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Abstract

In this paper we prove Wold-type decompositions with strong-
orthogonal prediction innovations exist in smooth, re‡exive Banach spaces
of discrete time processes if and only if the projection operator generating
the innovations satis…es the property of iterations. Our theory inc ludes
as special cases all previous Wold-type decompositions of discrete time
processes; completely characterizes when nonlinear heavy-tailed processes
obtain a strong-orthogonal moving average representation; and easily pro-
motes a theory of nonlinear impulse response functions for in…nite vari-
ance processes. We exemplify our theory by developing a nonlinear im-
pulse response function for smooth transition threshold processes, we dis-
cuss how to test decomposition innovations for strong orthogonality and
whether the proposed model represents the best predictor, and we apply
the methodology to currency exchange rates.

1. Introduction We develop a complete theory of Wold-type orthogonal
decompositions in smooth, re‡exive Banach spaces of discrete time processes.
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Such spaces include the Hilbert spaces, and contain linear and nonlinear heavy-
tailed processes1 . An immediate application is the construction of nonlinear im-
pulse response functions (IRF’s) for possibly non-stationary and/or long mem-
ory heavy-tailed processes based on moving average representations.

In particular, we provide necessary and su¢cient conditions for the existence
of orthogonal decompositions in the time-domain with asymmetric strong or-
thogonal innovations. For some Banach space stochastic process fg = f:
¡1 1, we consider the decomposition

(1) =
X1

=0
¡+

for some set of orthogonal innovations fg and a "residual" . Wold’s (1938)
seminal work provides a foundation for characterizing stationary …nite variance
processes with covariance orthogonal innovations. In the classic setting the
innovations necessarily satisfy the strong orthogonality condition

(2) (+)?(¡1¡) 8̧ 0, 8̧ 1

where denotes the closed linear span. In general Banach spaces, however, the
"covariance" may not exist, conditional expectations and the best predictor may
not equate, metric projection operators need not be linear, and innovations may
not satisfy (2) although they will satisfy (3), below. A related decomposition
theory with strong orthogonal innovations for processes with an unbounded vari-
ance, or for any process based on metric projection other than minimizing the
mean-squared-error, is relatively limited and the most promising contributions
to the literature focus entirely on closed linear spans.

Let = (: · ) denote the closed linear span of fg, and denote
by a metric projection operator (e.g. ¡1 : ! ¡1). Urbanic (1964,
1967) considered decompositions of strictly stationary in…nite variance processes
which admit independent metric projection innovations. Faulkner and Huney-
cutt (1978) consider decompositions with innovations fg that only satisfy a
weak asymmetric orthogonality condition:

(3) ()?(¡1¡) 8̧ 1

Miamee and Pourahmadi (1988) develop a weak-orthogonal decomposition the-
ory for-stationary processes based on innovations in ¡¡1. The theory,
however, fundamentally exploits the codimension one property of closed linear
spans: = (¡1)

Similarly, Cambanis et al (1988) establish an asymmetric decomposition the-
ory for (F) processes in . The authors prove () projection operator
linearity, () iterated projections and () the existence of strong orthogonal
innovations are equivalent when the innovations are restricted to the space 

1 For example, all stable random variables with character ist ic exponent 2 (02] belong to
an -space, , and all -spaces are Banach spaces. Smooth, re‡exive Banach spaces
are complete normed spaces endowed with a sem i-inner product which induces the norm.
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¡ ¡1. Speci…cally, the authors prove () ) () ) () ) (), and operator
linearity is expedited by the fact that ¡1 is codimension one in .

In the literature, therefore, either independence is assumed; only weak or-
thogonality is proven; or explicit properties of closed linear spans are exploited
to promote strong orthogonality. For projections into arbitrary (nonlinear) -
spaces, Cambanis et al (1988) point out that operator linearity su¢ciently ren-
ders strong orthogonal innovations (2). This result, however, is trivial: see
Theorem 3, below. Moreover, no result exists (that we know of) characterizing
strong orthogonal decompositions for …nite variance processes based on best
-metric projection,  2

The construction and use of orthogonal innovation spaces ¡ ¡1in
order to promote strong orthogonality is not a trivial simpli…cation, however.
The explicit omission of nonlinear best predictors and orthogonal innovations
must be viewed critically in light of developments in the theory and empirical
methods associated with nonlinear stochastic processes. For example, mov-
ing average forms have been utilized to characterize linear dependence within
processes with regularly varying tails: see Davis and Resnick (1985a,b), and
Kokoszka and Taqqu (1994, 1996). The innovations in this literature are typi-
cally assumed to be iid, hence strongly orthogonal to far more than subspaces
of . Except for the special case of symmetric stable process (Cambanis et
al, 1988), nowhere in this literature are necessary and su¢cient conditions for
the existence of such moving averages derived.

Moreover, we see the use of moving averages a la IRF’s in time series settings
in which amassed evidence suggests nonlinear data generating processes with
heavy tails2. In the economics and …nance literatures the implied "impulses"
are predominantly assumed to be iid …nite variance innovations computed from
inherently linear vector autoregression [VAR] representations (e.g. Sims, 1980).
A linear structure ensures symmetry with respect to how positive and negative
shocks persist over time, and renders shocks independent of the history of the
process. If we wish to track heavy-tailed shocks with asymmetric impacts on the
level process, based on best (nonlinear) forecasts, then a decomposition theory
that goes substantially beyond the extant literature is required.

Toward this end, Gallant et al (1993) and Koop et al (1996) develop non-
parametric representations of impulse responses for general nonlinear processes
in the Hilbert space 2(F). The impulses are assumed to be indepen-
dent, and the responses are simply de…ned as di¤erences between conditional
expectations. As stated above, the conditional expectations may not be the
best predictor in a general Banach space (e.g. (F), 2). Gourieroux
and Jasiak (2003) develop a parametric volterra-type expansion of iid Gaussian
innovations for strongly stationary, square integrable processes that do not dis-
play long memory properties. In this case the level process has a …nite variance
and limited memory, and the innovations are assumed to be symmetrically dis-

2 Separate evidence suggests that many foreign exchange rates and asset returns are heavy-
tailed, and the best one-step ahead forecasts are nonlinear. See, e.g. , Hol and de Vries (1991) ,
Cheung (1993), Gallant et al (1993), Phillips et a l (1996), Lin (1997), Mikosch and St¼aric¼a
(2000) , Falk and Wang (2003) , and Hill (2005a).
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tributed.
In this paper, we extend orthogonal decomposition theory to its arguable

limit. For any smooth, re‡exive Banach space Bwe prove in Theorem 3 (the
main result) the property of iterated projections is necessary and su¢cient for
the existence of a decomposition with asymmetrically strong orthogonal inno-
vations, (+)?B¡1 , 8̧ 1. Using an arbitrary metric projection
mapping ¡1 : B! B¡1 , our results do not exploit operator linearity in
general, and speci…cally do not rely on properties of the closed linear span.
Theorem 3 allows for a simple characterization of a nonlinear IRF based on
best -metric projection. Our results include as special cases Wold decompo-
sitions of Hilbert space processes; of -space processes; of processes in Banach
spaces which do not admit a linear metric projection operator; of long memory,
or non-stationary, or non-square integrable processes; of processes with asym-
metrically distributed innovations/impulses; and does not restrict projection
mappings to closed linear spans. Moreover, our primitive result linking iterated
projections to strong orthogonality holds for any appropriate -metric projec-
tion operator even if the process belongs to 2. For example, our theory fully
characterizes when the best 1-predictor of a …nite variance process generates
strong orthogonal errors.

If the operator does not iterate then a strong orthogonal moving average
does not exist. We lose moving average-based nonlinear IRF’s with adequately
noisy impulses, and theories of linear dependence for moving averages with
independent innovations do not apply. Conversely, if a strong orthogonal moving
average form does not exist then the projection operator does not iterate, 
6=  for some or all . In this case we lose an array of prediction-based
results which rely on iterated projections, including iterative multi-step ahead
forecasts and nonlinear IRF’s based on -metric projection.

We make the theory concrete by constructing in Corollary 4 a parametric
decomposition of the form (1) with solutions for fg. In Section 4 we then de-
velop a theory of nonlinear impulse response functions based on best -metric
projection and the properties of strong orthogonality and iterated projections.
We construct an extended example in Section 5 demonstrating the decomposi-
tion of a nonlinear smooth transition threshold model and associated nonlinear
impulse response function. Although Theorem 3 characterizes the dual relation-
ship between prized prediction characteristics, it says nothing about when they
will hold or how to verify that they hold. This is compounded by the inherent
di¢culty associated with computing the best -predictor3. We therefore focus
our attention on the empirical task of verifying whether the nonlinear model
actually presents the conditional expectation and/or the best -predictor, and
whether the proposed decomposition innovations are strong orthogonal. We ap-
ply the methods to daily returns of the Yen, Euro and British Pound exchange

3 See, for example, Cline (1983) and Cline and Brockwell (1985) for best prediction of
ARMA processes w ith in…nite variance. Although operator theory represents an important
branch of mathematics and stat istics, theoretical and applied work a imed at functionally
characterizing and verifying best non-linear predictors in genera l Banach spaces is apparently
non-existent.
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rates against the U.S. Dollar. We …nd signi…cant evidence that the threshold
model adequately characterizes the best -predictor for some 2 for some
exchange rates. In particular evidence suggests the threshold model generates
strong orthogonal innovations for the Pound based on best 15-metric projec-
tion.

The rest of paper is organized as follows: Section 2 contains preliminary met-
ric projection theory; Section 3 contains the main results; we develop a theory
of nonlinear impulse response functions in Section 4; and Section 5 contains an
example and an application. The appendix contains formal proofs, and tables
and …gures are placed at the end of the paper.

In the sequel, we employ the following notation and de…nition conventions.
Denote by B´ B(Fk¢k) a closed, smooth, re‡exive Banach measure
space of nondeterministic stochastic processes f : · g endowed with the
norm k¢k, measure , and -…eld F=( : ·). Denote B ´ B(Fk¢k)
= [2ZB, F = [2ZF. It is understood that kk 1 for any 2 B, and
F¡1 ½ F. Let Ĺ (F), · 2. We denote the signed power ()jj
as 2 RDenote by ? any orthogonality condition in B, and let B?


denote the orthogonal complement of B.

For closed linear subspaces of B, say 11, we write 1 ++
 (synonymously

P
=1) to denote the stochastic space fP

=1  : 2
g. For orthogonal subspaces, 11, the space ©¡1 ©©1
(synonymously

P¡1
=0 ©¡) denotes the space

P¡1
=0 where

(4)
X¡1

=0
¡?

X¡1

=
¡

for all 1 ·  In general orthogonality is not symmetric. For spacesP¡1
=0 ©¡, we say the subspaces are strong orthogonal. Similarly, when-

ever ?  8 , we say the subspaces are weak orthogonal. Clearly,
strong orthogonality implies weak orthogonality.

2. Projection Operators and Orthogonality in Banach Space The
subsequent decomposition theory is based on orthogonal innovations Banach
spaces. For background theory, see Singer (1970), Lindenstrauss and Tzafriri
(1977), Giles (1967, 2000) and Megginson (1998). For arbitrary random variables
() 2 Bwe work with the property of James Orthogonality: is James
orthogonal to whenever

(5) jj+jj ¸ jjjj

for every real scalar2 R, denoted ?: see James (1947). Banach spacenorms
k¢k may be supported by arbitrarily many semi-inner products []. However, for
smooth spaces B and () 2 Bif is orthogonal to there exists one inner-
product that supports [] = 0 (see, e.g., Giles, 1967, and Singer, 1970).

Lemma 1 Let B be a Banach space with norm k¢k. For any subspaces µ
B such that ?, there exists a semi-inner product [] that supports k¢k such
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that [] = 0 : for each 2 and 2 , the inner-product [] satis…es []
= 0 and []12 = kk, []12 = kk. Moreover, if B is smooth then [] is
unique.

Metric Projection Operators Consider arbitrary subspaces ,µ B,
() ½ (), where () denotes the sigma algebra induced by the elements
of . For some element 2 , we say 2  is the "best predictor" of with
respect to  if and only if

(6) k¡k · k¡ ~k
for every element ~2 . Because the space B is re‡exive, the predictor exists
and is unique. We de…ne, then, the metric projection operator that maps : 
! as (j) = : the projection (j) is identically the "best predictor"
of . The projection (j) is continuous, bounded, and idempotent, although
not in general linear: see below. For subspaces ,µ Bthe notation (j)
is understood to represent the projection space: (j) = f(j) : 2 g

Iterated Projections We say that the property of iterated projections
holds in 1 µ B for some projection operator: ! 1 when for any subspace
0 µ 1 µ B, ((j1) j0) = (j0). The property exists in any real
Hilbert space, however iterated projections need not hold in an arbitrary Banach
space: see Theorem 3.

Operator Linearity We say that a projection operatorwhich maps :
! is a linear operator on ¶ if for any elements 12 2 and any real
numbers 2 R, (1 + 2 j) = (1 j) + (2j), an homogenous,
additive function of 1 and 2. Metric projection operators are always linear
in real Hilbert spaces because inner products are linear in both arguments.
Projection operators in B, however, need not be linear, although Lemma 2.
depicts a quasi-linearity property. If a projection operator is a linear operator,
however, the property of iterated projections holds: see Lemma 2..

Metric Projection In the following, assume is an arbitrary element of
, and denote by [j] the expectation of conditioned on (). Consult
Singer (1970), Giles (2000) and Megginson (1998).

Lemma 2 () Orthogonality: the element 2  satis…es (j) = if and
only if (¡ )? if and only if [¡ ~] = 0 for a unique [] and every ~
2 ; () = 0 if and only if ? if and only if [~] = 0 for every ~2
; () for any 2 , (j) = ; () quasi-linearity: for any 2  and
any 2 (+ j) = (j) + ; () norm-boundedness: for any element
2 jj(j)jj · jjjj for some scalar 0 1; () unbiasedness in
 : if µ , 1 · 2and if [j] 2 , then (j) = [j] =
with probability one if and only if (¡ )? and ?(¡ ); () scalar-
homogeneity: (j) = (j) for every real scalar 2 R; and () if  is
a linear operator on ¶  then satis…es the property of iterated projections.
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Remark 1: Property () implies if ? then (j0) = 0 80 µ .
Property () identically implies idempotence: = . The conditions for
property () are non-trivial: the conditional expectations [j] may not be an
element of the space . For example, suppose =(1)the closed linear
span of stable random variables ()=1 with tail index 2, and suppose is
a stable random variable with tail index . Then (j) 2 by construction,
yet [j] need not by linear: see, e.g., Hardin et al (1991). Of course, for
non-Gaussian processes in 2 (F) the best 2-predictor, [j], need not
be linear.

3. Main Result: Strong Orthogonal Decomposition in B The
main orthogonal decomposition result follows. Denote by the metric pro-
jection mapping  : B! B, · Construct the following spaces

(7) B¡1 =
\


B B+1 =

[


B

We assume the spaces Bcontain only non-deterministic processes such that
F¡1 ½ Fand B¡1 ½ B. Consequently, predictiongenerates non-trivial errors:
jj¡ jj 0 82 B8.

Theorem 3 For any space Bthere exists a sequence of subspaces f¡g1
=0

µ B, such that

(8) B=
³X1

=0
¡

´
+ B¡1

where ?B¡1 and ? for every · . Moreover, the following are
equivalent:
 B= (

P1
=0 ©¡) © B¡1 , where

P¡1
=0 ©¡?B¡, 8¸ 1

 ¡¡= ¡for every , · 
Furthermore, provided () holds, every element  2

P1
=0 ©¡ obtains a

unique norm-convergent expansion, =
P1

=0 ¡, for some 2 .

Remark 1: Cambanis et al (1988) point out that operator linearity im-
plies result () for processes in (=) and for projection into arbitrary
(=)-spaces. This result, however, is trivial and does not anticipate the
dual relationship between orthogonality and iterated projections, () () (),
without invoking operator linearity. Assume is a linear operator on B, and
consider any element

P
=¡2 P

=¡, ¡2 ¡, 0 · ·. Because
¡?B¡¡1 by construction and by Lemma 2.we have ¡¡1¡= 0
By operator linearity we conclude

(9) ¡¡1
X

=
¡=

X

=
¡¡1¡= 0

hence
P

=¡?B¡¡1 , cf. Lemma 2.. Because the element
P

=¡2P
=¡is arbitrary, we deduce

P
=¡?B¡¡1 for any 0 · ·. This

identically implies strong orthogonality of the innovations spaces 
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Remark 2: Theorem 3 characterizes the existence of a decomposition
for any process in a smooth re‡exive Banach space based on any appropriate
metric-projection operator. This includes processes with a …nite variance where
the metric projection operator is not restricted to the minimum mean-squared-
error operator. This will be particularly useful if evidence suggests a chosen
linear or nonlinear model of a …nite variance process does not represent the best
2-predictor but does characterize the best -predictor for some 2: see
Section 4.

Because any element 2
P1

=0 ©¡obtains a unique norm-convergent
series representation, we may write elements  2 B in a straightforward
moving-average form.

Corollary 4 Consider any Banach space B such that a Wold decomposition
exists.
For every 2 Bthere exists a sequence of orthogonal subspaces f¡g1

=0
µ B, a sequence of stochastic elements fg, 2 an element 2
B¡1 and real-numbers fg1

=0, such that

(10) =
X1

=0
¡+

where the series
P1

=0¡is norm-convergent, and the innovations are
strong orthogonal in the sense that ?B¡1 and

(¡1)?B¡1(11)
(+)?B¡18·, 8̧ 0(12)

if and only if ¡¡= ¡for every , · 
. Moreover, 0 = 1, and the coe¢cients uniquely satisfy the recursive
relationship for = 12

(13) = [¡]
[¡¡]

¡
X¡1

=0


[¡¡]
[¡¡]



Remark : Although ´¡¡1, by de…nition, for an arbitrary
process fg we cannot in general say ¡= ¡¡ ¡¡¡1¡, the
best one-step ahead prediction error of ¡4 . If iterated projections hold
(equivalently, if the innovations are strong orthogonal), then ¡´ ¡
¡ ¡¡1 = ¡¡ ¡¡1¡, the innovation based on a
one-step ahead projection of the -step ahead forecast.

Metric projection errors in Banach space need not be serially independent.
Indeed, they need not be symmetrically orthogonal. In general they need only
satisfy a weak orthogonality condition ()?B¡1 . Nonetheless, we can es-
tablish necessary and su¢cient conditions symmetric orthogonality to hold for
processes in (F), 1 · 2. We write

P1
=0

Ã!
© ¡to denote the

symmetrically strong orthogonal space
P¡1

=0 where

(14)
X¡1

=0
¡?

X¡1

=
¡ and

X¡1

=
¡?

X¡1

=0
¡

4 An exception is fo r causal-invert ible ARMA processes: see, e.g. , Cline (1983).
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for all 1 · .
Denote by the mapping  : L! L, · Provided a strong orthog-

onal decomposition exists at all, the innovations will be symmetrically strong
orthogonal if and only if the decomposition sub-spaces are symmetrically or-
thogonal, which occurs if and only if the best predictor ¡1is the condi-
tional expectations [jF¡1 ]. Of course, if the best predictor coincides with
the conditional expectations, then operator linearity and iterated projections
trivially follow from properties of expectations, and therefore a strong orthogo-
nal decomposition exists.

Theorem 5 Denote by the projection error space, L¡ ¡1LThe fol-
lowing are equivalent:
 L=

³P1
=0

Ã!
© ¡

´ Ã!
© L¡1 for arbitrary ;

 L¡1?8· ;
. ¡1= (jF¡1)8·;
. 

h
(¡(jF¡1))

¡1 jF¡1

i
= 0, F¡1-

Remark 1: If the decomposition innovations are symmetrically orthogo-
nal, then for fg in (10), [] = 0, 86=, and = [¡] [¡¡],
= 12

Remark 2: Condition () is simply a martingale di¤erence property for
(F) processes, and implies [(¡ (jF¡1))¡1¡1] = 0, for
every F¡1-measurable random variable ¡1. By () we may identically write
¡1(¡ ¡1 ())

¡1 = 0.
Remark 3: The above conditions constitute necessary conditions for in-

novations spaces to be independent.

4. Nonlinear Impulse Response Functions in L In the following we
develop a general theory of nonlinear Impulse Response Functions [IRF] based
on strong orthogonal decomposition innovations. Let be an L-valued random
variable, de…ne the sequence of spaces f~Lg = fL© +1g, and let L¡1 = f0g
for simplicity. De…ne the -step ahead nonlinear impulse response function

(15) (L¡1) = (+j~L¡1) ¡(+jL¡1)

The above de…nition simply generalizes the expectations based format of Koop et
al (1996): the response at horizon is the best-step ahead prediction response
to a random shock at time , conditioned on all past histories L¡1 . We
could write (¡1) = (+j¡1) ¡ (+j¡1) to make explicit a
particular history ¡1 ´ f¡1¡2g and particular shock in the manner
of Koop et al (1996). The impulse response function (L¡1) is an =¡1-
measurable random variable, and (¡1) is simply a realization. We may
compute (L¡1) for a large number of draws f¡1g from the joint
distribution of and f¡1¡2g. An empirical distribution function and
con…dence bands of the responses (¡1) can then be estimated: see
Section 5.
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Theorem 6 Assume the process f : · g lies in (=) and obtains
a strong orthogonal decomposition =

P1
=0¡with respect to the sub-

spaces fL : · ¡ 1g. Assume the metric projection operator  : L! L¡1
iterates from L¡to ~L¡¡1 for any . Then

(16) (L¡1) = +(+j~L¡1)

Remark 1: Strong orthogonality is required, cf. Theorem 3, because the
line of proof exploits iterated projections.

Remark 2: An -step ahead "impulse response" is simply a scaled pre-
dicted strong orthogonal innovation, where the prediction exploits informa-
tion contained in the random impulse . In a standard linear setting, =P1

=0¡, » , (16) reduces to a classic representation: for any partic-
ular history ¡1 and impulse , (¡1) = .

Remark 3: In 2 the nonlinear IRF (L¡1) is identically the gen-
eralized impulse response function characterized in Koop et al (1996: eq. (9)) as
long as the projection operator minimizes the mean-squared-error. Otherwise
(16) characterizes a further generalization of Koop et al ’s (1996) generalized
IRF to best -projection of …nite variance processes.

Remark 4: Koop et al (1996) characterize non-parametric and bootstrap
methods for estimating the conditional expectations based on draws from the
empirical distributions of f¡1¡2g and . It is beyond the scope of the
present paper to consider such comparable bootstrap methods for approximating
a best -predictor. In the sequel we estimate + and (+j~L¡1)
directly using in-sample information and either imputed or simulated impulses,
under assumed stationarity (e.g. += =  for all ).

Requiring the operator to iterate fromL¡to ~L¡¡1 (i.e. ((jL¡)j~L¡¡1)
= (j~L¡¡1)) does not diminish the generality of the result by very much.
For example, if =́ ( : · ) = ( : · ) for some stochastic process
fg, and the impulses are simply then the assumption holds because ~L
= L© +1 = L© +1 = L+1This will hold for in…nitely large classes of
linear and nonlinear processes: see Section 5 for an example.

Lemma 7 Let =´ ( : · ) = ( : · ), and =  for all 2
Z. Then ((jL¡)j~L¡¡1) = (j~L¡¡1) for all ¸ 0. Additionally,
if  admits a strong orthogonal decomposition, then ((j~L¡)jL¡) =
(jL¡).

5. ARCH-M and Threshold Models, and an Application In prac-
tice the analyst will need to verify whether a particular decomposition actually
generates strong orthogonal innovations, and indeed whether the predictor used
to generate the innovations actually represents the best predictor. The veri…ca-
tion of such properties is required as a necessary foundation for generating an
exact nonlinear IRF which requires iterated projections, cf. Theorems 3 and 6.
In this section we focus our attention entirely on a simple threshold model for
the sake of brevity.
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Due to linearity and iterations properties the predominant practice in the lit-
erature is to assume a particular model represents the conditional mean, which
may not be the best -predictor for some, or …nitely many, 0. As a nod to-
ward convention and practical simplicity, we explore a conditional expectations-
based decomposition and discuss model speci…cation tests to verify whether the
conjectured model represents the best-predictor for any2 (12] and whether
the resulting predictor errors are strong orthogonal. We then derive a sample
nonlinear IRF for the particular threshold model, and apply the model and
speci…cation tests to the daily returns of currency exchange rates5.

5.1 Linear "ARCH-in-Mean" in L Let

(17) =
X1

=0
¡+

X1

=0
j¡j

where 2 L=(F) are mean-zero independent shocks, 1, 0 = 1
and 0 = 0. The data generating process can be thought as a nonlinear "ARCH-
in-Mean" with respect to absolute conditional volatility6 : =

P1
=0¡+

, where, say, = (jj j (j¡1jj¡2 j)) =
P1

=0j¡j.
Because the 0

are serially independent, any function of is independent
of L¡1, and the property

(18) ¡¡¡1(¡+j¡j) =

holds for some 2 L¡1 for all = 12For example, if = 0 then = 0.
Now consider the following property:

(19) ¡(+¡1) = ¡¡18¡1 2 L¡1?¡18¸ 1

Property () is su¢cient for the existence of a strong orthogonal decomposition
of .

Theorem 8 Assume () holds with respect to f~Lg and fLg. Then obtain
a strong orthogonal decomposition =

P1
=0¡+ , 2 L¡1, ¡

= ¡+ (1)(j¡j ¡ ) and = if 6= 0; ¡= j¡j ¡ 
and = if = 0 and 6= 0; ¡= ¡and = if = 0.
Moreover, the nonlinear IRF is exactly

(L¡1) = (+ (1)(jj ¡)j~L¡1) if  6= 0;(20)
= (jj ¡j~L¡1) if = 0

where = 0 if = 0. If = , then simply (L¡1) = + jj
¡ .

5 The present sect ion is in no way o¤ered as an exhaustive study of the ta il, memory or
nonlinear properties of daily exchange rates . The reader may consult the vast extant literature
for background theory and evidence.

6 The "mean" traditionally refers to the conditiona l mean in which the ARCH term occurs.
In the present general environment, however, "mean" is simply an incorrect euphemism for
"best predictor".
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Remarks: Property () is similar in spirit to quasi-linearity, cf. Lemma
2: linearity holds if ?¡1 . Of course, if  = 1 then the equality follows
directly from quasi-linearity. Notice that 0

are strong orthogonal (they are
independent), but the decomposition innovations¡need not be. Moreover,
the 0

may be heterogenous: we do not assume they are iid.
5.2 Threshold Models and Orthogonal Decomposition
A growing literature suggests the returns to many macroeconomic and …nan-

cial time series have heavy tails, are serially uncorrelated, and have some form
of nonlinear structure. See Tong (1990), Kees and Kool (1992), Loretan and
Phillips (1994), Franses and van Dijk (2000), Lundbergh et al (2003), and Lund-
bergh and Teräsvirta (2005), to name a few. In particular, the daily log returns
of many currency exchange rates appear to be serially uncorrelated, have an in-
…nite kurtosis or in…nite variance, and display serially asymmetric extremes: see
Hols and de Vries (1991) and Hill (2005b) and the citations therein. Moreover,
the nonlinear structure of exchange rates has an intuitive regime transitional
form based on "banding" policies in economic unions: see, e.g., Lundbergh and
Teräsvirta (2005).

Together, the characteristics of noisy returns, persistent extremes, and cur-
rency policies suggest daily exchange rate returns may be governed by Smooth
Transition Autoregression [STAR] data generating process, cf. Saikkonen and
Luukkonen (1988), Teräsvirta (1994), Micheal et al (1997), and Lundbergh and
Teräsvirta (2005). Denote by the log return ¢lnof a daily exchange rate
Let 2 (=) = L, == ( : · )and let be the moment
supremum of : jj1 for all . Assume  1 and consider any 1
minf, 4+1g. Simple STAR models which capture the above stylized
traits include the exponential and logistic STAR

(21) = ¡1¡1() +, jj 1̧ 0, 0

where is strictly stationary, [j=¡1] = 0, ¡1() = expf¡(j¡1 j ¡)2g
in the ESTAR case, and in the LSTAR case ¡1() = [1 + expf¡(j¡1j ¡
)g]¡1 ¡ [1 + expfg]¡1 . Whether [j=¡1] = 0 is supported in practice
will be considered below. There are many available variations on this theme,
and numerous alternative choices for the threshold variable (here we use the
previous period’s shock j¡1 j): see van Dijk et al (2000).

The ESTAR form naturally articulates "inner" (j¡1j ¼ ) and "outer"
(j¡1 j 6= ) regimes: when the previous period’s shock j¡1j is near , ¼
¡1 +hence the return is serially persistent; when j¡1j is far from , ¼
such that the return is noisy. The LSTAR characterizes "lower" and "upper"
regimes: respectively when j¡1j ¼ 0 then ¼ and as j¡1 j ! 1 then
= [1 + expf¡g]¡1g¡1 + 7. As the scale ! 1 the LSTAR model

7 Although the ESTAR functiona l form has been used to capture symmetric banding policies
for exchange rate levels (e.g. Michea l et al , 1997 ; and Lundbergh and Teräsvirta , 2005), daily
returns may ill icit asymmetric responses from traders and policy makers: large deviat ions may
suggest a market cr isis whereas small deviations may not be noteworthy. See Engle and Ng
(1993) . Such volatil ity asymmetries have been recent ly modeled as smooth transition GARCH
processes: see González-Rivera (1998) and McMillan and Speight (2002) .
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converges to a Self Exciting Threshold Autoregression: = ¡1(j¡1j 
) + . The LSTAR model naturally implies extremes are persistent and non-
extremes are noisy. The ESTAR model can also capture this asymmetry if 
is extremely large: the returns will be noisy if j¡1j is far from which will
predominantly occur when j¡1j .

We may decompose by straightforward backward substitution.

Theorem 9 Assume the stochastic process f : · g lies in (=),
and assume (21) holds. Then =

P1
=0

¡
Q

=1¡(), , == (
: · ), and =

P1
=0¡+ where = (1 ¡ ), = , 0 =

1 and for ̧ 1

¡= [¡¡() ¡] + [¡() ¡](22)

£
X1

=+1
¡¡

Y

=+1
¡()

= ¡1 , = 12

where = [()] 2 [¡11], = [()], and [¡j=¡¡1 ] = 0. If
fg is -strong orthogonal for some · 2 then (+j=) =

P1
=+++¡.

Remark 1: It is straightforward to show

(23) plim!1[j=¡] =[] =(1 ¡)

where the limit holds almost surely. If is symmetrically distributed then =
0. If = 0 such that is a simple AR(1) then = = 0, ¡= ¡, and 
= . If = 0 then trivially = = .

Remark 2: If fg is strong orthogonal we deduce the -step ahead fore-
cast

(+j=) =
X1

=0
++¡1f[¡¡() ¡] + [¡() ¡](24)

£
X1

=+1
¡¡

Y

=+1
¡()g

5.2.1 Verifying Weak and Strong Orthogonality
For any write

(25) = [() ¡] + [() ¡] £
X1

=1
¡

Y

=1
¡()

Exploiting [j=¡1] = 0 and the de…nitions of and , we know [j=¡1]
= 0 such that is weakly orthogonal to L¡1 in some sense: see Cambanis et
al (1988). However, if we allow [j=¡1] 6= 0 for both nonlinear forms ()
such that the STAR model does not represent the best 2-predictor, it may
nonetheless represent the best -predictor for some 2 and the innovations
fg may be weak and/or strong orthogonal in the sense of Section 3.

The decomposition innovations are weakly orthogonal to L¡1 if and
only if (j=¡1) = 0 (cf. Lemma 1.) which in  is true if and only if
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[¡1
 j=¡1] = 0. This may be easily tested for any chosen  1. For

example Hong and White (1995) develop a nuisance parameter-free consistent
nonparametric test of functional form based on the observation that if ¡1
´ [¡1

 j=¡1] 6= 0 then [¡1
 ¡1 ] = 2

¡1  0. Essentially any
nonparametric estimator ̂¡1 may be substituted for ¡1, including use of
Fourier series, a ‡exible Fourier form, regression splines, etc. See Section 5.4.
From 4 + 1, Minkowski’s inequality, stationarity, the fact that j()j
· 1 with probability one, and (25), it follows that jjjj4(¡1) · jj + (1 +
jj)j £ jjj4(¡1)(1 ¡ )¡1 1, hence j¡1

 j4  1 and jj¡1
 ¡

[¡1
 j=¡1]jj4(¡1)  2 £ jj¡1

 jj4(¡1) 1, such that the moment
conditions of Hong and White (1996) are satis…ed. Along with fairly standard
regulatory assumptions the test statistic is simple to compute and is based on
the sample moment ¡1 P

=1 ̂
¡1
 ̂¡1 for some plug in ̂to be detailed

below8 . The statistic has an asymptotic standard normal null distribution.
For strong orthogonality in we need [(

P
=0+)¡1j=¡1 ] = 0

for all ¸ 0 and every 2 R. A simple method follows: randomly generate
2 R for various = 12, perform the non-parametric test on the result-
ing (

P
=0+)¡1, repeat by generating a large number of sequences

fg=0 and subsequent test statistics, and average the resulting p-values.
In practice an estimated ̂will be used as an obvious plug-in for . Be-

cause  is unobservable simply assume = 0 8· 0 and 0 = 0: for the
ESTAR model, for example, 1 = 1 , 2 = 1 expf¡(j1 j ¡ )2g + 2 , 3 =
2 expf¡(j2 ¡1 expf¡2

1gj ¡)2g +3 , etc. Other methods for handling
the …rst period may be considered as well. After constructing the regressor, the
threshold model (15) can then be estimated straightforwardly by -estimation
or-GMM for various 12 using standard iterative estimation techniques,
generating ̂and ̂. The moment condition is simply [¡1

 ()] =
0 where () = ¡1¡1() and = ()0See Arcones (2000), de Jong
and Han (2002), and Han and de Jong (2004). For brevity, we assume all con-
ditions which ensure the -GMM estimator is consistent and asymptotically
normally distributed hold: see de Jong and Han (2002).

5.2.2 Nonlinear Impulse Response Function
Assume fg forms a sequence of strong orthogonal innovations and set 

= . From Theorem 5, Lemma 6 and Theorem 7 the -step ahead nonlinear
impulse response function (L¡1) is +(+j~L¡1), hence

(L¡1) =+(+j~L¡1)(26)

= ¡1f[() ¡] + [() ¡]

£
X1

=1
¡

Y

=1
¡()g

The response to the "sole" random impulse =  is history f¡g1
=1 depen-

dent, and asymmetric with respect to the sign of  through (). See Koop
8 There exists a mult itude of consistent parametric and non-parametric model speci…cat ion

tests: see Bierens and Ploberger (1997) and the citations therein.
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et a l (1996) for further commentary on path dependence in nonlinear IRF’s.
If we use estimated residuals f̂g generated from estimates ̂, ̂and ̂, and

sample estimators ̂= ¡1 P
=1(̂̂) and ̂= ¡1 P

=1 ̂(̂̂), we obtain
a sample IRF based on one history and one impulse f̂g=1: ̂(̂f̂g¡1

=1
µ) =

̂

̂¡1f[̂(̂̂) ¡ ̂] + [(̂̂) ¡ ̂] £

P¡1
=1 ̂


̂¡

Q
=1¡(̂̂)g. Mul-

tiple alternative strategies for handling the random history f¡g1
=1 and im-

pulse are available. For example, we may randomly draw a history f¡g¡1
=1

and impulse  from the empirical distribution of the sample path f̂g=1 , or
simulate independent impulses if the …nite distributions of fg are known (e.g.
Pareto, stable, , normal). We may repeat either method -times generating
sequences of histories and/or impulses and sequences of IRF’s for each horizon
. Subsequent con…dence bands and kernel densities may then be computed.

5.2.3 Empirical Study
Finally, we perform a limited empirical application of the STAR model to

currency exchange rates. We study log returns = ¢lnto the Yen/Dollar,
Euro/Dollar and British-Pound/Dollar daily spot exchange rates fg for the
period 1/1/00 - 8/31/059. We assume the extreme tails are regularly varying
with shape ( ) = ¡1() and ( ) = ¡2() where ()
are slowly varying and  0 denotes the tail index. Consult Bingham et al
(1987). We study the tail shape of each series by computing B. Hill’s (1975)
tail estimator ̂. We apply asymptotic theory and a Newey-West-type kernel
estimator of the asymptotic variance of ̂for dependent, heterogenous processes,
cf. Hill (2005a,b). Consult Hill (2005a) for a method for determining the sample
tail fractile for computing the Hill estimator.

The STAR models are estimated by identity matrix weighted -GMM for
= 11 and 15, 500 estimated decomposition innovations ̂0

are computed ac-

cording to ̂= [̂(̂̂) ¡ ̂] + [(̂̂) ¡ ̂] £
P¡1

=1 ̂

̂¡£

Q
=1¡(̂̂),

and the sample IRF ̂(L¡1) is computed accordingly. We use Hong and
White’s (1995) non-parametric method to test the daily returns fg for evi-
dence of [j=¡1] = 0 and (j=¡1) = 0 (i.e. [¡1

 j=¡1] = 0). We
also test [jL¡1] = 0 and [jL¡1 ] = 0 for evidence the STAR model rep-
resents the best 2-predictor. We then test the STAR residuals f̂g and the
estimated decomposition innovations f̂g for evidence of weak and strong or-
thogonality by using f̂¡1

 g and f̂¡1
 gFor tests of strong orthogonality

we use the series length = 10 and 20 and randomly select 2 R. For a non-
parametric estimator of the conditional mean of f̂¡1

 g and f̂¡1
 g we

exploit Corollary 1 of Bierens (1990) which states the conditional mean of any
[2

] 1, satis…es the Fourier series expansion ¤
¡1 ´ [j=¡1] = 0 +P1

=1expf§1
=1¡g with probability one for some sequence fg. We use

̂¤
¡1 = ̂0 +

P100
=1 ̂expf§¡1

=1¡g, where the 0
and randomly selected

9 The data were obtained from the New York Federal Reserve Bank statistica l releases .
Observat ions with miss ing values are removed (e.g. weekends, holidays), leaving a sample of
1424 daily returns. We …lter each ser ies through a standard daily dummy regress ion in order
to control for day e¤ects.
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from R. We repeat the Hong-White test for 100 randomly selected 0and 100
randomly selected 0(10,000 repetitions), and report the average p-value10 .

Tables 1 and 2 contain tail index estimates, -GMM parameter estimates
of the STAR models, and Hong-White test results. For brevity we omit all
results concerning the case = 11 because parameter estimates are uniformly
insigni…cant for each variable in both exponential and logistic models.

Only the Yen provides unambiguous evidence for heavy-tails: for the Yen,
Euro and Pound, the tail estimates and 95% interval widths are respectively
255 § 70337 § 120 and 296 § 103. Because the theory of this paper holds
for …nite variance processes and -metric projection, the question of whether
the variance is in…nite or not is not ultimately important. The question, then,
is whether model (21) adequately represents the best -predictor.

We …nd for each series signi…cant evidence that the daily log return has
some form of unmodeled (non)linear structure: [j=¡1] 6= 0 and (j=¡1)
6= 0 when = 15 (see Table 1). In either STAR model the -GMM estimates
uniformly suggest a large and signi…cant scale for each exchange rate when 
= 15, which implies regime change is quite fast. For the ESTAR model, the
British Pound, in particular, is essentially in either one extreme regime state
or the other. The LSTAR scale estimates are large enough that the implied
switching dynamic is roughly identical to a SETAR: each exchange rate return
is either noisy of persistent. The LSTAR estimated threshold is 020 and the
largest absolute shock is 021 . This provides concrete support of Hill’s (2005a)
…nding that extremes in the daily return to the Pound are highly persistent and
may be governed by an extremal switching process. This also points out the
inappropriateness of the standard practice in the STAR literature of restricting
estimates of to lie between the lower 15% and upper 85% sample percentiles
of the threshold variable (e.g. Teräsvirta, 1994; van Dijk et al, 2000).

A test that the ESTAR model represents the conditional expectations of
the daily return (i.e. [j=¡1] = 0) is rejected for the Euro at the 10%-level
(see Test 1 of Table 2). Similarly, evidence suggests the LSTAR model only
characterizes the conditional mean of the Yen.

Moreover, for the Yen and Pound the LSTAR model reasonably repre-
sents the best one-step ahead 15-predictor based on tests of the hypothesis
(+j=¡1) = 0 (see Test 2 in Table 2). The ESTAR model apparently only
characterizes the best 15-predictor of the Yen. Both ESTAR and LSTAR
models generate weak orthogonal decomposition innovations as evidenced by
Test 4 (i.e. (+j=¡1) = 0). Evidence that the decomposition innovations

10 Hong and White’s (1995) test of [j=¡1] = 0 requires [4] 1 which likely fa ils to
hold for each exchange rate return (see Table 1). Similarly Bierens’ (1990) …nite variance
assumptions may not hold for in particular for the Yen. Thus some caution should be
taken when interpreting a test of this hypothesis. The same is true for tests o f [j=¡1]
= 0 and [j=¡1 ] = 0. The test of (j=¡1) = 0, however, requires [¡1 ]4 1
which we assume holds for small enough  2. The smallest est imated ta il index is 2.55 §
70 ( for the Yen), and  2554 + 1 = 16375 is sat is…ed when = 11 or 15. The lower
bound of the 95% interval is 1.85, and 1854 + 1 = 14875, hence est imation and test results
for the Yen when = 15 should be interpreted with some caution. The preceding discourse
identically applies to tests of weak and strong orthogonality of and .
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are symmetrically orthogonal, however, is rather weak: we only …nd evidence
supporting [j=¡1 ] = 0 for the Pound in the ESTAR case, and the Yen and
Euro in the LSTAR case (see Test 3). It is the LSTAR model, in particular, that
renders reasonably strong orthogonal decomposition innovations for each return
series (see Test 6). The ESTAR model leads to reasonably strong orthogonal
innovations for the Euro and Pound.

In summary, both STAR models may be the best 2- and 15-predictor
of the daily return to the Yen. The decomposition innovations of the Yen
are weak orthogonal but apparently not strong orthogonal in 15 at the 10%
level. The ESTAR model may represent the conditional mean of the Pound
but not the best 15-predictor, and the LSTAR may represent the best 15-
predictor but not the conditional expectation. The decomposition innovations
from either smooth transition model suggest weak and strong orthogonality.
For the Euro, evidence that the STAR models characterize the best predictor in
either space is extremely weak. However, evidence suggests the decomposition
innovations are weak and strong orthogonal. Such con‡icting evidence may
simply be due to model mis-speci…cation evidenced by Tests 1 and 2, or due to an
unbounded variance or kurtosis suggesting the Hong-White test of [j=¡1 ] =
0 or [j=¡1] = 0 has a degenerate or non-standard limiting null distribution.

Coupled with evidence that the LSTAR model may be the best 15- and
2-predictor of the Yen, and weak evidence suggesting [j=¡1] = 0 , implies
the LSTAR model may be used to construct symmetrically weak orthogonal
decompositions for the Yen.

Finally, when the LSTAR model is used notice that it is only the Pound
for which evidence suggests both [j=¡1] 6= 0 and [j=¡1 ] 6= 0, as well as
(+j=¡1) = 0, (+j=¡1) = 0 and (

P
=0+j=¡1) = 0. Thus, the

LSTAR model reasonably articulates the best 15-predictor of the Pound (but
not best2-predictor), generating a strong orthogonal decomposition. Theorem
3 can be immediately used to justify iterated 15-projections for the Pound
based on an LSTAR best predictor, and Theorem 6 and Lemma 7 justify the
existence of a nonlinear IRF based on best 15-prediction. Finally, for the
LSTAR model of the Pound notice the estimated threshold ̂is 02 and the
largest shock in absolute value is 021: coupled with the large estimated scale,
the LSTAR model suggests extremes of the Pound are persistent, non-extremes
are noisy, and regime change occurs quickly, matching evidence found in Hill
(2005a).

Figures 1 and 2 display nonlinear IRF’s generated from ESTAR and LSTAR
models based on two di¤erent methods for handling the random history fg¡1

=1
2 L¡1 and random impulse 2 L. First, we generate four sequences of
fg=1 and put=: we set = 01, 86=¡ , and …x ¡= ̂= 0, 1,
2, or 3. Thus, we study impulse responses when ¡+1 is assumed to lie in the
"inner" (persistent) regime. Figure 1 plots IRF’s for horizons = 015 for each
exchange rate based on the ESTAR model. The asymmetric impact impulses
and histories have is clearly revealed. Nonetheless, persistence is visibly shallow:
…xing the past impulse ¡2 = ̂or ¡3 = ̂results is nearly identical response
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paths.
Second, we use the estimated residuals f̂g¡1

=1 as one "draw" for the history,
and randomly draw 500impulses fg500

=1 from a Pareto distribution, (
) = ¡ and (-) = (¡)¡, 0, where ̂is used as a plug-in for
. Sequences of IRF’s are then generated for horizons = 0 and 1 (when ¸
2 nearly all of the probability mass of the IRF’s occurs at zero). Figure 2 plots
(Gaussian) kernel densities of the IRF’s for each for the British Pound based
on the LSTAR model and an AR(1) model. A prominent characteristic is the
extremely heavy-tailed nature of the nonlinear IRF empirical distribution: the
estimated tail index of f̂(0f̂g¡1

=1
µ)g500

=1 is 69 § 15 due simply to the
nonlinear multiplicative presence of the shock history f̂g¡1

=1 . By comparison,
the linear AR(1) IRF is which is Pareto distributed with index = 296.
The estimated tail index of the sequence of IRF’s is 324 § 30 (which contains
296).
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Appendix
Proof of Lemma 2. Let 2 be the best predictor of 2 , (j)

= , hence for every vector element ~2 

(27) k¡k · k¡ ~k

by de…nition. Notice that for any real scalar the a¢ne combination ¡ ~
is also an element of  by the linearity of B. Thus, the element = (j)
satis…es

(28) k¡k · k¡+~k

for every 2 R and every ~2 . The above inequality denotes the condition
of James orthogonality, cf. (5). This proves (j) = if and only if (¡
)?The result (¡ )? if and only if [¡ ~] = 0 for every ~2 and
a unique inner-product [] follows directly from Lemma 1.

. From () we know (j) = if and only if (¡ )? if and only if
[¡ ~] = 0 for every ~2 . Simply consider the case when = 0: (j)
= 0 if and only if (¡ 0)? if and only if [~] = 0 for every ~2 .

. By de…nition the metric projection error ¡ (j) satis…es jj¡
(j)jj · jj¡ ~jj for every ~2 . Since 2 we deduce the best predictor
of , (j), satis…es

(29) k¡(j)k · k¡k = 0

which is true if and only if = (j) with probability one.
For any element 2 and any element 2 we need to show (+

j) = (j) + The projection (+ j) is the best predictor of + ,
by construction, hence

(30) k+¡(+ j)k · k+¡ ~k

for every ~2 . Because + (j) 2 , the above inequality holds for ~=
+ (j)hence

(31) k+¡(+ j)k · k¡(j)k

However, the projection (j) is the best predictor of in , hence

(32) k¡(j)k · k+ ~k

for every vector ~2 , and therefore for the element ~= ¡ (+ j) 2 ,
giving

(33) k¡(j)k · k+¡(+j)k

Combining (31) and (33), we obtain

(34) k¡(j)k · k+¡(+ j)k · k¡(j)k
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hence equality holds

(35) k+¡(+ j)k = k¡(j)k = k+¡(j) ¡k

Using (31) and (35), we deduce

(36) k+¡(+ j)k = k+¡(j) ¡k · k+¡ ~k

which is true if and only if the element (j) + 2  is identically the best
predictor of + , which proves the result.

De…ne =(j)First, notice that the projection error ¡ satis…es

k¡k2 = [¡¡](37)
= [¡] ¡ [¡] = [¡]

due to 2 and orthogonality (¡)?by result ()By Hölder’s inequality,
we deduce

(38) k¡k2 = [¡] · k¡k kk

and because k¡k 0 by assumption, we conclude jj¡ jj · kk 1
Similarly, by Minkowski’s inequality and inequality (38), we deduce

jjjj = jj¡+jj(39)
· jj¡jj+ jjjj · jjjj + jjjj = 2jjjj

which proves the result with = 2.
. Let  µ , 1  · 2, and assume [j] 2 . For the fol-

lowing, we employ the result that James orthogonality equivalently implies -
orthogonality, ?if and only if [¡1] = 0: see, e.g., Samorodnitsky and
Taqqu (1994). From result () we know is the best predictor of (j)if
and only if (¡)?. First, assume the best predictorsatis…es ?(¡ ).
Then for any ~2 , by the de…nition of orthogonality ?(¡ ) we deduce

0 = 
£
~¡1 (¡)

¤
(40)

= 
£
~¡1 (¡(j))

¤

= 
¡


£
~¡1 (¡(j)) j

¤¢

= 
¡
~¡1[(¡(j)) j]

¢

= 
¡
~¡1([j] ¡(j))

¢


Because equality (40) holds for every ~2 , and because [j] 2  and
(j) 2 it follows that [j] ¡ (j) 2  by the convexity of .
Hence, equality (40) holds for ~= [j] ¡ (j) 2 

0 = 
³
([j] ¡(j))¡1([j] ¡(j))

´
(41)

= j[j] ¡(j)j
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which holds if and only if [j] ¡ (j) = 0 with probability one. Because
equality holds for each , we conclude [j] = (j) with probability one

Conversely, assume [j] = (j) = (in which case [j] = (j)
2  automatically holds)Then for any vector ~2 ,


£
~¡1(¡)

¤
= 

£
~¡1 (¡[j])

¤
(42)

= 
£


¡
~¡1 (¡[j])

¢
j

¤

= 
£
~¡1 ([j] ¡[j])

¤

= 0

hence ?(¡ ).
. By result (), if is the best predictor of then for any real scalar

2 R we know (j) = (j) = if and only if (¡ )?. By
homogeneity of the semi-inner product, for any ~2 

[¡~] = [(¡)~](43)
= [¡~] = 0

therefore ¡ ?By result () and the uniqueness of metric projections in
B, we conclude is the best predictor of hence (j) = (j).

. Consider subspaces 0 µ 1 µ Band assume  : ! 1 is a linear
operator on 1. By () we know the error ¡ (j1) is orthogonal to 1,
therefore ¡ (j1) is orthogonal to any subspace of 1, say 0. By ()
we therefore obtain (¡(j1) j0) = 0. Because we assume  is a linear
operator on 1 , we deduce

0 =(¡(j1) j0)
=(j0) ¡((j1) j0)(44)

(j0) =((j1) j0)

hence iterated projections holds.
Proof of Theorem 3. Consider the claim B=

P1
=0¡+ B¡1 . By

Lemma A.1, below, for arbitrary integer 0 the …nite decomposition holds,

(45) B=
µX¡1

=0
¡

¶
+ B¡, ́ B¡¡1B

Consider an arbitrary element  2 B, and de…ne the sequences  2P¡1
=0 ¡and 2 B¡and such that

(46) =+

By orthogonality ?
P¡1

=0 ¡norm-boundedness kk  1, and the
triangular inequality, for any ¸ 1

kk · k+k = kk 1(47)
kk = k¡k · 2 kk 1
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Because the sequences  and are norm bounded in a re‡exive Ba-
nach space, B, they have simultaneously weakly convergent subsequences, say
fg and fg, cf. the Bolzano-Weierstrass TheoremIn particular, de…ne
the stochastic limits as

(48) lim!1 =  lim!1= 

Now, because the equality = +  holds for any integer 0 and
the sequences  2

P¡1
=0 ¡and  2 B¡ converge, we deduce by

continuity for arbitrary 2 B, = +, where clearly 2
P1

=0 ¡
and 2 B¡1Because 2 B is arbitrary, (8) is proved.

The proof of () () () follows in a manner identical to the line of proof
of Lemma A.1, below.

Finally, the claim that every element 2
P1

=0 ©¡obtains a unique
norm-convergent expansion,  =

P1
=0¡, 2 , follows from a direct

application of Lemma A.2, below.

Lemma A.1 For any Banach space there exists a sequence of subspaces
f¡g¡1

=0µ , such that  =
P¡1

=0 ¡+ ¡ where the
spaces are weak orthogonal in the sense that ¡?¡¡1 and ¡?¡
for every 0 · · ¡ 1. Moreover, the following are equivalent for
any integer 0 : . =

³P¡1
=0 ©¡

´
©¡; and . ¡¡

= ¡for every , · .

Lemma A.2 Consider a sequence of orthogonal subspaces f¡g1
=0¡1

µ µ such that
P1

=0 ©¡exists, and consider a sequence of
elements fg2 The space f: 2 g forms a Schauder basis
for its closed linear span. Consequently, every element  2

P1
=0 ©¡

obtains a unique norm convergent expansion =
P1

=0¡2 
for some sequence of real constants fg

Proof of Lemma A.1. De…ne the sequence fg, ´ B¡ ¡1B,
where ?B¡1, cf. Lemma 2and ¡1B= B¡1 due to B¡1 ½ B.
Because Banach spaces are linear and ¡1B= B¡1 ½ B, we deduce µ
B. We obtain the tautological expression

(49) B= +¡1B

Recursively decomposing B¡1 , etc., it follows that for arbitrary ¸ 1

B = +¡1B=+ B¡1(50)
= +¡1 +B¡2 =

=
X¡1

=0
¡+ B¡

where for each · ?B¡1Observe that given the orthogonality property
¡?B¡¡1 and ¡µ B¡µ B¡for every 0 · · , it follows
that ¡?¡0 · ·
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Assume () holds. Then for any ¸ 1, B=
³P¡1

=0 ©¡
´

©B¡, hence
we may write for any 2 B,

(51) =
X¡1

=0
¡+

where 2 and 2 B¡. Thus, by quasi-linearity, cf. Lemma 2, we
deduce for any 0 · · ,

¡ = ¡

µX¡1

=0
¡+

¶
(52)

= ¡

µX¡1

=0
¡

¶
+

X¡1

=
¡+

=
X¡1

=
¡+

where ¡
³P¡1

=0 ¡
´

= 0cf. Lemma 2, due to
P¡1

=0¡2
P¡1

=0 ©¡

and
P¡1

=0 ©¡?B¡by assumptionSimilarly, for any 1 · · · ,

¡¡ = ¡¡

µX¡1

=0
¡+

¶
(53)

= ¡

µ
¡

X¡1

=0
¡+

X¡1

=
¡+

¶

= ¡

µX¡1

=
¡+

¶

= ¡

µX¡1

=
¡

¶
+

X¡1

=
¡+

=
X¡1

=
¡+

This proves ¡= ¡¡ for arbitrary  in B and any 
such that 0 ··· Because 2 B is arbitrary, we deduce the operators
satisfy ¡¡= ¡for any 0 · · · , hence () =) ().

Next, assume () holds. It su¢ces to prove for any  0 the subspaces
f¡g¡1

=0 and B¡ are strong orthogonal such that for every 1 · 

(54)
X¡1

=0
¡?

X¡1

=
¡,

X¡1

=0
¡?B¡

Consider any element
P¡1

=0 ¡2
P¡1

=0 ¡By iterated projections¡¡
= ¡for arbitrary 0 · · · 

¡

µX¡1

=0
¡

¶
= ¡¡1

µX¡1

=0
¡

¶
(55)

= ¡

·
¡1+

X¡1

=1
¡

¸

= ¡

µX¡1

=1
¡

¶
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where ¡1 = 0cf. Lemma 2, due to  2  and ?B¡1 by
constructionProceeding with subsequent ¡, = 1, we obtain

¡

µX¡1

=0
¡

¶
= ¡

µX¡1

=1
¡

¶
(56)

= ¡

·
B¡2

µX¡1

=1
¡

¶¸

= ¡

·
B¡2¡1 +

X¡1

=2
¡

¸

= ¡

µX¡1

=2
¡

¶
== 0

Therefore,
P¡1

=0 ¡?B¡cf. Lemma 2., for any integer 0 and any
elements 2 . Because the elements 2 are arbitrary, we deduce for
every  0

P¡1
=0 ¡?B¡.

Finally, because
P¡1

=¡is a subspace of B¡ for any 1 · · , we
conclude

P¡1
=0 ¡?

P¡1
=¡. It follows that

P¡1
=0 ¡=

P¡1
=0 ©¡

and B=
³P¡1

=0 ©¡
´

© B¡, which proves () =) ()
Proof of Lemma A.2. Consider an arbitrary sequence of elements fg

2 , and recall
P1

=0 ©¡exists. A necessary and su¢cient condition for
a sequence of Banach space elements fg to form a Schauder basis (hereafter
referred to as a basis) is the existence of some scalar constant 0 1 such
that for all scalar real-valued sequences fg and integers · 

(57)
°°°
X

=0
¡

°°° ·
°°°
X

=0
¡

°°°

See, e.g., Proposition 4.1.24 of Megginson (1998); see also Singer (1970). In our
case, by the existence of the space

P1
=0 ©¡, the subspaces are strong

orthogonal by construction, for any it follows that

(58)
X

=0
©¡?

X

=+1
©¡

Synonymously, for all scalar real-valued sequences fg and components 2


(59)
X

=0
¡?

X

=+1
¡

By the de…nition of James orthogonality, it follows from (59) that

(60)
°°°
X

=0
¡+

X

=+1
¡

°°° ¸
°°°
X

=0
¡

°°°

for all real scalars For = 1we conclude that 8
°°°
X

=0
¡

°°° =
°°°
X

=0
¡+

X

=+1
¡

°°°(61)

¸
°°°
X

=0
¡

°°°
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The equality in (57) follows with = 1, which proves the result.
Proof of Corollary 4. . The result is an immediate consequence of the

de…nition of weak-orthogonality, and Theorem 3. In particular, for real-valued
simply de…ne the components ¡´ ¡¡6= 0, where 2 
= B¡ ¡1Bare de…ned in Theorem 3. The strong-orthogonality result
follows from Theorem 3.

. Recall the decomposition

(62) =
X1

=0
¡+

and recall the orthogonality properties

(63) ?B¡1

(64) ?8

Consider the inner-product between and . Using decomposition (61) and
linearity in the second argument of the semi-inner product [ ], we obtain

[] =
h


X1

=0
¡+

i
(65)

=
X1

=0

£
¡

¤
+ []

= 

X1

=0
[¡] + []

= 0 []

due to [¡] = 0 80, cf. (64) and Lemma 2; and [] = 0 due to
2 B¡1 µ B¡1 and (63). Because ¡2 B¡¡ ¡¡¡1B¡and
the spaces Bcontain only non-deterministic components, we can always choose
¡2 ¡such that¡= 0 if and only if = 0, and deduce []
= kk2 0. Hence, we conclude the …rst coe¢cient is uniquely determined as

(66) 0 =
[]
[]

=
[¡¡1]

[]
=

[]
[]

= 1

where [] = [ ¡ ¡1] follows from linearity in the second
argument, and orthogonality: ?B¡1 and ¡12 B¡1.

Similarly, the inner-product between ¡1 and  reduces to

[¡1] = 

X1

=0
[¡1¡] + [](67)

= 0 [¡1] +1 [¡1¡1] 

Observe that we cannot in general deduce

(68) [¡1] = 0

because the orthogonality condition ? is in general asymmetric. Using (67) the
second coe¢cient is uniquely determined as

(69) 1 =
[¡1] ¡ [¡1]

[¡1]
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Proceeding recursively, we deduce for = 12

(70) 0 = 1, =
[¡]
[¡]

¡
X¡1

=0


[¡]
[¡]



Proof of Theorem 5. We will prove in order () () ()() () (),
and () () (). First consider () () (), and let () hold such that
L¡1?. Because = L¡ ¡1L, by Lemma 2.it follows that for any
2 Land any ¡1 2 L¡1

(71) ¡1
¡1 (¡¡1) = 0

Denoting by ¡1 expectations with respect to the -…eld F¡1, it follows that

(72) ¡1¡1
¡1 ([jF¡1] ¡¡1) = 0

for any ¡1 2 L¡1. Because (jF¡1) ¡ ¡12 L¡1, it must be the
case that

(73) j[jF¡1 ] ¡¡1j= 0

or (jF¡1) = ¡1. Thus () =) (). Next, let () hold, and observe
that L¡1? follows immediately because for any 2 Land any ¡1 2
L¡1

¡1
¡1 (¡¡1)(74)

= ¡1
¡1 (¡(jF¡1))

= ¡1
¡1
¡1 ([jF¡1 ] ¡[jF¡1 ]) = 0

Hence, () =) (), and therefore () () ()
Now consider () () ()We will prove () =) () and () =) () =) ().

First, let () hold, and observe that symmetric orthogonality
³P1

=0
Ã!
© ¡

´

Ã!
© B¡1 implies for any · ,

?
³X1

=0

Ã!
© ¡1¡

´ Ã!
© L¡1(75)

³X1

=0

Ã!
© ¡1¡

´ Ã!
© L¡1?

But, by de…nition of a symmetrically orthogonal decomposition, L¡1 is exactly
decomposed as

(76) L¡1 =
³X1

=0

Ã!© ¡1¡
´ Ã!© L¡1

Thus (75) and (76) imply

(77)
³X1

=0

Ã!
© ¡1¡

´ Ã!
© L¡1?=) L¡1?
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giving () =) ().
Nest, let () hold such that L¡1?. Then () =) () follows fromabove.

Consequently, the best predictor coincides with the conditional expectations,
(jF¡1) = ¡1By the property of iterated expectations, in this case
iterated projections must hold, and therefore a strong orthogonal decomposition
exists, cf. Theorem 3,

(78) L=
³X1

=0
©¡

´
© L¡1

Now, observe that the construction = L¡ ¡1L implies ?L¡1 , cf.
Lemma 2., and the strong orthogonal decomposition implies

(79)
X¡1

=0
¡?

X¡1

=
¡and

X1

=0
¡?L¡1

for all 1 · . Therefore, under the maintained assumptions, in order to
prove the decomposition is symmetrically orthogonal, it su¢ces to prove for any
1 · ,

(80)
X¡1

=
¡?

X¡1

=0
¡and L¡1?

X1

=0
¡

Because L¡1 µ L¡1 , the condition L¡1?implies L¡1?8· . Hence,
by linearity in the second argument of the (F) semi-inner product, for
any ¸ 0

(81) L¡1?
X

=0
¡

A simple continuity argument su¢ces for L¡1?
P1

=0¡
Moreover, for all 1 · and = 0¡ 1the properties L¡µ L¡¡1

and L¡¡1?¡ imply L¡?¡. So, because
P¡1

=¡µ L¡, we
deduce for each = 0¡ 1

(82)
X¡1

=
¡?¡

Again, by linearity in the second argument of the (F) semi-inner prod-
uct, we conclude

(83)
X¡1

=
¡?

X¡1

=0
¡

Thus, () =) ().
Finally, consider the claim () () (). The conditional expectations

coincides with the best predictor if and only if

(84) (¡[jF¡1 ])¡1¡1 = 0

for all such elements ¡1 2 L¡1cf. Lemma 2.This is synonymous to

(¡[jF¡1 ])¡1¡1 = 0(85)

¡1
h
(¡[jF¡1])¡1¡1jF¡1

i
= 0

¡1¡1
h
(¡[jF¡1 ])¡1 jF¡1

i
= 0
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for all elements ¡1 2 L¡1It follows that the zero identity holds for the
element

(86) ¡1 =
³


h
(¡[jF¡1])¡1 jF¡1

i´¡1
2 L¡1

Together, (85) and (86) imply

(87) ¡1

¯̄
¯

h
(¡[jF¡1])¡1 jF¡1

ī̄
¯


= 0

or [(¡ [jF¡1])¡1jF¡1 ] = 0, F¡1-.
Proof of Theorem 6. By assumption =

P1
=0¡where the

0
¡are strong orthogonal to L¡¡1, and the projection operator iterates

from L¡ to L¡¡1 © ¡ for any and ¸ 0. Project separately onto
L¡1 and ~L¡1 : using quasi-linearity and homogeneity, and observing Lµ ~L,
(jL¡1) =

P1
=1¡and

(88) (j~L¡1) =
X1

=1
¡+0(j~L¡1)

hence the 0-step ahead nonlinear impulse response (0L¡1) at time is
simply

(89) (0L¡1) = 0(j~L¡1)

For the 1-step ahead impulse response (1L¡1), by strong orthogonality
and quasi-linearity

(1L¡1)(90)
= (+1 j~L¡1) ¡(+1jL¡1)

=
X1

=2
+1+1+1¡+

³
+1+1 ++11+1j~L¡1

´

¡
X1

=2
+1+1¡

= 
³
+1+1 ++11+1j~L¡1

´


By iterated projections, quasi-linearity, homogeneity, and orthogonality


³
+1+1 ++11+1j~L¡1

´
(91)

= 
³


¡
+1+1 ++11+1jL

¢
j~L¡1

´

= 
³
+11+1+(+1+1jL) j~L¡1

´

= +11(+1j~L¡1)

Similarly, using iterated projections and ~L¡1 µ Lµ L+1 , the 2-step ahead
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impulse response function is

(2L¡1)(92)

= 
³
+2j~L¡1

´
¡(+2jL¡1)

=
X1

=3
+2+2+2¡

+
³
+2+2 ++21+2+1 ++22+2j~L¡1

´

¡
X1

=3
+2+2+2¡

= 
³
+2+2 ++21+2+1 ++22+2j~L¡1

´

= 
³


¡


¡
+2+2 ++21+2+1 ++22+2jL+1

¢
jL

¢
j~L¡1

´

= +22
³
+2j~L¡1

´


and so on. Therefore (L¡1) = +(+j~L¡1).
Proof of Lemma 7. Clearly ~L¡¡1 = L¡¡1 © ¡= L¡. Hence

((jL¡)j~L¡¡1) = ((jL¡)jL¡) = (jL¡) =(j~L¡¡1). If
additionally admits a strong orthogonal decomposition, then by Theorem 3
and the identity ~L¡¡1 = L¡¡1 ©¡= L¡wededuce ((j~L¡)jL¡)
= ((jL¡+1)jL¡) = (jL¡).

Proof of Theorem 8. Project ¡1and de…ne = ¡ ¡1(recall
0 = 0)

¡1=
X1

=1
¡+

X1

=1
j¡j(93)

= 0+0jj =0

Similarly, by ()

¡2¡1=
X1

=2
¡+

X1
=2

j¡j +¡2 (1¡1 +1 j¡1 j)(94)

=
X1

=2
¡+

X1
=2

j¡j +1

¡1 =1¡1 +1j¡1j ¡1

etc. In general

(95) ¡= ¡+j¡j ¡

giving the decomposition

 =
X1

=0
¡+=

X1

=0
(¡+j¡j ¡) +(96)

=
X1

=0
¡+

where = lim!1¡ ¢ ¢ ¢ ¡12 L¡1 , and

¡ = ¡+ (1)(j¡j ¡) and = if 6= 0;(97)
¡ = j¡j ¡and =if = 0 and 6= 0;
¡ = ¡and = if = 0
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For any ¸ 1, by quasi-linearity and ()

¡1

µX¡1

=0
¡

¶
=

X¡1

=1
¡+

X¡1

=1
(j¡j ¡)(98)

¡2

µX¡1

=0
¡

¶
=

X¡1

=2
¡+

X¡1

=2
(j¡j ¡)

+¡2 (+1¡1 +1j¡1j) ¡1

By serial independence and 1¡1 + 1j¡1j 2 L¡1, ?(1¡1 +1j¡1 j)
If () holds, then

¡2 (+1¡1 +1 j¡1 j) = ¡2 (1¡1 +1j¡1j) =1(99)

¡2

µX¡1

=0
¡

¶
=

X¡1

=2
¡+

X¡1

=2
(j¡j ¡)

and so on. Repeating, we obtain ¡(
P¡1

=0 ¡) = 0 for any ¸ 1 if ()
holds.

Using Theorem 6, we deduce

(B¡1) = +
³
+j~L¡1

´
(100)

= +
³
+ (1)(jj ¡)j~L¡1

´
if  6= 0

= (jj ¡j~L¡1) if = 0

where = 0 if = 0, hence if = 

(B¡1) = ++ (1)(jj ¡) if  6= 0(101)
= jj ¡ if = 0

Proof of Theorem 9. From backward substitution

 = ¡1¡1() +(102)
= 2¡2¡2()¡1() +¡1¡1() +

= ¡
Y

=1
¡() +

X¡1

=0
¡

Y

=1
¡()

Because jj 1 and lim sup
Q

=1¡() 2 [1¡1], , the series represen-
tation =

P1
=0

¡
Q

=1 ¡() follows.
Using [j=¡1] = 0 and the =¡1-measurability of ¡1,

(103)

30



[j=¡1 ] =
X1

=1
¡

Y

=1
¡()

[j=¡2 ] =
X1

=2
¡

Y

=2
¡()[¡1()j=¡2 ] +[¡1¡1()j=¡2]

=
X1

=2
¡

Y

=2
¡()+

[j=¡3 ] =
X1

=3
¡

Y

=3
¡()2 +2+

[j=¡ ] = ¡1
X1

=
¡¡

Y

=
¡() +

X¡2

=0


By iterated expectations

 = ¡1¡1() +=[j=¡1] +(104)
= [j=¡2] + ([j=¡1] ¡[j=¡2 ]) +

= =
X1

=0
¡+

where = lim!1[j=¡ ] = lim!1(
P1

= ¡
Q

= ¡()¡1

+ 
P¡2

=0 ) = (1 ¡ ), , 0 = 1, = , and for all ̧ 1

(105)

¡ = [j=¡] ¡[j=¡¡1 ]

= ¡1
X1

=
¡¡

Y

=
¡() +

X¡2

=0


¡+1
X1

=+1
¡¡1¡

Y

=+1
¡() ¡

X¡1

=0


= ¡1
µ

[¡¡() ¡] + [¡() ¡]
X1

=+1
¡¡

Y

=+1
¡()

¶

hence = ¡1 ,

(106)

¡= [¡¡()¡]+[¡()¡]
X1

=+1
¡¡

Y

=+1
¡()

and

(107)

[¡j=¡¡1 ] = [¡¡() ¡]

+
X1

=+1
¡¡

Y

=+1
¡()[¡() ¡]

= 0
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Table 1
Lp -GMM Estimates (p = 1.5) and Tail Indices

ESTAR
Parameter Yen Euro BP

 -.089 (.027) .296 (.073) .099 (.026)
 23.3 (13.7) 43.0 (11.9) 15.5 (7.57)
 .013 (.004) .015 (.003) .020 (.009)

max{jj} .031 .025 .021

LSTAR
Parameter Yen Euro BP

 -.093 (.053) -.043(.814) .130 (.107)
 40.7 (26.7) 68.3 (159) 67.2 (29.1)
 .003 (.001) .001 (.003) .020 (.000)

max{jj} .030 .027 .021
Yen Euro BP

[j=¡1]=0 .058 .096 .020
(j=¡1)= 0 .061 .072 .097
min{x} -.030 -.025 -.019
max{x} .025 .027 .021
̂ 2.55§.70 3.37§1.20 2.96§1.03

Notes: a. Parameter estimate (heteroscedasticity robust standard error).
b. Hong and White’s (1995) test of conditional mean mis-speci…cation:

values denote p-values.
c. The null is [¡1

 j=¡1 ]=0 (i.e. (j=¡1)=0).
d. Tail index estimator and 95% interval length based on a

Newey-West kernel estimator with Bartlett kernel: see Hill (2005b).

Table 2
Hong-White Tests

ESTAR LSTAR
Test Null Hypothesis  Yen Euro BP Yen Euro BP

1. [j=¡1 ] = 0 - .264 .096 .384 .258 .078 .100
2. (+j=¡1) = 0 - .941 .091 .540 .582 .088 .126
3. [j=¡1] = 0 - .099 .000 .249 .188 .197 .109
4. (+j=¡1) = 0 - .161 .813 .159 .401 .465 .217
5. (

P
=0+j=¡1) = 0 10 .191 .127 .799 .075 .199 .159

20 .233 .108 .100 .076 .702 .386
6. (

P
=0+j=¡1) = 0 10 .091 .831 .292 .937 .351 .179

20 .114 .339 .119 .332 .332 .376
Notes: a. The p-value of Hong and White ’s (1995) test. b. The null is [¡1

+ j=¡1] = 0.
c. The null is [(

P
=0+)¡1j=¡1] = 0. d. The "h" in

P
=0+
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Figure 1
IRF’s for ESTAR (p = 1.5), Impulses: vn−i = c

Figure 2
IRF Densities (randomized impulses)
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