test 0.2: .0424) at the 5%-level, and we fail to reject ∆m 19 ∆y
(Test 1.0∗: .3449).
For the period 1959-1990 we fail to reject (∆rp,∆p)

19 ∆y (Test 1.2: .1628)
implying a broken chain, Z 19X, and, cf. Theorem 2, which suggests that money

21Due to space considerations, we do not pursue tests at, nor discussions regarding, sub-
sequent horizons. Considering simulation evidence, cf. Appendix 2, and the present strong

evidence in favor of ∆m
19 ∆y and moderate evidence in favor of ∆m

2→ ∆y, it is likely the
case that causation is occuring at a horizon near h = 2 (e.g. h ∈ {2, 3, 4}). Such a conclusion
in lieu of test and simulation results can be made in several cases, below, and we will not
comment further.
22 If we pursue a test of ∆m

(2)
9 ∆y, the result is identical to Model 1: we find significant

evidence in favor of ∆m
1→ ∆rp, and reject ∆m

(2)
9 ∆y at the a bounded 4%-level (Test 2.0∗:

.0173).
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growth never causes output growth, ∆m
(∞)9 ∆y. Using the rate on non-risk

free commercial loans for the period 1959-1990, evidence suggests the authors
were correct in their assessment of the statistically trivial influence monetary
policy is likely to have on matters of (forecasting) real income growth.

Intermediary tests suggest ∆m 1→ ∆rp (Test 1.1.b: .0000) and likely ∆rp 19
∆y (Test 1.2.b: .1423). This formally demonstrates a likely broken causal chain.
Using U = ∆rp, we fail to reject the necessary and sufficient condition for ∆m
(2)9 ∆y (Test 2.0∗: .1544). Moreover, we fail to reject ∆m 19 (∆y,∆p), ∆rp

19
∆p (Test 2.1: .2737) hence π∆y∆r,i = 0, i = 1...2 is necessary and sufficient for

∆m
(3)9 ∆y. We fail to reject ∆m

(3)9 ∆y at the 10%-level (Test 3.1: .1195).
Indeed, sequentially setting the nominal test sizes at 1%-2% for Tests 1.0∗, 2.0∗,
3.1, 3.2 and 3.3∗ for a size bounds of 5%—10%, cf. Lemma 9, the present outcome

for Test 3.1 suggests we should safely fail to reject the claim ∆m
(3)9 ∆y at the

10%-level.
Using the commercial paper rate, we conclude that fluctuations in the money

supply do not cause output growth at least through 3-months, ∆m
(3)9 ∆y,

and without the complication of causal neutralization, and possibly through all

horizons ∆m
(∞)9 ∆y.

Model 2: 1959-2003
∆m

(3)9 ∆y

For the extended period, 1959-2003:08, by comparison, sharply ambiguous
evidence for a causal delay exists. We reject both sufficient conditions for ∆m
(∞)9 ∆y (Test 0.1: .0572 and Test 0.2: .0008), and strongly fail to reject one—

month ahead non-causation ∆m 19 ∆y (Test 1.0∗: .7389). Moreover, there
exists evidence at the nominal 1%-level in support of a causal chain through
the paper rate23, ∆m 1→ ∆rp

1→ ∆y. It seems that a causal chain exists and
causation from money to output eventually occurs.
However, using U = ∆rp, we overwhelmingly fail to reject the necessary and

sufficient condition for∆m
(2)9 ∆y (Test 2.0∗: .6540). Now, from compound tests

we fail to reject ∆m 19 (∆y,∆p), ∆rp
19 ∆p (Test 2.1: .3052) hence π∆y∆r,i

= 0, i = 1...2 is again necessary and sufficient for ∆m
(3)9 ∆y. We subsequently

fail to reject the test of ∆m
(3)9 ∆y (Test: 3.1: 2435).

6.2 Money, Output, Inflation, Interest, and Interest Spread
Friedman and Kuttner (1992,1993) found the commercial paper rate provides
significant predictive information for output growth. In particular, they found

23We find ∆m
1→ (∆p,∆rp) (Test 1.1: .0109); ∆m

1→ ∆rp (Test 1.1.b: .0018); (∆p,∆rp)
1→ ∆y (Test 1.2: .0059); and ∆rp

1→ ∆y (Test 1.2.b: .0357).

25



that including the rate spread into models of output with either the Treasury or
commercial paper rate rendered money growth non-causal (one-month ahead) in
their sample running through 1990. In order to control for the same structural
dynamics, consider the following VAR representation for output growth with
the rate spread included:

∆yt =
Xp

i=1
πyy,i∆yt−i +

Xp

i=1
πym,i∆mt−i (14)

+
Xp

i=1
πyr,i∆rt−i +

Xp

i=1
πyrr,irrbp,t−i

+
Xp

i=1
πyp,i∆pt−i + y,t.

The models are, respectively, Model 3 (∆m,∆y,∆p,∆rb, rrbp) and Model 4
(∆m,∆y,∆p,∆rp, rrbp)24 .
6.2.0 Causation Results: Model 3
Test results can be found in Tables 4.3 and 4.4. Results are qualitatively

similar with either the Treasury bill or paper rates. In both cases, we fail to
reject the hypothesis ∆m 19 ∆y for every period at conventional significance
levels, where evidence is somewhat stronger when the commercial paper rate is
included, and evidence spectacularly suggests one-month ahead noncausation in
the intermediate and extended periods: for models with the Treasury bill rate
and rate spread, p-values are .9865 and .8676, respectively; and for models with
the commercial paper rate, p-values are .9870 and .8739, respectively.

Model 3: Treasury Bill Rate and Rate Spread
1959-1985

∆m
(3)9 ∆y and causal neutralization ?

Consider the sample period 1959-1985, and consider the model with the
Treasury bill rate and rate spread: see Table 4.3. We reject the initial sufficient

conditions for ∆m
(∞)9 ∆y (Test 0.1: .0000, Test 0.2: .0000) and fail to reject

noncausation 1-month ahead ∆m 19 ∆y (Test 1.0∗: .1890).
Intermediary tests point to complicated plausible routes from money to out-

put. Evidence strongly points to the causal chain links25 ∆m 1→ ∆rb and rrbp

24For VAR systems including both the Treasury bill rate and the rate spread,
∆m,∆y,∆p,∆rb, rrpb, we found VAR(5), VAR(13) and VAR(13) models to be superior for
the respective periods based on minimizing the AIC. However, for all orders considered (up to
30) we reject the hypothesis that the underlying innovations are white-noise at the 5%-level.
Similarly, for VAR systems including both the commercial paper rate and the rate spread,
∆m,∆y,∆p,∆rp, rrpb, we found VAR(7), VAR(13) and VAR(13) models to be superior for
the respective periods based on minimizing the AIC, where again no order rendered evidence
of white noise at the 5%-level in the vector residual series.
25We strongly reject ∆m

19 (∆p,∆rb, rrbp) (Test 1.1: .0000) likely due to ∆rb (Test 1.1.b:

.0000) again at below the 1%-level. However, we reject (∆p,∆rb, rrbp)
19 ∆y (Test 1.2: .0000)

due to rrbp: we fail to reject ∆rb
19 ∆y (Test 1.2.b: .2646) and reject rrbp

19 ∆y (Test 1.2.c:
.0001).
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1→ ∆y. Interestingly, once the rate spread is introduced, evidence for a direct
link from money to output through fluctuations in the bill rate ∆rb substantially
weakens, and may not exist at all.
With evidence once again U = ∆rb, we pursue multi-step ahead tests. We

fail to reject the necessary and sufficient condition for ∆m
(2)9 ∆y (Test 2.0∗:

.3359). However, sufficient conditions for ∆m
(3)9 ∆y detailed in Theorem 6

appear to be strongly ruled out26 .

We now test ∆m
(3)9 ∆y using a sequentially necessary and sufficient condi-

tion, ∆m 19 (∆y,∆p, rrbp) and π∆y∆r,1 = π∆y∆r,2 + π∆y(∆p,rr),1π(∆p,rr)∆r,1 =
0, which we fail to reject at any conventional level (Test 3.3∗: .2819). Thus, we
must pursue further tests to consider the possibility of causal neutralization.
We fail to reject ∆m 19 (∆y,∆p, rrbp), π∆y∆r,1 = π∆y∆r,2 = 0 (Test 3.4:

.3713), we reject ∆m 19 (∆y,∆p, rrbp), π∆y∆r,1 = π∆y∆r,2 = π(∆p,rr)∆r,1 = 0

(Test 3.5: .0929) only at the 10%-level, and reject m 19 (∆y,∆p, rrbp), π∆y∆r,1
= π∆y∆r,2 = π∆y(∆p,rr),1 = 0 (Test 3.6: .0004).
This sequentially suggests π∆y∆r,2 = 0, π(∆p,rr)∆r,1 ~ 0 (?), and π∆y(∆p,rr),1

6= 0. In lieu of the failure to reject Test 3.3∗, we have evidence π∆y∆r,2 +
π∆y(∆p,rr),1π(∆p,rr)∆r,1 = 0, and π∆y∆r,2 = 0, hence π∆y(∆p,rr),1π(∆p,rr)∆r,1 =
0. Because evidence supports π∆y(∆p,rr),1π(∆p,rr)∆r,1 = 0, π(∆p,rr)∆r,1 ~ 0 (?)
and π∆y(∆p,rr),1 6= 0, this implies causal neutralization is plausible: fluctuations
in the commercial paper rate are causal for inflation and the rate spread, and
inflation and the rate spread are causal for output, each in such a way that
the combined connective route from money to output cancels out at 3-months
ahead.
Given size bounds considerations, cf. Lemmas 9 and 10, and the observing

that we do not reject at a sufficiently low nominal level (e.g. .5%-1%) the claim
that π(∆p,rr)∆r,1 = 0, cf. Test 3.5, arguably we should side with caution and

fail to reject the claim that noncausation ∆m
(3)9 ∆y has occurred completely.

Model 3: 1959-1990
∆m

(2)9 ∆y and ∆m 3→ ∆y

Consider the middle period 1959-1990. We substantially fail to reject the
benchmark hypothesis ∆m 19 ∆y (Test 1.0∗: .9865). We reject the sufficient

conditions for ∆m
(∞)9 ∆y (Test 0.1: .0011, Test 0.2: .0000). Moreover, each

intermediary test outcome is essentially identical to the above period 1959-1985

26We strongly reject preliminary sufficient conditions ∆m
19 (∆y,∆p, rrbp), ∆rb

19
(∆p, rrbp) (Test 2.1: .0071) and ∆m

19 (∆y,∆p, rrbp), (∆p, rrbp)
19 (∆rb,∆y) (Test 2.2:

.0000). Thus, inspection only of π∆y∆r,i = 0, i = 1, 2 as a sequentially sufficient condition

for noncausality ∆m
(3)
9 ∆y is evidently not an option.
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with the notable exceptions that we now reject ∆m 19 rrbp at the 10%-level

(Test 1.1.c: .0885) and strongly reject ∆rb
19 ∆y (Test 1.2.b: .0196). Thus,

we find significant evidence in favor of ∆m 1→ (∆rb, rrbp)
1→ ∆y. Because the

evidence for ∆m 1→ rrbp is somewhat weak (Test 1.1.c: .0885) we define U =
∆rb for subsequent tests.
Similar to the period 1959-1985, we fail to reject the necessary and sufficient

condition for ∆m
(2)9 ∆y (Test 2.0∗: .2814), and strongly reject the compound

tests for ∆m 19 (∆y,∆p, rrbp), ∆rb
19 (∆p, rrbp) (Test 2.1: .0002) and ∆m

19
(∆y,∆p, rrbp), (∆p, rrbp)

19 (∆rb,∆y) (Test 2.2: .0000). Thus, again we must

consider testing for ∆m
(3)9 ∆y using the sequentially necessary and sufficient

condition.
We now strongly reject the necessary and sufficient condition for ∆m

(3)9 ∆y
(Test 3.3∗: .0008). Even using a size bounding strategy, we safely reject the

hypothesis ∆m
(3)9 ∆y at the 5%-level: we fail to reject Tests 1.0∗ and 2.0∗ each

at the 1%-level, we reject both Tests 2.1 and 2.2 at the 1%-level, and reject Test
3.3∗ at the 1%-level. Thus, evidence suggests both non-causation from money
to income up to 2-months ahead, and causation at exactly 3-months ahead, ∆m
(2)9 ∆y and ∆m 3→ ∆y.

Model 3: 1959-2003
∆m

(∞)9 ∆y vs. ∆m 19 ∆y and ∆m 2→ ∆y

For the period 1959-2003:08, we immediately fail to reject the sufficient con-

dition for ∆m
(∞)9 ∆y (Test 0.1: .4575) and the test of ∆m 19 ∆y (Test 1.0∗:

.8676). However, it is important to point out that we do strongly reject the hy-
potheses that money fails to cause the Treasury bill rate (Test 1.1.b: .0063) and
the Treasury bill rate fails to cause output (Test 1.2.b: .0010), thus disparate

evidence suggests a causal chain may exist, ∆m 1→ ∆rb 1→ ∆y. Moreover, now
evidence unambiguously suggests money is only causal for the bill rate: we only
reject ∆m 19 ∆rb (Test 1.1.b: .0063) and fail to reject ∆m

19 ∆p and ∆m 19
rrbp at any conventional level (Test 1.1.a: .6856, Test 1.1.c: .8897).

We now reject the necessary and sufficient for ∆m
(2)9 ∆y (Test 2.0∗: .0544).

If we perform Test 1.0∗ at the 1%-level and Test 2.0∗ at the 6%-level, there is a
bound of 7% for a Type I error. Thus, evidence sharply splits for non-causation

at all horizons, ∆m
(∞)9 ∆y, using an efficient test of a sufficient condition,

and a causal delay of one month, ∆m 19 ∆y and ∆m 2→ ∆y, using sequential
necessary and sufficient tests.

Model 4: Paper Rate and Rate Spread
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We now focus on models with the paper rate and rate spread: consult Table
4.4. Results are closely similar to those with the Treasury bill rate.

Model 4: 1959-1985
∆m

(2)9 ∆y and ∆m 3→ ∆y

For the early period 1959-1985, we reject both sufficient conditions for ∆m
(∞)9 ∆y (Test 0.1: .0000, Test 0.2: .0000). Evidence again suggests ∆m 19 ∆y

(Test 1.0∗: .2146), with a highly significant link ∆m 1→ ∆rp 1→ ∆y. As in every
other case above or below, we deduce U = ∆r.

We fail to reject the necessary and sufficient condition for ∆m
(2)9 ∆y (Test

2.0∗: .5621), we fail to reject at the 10%-level a test of ∆m 19 (∆y,∆p, rrbp),

(∆p, rrbp)
19 (∆rp,∆y) (Test 2.1: .0893), and reject Test 2.2 (.0000). However,

considering the evidence is rather weak to allow for the use of the subsequent
sufficient condition associated with Test 3.1, we consider only the necessary and
sufficient nonlinear condition of Test 3.3∗. We strongly reject the necessary and

sufficient condition for ∆m
(3)9 ∆y (Test 3.3∗: .0014), suggesting a significant

causal delay of exactly two months exists, ∆m
(2)9 ∆ and ∆m 3→ ∆y. Using

Lemma 9, the upper bound size on the test of ∆m
(3)9 ∆y is determined only

by the nominal sizes (i.e. 1%) of Tests 1.0∗, 2.0∗, 3.1-3.3∗: if we reject Test 2.1

at the 10% level, this does not effect the size bounds on the test of ∆m
(3)9 ∆y.

We deduce that we reject ∆m
(3)9 ∆y at a bounded level of 5%.

Model 4: 1959-1990
∆m

(2)9 ∆y and ∆m 3→ ∆y

Causal patterns for the intermediate period are identical, with a sharper
degree of significance. In particular, we now reject both initial conditions for

∆m
(∞)9 ∆y, we fail to reject the necessary and sufficient condition for∆m

(2)9∆y
(Test 2.0∗: .2187), and we reject Tests 2.1-2.2 at below the 1%-level (Test 2.1:
.0000, Test 2.2: .0000). We then reject the necessary and sufficient condition

for ∆m
(3)9 ∆y (Test 3.3∗: .0000). We conclude ∆m

(2)9 ∆ and ∆m 3→ ∆y at a
bounded 5%-level. It is interesting to point out that the strongest evidence for
causation exactly one-quarter ahead occurs in Friedman and Kuttner’s (1993)
chosen sample period and preferred model, arguably contradicting their results
for quarterly data in Friedman and Kuttner (1992).

Model 4: 1959-2003
∆m

(∞)9 ∆y vs. ∆m 19 ∆y and ∆m 2→ ∆y

Finally, for the extended period evidence pushes the likely horizon of causa-
tion up to h = 2, although we again cannot reject the hypothesis that money
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never causes output: we fail to reject a sufficient condition for ∆m
(∞)9 ∆y (Test

0.1: .5920), and we fail to reject ∆m 19 ∆y (Test 1.0∗: .3739).
Intermediary tests are somewhat ambiguous: we fail to reject∆m 19 (∆p,∆rp,

rrbp) (Test 1.1: .3447), providing further support that ∆m
(∞)9 ∆y, however we

find a significant causal link ∆m 1→ ∆rp 1→ ∆y (Test 1.1.b: .0352, Test 1.2.b:
.0000) although not at the 1%-level. Moreover, we immediately reject the nec-

essary and sufficient condition for ∆m
(2)9 ∆y (Test 2.0∗: .0246) at the 3%-level.

Thus, evidence ambiguously suggests a causal delay of exactly one month, ∆m
19 ∆y and ∆m 2→ ∆y at a bounded 4%-level, or non-causation at all horizons.

7. Conclusion We have derived simple linear recursive parametric rep-
resentations of causality chains for multivariate processes and arbitrary horizon
causation problems that point to simplified linear compound hypotheses in sev-
eral useful cases. Moreover, unavoidable nonlinear restrictions result in standard
Wald tests with the usual asymptotics.
A simulation study demonstrates that sequential Wald tests of non-causality

with increasingly complex parameter hypotheses do not uniformly result in over-
rejection of the "null" hypothesis. If non-causality occurs at every horizon, there
does not exist a distortion toward over-rejection of the classic benchmark test
of 1-step ahead non-causation; if causality occurs at horizon h > 1, there do
exist size distortions, however hypothesis rejections favor the correct detection
causality, albeit at an incorrect horizon k < h. An important factor which im-
proves small sample size is performing pre-tests of non-causation at all horizons,
and proceeding to test subsequent hypotheses only if we reject each sufficient
condition.
We implement our test procedure on money-output data sets that have been

the subject of numerous studies. For sample periods ending in 1990 or 2003,
we find significant evidence that detrended money growth causes output growth
after at least a one month delay involving a causal chain through either fluctu-
ations in an interest rate, or a complex chain through both fluctuations in an
interest rate and a rate spread. For the sample ending in 2003, moreover, we
find significance that fluctuations in the money supply will never statistically

alter the growth of output (∆m
(∞)9 ∆y).

In only two cases involving Stock and Watson’s (1989) chosen sample period
in models with the Treasury bill or commercial paper rate do we find evidence
for causation exactly one-month ahead. Moreover, the only significant evidence
in favor of non-causality by way of causal neutralization occurs with Stock and
Watson’s (1989) sample period 1959-1985, and a model with the Treasury bill
and rate spread. When non-causation through 3-months ahead is apparent,
evidence overwhelmingly suggests noncausation by way of neutralization is not
occurring, with complete noncausality.
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Appendix 1: Tables
Table 2

Hypotheses and Equivalent Tests (X,Y,Z)a

Initial Tests
Test # Hypothesis Equivalent Test Nec./Suff.

0.1b Y
(∞)9 X Y

19 (X,Z) Suff.

0.2 Y
(∞)9 X (Y,Z)

19 X Suff.

1.0∗ Y
19 X Y

19 X Nec./Suff.
Intermediary Tests

Test # Hypothesis Equivalent Test Nec./Suff.

1.1 Y
19 Z - -

1.2 Z
19 X - -

Compound Tests
Test # Hypothesis Equivalent Test Nec./Suff.

2.0∗c Y
(2)9 X Y

19 (X,V ), πXU,1= 0 Nec./Suff.

2.1 Y
19 (X,V ), - -

U
19 V - -

2.2 Y
19 (X,V ), - -

V
19 (U,X) - -

3.1 Y
(3)9 X Y

19 (X,V ), U 19 V, Suff.
(complete)d πXU,1= πXU,2 = 0

3.2 Y
(3)9 X Y

19 (X,V ), V 19 (X,U), Suff.
(complete) πXU,1= πXU,2 = 0

3.3∗ Y
(3)9 X Y

19 (X,V ), πXU,1= 0 Nec./Suff.
πXU,2 + πXV,1 πV U,1= 0

3.4 - Y
19 (X,V ), -
πXU,1= πXU,2 = 0

3.5 (no neutral.) Y
19 (X,V ), πXU,1= 0, -
πXU,2 = πV U,1 = 0

3.6 (no neutral.) Y
19 (X,V ), πXU,1= 0, -
πXU,2 = πXV,1 = 0

Notes: a. The present table presents test hypotheses in the case of univariate U .
b. See Table 1 for exact test sequence orders.

c. V denotes those elements of Z not caused by Y : Y
19 V ; U denotes

those elements of Z caused by Y : Y
1→ U, mu = 1.

d. Complete non-causation Y
(3)9 X occurs when multiple causal routes are ruled out.
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Table 3
Hypotheses and Equivalent Tests (∆m,∆y,∆p,∆r)a

Initial Tests
Test # Hypothesis Equivalent Test Nec./Suff.

0.1 ∆m
(∞)9 ∆y ∆m

(∞)9 (∆y,∆p,∆r) Suff.

0.2 ∆m
(∞)9 ∆y (∆m,∆p,∆r)

(∞)9 ∆y Suff.

1.0∗ ∆m
19 ∆y ∆m

19 ∆y Nec./Suff.

Intermediary Tests
Test # Hypothesis Equivalent Test Nec./Suff.

1.1 ∆m
19 ∆p,∆r - -

1.2 ∆p,∆r
19 ∆y - -

Compound Tests
Test # Hypothesis Equivalent Test Nec./Suff.

2.0∗b ∆m
(2)9 ∆y ∆m

19 (∆y,∆p), π∆y∆r,1= 0 Nec./Suff.

2.1 ∆m
19 (∆y,∆p), - -

∆r
19 ∆p - -

2.2 ∆m
19 (∆y,∆p), - -

∆p
19 (∆r,∆y) - -

3.1 ∆m
(3)9 ∆y ∆m

19 (∆y,∆p), ∆r 19 ∆p, Suff.
(complete) π∆y∆r,1= π∆y∆r,2= 0

3.2 ∆m
(3)9 ∆y ∆m

19 (∆y,∆p), ∆p 19 (∆y,∆r) Suff.
(complete) π∆y∆r,1= π∆y∆r,2= 0

3.3∗ ∆m
(3)9 ∆y ∆m

19 (∆y,∆p), π∆y∆r,1 = 0 Nec./Suff.
π∆y∆r,2 + π∆y∆p,1π∆p∆r,1 = 0

3.4 - ∆m
19 (∆y,∆p), -

π∆y∆r,1= π∆y∆r,2= 0

3.5 (no neutral.) ∆m
19 (∆y,∆p), π∆y∆r,1= 0, -

π∆y∆r,2 = π∆p∆r,1 = 0

3.6 (no neutral.) ∆m
19 (∆y,∆p), π∆y∆r,1 = 0 -

π∆y∆r,2 + π∆y∆p,1 = 0

Notes: a. The present table enumerates tests for models with ∆m,∆y,∆p,∆r,
where Y = ∆m, X = ∆y, and Z = (∆p,∆r): we omit the rate
spread rr for the sake of brevity.

b. In every model and time period considered in this paper, U = ∆r, and
V = ∆p (and rr in Models 3 and 4).
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Table 4.1
Model 1: ∆m,∆y,∆p,∆rb

Initial Tests
Test # Hypothesis Equivalent Test 1959-1985a 1959-1990b 1959-2003c

0.1 ∆m
(∞)9 ∆y ∆m

19 (∆y,∆p,∆rb) .0000d .0000 .0155

0.2 ∆m
(∞)9 ∆y (∆m,∆p,∆rb)

19 ∆y .0455 .1205 .0049

1.0∗ ∆m
19 ∆y ∆m

19 ∆y .0181 .3580 .6794

Intermediary Tests
Test # Hypothesis Equivalent Test 1959-1985 1959-1990 1959-2003

1.1 ∆m
19 (∆p,∆rb) - .0000 .0000 .0023

1.1.a ∆m
19 ∆p - .8617 .2789 .4376

1.1.b ∆m
19 ∆rb - .0000 .0000 .0002

1.2 (∆p,∆rb)
19 ∆y - .3066 .1371 .0021

1.2.a ∆p
19 ∆y - .5973 .4763 .7089

1.2.b ∆rb
19 ∆y - .1596 .1009 .0004

Compound Tests
Test # Hypothesis Equivalent Test 1959-1985 1959-1990 1959-2003

2.0∗ ∆m
(2)9 ∆y ∆m

19 (∆y,∆p), π∆y∆r,1= 0 .0024e .0723f .0899g

Notes: a. Jan. 1959 - Dec. 1985. The test order is Test 01, .02, 1.0∗, 1.1, 1.2, 2.0∗.
b. Jan. 1959 - Dec. 1990. The test order is Test .01, .02; or .01, .02, 1.0∗, 1.1, 1.2, 2.0∗.
c. Jan. 1959 - Aug. 2003. The test order is Test .01, .02, 1.0∗, 1.1, 1.2, 2.0∗.
d. p-values < .00005 are denoted .0000.

e. Conclusion: reject each ∆m
(∞)9 ∆y at 5%-level, and reject ∆m

19 ∆y at 2%-level.

f. Conclusion: accept ∆m
(∞)9 ∆y at 10%-level; or reject ∆m

(∞)9 ∆y at 15%,

accept ∆m
19 ∆y, and reject ∆m (2)9 ∆y at a bounded 9%-level.

g. Conclusion: reject each ∆m
(∞)9 ∆y at 5%-level, accept ∆m

19 ∆y, and reject

∆m
(2)9 ∆y at bounded 10%-level.
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Table 4.2
Model 2: ∆m,∆y,∆p,∆rp

Initial Tests
Test # Hypothesis Equivalent Test 1959-1985a 1959-1990b 1959-2003c

0.1 ∆m
(∞)9 ∆y ∆m

19 (∆y,∆p,∆r) .0000 .0000 .0572

0.2 ∆m
(∞)9 ∆y (∆m,∆p,∆r)

19 ∆y .0083 .0424 .0008

1.0∗ ∆m
19 ∆y ∆m

19 ∆y .0243 .3449 .7389

Intermediary Tests
Test # Hypothesis Equivalent Test 1959-1985 1959-1990 1959-2003

1.1 ∆m
19 (∆p,∆rp) - .0000 .0000 .0109

1.1.a ∆m
19 ∆p - .7726 .2863 .5400

1.1.b ∆m
19 ∆rp - .0000 .0000 .0018

1.2 (∆p,∆rp)
19 ∆y - .2322 .1628 .0059

1.2.a ∆p
19 ∆y - .4907 .4072 .3713

1.2.b ∆rp
19 ∆y - .1468 .1423 .0357

Compound Tests
Test # Hypothesis Equivalent Test 1959-1985 1959-1990 1959-2003

2.0∗ ∆m
(2)9 ∆y ∆m

19 (∆y,∆p), π∆y∆r,1= 0 .0173d .1544 .6540

2.1 ∆m
19 (∆y,∆p), - - .2737 .3052

∆rp
19 ∆p

3.1 ∆m
(3)9 ∆y ∆m

19 (∆y,∆p), ∆rp
19 ∆p, - .1195e .2435f

(compete) π∆y∆r,1= π∆y∆r,2= 0

Notes: a. The test order is Test .01, .02, 1.0∗, 1.1, 1.2, 2.0∗.
b. The test order is Test .01, .02, 1.0∗, 1.1, 1.2, 2.0∗, 2.1, 3.1.
c. The test order is Test .01, .02, 1.0∗, 1.1, 1.2, 2.0∗, 2.1, 3.1.

d. Conclusion: reject each ∆m
(∞)9 ∆y at 5%-level, and reject ∆m

19 ∆y at 3%-level.

e. Conclusion: reject each ∆m
(∞)9 ∆y at 5%-level, and accept complete ∆m

(3)9 ∆y.

f. Conclusion: reject each ∆m
(∞)9 ∆y at 6%-level, and accept complete ∆m

(3)9 ∆y.
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Table 4.3
Model 3: ∆m,∆y,∆p,∆rb, rrbp

Initial Tests
Test # Hypothesis Equivalent Test -1985a -1990b -2003c

0.1 ∆m
(∞)9 ∆y ∆m

19 (∆y,∆p,∆rb, rrbp) .0000 .0011 .4575

0.2 ∆m
(∞)9 ∆y (∆m,∆p,∆rb, rrbp)

19 ∆y .0000 .0000 .0000

1.0∗ ∆m
19 ∆y ∆m

19 ∆y .1890 .9865 .8676

Intermediary Tests
Test # Hypothesis Equivalent Test -1985 -1990 -2003

1.1 ∆m
19 (∆p,∆rb, rrbp) - .0000 .0000 .2262

1.1.a ∆m
19 ∆p - .8390 .5707 .6856

1.1.b ∆m
19 ∆rb - .0000 .0000 .0063

1.1.c ∆m
19 rrbp .1594 .0885 .8897

1.2 (∆p,∆rb, rrbp)
19 ∆y - .0000 .0000 .0000

1.2.a ∆p
19 ∆y - .7929 .9150 .9084

1.2.b ∆rb
19 ∆y - .2646 .0196 .0010

1.2.c rrbp
19 ∆y .0001 .0002 .0000

Compound Tests
Test # Hypothesis Equivalent Test -1985 -1990 -2003

2.0∗ ∆m
(2)9 ∆y ∆m

19 (∆y,∆p, rrbp), π∆y∆r,1= 0 .3359 .2814 .0544f

2.1 ∆m
19 (∆y,∆p, rrbp), - .0071 .0002 .0003

∆rb
19 (∆p, rrbp)

2.2 ∆m
19 (∆y,∆p, rrbp), - .0000 .0000 .0000

(∆p, rrbp)
19 (∆rb,∆y)

3.3∗ ∆m
(3)9 ∆y ∆m

19 (∆y,∆p, rrbp), π∆y∆r,1= 0, .2819 .0008e -
π∆y∆r,2+π∆y(∆p,rr),1π(∆p,rr)∆r,1= 0

3.4 - ∆m
19 (∆y,∆p, rrbp), .3713 - -

π∆y∆r,1= π∆y∆r,2= 0

3.5 (no neutral.) ∆m
19 (∆y,∆p, rrbp), π∆y∆r,1= 0, .0929 - -

π∆y∆r,2 = π(∆p,rr)∆r,1= 0

3.6 (no neutral.) ∆m
19 (∆y,∆p, rrbp), π∆y∆r,1= 0, .0004d - -

π∆y∆r,2 = π∆y(∆p,rr),1= 0

Notes: a. The test order is Test .01, .02, 1.0∗, 1.1, 1.2, 2.0∗, 2.1, 2.2, 3.3∗, 3.4-3.6.
b. The test order is Test .01, .02, 1.0∗, 1.1, 1.2, 2.0∗, 2.1, 2.2, 3.3∗.
c. The test order is Test .01; or Test .02, 1.0∗, 1.1, 1.2, 2.0∗.

d. Reject each ∆m
(∞)9 ∆y at 5%, and accept ∆m

(3)9 ∆y, possible neutralization through r and rr.

e. Reject each ∆m
(∞)9 ∆y at 5%, accept ∆m

(2)9 ∆y, and reject ∆m
(3)9 ∆y at bounded 5%-level.

f. Accept ∆m
(∞)9 ∆y; or accept ∆m 19 ∆y, and reject ∆m

(2)9 ∆y at bounded 7%-level.
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Table 4.4
Model 4: ∆m,∆y,∆p,∆rp, rrbp

Initial Tests
Test # Hypothesis Equivalent Test -1985a -1990b -2003c

0.1 ∆m
(∞)9 ∆y ∆m

19 (∆y,∆p,∆rp, rrbp) .0000 .0042 .5920

0.2 ∆m
(∞)9 ∆y (∆m,∆p,∆rp, rrbp)

19 ∆y .0000 .0000 .0000

1.0∗ ∆m
19 ∆y ∆m

19 ∆y .2146 .9870 .8739

Intermediary Tests
Test # Hypothesis Equivalent Test -1985 -1990 -2003

1.1 ∆m
19 (∆p,∆rp, rrbp) - .0000 .0002 .3447

1.1.a ∆m
19 ∆p - .8768 .5779 .7887

1.1.b ∆m
19 ∆rp - .0000 .0001 .0352

1.1.c ∆m
19 rrbp .4191 .1416 .9158

1.2 (∆p,∆rp, rrbp)
19 ∆y - .0000 .0000 .0000

1.2.a ∆p
19 ∆y - .7710 .9394 .9252

1.2.b ∆rp
19 ∆y - .2030 .0027 .0000

1.2.c rrbp
19 ∆y .0000 .0000 .0000

Compound Tests
Test # Hypothesis Equivalent Test -1985 -1990 -2003

2.0∗ ∆m
(2)9 ∆y ∆m

19 (∆y,∆p, rrbp), π∆y∆r,1= 0 .5621 .2187 .0246f

2.1 ∆m
19 (∆y,∆p, rrbp), - .0893 .0000 .0000

∆rb
19 (∆p, rrbp)

2.2 ∆m
19 (∆y,∆p, rrbp), - .0000 .0000 .0000

(∆p, rrbp)
19 (∆rp,∆y)

3.3∗ ∆m
(3)9 ∆y ∆m

19 (∆y,∆p, rrbp), π∆y∆r,1= 0, .0014d .0000e -
π∆y∆r,2+π∆y(∆p,rr),1π(∆p,rr)∆r,1= 0

Notes: a. The test order is Test .01, .02, 1.0∗, 1.1, 1.2, 2.0∗, 2.1, 2.2, 3.3∗.
b. The test order is Test .01, .02, 1.0∗, 1.1, 1.2, 2.0∗, 2.1, 2.2, 3.3∗.
c. The test order is Test .01, .02; or Test 1.0∗, 1.1, 1.2, 2.0∗.

d. Reject each ∆m
(∞)9 ∆y at 5%, accept ∆m

(2)9 ∆y, and reject ∆m
(3)9 ∆y at bounded 5%-level.

e. Reject each ∆m
(∞)9 ∆y at 5%, accept ∆m

(2)9 ∆y, and reject ∆m
(3)9 ∆y at bounded 5%-level.

f. Accept ∆m
(∞)9 ∆y; or accept ∆m

19 ∆y, and reject ∆m
(2)9 ∆y at bounded 4%-level.
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Appendix 2: Simulation Study

Set Up We generated VAR(6) 5-vector processes under the null of non-
causation at all horizons, and under alternatives of causation at horizons h =
1...6 (non-causation up to horizons h = 0...5 where h = 0 denotes non-causation
at all horizons). Sample sizes are restricted to n ∈ {200, 400, 600, 800, 1000} and
1000 repetitions are performed for each test.
For the simulated processWt =

P6
i=1 πiWt−i + t, t denotes an iid 5-vector

with mutually independent components drawn from a standard normal distri-
bution. The sub-vectorization is Wt = (Xt, Yt, Z

0
t)
0, with Zt a 3-vector. The

matrix coefficients πi are generated as iid random variables from the uniform
cube [−.5, .5]5: we use π only if the resulting characteristic polynomial Im −
π1z − ... − π6z

6 has all roots outside the unit circle.
During the simulation process, we impose the following restrictions, depend-

ing upon the hypothesis to be tested. Benchmark hypotheses are

H∞0 : πXY,i = πXZ,i = 0, i = 1...6;

H1
1 : πXY,i 6= 0, i = 1...6;

H2
1 : πXY,i = 0, i = 1...6.

Under hypothesisH∞0 , we deduce Y 19 (X,Z), therefore Y
(∞)9 X, cf. Theorems

1-2. Under H1
1 , causation Y

1→ X, and under H2
1 , non-causation Y

19 X, and

causation Y
2→ X are true.

Let Z = (U 0, V 0)0, U = Z1, V = (Z2, Z3) (i.e. mu = 1 and mv = 2) and
define

H3
1 : πXY,i = πV Y,i = 0, i = 1...6, πXU,1 = 0;

H4,c
1 : πXY,i = πV Y,i = πV U,i = 0, i = 1...6, πXU,1 = πXU,2 = 0;

H4,cn
1 : πXY,i = πV Y,i = 0, i = 1...6, πXU,1 = 0, πXU,2 = −πXV,1πV U,1;

H5
1 : πXY,i = πV Y,i = πV U,i = 0, i = 1...6,

πXU,1 = πXU,2 = πXU,3 = 0;

H6
1 : πXY,i = πV Y,i = πV U,i = 0, i = 1...6,

πXU,1 = πXU,2 = πXU,3 = πXU,4 = 0.

For H3
1 , we have Y

(2)9 X and Y
3→ X, cf. Theorem 6. Under H4,c

1 , Y
(3)9 X

and Y 4→ X, cf. Theorem 6, where non-causation through 3-steps ahead occurs

completely ; and under H4,cn
1 Y

(3)9 X and Y 4→ X, where non-causation through
3-steps ahead occurs due to neutralization. Finally, under hypotheses Hh

1 , h =
5 or 6, non-causation through h − 1 occurs completely, with causation at h

occurs (e.g. H5
1 : Y

(4)9 X,Y
5→ X): see Remark 4 of Theorem 4.

For each simulated series Wt, a minimum AIC method is employed for VAR
order p selection, where considered orders are restricted to the set {1, ..., 16}.
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The initial tests of non-causation at all horizons is performed at the 5%-level;
all other tests are performed at the 1%-level.

Results We perform all tests of Y
(h)9 X according the sequential order

detailed in Section 4, and summarized in Table 1. Table 5, below, contains all
simulation results. Processes range from non-causality at all horizons (H∞0 ) to
causality at horizon h = 6 (H6

1 ).
Columns contain empirical rejection frequencies based on p-values derived

from the F distribution, with degrees of freedom adjustments discussed in Lütke-
pohl (1991)27 . Tests at horizon h = 0 represent tests of noncausation at all
horizons (Tests 0.1 and 0.2).

For sequential tests of each Y
(h)9 X, h = 1...3, we perform Tests 0.1 (Y

(∞)9
X) and 0.2 (Y

(∞)9 X) and proceed only if both are rejected at the 5%-level.

We then perform Test 1.0∗ (Y 19 X) and proceed only if we fail to reject at the

1%-level. Sequential tests of of the classic hypothesis Y 19 X are contained the
columns labeled "h = 1" We then perform intermediary Tests 1.1 and 1.2 (not
reported here), and we report the average of detected mu over all simulations.

If we reject Y
(k)9 X, this is scored as a rejection of all subsequent Y

(h)9 X, h >
k. If mu > 1 is detected, we still perform all tests and use a standard rejection
region rule as a criterion for test rejection28.
As a separate experiment, we perform tests of the classic hypothesis Y 19

X irrespective of ("isolated" from) the outcome of tests of Y
(∞)9 X: results for

these 1-step ahead non-causation tests are presented in columns labeled "h =
1iso".

When Y
(∞)9 X is true, tests at h = 0 perform well: we always reject (Y,Z)

19 X (which is false)29 , and reject Y 19 (X,Z) (which is true) at roughly a
5%-frequency for n > 400. Under H∞0 , there exists a trend of over-rejecting
isolated tests of Y 19 X, however, while sequential tests of Y 19 X generate
smaller rejection frequencies at or below the nominal level. The average detected
dimension of U is reasonably under 1, and close to 0 for n > 400 (the true
dimension is 0).

The tests perform essentially perfectly when Y
1→ X is true, as expected,

with the average of detected mu at (or near) the true 3. However, when cau-
sation occurs at horizons h > 1, size distortions are apparent. Under H21, for

27Because simulation evidence, cf. Hill (2004b), suggests p-values derived from a parametric
bootstrap both tame empirical size distortions and hinder empirical power, and due to space
considerations, we use only standard p-values in the present study.
28Because Tests 2.0∗-3.3∗ can be used only to deduce non-causation in the mu > 1 case, the

fact that we tabulate a rejection of their respective hypotheses Y
(h)
9 X when we "reject" the

test implies an enlarged Type I error probability. This should be kept in mind as we discuss
the simulation outcome.
29Test results for (Y,Z)

19 X are not shown: for all hypotheses (Y,Z)
19 X is false, and

for all sample sizes empirical power is 1.00.
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example, Y 19 X and Y
2→ X are true and the rejection rate of Y 19 X (which

is true) is not far from the nominal 1%-level for large n, but occurs at a rate

6-times the nominal level when n = 400. Moreover, the power of tests of Y
(2)9

X is rather sluggish (always below 80%), but compensated for in tests of Y
(3)9

X.
This pattern of over-rejecting at horizons sooner than when true causation

occurs continues for every other simulated case. For example, when Y
(2)9 X and

Y
3→ X are true, we reject Y 19 X at a rate 5-times the nominal level when n

= 400 (and when n = 1000 the rejection rate 1.1% is the roughly the nominal

level), and reject Y
(2)9 X at roughly 31-times (!) the nominal level (dropping

to a rate about 9-times the nominal level, or 8.7% for n = 1000).
The size distortions for tests at h = 2 or 3 however, drop precipitously as

the true horizon of causation increases. For example, when Y
(5)9 X and Y

6→ X

are true, we incorrectly reject Y 19 X, Y
(2)9 X or Y

(3)9 X at rates 1.4%, 7.7%
and 14.6%, respectively, when n = 400; and 1.1%, 2.6% and 6.5%, respectively,
when n = 1000. For either sample size, the rejection frequency of the classic
test of Y 19 X is reasonably near the nominal level 1%. This suggests that
a rejection of the hypothesis Y 19 X in practice should be held to indicate
causation truly occurs 1-step ahead, or in the very near future (e.g. 1-to-2-steps
ahead). The greater the time distance between the actual horizon of causation
and the test horizon, the smaller the likelihood of a false rejection of the classic
test, and indeed the likelihood is quite close to the chosen level of significance,
in particular for the classic test of 1-step ahead non-causation.
Finally, when causal neutralization is true (H4,cn

1 ), the empirical rejection
frequency is substantially larger than if non-causation is complete: even when

n = 1000, we reject Y
(3)9 X at a rate 25-times the nominal level of 1%. Even

taking into consideration sequential size bounding, this rejection rate is large.
Of course, causal neutralization is occurring at h = 3 with causation at h= 4,

thus the false detection of Y 3→X is nonetheless a correct detection of causation
"at some horizon". Moreover, if the time horizon of causation increases to Y
(5)9 X and Y

(6)→ X, then tests of Y
(h)9 X work well once size augmentation due

to sequential testing is accounted for. Indeed, because we allow for tests of Y
(h)9 X even when mu > 1 is detected, using techniques similar to Lemma 10 the

upper bound of test sizes for tests of Y
(2)9 X and Y

(3)9 X can be shown to be,
respectively, 4% and 7% when the nominal levels of all Tests 1.0∗-3.3∗ are all
set to 1%. When n = 1000, the actual rejection rates are, respectively, 3.3%
and 6.5%.
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Table 5
Empirical Size and Power: 5-vector VAR(6)

H∞0 : Y
(∞)9 X H11 : Y

1→ X

n h=0a h=1biso h=1c h=2d h=3e mu
f n h=0 h=1iso h=1 h=2 h=3 mu

200 .270g .300 .014 .072 .214 .431 200 1.00 .878 .878 .888 .888 2.90
400 .084 .070 .022 .069 .098 .246 400 1.00 1.00 1.00 1.00 1.00 3.00
600 .054 .048 .013 .042 .051 .162 600 1.00 1.00 1.00 1.00 1.00 3.00
800 .051 .049 .011 .035 .047 .145 800 1.00 1.00 1.00 1.00 1.00 3.00
1000 .046 .048 .006 .028 .031 .129 1000 1.00 1.00 1.00 1.00 1.00 3.00

H21 : Y
19 X , Y

2→ X H31 : Y
(2)9 X , Y

3→ X

n h=0 h=1iso h=1 h=2 h=3 mu n h=0 h=1iso h=1 h=2 h=3 mu

200 .911 .133 .133 .422 .733 1.55 200 .949 .121 .119 .408 .781 1.42
400 .990 .061 .061 .394 .909 1.22 400 1.00 .052 .052 .311 .837 1.16
600 1.00 .039 .039 .586 .950 1.17 600 1.00 .039 .037 .148 .880 1.09
800 1.00 .031 .031 .671 .970 1.08 800 1.00 .023 .020 .101 .923 1.08
1000 1.00 .015 .015 .743 .988 1.04 1000 1.00 .012 .011 .087 .989 1.08

H4,c1 : Y
(3)9 X, Y

4→ X (complete) H4,cn1 : Y
(3)9 X (neutral)

n h=0 h=1iso h=1 h=2 h=3 mu n h=0 h=1iso h=1 h=2 h=3 mu

200 .939 .091 .091 .321 .502 1.41 200 .912 .061 .061 .250 .616 1.23
400 .976 .034 .034 .053 .182 1.11 400 .975 .023 .023 .419 .674 1.19
600 1.00 .019 .019 .054 .166 1.09 600 .987 .021 .021 .121 .493 1.13
800 1.00 .015 .015 .048 .138 1.10 800 1.00 .011 .011 .093 .387 1.11
1000 1.00 .013 .013 .036 .124 1.08 1000 1.00 .012 .012 .064 .255 1.11

H51 : Y
(4)9 X , Y

5→ X (complete) H61 : Y
(5)9 X , Y

6→ X (complete)

n h=0 h=1iso h=1 h=2 h=3 mu n h=0 h=1iso h=1 h=2 h=3 mu

200 .922 .033 .033 .130 .326 1.11 200 .941 .031 .031 .111 .282 1.15
400 .952 .013 .013 .082 .174 1.08 400 .968 .014 .014 .077 .146 1.09
600 1.00 .011 .011 .042 .140 1.06 600 1.00 .009 .009 .031 .120 1.08
800 1.00 .009 .009 .028 .116 1.06 800 1.00 .010 .010 .032 .091 1.04
1000 1.00 .011 .011 .031 .099 1.04 1000 1.00 .011 .011 .026 .065 1.05

Notes: a. Test 0.1 (Y
(∞)9 X) tests the hypothesis Y

19 (X,Z).

b. Isolated Test 1.0∗ (Y 19 X): performed irrespective of outcome of Tests 0.1 and 0.2 (Y
(∞)9 X).

c. Sequential Test 1.0∗ (Y 19 X): performed only if Tests 0.1 and 0.2 (Y
(∞)9 X) are rejected.

d. Test 2.0∗, Y
(2)9 X .

e. The test of Y
(3)9 X sequentially involves Tests 2.1-3.3∗, depending upon

the sequential outcome, cf. Table 1. We reject Y
(3)9 X if we fail to reject Test 2.1 and reject 3.1,

or reject 2.1 and fail to reject 2.2 and reject 3.2, or reject 2.1 and reject 2.2 and reject 3.3∗.
f. mu denotes the average of all mu, the determined dimension of U .
g. Values denote rejection frequencies.
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Appendix 3: Formal Proofs
Proof of Lemma 3. Consider (i). Assume Y

(h)9 X|IXZ for some h ≥ 2.
Recall the partition Z = (U 0, V 0)0. From the argument following (6), we know

Y
(h+1)9 X|IXZ if and only if π

(h)
XZ,1πZY,i = 0, ∀i ≥ 1, and Y

19 V |IXZ implies

Y
(h+1)9 X|IXZ if and only if π

(h)
XU,1πUY,i = 0, ∀i ≥ 1. Moreover, because U is

univariate and Y 1→ U |IXZ , we deduce π
(h)
XU,1πUY,i = 0 occurs for every i ≥ 1 if

and only if π(h)XU,1 = 0. This is true irrespective of the dimensions of X and Y .

Next, consider (ii), and recall we assume Y
(h)9 X|IXZ . From part (i), Y

(h+1)9 X|IXZ if and only if π
(h)
XU,1 = 0, and from (3), we deduce

π
(h)
XU,1 = π

(h−1)
XU,2 +π

(h−1)
XX,1πXU,1+π

(h−1)
XY,1 πY U,1+π

(h−1)
XU,1 πUU,1+π

(h−1)
XV,1 πV U,1. (15)

For h = 2, Y
(2)9 X|IXZ implies π

(1)
XU,1 = 0 from part (i), above, hence

(16)

π
(2)
XU,1 = πXU,2 + πXX,1πXU,1 + πXY,1πY U,1 + πXU,1πUU,1 + πXV,1πV U,1

= πXU,2 + πXX,1 × 0 + 0× πY U,1 + 0× πUU,1 ++πXV,1πV U,1

= πXU,2 + πXV,1πV U,1.

For h = 3, Y
(3)9 X|IXZ implies π

(2)
XU,1 = π

(1)
XU,1 = 0 from part (i), above, hence

(17)

π
(3)
XU,1 = π

(2)
XU,2 + π

(2)
XX,1πXU,1 + π

(2)
XY,1πY U,1 + π

(2)
XU,1πUU,1 + π

(2)
XV,1πV U,1

= π
(2)
XU,2 + π

(2)
XX,1 × 0 + 0× πY U,1 + 0× πUU,1 + π

(2)
XV,1πV U,1

= π
(2)
XU,2 + π

(2)
XV,1πV U,1

where

(18)

π
(2)
XU,2 = πXU,3 + πXX,1πXU,2 + πXY,1πY U,2 + πXU,1πUU,2 + πXV,1πV U,2

= πXU,3 + πXX,1πXU,2 + 0× πY U,2 + 0× πUU,2 + πXV,1πV U,2

= πXU,3 + πXX,1πXU,2 + πXV,1πV U,2.

Thus,

π
(3)
XU,1 = π

(2)
XU,2 + π

(2)
XV,1πV U,1 (19)

= πXU,3 + πXX,1πXU,2 + πXV,1πV U,2 + π
(2)
XV,1πV U,1.

Recursively we deduce

π
(h)
XU,1 = πXU,h +

Xh−1
i=1

π
(h−i)
XX,1πXU,i +

Xh−1
i=1

π
(h−i)
XV,1 πV U,i, (20)
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where we include the term π
(h−1)
XX,1πXU,1 = 0.

Finally, consider (iii). From part (i), Y
(h)9 X|IXZ if and only if π

(h)
XU,1, and

from part (ii), we have the identity

π
(h)
XU,1 = πXU,h +

Xh−1
i=1

π
(h−i)
XX,1πXU,i +

Xh−1
i=1

π
(h−i)
XV,1 πV U,i. (21)

Now, let πXU,i = πV U,i = 0, i = 1...h − 1. Then

π
(h)
XU,1 = πXU,h +

Xh−1
i=1

π
(h−i)
XX,1 × 0 +

Xh−1
i=1

π
(h−i)
XV,1 × 0 = πXU,h. (22)

This completes the proof.
Proof of Theorem 4. For (i), assume mz = mu = 1 (i.e. U = Z, Y 1→

Z|IXZ), such that mv = 0 by convention.

Consider h = 2 and assume Y
19 X|IXZ . By Lemma 3.i, we have Y

29
X|IXZ if and only if π

(1)
XZ,1 = πXZ,1 = 0. This proves the result for h = 2..

Now, let Y
(h)9 X|IXZ for any h ≥ 2. From Lemma 3.ii, it follows that π(k)XZ,1

has the representation π
(2)
XZ,1 = πXZ,2, and for 2 < k ≤ h

π
(k)
XZ,1 = πXZ,k +

Xk−1
i=1

³
π
(k−i)
XX,1πXZ,i

´
. (23)

We will prove the result, Y
(h+1)9 X|IXZ if and only if πXZ,h = 0, by induction.

Assume Y
(h)9 X|IXZ if and only if πXZ,h−1 = 0 for some h ≥ 2. Then, notice

that Y
(h)9 X|IXZ implies Y

(k)9 X|IXZ for each k = 1...h, thus, by the induction

assumption we deduce Y
(h)9 X|IXZ if and only if πXZ,k = 0, k = 1...h − 1.

Consequently, by the induction assumption the equality in (23) reduces to

π
(h)
XZ,1 = πXZ,h +

Xh−1
i=1

³
π
(h−i)
XX,1πXZ,i

´
= πXZ,h. (24)

By Lemma 3, Y
(h+1)9 X|IXZ if and only if π

(h)
XZ,1 = 0, and π

(h)
XZ,1 = πXZ,h,

therefore Y
(h+1)9 X|IXZ if and only if πXZ,h = 0. Because h ≥ 2 is arbitrary,

this proves claim (i) by induction.
Consider (ii), and assume mz > 1 and 1 < mu ≤ mz for the remainder of

the proof. From (6) and (7), we know Y
(2)9 X|IXZ if and only if πXU,1πUY,j

= 0, j ≥ 1. By the assumption Y → U , we have πUY,j 6= 0 for some j, hence
πXU,1πUY,j = 0 if and only if πXU,1 = 0.

For (iii), let Y
(3)9 X|IXZ and U

19 V |IXZ . By Lemma 3, we deduce Y
(3)9

X|IXZ if and only if

π
(2)
XU,1 = πXU,2 + πXX,1πXU,1 + πXV,1πV U,1 = 0. (25)
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If U 19 V |IXZ , then πV U,i = 0, i ≥ 1, thusY (3)9 X|IXZ if and only if

π
(2)
XU,1 = πXU,2 + πXX,1πXU,1 = 0. (26)

Now, we know Y
(2)9 X|IXZ if and only if πXU,1 = 0, cf. part (ii), hence Y

(3)9
X|IXZ if and only if

0 = π
(2)
XU,1 = πXU,2 +

X1

i=1
π
(h−i)
XX,1πXU,i (27)

= πXU,2 +
X1

i=1
π
(h−i)
XX,1 × 0 = πXU,2.

Next, consider (iv) and let Y
(2)9 X|IXZ and V

19 (U,X)|IXY U . By Lemma

3, we know Y
(3)9 X|IXZ if and only if

π
(2)
XU,1 = πXU,2 + πXX,1πXU,1 + πXV,1πV U,1 = 0, (28)

and by Theorem 2, V 19 (U,X)|IXY U implies πUV,i = πXV,i = 0, for each i ≥
1. Because Y

(2)9 X|IXZ , by part (i), πXU,1 = 0, and Y
(3)9 X|IXZ if and only if

0 = π
(2)
XU,1 = πXU,2 + πXX,1πXU,1 + πXV,1πV U,1 (29)

= πXU,2 + πXX,1 × 0 + 0× πV U,1 = πXU,2.

Finally, for (v), assume πXU,i = πV U,j = 0, i = 1...2, j = 1. Because πXU,1 =

0, from part (ii) we immediately deduceY
(2)9 X|IXZ . From Lemma 3, therefore,

Y
(3)9 X|IXZ if and only if

π
(2)
XU,1 = πXU,2 + πXX,1πXU,1 + πXV,1πV U,1 = 0, (30)

where πXU,i = πV U,j = 0, i = 1...2, j = 1,, hence

π
(2)
XU,1 = πXU,2 + πXX,1πXU,1 + πXV,1πV U,1 (31)

= 0 + πXX,1 × 0 + πXV,1 × 0 = 0.

Therefore, Y
(3)9 X|IXZ follows.

Proof of Corollary 5. The only claims not immediately implied by
Lemma 3 and (8) are (iii) and (iv).

For (iii), we assume Y
(2)9 X|IXZ and πXU,2 = πXV,1 = 0. From (8) this

implies π(2)XU,1 = 0, hence Y
(3)9 X|IXZ , cf. Lemma 3.i. Using Lemma 3.ii, the

assumption πXU,2 = πXV,1 = 0, and πXU,1 = 0 due to Y
(2)9 X|IXZ , cf. Lemma
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3.i, we then deduce

π
(3)
XU,1 = πXU,3 +

X2

i=1
π
(3−i)
XX,1πXU,i +

X2

i=1
π
(3−i)
XV,1πV U,i (32)

= πXU,3 + π
(2)
XX,1πXU,1 + πXX,1πXU,2 + π

(2)
XV,1πV U,1 ++πXV,1πV U,2

= πXU,3 + π
(2)
XX,1 × 0 + πXX,1 × 0 + π

(2)
XV,1πV U,1 ++0× πV U,2

= πXU,3 + π
(2)
XV,1πV U,1.

Using (5) and Y
19 X|IXZ if and only if πXY,i = 0, i ≥ 1, we have

(33)

π
(2)
XV,1 = πXV,2 + πXX,1πXV,1 + πXY,1πY V,1 + πXU,1πUV,1 + πXV,1πV V,1

= πXV,2 + πXX,1 × 0 + 0× πY V,1 + 0× πUV,1 + 0× πV V,1

= πXV,2,

hence π(3)XU,1 = πXU,3 + πXV,2πV U,1. From Lemma 3.i we conclude Y
(4)9 X|IXZ

if and only if πXU,3 + πXV,2πV U,1 = 0.

For (iv), we assume Y
(2)9 X|IXZ and πXU,2 = πV U,1 = 0, hence π

(3)
XU,1

reduces to

(34)

π
(3)
XU,1 = πXU,3 + π

(2)
XX,1πXU,1 + πXX,1πXU,2 + π

(2)
XV,1πV U,1 + πXV,1πV U,2

= πXU,3 + π
(2)
XX,1 × 0 + πXX,1 × 0 + π

(2)
XV,1 × 0 + πXV,1πV U,2

= πXU,3 + πXV,1πV U,2.

The claim then follows from Lemma 3.i.
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