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Abstract

We develop a non-parametric test of tail-speci…c extremal serial de-
pendence for possibly heavy-tailed time series. The test statistic is as-
ymptotically chi-squared under a null of "extremal white noise", as long
as extremes of the time series are Near-Epoch-Dependent on the extremes
of some mixing process. The theory covers ARFIMA, FIGARCH, bilin-
ear, and Extremal Threshold processes, and a wide range of nonlinear
distributed lags. In this setting the test statistic obtains an asymptotic
power of one under the alternative.

Of separate interest, we deliver a joint distribution limit for an arbi-
trary vector of tail index estimators under extraordinarily general condi-
tions, complete with a consistent kernel estimator of the covariance ma-
trix.

We apply tail speci…c tests to equity market and exchange rate returns
data.
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1. Introduction Wedevelop a test of extremal serial dependence applica-
ble to possibly heavy-tailed, dependent and heterogenous stochastic processes.
The null hypothesis of interest is "extremal white noise": extreme values of
¡are not predominantly followed by extremes in for all = 12An
extreme value occurs when an observation surpasses a threshold (positive or
negative) as the threshold diverges to in…nity with the sample size. Extreme-
value-theory has been applied to the analysis of hyperin‡ation, asset market
bubbles, and exchange rate contagion; and has gained enormous popularity in
the telecommunications (network activity), meteorological, geological, electri-
cal and insurance sciences. See Resnick (1987), Embrechts, Klueppelberg, and
Mikosch (2003), Beirlant, Goegebeur, Segers, Teugels, and de Waal (2004) and
the citations therein.

The concept of "extremal dependence" has been exclusively applied to bi-
variate processes. See Tawn (1990), Ledford and Tawn (1996, 1997), St¼aric¼a
(1999), He¤erman and Tawn (2004), and Schmidt and Stadtmüller (2006), to
name a few. The predominant approaches involve the assumption of bivariate
regular variation, the speci…cation of a multivariate extreme value distribution
tail, the use of a copula dependence function, and a transformation of mar-
ginal distributions into unit Fréchets. See Section 4 for comparisons with our
method. In all cases either the processes are assumed to be marginally serially
independent; a GARCH structure is arbitrarily imposed; and/or the limiting
distribution of a proposed sample tail dependence estimator is not established.
Moreover, serial dependence is ignored entirely in this literature, and memory
and heterogeneity restrictions are enforced over the entire distribution support.

Quantile-based methods havebridged the gap betweenpopulationand extreme-
tail dependence analysis (e.g. Linton and Wang 2004). The so-called "extreme
quantile regression" method of Drees (2003) and Chernozhukov (2005) has only
been developed for iid and mixing processes, and only under harsh parametric
restrictions (e.g. linearity).

In the present paper we develop the co-relation measure of linear serial ex-
tremal dependence for possibly heavy-tailed processes. We develop tests of
left-, right-, and two-tailed extremal serial dependence for a wide range of het-
erogenous, dependent, and possibly heavy-tailed processes without imposing
parametric structure. We only require the marginal distributions to have regu-
larly varying tails, a less restrictive assumption than the typical joint bivariate
regular variation assumption. Cf. Basrak et al (2002).

Although the co-relation is only one of many measures of extremal depen-
dence, it serves multiple purposes here. The co-relation does not require a joint
tail speci…cation as long as convolutions § ¡ satisfy a tail equivalence
property that holds for a broad class of linear, nonlinear, conditional volatility
and extremal threshold processes. The co-relation naturally measures linear
"extreme tail" dependence; the decay properties of the co-relation coincide with
population or tail memory properties; and we are able to provide an estimator of
the co-relation that is consistent and asymptotically normal under substantially
general conditions.

The test statistic itself is a weighted-average portmanteau statistic in the
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tradition of Ljung and Box (1979). It is essentially irrelevant whether the source
of leptokurtosis is unknown, or a parametric model is assumed, a la GARCH,
IGARCH, or stable-GARCH. In order to ensure a standard distribution limit,
we only require mild restrictions on tail decay and memory which cover at
least Extremal Threshold, ARFIMA, FIGARCH, and bilinear processes, and
many nonlinear distributed lags. In particular, using new extremal dependence
properties developed in Hill (2005) we only require the extremes of the process
fg to be Near-Epoch-Dependent on the extremes of some mixing process.

Of separate interest we deliver under the above general conditions a joint
distribution limit for an arbitrary vector of tail index estimators, complete with
a consistent kernel estimator of the covariance matrix. See Theorem 2. To
the best of our knowledge, this is the …rst instance of such theory and the
development and use of such a covariance kernel estimator.

We apply two-tailed and di¤erence in tails tests to exchange rate and eq-
uity market daily returns, including one emerging market (Shanghai Stock Ex-
change). We …nd small levels of signi…cant, symmetric, positive and persistent
extremal dependence in the daily returns of the Yen and Euro against the U.S.
Dollar, and asymmetric extremal dependence in the British Pound. Symmetric
extremal dependence suggests some returns cannot be governed by an asymmet-
ric regime switching process, contrary to popular applications: see Section 9.
We …nd a wider range of extremal dependence characteristics in daily asset mar-
ket returns, including weak, positive and persistent dependence; and extremely
weak, asymmetric dependence.

In Sections 2-4 we characterize distribution tails, develop the co-relation
measure of dependence, and compare the co-relation to alternative extremal
dependence measures. Preliminary asymptotic theory is contained in Section 5,
Section 6 develops the test statistic, and in Section 7 we develop a strategy for
selecting the sample tail fractile. Sections 8 and 9 contain a simulation study
and the empirical application. Appendix 1 contains proofs of the main results
and Appendix 2 contains preliminary results. All table and …gures are placed
at the end of the paper.

Denote by ! convergence in probability, and by ) convergence with respect
to …nite dimensional distributions. [] denotes the integer part of , [jj] · jj
+ ´ maxf0g. 1´ [11] 2 Nj ¢ j denotes the 1-matrix norm.

2. Regular Variation Let fg denote a stochastic process de…ned on a
probability measure space, (­=), = = ([=), ==( : ·) ½ =+1.
Assume has for each common regularly varying marginal distribution tails:
as ! 1

(1) (· ¡) =1()¡1(1 +(1)), () =2()¡2 (1 +(1))

where 0 · () 1 and 2() 0 by convention, and 12  0 denote the
tail-speci…c indices of regular variation. When minf12g 2, the population
variance is in…nite, however we allow for any  0. The above structure
allows for asymmetry in the tails both through extremal dispersion and tail
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thickness. See Jansen and de Vries (1991) and Jondeau and Rockinger (2003)
for evidence of asymmetric tail thickness in equity markets. Notice that we do
not make any reference to the …nite distributions of f¡1¡g, 
1nor the non-extremal support of .

Processes that abide (1) belong to the normal domain of attraction of the
stable laws, include the maximum domain of attraction of extreme value distri-
butions, and include many stochastic recurrence equations. See Bingham et al
(1987), Resnick (1987), and Basrak et al (2002). Gaussian distributions do not
satisfy (1): see Resnick (1987). The tail form (1) has been used widely in the
statistics and econometrics literatures. See, for example, Hall (1982) and Caner
(1998) to name a very few.

We require two convolution processes

́ +¡ and ~́ ¡¡

We assume » (1) with the same indices f12g and scales 0 · f1(),
2()g1, and ~» (1) with common left/right index 0 ´ minf12g and
scales 0 · f1(~), 2(~)g1. Any-stable process satis…es such convolution
tail equivalence, cf. Ibragimov and Linnik (1971). In general it su¢ces for
to have an in…nite order distributed lag representation with independent
innovations that satisfy (1), including at least ARFIMA, FIGARCH, bilinear
and extremal threshold processes. Consult the technical appendix to this paper
in Hill (2006a)1.

3. Measures of Extremal Dependence We now develop and charac-
terize the co-relation coe¢cient.

3.1 Two-Tailed Co-Relation

We de…ne the two-tailed co-relation coe¢cient at displacement 0, (0)()
= (0)(¡), as a scaled ratio of extreme tail probabilities

(0)() ´ 1 ¡ lim
!1

(j~j )
[(jj ) +(j¡j )]



For any » (1) de…ne

0() ´1()(1 · 2) +2()(2 · 1)

From (1), the assumption that has the same tail structure for all , and
properties of regularly varying functions (e.g. Feller 1971, Resnick 1987) we
obtain

lim
!1

0(jj  ) = lim
!1

0¡11(¡) +0¡22()

= lim
!1

0¡11() + lim
!1

0¡22() +(1) = 0()

1 The only extant literature on the topic that we are aware of concerns convolut ions o f stable
random variables, or iid variates with regular ly varying tails. See, for example, Embrechts
and Goldie (1982), Cline (1986), Datta and McCormick (1998) , and Geluk, Liang and de Vries
(2000) .
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Therefore

(2) (0)() = 1 ¡ lim
!1

0(j ~j )
20(jj )

= 1 ¡ 0(~)
20()



If has symmetric tails a la 1 = 2 then 0() = 1() + 2(), hence by
construction 0(~) = 1(~) + 2(~). For serially independent processes it
easy to show (~) = 0() for each = 12, hence (0)() = 0 86= 0. See
Breiman (1965), Feller (1971) and Cline (1986).

Suppose minf12g1 (see Section 3.3.2 for the case · 1). If extremes
of ¡are predominantly followed by extremes of with the same sign, then
j¡ ¡j will have a comparatively low tail dispersion (~)0() for each
= 12, hence (0)()  0. Similarly, if extremes of ¡ are predominantly
followed by extremes of with the opposite sign, then j¡ ¡j will have
comparatively large tail dispersion (~) 0(), hence (0)() 0. In this
sense the co-relation measures linear extremal dependence. See Section 3.3.4
for a comparison with the correlation.

In general the property (0)() = 0 is interesting in its own right.

Extremal White Noise If (0)() = 0 for all displacements ¸ 1, we say
fg is two-tailed extremal white noise.

An iid process is trivially extremal white noise. However, processes fg
with a switching or threshold mechanism in which non-extremes are highly
persistent and extremes are independent are also extremal white noise. See
Section 3.4 for examples.

3.2 Co-Relation Tails

The two-tailed co-relation cannot reveal whether extremal serial dependence
is more pronounced when ¡ obtains a large negative or positive value. For
tail-speci…c measures we use the convolution summation ´ + ¡.
Convolution tail equivalence implies

(1)() = 1 ¡ lim
!1

(¡)
[(¡) +(¡¡)] =1()21() ¡ 1

(2)() = 1 ¡ lim
!1

()
[() +(¡)]

= 2()22() ¡1

If positive (negative) extremes of ¡are predominantly followed by positive
(negative) extremes of , then + ¡will have a comparatively high tail
dispersion 2() 22() (1()  21()), hence (2)() 0 ((1)() 0),
and so on. If is serially independent then ()() = 0 8¸ 1, = 012.

Remark 1: The convolution di¤erence ~= ¡ ¡ does not lend
itself to tail-speci…c co-relations because the scales (~) incorporate both right
and left tail information from fg.
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Remark 2: A two-tailed co-relation based on the convolution summation
´ + ¡ exists. We do not consider it here because it is vastly
dominated by (0)() in simulation experiments.

3.3 Co-Relation Properties

Consult Hill (2006a: Lemmas B.1-B.8) for complete details on the following
properties.
3.3.1 Symmetry: The co-relation coe¢cient is symmetric in the senses
( ¢)() = (¢)(¡), (0)(¡¡¡) = (0)(¡) and (1)(¡¡¡)
= (2)(¡).
3.3.2 Bounds and ®01: In general

minf1 ¡ 20¡10g ·(0)() · 1
¡ 1 · ()() · maxf2¡1 ¡ 10gg, = 12

The co-relation obtains a boundary value when the extremes of are a linear
function of the extremes of ¡: = (¡) +(¡) for some : R ! R
where ()! ¡1 or 1 as ! §1. For example = + ¡+ expf¡
j¡jgfor any 2 R and 

» (1), is maximally positively co-related2. If 1
= 2 = 2 then each ()() 2 [¡11].

If 0 = minf12g · 1 then the strongest degree of "negative" two-tailed
dependence is greater than or equal to zero, and at least one one-tailed upper
bound is less then or equal to zero. This suggests interpreting small co-relation
values is problematic when the data are highly volatile, but it does not preclude
a test of (¢)() = 0. Nevertheless most time series of practical interest in
macroeconomics and …nance suggest minf12g  1.

3.3.3 Damping: If (0)(1) R (0)(2) for any 2 1 then

lim
!1

(j¡¡2j )(j¡¡1 j ) R 1

One-sided damping (0)() & 0 implies ¡ ¡ is increasingly likely to ob-
tain an extreme value as ! 1. Synonymously,  is increasingly likely to
surpass the stochastic thresholds ¡§ as ! 1 and ! 1. In general
the co-relation decays according to the memory properties of fg: see Section
3.4. Damping properties apply to each (¢)().
3.3.4 Linear Extremal Dependence: For stationary, mean-zero …-
nite variance processes the serial correlation is

(¡) = 1¡
R 0

¡1 ~2~(~)~+
R 1
0 ~2~(~)~

2
³R 0

¡12()+
R 1
0 2()

´ = 1 ¡2
0(~)

22
0()



2 Notice = + ¡ for any 6= 1 fails to satis fy the assumption that has the
identical tail shape (1) for a ll : i f  0 and ¡has r ight scale 2 then has right scale
jj22 .
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say, where  and ~ denote the continuously di¤erentiable marginal distri-
bution functions of and ¡ ¡. The two-tailed (0)() co-relation is
therefore a generalized tail-version of the correlation, measuring linear extremal
dependence:

(0)() = 1 ¡ lim
!1

R ¡
¡10~(~)~+

R 1
 0~(~)~

2
³R¡

¡10()+
R 1
 0()

´ = 1 ¡ 0(~)
20()



where and~capture non-extremal non-stationarity. Notice the co-relation
( ¢)() does not require to be centered, nor in general do we require to be
di¤erentiable, cf. (1) and (2). An identical comparison holds for either tail by
noting, for example, ((0)¡(¡0)) = 1 ¡ 2

2(~)22
2(),

where 2
2() =

R 1
0 2(), etc.

3.3.5 Linearity and Symmetry: If fg is linear (e.g. ARFIMA)
with iid innovations governed by symmetric tails (1) then the co-relation is
symmetric: (0)() = (1)() = (2)(). Thus, a process with asymmetric co-
relations is either nonlinear, or linear with asymmetric innovations.

3.4 Co-Relation Examples

In the following we characterize convolution tail equivalence and the co-
relation for linear, nonlinear and conditional volatility processes. Throughout
» (1) is symmetric and independent: 1() = 2() = 1 and 1 = 2 = 
for each . Consult Lemmas B.4-B.8 of Hill (2006a) for complete details. All
results can be extended to the case 1() Q 2() and 1 Q 2.

Example 1 (Distributed Lag): Suppose =
P1

=0¡, 0 = 1, andP1
=0 jj0 1. In general fg need not be identically distributed, nor have

a zero mean. Each fg and f§¡g satis…es (1) with index , and

(0)() =
P1

=0 jj+
P1

=jj¡
P1

=0 j+¡j
2

P1
=0 jj

()() =
P1

=0 j++j¡
P1

=jj¡
P1

=0 jj
2

P1
=0 jj

, = 12

Co-relation decay rates (e.g. geometric or hyperbolic) follow from decay rates
of For an AR(1) process = ¡1 +, jj 1, (0)() = (1 + jj¡
j¡ 1j)2 and ()() = (j+ 1j¡ jj¡ 1)2, = 12

Example 2 (Bilinear): Suppose =¡1¡1 + 
» (1), (̧

0) = 1, 0, and 2[2 ] 1. Each fg and f§¡g satis…es (1)
with index 2, and (¢)() are represented above with = .
Example 3 (Extremal Threshold): Construct Extremal Threshold dou-
ble arrays = ¡1(j¡1j · ) + and = ¡1(j¡1j 
) + , 

» (1), where fg is a non-stochastic sequence, ! 1 as !
1and jj 1. Clearly if j¡1 j  then is independent noise and 
is AR(1). Each f§ ¡g and f§ ¡g satis…es (1).
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fg is left-, right-, and two-tailed extremal white noise, and (0)(¡)
= (1 + jj¡ j¡ 1j)2 = 0.

Example 4 (Power-ARCH(1)): Let = , 
» (1), (0) =

1, jj= 10 , and = 0 +
P1

=1j¡j, ¸ 0,
P1

=11
and

P1
=1


1. Each f§¡g, fjjjj§ j¡jg and f§

¡g satis…es (1) with indices , and , respectively. fg and fjjg
are extremal white noise. The co-relations between and ¡are represented
above where fg satis…es

P1
=0= 0 +

P1
=1

P1
1¢¢¢=1 01 ¢ ¢ ¢.

4. Comparison with Extant Extremal Dependence Measure The
following is necessarily brief, and the reader may consult Hill (2006a) for ad-
ditional details, as well as Tawn (1990), Coles et al (1999), Ledford and Tawn
(1996, 1997) and the numerous citations therein. Consider only right-tail de-
pendence.

We adopt bivariate dependence notation to the serial dependence case. The
fundamental objective concerns

(j¡)0

If lim!1(j¡) = 0 for all ¸ 1 then fg is serially asymp-
totically independent. Cf. Sibuya (1960).

The bulk of the e¤ort concerns specifying a joint survival (¡
) with unit Frechét marginals. Ledford and Tawn (1996, 1997) investigate
the joint regular variation form (¡ ) = ¡1(2) () where
() is slowly varying, (2)

 is the so-called "coe¢cient of tail dependence",
and  is the unit Frechét transform of with distribution function . At
displacement negative dependence, independence, and positive dependence
respectively imply 0 (2)

 12, (2)
 = 12 and 12 (2)

 · 1. We might,
therefore, say fg is right-tailed "extremal serially independent" if (2)

 = 12
8¸ 1. The remaining arguments in this literature concern speci…cations for
() and estimation of (2)

 .
A parametric strategy for abstracting from the marginal distributions is the

use of a copula dependence function (¡). In general (¡) =
(()(¡)) for : R ! R positive monotonic. Coles et al (1999), for ex-
ample, consider the joint extremevalue distribution: (¡) = expf¡[(¡ ln)¡1

+ (¡ ln ¡)¡1)]g, where ´ ().

Remark 1: In all cases that we are aware of tail dependence is de…ned
between otherwise iid random variables without displacement. The above ex-
tension to the serial dependence case has never been entertained3 .

Remark 2: The index (2)
 is boundedbetween 0 and1 where values of(2)


have clear dependence interpretations. The co-relation (2)() has (typically)

3 St¼aric¼a (1999) considers tail dependence for non-identica lly distributed Constant Condi-
t ional Correlation GARCH processes, but does not derive the distr ibut ion limit o f the proposed
tail dependence estimator.
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asymmetric bounds depending on tail thickness, with a clear interpretationwhen
2  1.

Remark 3: The index (2)
 captures all forms of right tail dependence,

while the co-relation measures linear extremal dependence. Nevertheless, the
co-relation provides an extremal conjugate to covariance orthogonality that can
be applied to extremal model selection (we leave this idea for future endeavors).

Remark 4: Unlike copula-based measures the co-relation (0)() is not
invariant to any monotonic transformation because such transformations need
not satisfy (1). In fact, if : R ! R is asymptotically monotonic (e.g. (2)
¸ (1) ! 1 as 2 ¸ 1 ! 1) and » (1) then () » (1) with indices
() and scales () if and only if is asymptotically proportional to a power
function. The co-relation is invariant to asymptotically positive a¢ne transfor-
mations (): ))! 0 as ! §1.

Remark 5: The co-relation decays according to the memory properties of
fg. We are not aware of a related property for the tail dependence coe¢cient.

5. Co-Relation Sample Statistics and Asymptotics It is convenient
to work with tail-preserving transformations:

(0)
 = jj, (1)

 = j(· 0)j, (2)
 = (0)

Each ()
 has a marginal distribution function with support [01) and tail

(()
 ) = ()¡(1 +(1))

Tail-preserving transformations for the convolutions are denoted (¢)
and ~(¢)

.
Simple estimators for and well known in the literature are due to B.

Hill (1975) and Hall (1982): for each = 012and 2 f1~1g

̂() ´ ()(()
(+1))

̂ () and ̂¡1
() ´ 1

X

=1
ln()

()
()
(+1)

for some integer 1 ·  · such that ! 1 as ! 1 and ! 0. The
estimator ̂¡1

 is widely known as the Hill-estimator, cf. B. Hill (1975), the
subject of theoretical and empirical studies too numerous to list. See Hsing
(1991) and Hill (2005) and the citations therein.

We deduce estimators of the co-relation coe¢cients

̂(0)
 () = 1 ¡ ̂0(~)2̂0()̂()

 () = ̂()2̂()¡ 1, = 12,

where ̂(~) = ()(~()
(+1))

̂0 (~1) and f ~()
(¢)g denote the corresponding

order statistics for f ~()
g. Similarly ̂() = ()(()

(+1))
̂ (1) .

We need only estimate the tail index of 1and ~1(i.e. only for = 1) due
to convolution tail equivalence. Of course, by tail equivalence we could simply
use ̂() in each component of ̂()

 (). Somewhat surprisingly, asymptotic
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theory is greatly expedited4 by using process speci…c tail index estimators in
the numerical and denominator of ̂()

 ().

5.1 Assumptions

De…ne sequences of thresholds f()
 g2

=0 by

(3) ()(()
 () ) ! 1,

where (¢) ! 1 as ! 1. See Leadbetter et al (1983: Theorem 1.7.13).
We require extremal versions of mixing and Near-Epoch-Dependence prop-

erties developed in Hill (2005). Consult Gallant and White (1988) and Davidson
(1994) for details on conventional properties. Denote by fg=1 a sequence
of thresholds ! 1 as ! 1 for each , and de…ne the -sub-algebra
associated with extreme events of :

z
´ ((jj ) : 1 · ···)

De…ne the following coe¢cients, where 1 · , ! 1 as ! 1:

 ´ sup
2z

1+2z
+:1··¡

j(\ +) ¡()(+)j

 ´ sup
2z

1+2z
+:1··¡

j(+j) ¡(+)j

E-Mixing If () ! 0 as ! 1 we say fg is Extremal-Strong
Mixing with size  0. If () ! 0 we say fg is Extremal-
uniform mixing with size 0.

2-E-NED fg is 2-Extremal-NED on some array of -…elds fzg with
size 0 if

°°°(jj (0) j=+
¡) ¡(jj (0) jz+

¡)
°°°
2

·()

where : R ! R+ is Lebesgue measurable, sup() = (()1)
for each 2 R, and ()12¡1 ! 0 as ! 1 for some ̧
2.

Remark 1: E-mixing properties are simply mixing properties for the ex-
tremal event process f(jj )g. The E-NED property is simply an NED
property applied to the two-tailed extremal event (jj (0) ), and implies
the in…nite history of the extremal event f(jj ) : · g can be used to
predict almost surely whether the extreme jj (0)

 occurs or not.

4 If we use ̂ () in both the numerator and demoninator o f ̂() (), a symptotic theory
then necessitates a characterization o f the joint distr ibut ion, from which we want to abstract .
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Remark 2: Hill (2005: Lemma 7) shows any -NED process, 0, with
tails (1) has the 2-E-NED property. This covers linear, bilinear, certain nonlin-
ear distributed lags, and conditional volatility processes. In general, ARFIMA,
FIGARCH, bilinear and Extremal Threshold processes are 2-E-NED as long
as the underlying innovations are iid and satisfy a general regularly varying tail
property. Furthermore, the Extremal Threshold process fg in Example 3
of Section 3.4 is 2-E-NED if the threshold  ! 1 slowly enough (e.g. 
(0) ), but is not 2-NED for any threshold sequence ! 1 when 0 2.
This implies E-NED has a clear advantage for extreme value applications. See
Lemma 9 of Hill (2005).

Remark 3: Memory restrictions are not imposed on the non-extremal
support of 2 [¡(0) (0) ] ! (¡11).

Let (¢)
 denote any of (¢)

 (¢)
, or ~( ¢)

, and denote by (¢) the associated
threshold sequences, a la (3).

Assumption A Each 2 f, ~g satis…es for some ()() 0

(¡) = 1()¡1()(1 +(¡1()))
() = 2()¡2()(1 +(¡2()))

In particular, () = () = () = () = , (~) = 0 =
minf12gand () 0 for at least one 2 f12g

Assumption B » , 2 (01). One of the following holds:
1. 0 min0··2f2(2+ )g.
2. 12 min0··2f2(2+ )g.

Assumption C Let fg be E-uniform mixing with size [2(¡ 1)], ̧ 2; or
E-strong mixing with size (¡ 2), 2

1. fg is 2-E-NED on fzg of size ¡12 with constants ()
()where

sup
()
() = (()1) and (s1

0 ()
()2) = (()1) for some

̧ 2.
2. Each fg 2 f~g is 2-E-NED on fzg of size ¡12 with
constants ()

(), where sup
()
() = (()1), (s1

0 ()
()2) =

(()1) for some ̧ 2.

Remark 1: Assumption B.1 is a direct consequence of Assumption A: see
Haeusler and Teugels (1985) and Hill (2005). Assumption B.2 expedites consis-
tency of a kernel estimator of the asymptotic covariance matrix of ̂¡1

()0.
Remark 2: Hill (2005b) proves Assumption C.1 holds for each linear, non-

linear and conditional volatility process detailed in Section 3.4. It is straight-
forward to verify that Assumption C.2 also holds given these processes have
distributed lag representations. See Lemma 8 of Hill (2005).
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5.2 Preliminary Theory

Consistency and asymptotic normality of the Hill-estimator under general
conditions is of paramount importance for the limiting properties of our test
statistic under both hypotheses.

THEOREM 1 UnderAssumptions A, B.1 and C.1, ̂() =+(1
p
),

(¢)
(+1)

(¢)
 = 1 + (1

p
), ̂() = () + (ln()

p
), and

̂()
 () ! ()() for each = 012.

Tests of extremal white noise and co-relation tail equivalence are grounded
on ̂()

 () and ̂(2)
 () ¡ ̂(1)

 (), functions of two and four tail index estima-
tors respectively. We therefore require a joint limit theory for a vector of Hill-
estimators and a consistent covariance matrix estimator.

Let fg = f : = 1g be a -vector stochastic process on R
+ with

marginal distribution tails (1) and indices = [1]0 0, ¸ 1. In the
sequel we will use = [()

 ~()
1]0 and = [(1)

 (1)
1

(2)
 (2)

1]0.
Write ̂¡1

 = [̂¡1
1̂¡1

]0 and de…ne the covariance matrix

§ ´(̂¡1
 ¡¡1)(̂¡1

 ¡¡1)0

De…ne a kernel estimator

(4) §̂ =¡1
X

=1

X

=1
((¡))̂̂0

 ̂´ [̂1̂]0

where ̂´ [(ln(+1))+ ¡ ()̂¡1
], and ((¡ )) denotes a

standard kernel function with bandwidth ! 1 as ! 1, (0) = 1 and
() = (¡). Assume (¢) satis…es Assumption 1 of de Jong and Davidson
(2000) such that §̂ is positive de…nite. The following result holds for Barlett,
Parzen, Quadratic Spectral and Tukey-Hanning kernels.

THEOREM 2

. If each fg satis…es Assumptions A, B.1 and C.1, then
p
(̂¡1

 ¡¡1) ) (0§), § = lim
!1

§ jj§ jj1 = (1)

. Let each fg satisfy Assumptions A, B.2 and C.1, and let ! 1,
 = (¡12) and 1

P
=1 j((¡ ))j = (12). Then j§̂

¡ § j ! 0

Remark 1: Standard arguments easily verify

~§¡12


p
(̂ ¡) ) (0)where ~§ = [2

2
§]=1
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Remark 2: Write 2
 =(

p
(̂¡1

 ¡ ¡1
 ))2and de…ne

̂2
 =¡1

X

=1

X

=1
((¡))̂̂

The scalar case simply represents Theorems 5 and 6 of Hill (2005):
p
(̂ ¡

)~ ) (01)~2
 = 4


2
 , where 2

 = (
p
(̂¡1

 ¡ ¡1
 ))2; and

j̂2
 ¡ 2

 j ! 0.

5.3 Co-Relation Estimator

De…ne = []0, ̂00´ [̂()̂(~1)]0̂´ [̂()̂(1)]0

for = 12, and

§()
 ´

¡
̂¡1
 ¡¡1


¢ ¡

̂¡1
 ¡¡1


¢0 2 R2= 012

Write ̂()
= [̂()

 (1)̂()
 ()]0 and ()

 = [()(1)()()]0.

THEOREM 3 If Assumptions A, B.1, and C hold, and §() = lim!1 §()


is positive de…nite, then

¡p
ln()

¢³
̂()
¡()



´
)

¡
02

£ [1£ 10
]

¢

where

2
= 2

0§()0, = [1¡1]0 .

If ()() 6= 0 then £ ̂()
 ()2 ! 1 with probability one.

Remark : The covariance matrices 2
[1£ 10

] are valid for any ()() Q
0, and are singular because ̂()

 () is grounded on the same random variables
for each displacement . Notice the variances 2

 depend only on the tail 2
f012g, and not displacement because we use ̂(~1) and ̂(1) for each
displacement.

5.4 Tail Di¤erence Estimator

In order to test the di¤erence in co-relation tails we use

¢̂´ [̂(2)
 (1) ¡ ̂(1)

 (1)̂(2)
 () ¡ ̂(1)

 ()]

De…ne 21 ´ [2211 ]0, ̂21 ´ [̂2()̂2(1)̂1()̂1(1)]0

and

§(21)
 ´ 

¡
̂¡1

21¡¡1
21

¢ ¡
̂¡1

21¡¡1
21

¢0

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THEOREM 4 If Assumptions A, B.1, C, ()
 () ¡1 for each = 12and

§(21) = lim!1 §(21)
 is positive de…nite, then

¡p
ln()

¢ ¡
¢̂¡ ¢

¢
) 

¡
0[() £()]=1

¢


where 2() = ()0§(21)() 0, and

() ´
h
((2)() + 1)2¡((2)() + 1)2¡((1)() + 1)1((1)() + 1)1

i0


If (1)() 6= (2)() for some 2 f1g then £ (̂(1)
 () ¡ ̂(2)

 ())2

! 1 with probability one.

Remark : Most time series encountered in practice will not be maximally
negatively extremal dependent (i.e. = ¡¡). Assuming ()

 () ¡1
does not reduce the generality of the result by much and, together with positive
de…niteness of §(21)ensures 2() 0. Notice the variances 2() depend on
the displacement 2 f1g through ()().

5.5 Estimated Residuals
As long as estimated residuals, say ̂satisfy ̂= + (1) for some un-

derlying process fg then ̂!in distribution. If fg satis…es Assumptions
A-D then asymptotically f̂g will. Such a condition is satis…ed for linear least
squares residuals, residuals derived from least absolute deviation estimation of
ARIMA time series, Whittle estimated residuals from ARIMA and ARFIMA
models, estimated residuals in GARCH models with in…nite variance errors,
etc. See, e.g., Knight (1993), Mikosch et al (1995), Kokoszka and Taqqu (1996),
Davis and Wu (1997), and Hall and Yao (2003).

6. Tests of ExtremalWhite Noise We develop a test of extremal white
noise using the sample estimators ̂()

 ()All ideas extend to a test of di¤erence
in co-relation tails.

Recall the limiting null distribution of ̂()
 () is grounded on the same ̂’s

for each . Thus, a standard portmanteau statistic is not available, but a
weighted-average portmanteau statistic is. For some increasing sequence of pos-
itive integers ! 1 as ! 1, and some set of weights f()  0g1

=1,P
=1() ! 1, de…ne

()
 () ´

³
(ln)2

´
̂¡2


X

=1
() £ ̂()

 ()2

where

̂2
 = ̂2

() £ [1¡1] £ §̂()
 £ [1¡1]0

and §̂()
 (~1) is based on (4) with = [()

 ~()
1]0.

For a straight average …x () = 1 for each . Weights that augment co-
relations at distant displacements, a la Ljung and Box (1978), include () =
(+ 2)(¡) provided  = ().
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THEOREM 5 Let Assumptions A, B.2, and C hold and let ! 1 as !
1, = (). If ()() = 0 8̧ 1 then ()

 () ) 2(1)If ()() 6=
0 for at least one = 1 ¸ 1 then ()

 () ! 1 with probability one.

7. Order Statistic Index Selection In order to construct the test sta-
tistic a rather arbitrary choice of the sample tail fractile  is required. Using all
"feasible" fractile sequences fg weconsider a ranked co-relation strategy based
on the simple logic that under the null any sequence fg should render ̂(0)

 ()
close to zero: ̂(0)

 () 2 [¡] where, say, 05 = 196 £ ̂(
p
ln()),

and (
p
ln()̂(0)

 ()̂) (01). The subsequent method and theory
carry over to ̂()

 (), = 12, and ¢̂().
De…ne the set of proportional sequences fg under Assumption B.2:

 = f : 1 ··», 12min0·1·2f2(2+)g
and ~= 1 +(1)g

For example = [] § [] is appropriate for any = ().
For each lag de…ne ()

 2  by the -rank of ̂(0)
 ():

¯̄
¯̄̂(0)

(1)


()
¯̄
¯̄ ·

¯̄
¯̄̂(0)

(2)


()
¯̄
¯̄ ·

Write () ´ [()
1 ()

 ] and construct the test statistic functional

(0)
() () =

X

=1

µ
()

 
³
ln(()

 )
´2

¶
̂¡2
0()


£()

µ
̂(0)
()


()
¶2



LEMMA 6 Let Assumptions A, B.2, and C hold. For each = 1and any
(~) 2 : ̂ = ̂~ + (1), ̂ = ̂~ + (1), and ̂() =
̂~() + (1). Moreover, if ()() = 0 for some ̧ 1 then

(
p
ln())̂()

 (̂ = (
p

~ln(~))̂()
~ ()̂~ + (1)

Now let  denote an arbitrary subset of  with  sequences. It is
irrelevant whether  is constant or  ! 1 as ! 1. Lemma 6 implies the
following result.

COROLLARY 7 Let Assumptions A, B.2, and C hold, let (0)() = 0, 8̧
1, and consider any (~) 2  .

i. ¡1


P
2 (

p
ln())̂(0)

 () = (
p

~ln(~))̂(0)
~ () + (1);

ii. ¡1


P
2 (0)

 () = (0)
~ () + (1);

iii. ¡1


P
2

P
=1

(0)
 () = (0)

~ () + (1);

If (0)() 6= 0 for some ¸ 1 then ¡1


P
2 (0)

 () ! 1 and
¡1


P
2

P
=1 

(0)
 () ! 1
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Remark : Claims () ¡ () imply an average Q-statistic over an arbitrary
window of proportional fractiles , or over proportional 0and displacements
= 1, are asymptotically equivalent to any one (0)

 ().

8. Small Sample Performance We draw random samples of iid time
series from the Pareto distribution

() = jj¡ 0, ¹() =¡ 0= 15

Simulation results based on asymmetric Paretian shocks are qualitatively sim-
ilar. For empirical size we consider both = and an Extremal Threshold
process

= 1¡1(j¡1j ·) += 15

By Example 3 of Section3.4, fg is left-, right- and two-tailed extremal white
noise.

Under the alternative we construct AR(1), MA(1), and Self-Exciting AR
processes from

= (1¡1 +1¡1)(¡1 0)+(2¡1 +2¡1)(¡1 · 0)+

The respective cases are AR(1): () = (90), = 12; MA(1): () =
(09), = 12; and SETAR: (11) = (90) and 2 = 2 = 0. In the SETAR
case the process is iid noise when ¡1 · 0, and AR(1) when ¡1 0, hence
(1) = 0 (2) = (1 + j1 j¡ j1 ¡ 1 j)2.

Finally, we simulate a power Hyperbolic-ARCH(1) process of the form

=

= 0 +

X

=1
j¡j

We randomly select 0 2 [015], …x = ¡= 12= 2, and = [25].
The process fg is non-identically distributed extremal white noise.

We simulate 100 series of each process, and tests are performed at the 5%-
level for each = 14. We compute two-tailed (0)

() and di¤erence in tails
¢() based on co-relation ranks 2 f15101520253060g. For the sake
of brevity we simply use uniform weights () = 1.

8.1 Two-TailedTests

Table 1 contains comprehensive two-tailed Q-test results for sample sizes 
2 f400600g. Rejection rates for simple extremal white noise and HYARCH
random variables are exceptional for all ranks· [04 £ ] presented. Moreover,
empirical power is essentially 100% for bothMA(1) and AR(1) processes for even
the smallest rank = 1.

8.2 Tail Index Estimates

We report tail index estimates and 95% con…dence bands ̂0 § 0 for
jj by averaging ̂0()


and 0()


´ 196 £ b~0()


[(()

 )12ln(()
 )]
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over ranks 2 f1[05 £ ]g and displacements = 1. As long as the
fractiles ()

 are chosen from a set of proportional sequences  , Lemma C.3
of Hill (2006a) guarantees ̂0()


and b~0()


have the same properties as any

one ̂0 and b~0 . The resulting estimator is interesting in and of itself, and
is clearly accurate for all random variables simulated. In all cases = 15 lies
in the con…dence band, where 2 does not for all but AR(1) processes. The
persistence of the AR(1) process ‡attens small sample tails, hence the estimates
are positively biased with decreasing bias as increases (see, also, Table 2).

8.3 Di¤erence in Tails

In simulation experiments not reported here we found a comparatively larger
sample size is required for the co-relationdi¤erence-based test statistic, ¢(),
to obtain a reasonable empirical size for dependent, symmetric data (e.g. AR(1)).
The challenge lies in the fact that ¢̂() requires tail-speci…c Hill estimators
̂For any -sample there may be very few observations from one tail even
if the process is symmetric, hence the corresponding ̂ may be heavily bi-
ased with a large dispersion. This occurs because one large spike in coupled
with strong serial dependence in may produce a sample path asymmetrically
dominated by positive of negative values. A large sample size ensures adequate
left-tail and right- sample sizes. We consider sizes2 f10001200g, comparable
to our empirical study. See Table 2.

We test inherently symmetric extremal white noise and AR(1) processes,
producing exceptional empirical size for low ranks · [01]. Empirical power
for an asymmetric SETAR process is as large as 99% for the same low ranks (
= 1200). Again, two-tailed tail index estimates are exceptional.

8.4 Sample Co-Relations

Table 3 presents sample two-tailed and di¤erence-in-tails co-relations and
con…dence bands. We also present true co-relation values based on the formula
in Example 1 of Section 3.4. For all processes we average ̂(0)

()


() and ¢()


()

over ranks = [005]...[05], the asymptotic validity of which is guaranteed
by Lemma 6. The sample two-tailed co-relation is extremely sharp in all cases
where the true value, and not zero (when (0)() 6= 0), appear in each 95% band,
except for the MA(1) at displacement = 1. Because the co-relation ranks are
relatively small there exists a slight negative bias in nearly all cases, and a larger
bias for moving averages due to the inherently weak nature of dependence.

When the process is SETAR the di¤erence-in-tails estimator requires a rela-
tively large sample size for the obvious positive bias to vanish. Bias arises due to
the highly asymmetric and persistent nature of the data favoring the right-tail.
Nevertheless the associated Q-test is exceptional.

Figure 1 plots sample co-relations of Extremal AR(1)=9¡1(j¡1j
15) +and Extremal MA(1) = 9¡1(j¡1 j 15) + processes
out to 50 displacements based on a sample of size = 1000. The plots are
averages over ranks = [005]...[05], and clearly demonstrate the sharpness
of the sample co-relations.
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9. Application We now analyze the serial extremal dependence proper-
ties of exchange rate and equity market daily log returns for the period 1/3/00
to 8/31/05. We consider Yen, Euro, and British Pound [BP] daily 10am spot
rates against the U.S. Dollar; and the NASDAQ, S&P500, and Shanghai Stock
Exchange [SSE] composite daily open-close averages5 . Exchange rate trading
does not occur on the weekends, and all weekends, holidays and unscheduled
closures are treated as missing values. We linearly …lter all variables to remove
day e¤ects using a standard daily dummy regression.

We estimate two-tailed and di¤erence-in-tails co-relations, test extremal
white noise hypotheses for daily displacements = 14and report the mini-
mum p-value over . Results are compiled in Table 4. Figures 2 and 3 contains
plots of sample co-relation 95% intervals for 50 daily displacements. We average
all co-relations over ranks = [005][05]. For each series we also report the
sample two-tailed tail index band ̂0 § b~0

p
 averaged over ()

 for each
= 1and = [005][05].

9.1 Exchange Rate Fluctuations

The daily return to the Yen and Euro exhibit weak positive serial extremal
dependence up to (and beyond) 50 daily displacements. See Figure 2. The large
con…dence bands are due, in part, to the slow rate of convergence

p
ln().

Co-relation estimates at several displacements are signi…cant at the 10% level for
each series (not shown). The British Pound exhibits extremely weak, positive
extremal dependence, where signi…cance is at the 5% level only at a displacement
of 13 trading days.

There is strong evidence in favor of symmetric co-relations in the Yen and
Euro. Symmetric movements near a …xed (non-extremal) threshold is typically
modeled as an Exponential Smooth Transition Autoregression. Cf. Teräsvirta
(1994). A time series governed by a regime switching mechanism with respect to
the non-extremal support (e.g. SETAR; Markov Switching; ESTAR) or merely
with respect to extremes (e.g. Extremal TAR), or linear processes with asym-
metric innovations, will have asymmetric co-relations. Thus, the strong evidence
in favor of symmetric co-relation tails suggests extreme exchange rate returns
may be governed by a linear data generating process with symmetric shocks, and
implies non-extremes and extremes cannot be governed by a switching mecha-
nism that is sensitive to the sign of or the underlying shock. This evidence
runs sharply contrary to the now de riguer wisdom that many exchange rates
are (1) process with non-iid shocks governed by a regime switching data gen-
erating process. See Kräger and Kugler (1993) and Clements and Smith (2001).

Although the British Pound is nearly two-tailed extremal white noise, it
displays signi…cant asymmetric serial dependence favoring the left-tail beginning
at a two day displacement. This implies sharp devaluations of the Pound are
relatively noise compared to sharp devaluations of the Dollar. This result is
likely due to the continuing decline of the U.S. Dollar againt major currencies

5 Exchange rates are daily 10am spot rates taken from the New York Federal Reserve Bank
statistical releases . Stock indices were obtained from Finance.yahoo .com.
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over the past decade.

9.2 Asset Market Returns

The nature of extremal dependence in asset returns is both more diverse,
and much stronger. See Figure 3. The NASDAQ is symmetrically two-tailed
co-related well beyond 50 daily displacements. The strongest degree of serial
extremal dependence exists at one daily displacement, and the tail of the auto-
co-relogram suggests long ("hyperbolic") memory.

The S&P500 exhibits highly signi…cant and weak symmetric …rst order serial
co-relation, and extremely weak, persistent, serial extremal dependence at sub-
sequence displacements (signi…cance is at the 10% level). Like the NASDAQ,
extreme spikes in the S&P500 appear to be governed by a long memory data
generating process. We leave for future research any attempt to test for long
memory in extremes.

Conversely, the SSE exhibits low levels of positive and negative serial co-
relation up to 22 daily displacements. Evidence suggests asymmetric co-relation
tails favoring the right-tail: positive spikes are more persistent than negative
spikes. This may be due to the emerging market status of the SSE (start: Dec.
1990) and the evolving …nancial sector in China. Over the sample period traders
may view a sharp increase as indicative of a lasting trend.

Appendix 1: Proofs
Proof of Theorem 1. See Lemma 4 and Theorem 5 of Hill (2005) for
()

(+1)
()
 = 1 + (1

p
) and ̂ = + (1

p
). By invoking func-

tional invariance of probability limits, we need only show ̂() = () +
(ln()

p
) = (1) to complete the proof. Write

ln̂() = ̂ ln ()
(+1) + ln

³


´

=
̂


ln
³


³
()

´́
+

̂


ln
³
()

(+1)
()


´
+

µ
̂ ¡



¶
ln

³


´


By Lemma C.1 of Hill (2006a) ()(() ) = () + (1
p
). Therefore,

using ̂ = + (1
p
)

ln (̂()()) =
µ
̂ ¡



¶
ln() +

µ
̂¡



¶
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³


´
+(1

p
)

= (ln ()
p
)

Proof of Theorem 2. For claim (), let 2 R, 0= 1, and de…ne the
sequence fg by ()() ! 1. De…ne for any 2 R

= (ln)+ ¡(ln)+
¤
(

p
) =(

p
) ¡[(

p
)]
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and 2
() = (¡12 P

=1 
P

=1 [¡ ¡1¤
(

p
)])2 . From Lem-

mas A.1 and A.2
p

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=1
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¡
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
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= ¡12
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p
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¢¶
+(1)
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())

Lemma A.1 implies j0§¡ 2
()j ! 0 and 2

() = (1) by Lemma A.2,
hence j§j = (1). A Cramér-Wold device delivers the desired joint limit.

Claim () follows easily from the scalar case deliverd in Theorem 6 of Hill
(2005), and standard arguments, cf. Newey and West (1987).

LEMMA A.1 (Hill 2006a) Under the conditions of Theorem 2, for each =
1

p
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¡
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LEMMA A.2 (Hill 2006a) For any 2 R, 0= 1, de…ne

2
() =

µX
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Under the conditions of Theorem 2, 2
() = (1) and

X

=1


p


³
1

X
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(
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Proof of Theorem 3. We prove the limit for the two-tailed coe¢cient ̂(0)
 ().

Proofs of the one-tailed ̂()
 ()= 12, follow similarly.

Expand ̂(0)
 () around 0: by the mean-value theorem for each there ex-

ist stochastic sequences f¤()¤(~1)g satisfying ¤() 2 (̂0()0),
¤(~1) 2 (̂0(~1)0), and
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For each 2 f~g de…ne

·0() ´ ()
³
(0)
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´0
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Rearranging terms, and noting
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Lemma C.2 of Hill (2006a) states ·(0)() = (0)() + (1
p
), by Theorem

1 ̂0() = 0 +(1
p
), and ·¤() = () + (1) by Lemma C.1 of Hill

(2006a). Therefore, Theorem 2 and the continuous mapping theorem give
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where 2
0 = ¡2

0 0 ~§(00), = [1¡1]0. Notice ~§(00) = 4
0§(00) follows from

Remark 2 of Theorem2 and convolution tail equivalence. Hence 2
0 =2

00§(00)
0 if §(00) is positive de…nite.

Because each ̂(0)
 () is stochastically grounded on the same random variables

̂0() and ̂0(~1), the joint distribution under the null (0)() = 0, = 1,
is simply
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Under the maintained assumptions ̂(0)
 () ! (0)() by Theorem 1. Hence,

£ ̂(0)
 ()2 ! 1 with probability one if (0)() 6= 0.
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Proof of Theorem 4. Let (2)() ¡ (1)() = 0, and de…ne
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By imitating the logic of the line of proof of Theorem 3, from the mean-value-
theorem, Theorem 2 and the continuous mapping theorem
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where
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Remark 2 of Theorem 2 and convolution tail equivalence imply
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Notice 2
0 by positive de…niteness of §(12) , and () 6= 0 given ()()

¡1. The remaining joint limit proof mimicks the proof of Theorem 3.

Proof of Theorem 5. Theorems 1 and 2, the continuous mapping theorem,
Cramér’s Theorem, the assumptions (0)() = 0 8̧ 1 and
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If (0)() 6= 0 for some ̧ 1 and () 0 8̧ 1, then Theorem 1 implies
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An identical argument applies to each ()
 ().

Proof of Lemma 6.

Step 1 ( ̂): From Theorem 1 ̂~() ¡ = (1
p

~), and Lemma
C.3 of Hill (2006a) states ̂() = ̂~() + (1

p
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~(̂0~(~1) ¡0) (

p


p
~¡ 1)

i
+(1)

The claim (
p
(ln ))̂(0)

 () ¡ (
p

~(ln~)) ̂(0)
~ () = (1) now follows

from Step 1 and ~¡ 1 = (1). An identical argument holds for each ̂()
 .

Step 3 (̂ and ̂()): Consider ̂: the same logic, along with Step
2, applies to ̂(). Using Step 1 we need only show §̂()

 = §̂()
~ + (1).

Theorem 3 implies j§̂()
 ¡ §()

 j = (1) for all 2 , and j§()
 ¡ §()

~ j
= (1) from Lemma C.4 of Hill (2006a). Now apply the triangular inequality.

REFERENCES

[1] Basrak, B., R.A. Davis, and T, Mikosch (2002). A Characterization of Multivariate
Regular Variation, Annals of Applied Probability 12, 908-920.
[2] Beirlant, J. Y. Goegebeur, J. Segers, J. Teugels, D. De Waal (2004). Statistics of
Extremes: Theory and Applications (John Wiley & Sons: New York).
[3] Bingham, N. H., C. M. Goldie and J. L. Teugels (1987). Regular Variation (Cam-
bridge Univ. Press: Great Britain).
[4] Breiman, L. (1965). On Some Limit Theorems Similar to the Arc-Sine Law, Theory
of Probability and its Applications 10, 351–360.
[5] Caner, M. (1998). Tests for Cointegration with In…nite Variance Errors, Journal
of Econometrics 86,155-175.
[6] Chernozhukov, V. (2005). Extremal Quantile Regression, Annals of Statistics 33,
806–839.
[7] Clements, M. and J. Smith (2001). Evaluating Forecasts from SETAR Models of
Exchange Rates, Journal of International Money and Finance 20, 133-148.
[8] Cline , D.B.H. (1986). Convolution Tails, Product Tails and Domains of Attraction,

23



Probability Theory and Related Fields 72, 529–557.
[9] Coles, S., J. He¤erman, and J.A. Tawn (1999). Dependence Measures for Extreme
Value Analyses, Extremes 2, 339-365.
[10] Datta, s. and W.P. McCormick (1998). Inference for the Tail Parameters of a
Linear Process with Heavy Tail Innovations. Annals of the Institute of Statistical
Mathematics 50, 337-359.
[11] Davidson, J. (1994). Stochastic Limit Theory (Oxford Univ. Press: Oxford).
[12] Davis, R., and S. Resnick (1996). Limit Theory for Bilinear Processes with Heavy-
Tailed Noise, Annals of Applied Probability 6, 1191–1210.
[13] Davis, R., and W. Wu (1997). Bootstrapping M-Estimates in Regression and
Autoregression with In…nite Variance, Staistica Sinica 7, 1135-1154.
[14] de Jong, R.M., and J. Davidson (2000). Consistency of Kernel Estimators of Het-
eroscedastic and Autocorre lated Covariance Matrices, Econometrica 68, 407-423.
[15] Drees, H. (2003). Extreme Quantile Estimation for Dependent Data, with Appli-
cations to Finance, Bernou lli 9, 617-657.
[16] Embrechts, P. and C.M.Goldie (1982). On Convolution Tails, Stochastic Processes
and their Applications 13, 263-278.
[17] Embrechts, P., Klueppelberg, C. and Mikosch, T. (2003). Modelling Extremal
Events for Insurance and Finance (Springer-Verlag).
[18] Fama, E. (1965). Portfolio Analysis in a Stable Paretian Market, Management
Science 11, 404-419.
[19] Feller, William (1971). An Introduction to Probability Theory and its Applications,
2nd ed., vol. 2, (Wiley: New York).
[20] Gallant, A. R. and H. White (1988). A Uni…ed Theory of Estimation and Infer-
ence for Nonlinear Dynamic Models (Basil Blackwell: Oxford).
[21] Geluk, J., P. Liang and C. G. de Vries (2000). Convolutions of Heavy Tailed Ran-
dom Variables and Applications to Portfolio Diversi…cation and MA(1) Time Series.
Advances in Applied Probability 32, 1011 - 1026.
[22] Haeusler, E., and J. L. Teugels (1985). On Asymptotic Normality of Hill’s Esti-
mator for the Exponent of Regular Variation, Annals of Statistics 13, 743-756.
[23] Hall, P. (1982). On Some Estimates of an Exponent of Regular Variation, Journal
of the Royal Statistical Society 44, 37-42.
[24] Hall, P. and Q.Yao (2003). Inference in Arch and Garch Models with HeavyTailed
Errors , Econometrica 71, 285-318.
[25] He¤erman, J.E. and J.A. Tawn (2004). A Conditional Approach for Multivariate
Extreme Values, Journal of the Royal Statistical Society Ser. B 66, 497-546.
[26] Hill, B.M. (1975). A Simple General Approach to Inference about the Tail of a
Distribution, Annals of Mathematical Statistics 3, 1163-1174.
[27] Hill, J.B. (2005). On Tail Index Estimation for Dependent, Heterogenous Data,
Florida International; available at http:// econwpa.wustl.edu:80/eps/em /papers/
0505/0505005.pdf.
[28] Hill, J.B. (2006). Technical Appendix for "Gaussian Tests of ’Extremal White
Noise’ for Dependent, Heterogeneous, Heavy Tailed Stochastic Processes with an Ap-
plication", Florida International University; available at http://www.…u.edu/»hilljona/
tech_append_co_rel.pdf.
[29] Hsing, T. (1991). On Tail Index Estimation Using Dependent Data, Annals of

24



Statistics 19, 1547-1569.
[30] Ibragimov, I. A. and Y. V. Linnik (1971). Independent and Stationary Sequences
of Random Variables (Wolters-Noordhof ).
[31] Jansen, D. and C. de Vries (1991). On the Frequency of Large Stock Returns:
Putting Booms and Busts into Perspective , The Review of Economics and Statistics
73, 18-24.
[32] Jondeau, E. and M. Rockinger (2003). Testing the Di¤erence in the Tails of Stock
Market Returns, Journal of Empirical Finance 9, 1-23.
[33] Knight, K. (1993) Estimation in Dynamic Linear Regression Models with In…nite
Variance Errors, Econometric Theory 9, 570-588.
[34] Kräger, H. and p. Kugler (1993). Non-Linearities in Foreign Exchange Markets:
A Di¤erent Perspective, Journal of International Money and Finance 12, 195-208.
[35] Kokoszka, P. S. and M. S. Taqqu (1996). Parameter Estimation for In…nite Vari-
ance Fractional ARIMA, Annals of Statistics 24, 1880-1913.
[36] Leadbetter, M.R., G. Lindgren and H. Rootzén (1983). Extremes and Related
Properties of Random Sequences and Processes (Springer-Verlag: New York).
[37] Ledford, A. W. and J. A. Tawn (1996). Statistics for Near Independence in Mul-
tivariate Extreme Values, Biometrika 83, 169-187.
[38] Ledford, A. W. and J. A. Tawn (1997). Modeling Dependence within Joint Tail
Regions, Journal of the Royal Statistical Society Ser B 59, 475-499.
[39] Leipus R; and M. Viano (2000). Modelling Long-memory Time Series with Finite
or In…nite Variance: a General Approach, Journal of Time Series Analysis 21 61-74.
[40] Ljung, G.M. and G.E.P. Box (1978). On a Measure of Lack of Fit in Time Series
Models, Biometrika 65, 297-303.
[41] Linton, O. and Y-J Wang (2004). A Quantilogram Approach to Evaluating Di-
rectional Probability, London School of Economics.
[42] Mikosch, T., T. Gadrich, C. Klüppelberg, and R.J. Adler (1995). Parameter Es-
timation for ARMA Models with In…nite Variance, Annals of Statistics 23, 305-326.
[43] Newey, W.K., and K.D. West (1987) A Simple, Positive Semi-De…nite , Het-
eroscedasticity and Autocorrelation Consistent Covariance Matrix, Econometrica 55,
703-708.
[44] Poon, S., M. Rockinger and J. Tawn (2001). New Extreme Value Dependence
Measures and Finance Applications, Les Cahiers de Recherche, Groupe HEC.
[45] Resnick, S. (1987). Extreme Values, Regular Variation and Point Processes
(Springer-Verlag: New York).
[46] Schmidt R. and U. Stadtmuller (2006). Non-Parametric Estimation of Tail De-
pendence, Scandinavian Journal of Statistics 33, 307-335.
[47] Sibuya, M. (1960). Bivariate Extremal Statistics. Ann. Ins. Statist . Math. XI,
195-210.
[48] St¼aric¼a, C. (1999). Multivariate Extremes for Models with Constant Conditional
Correlations, Journal of Empirical Finance 6, 515-553.
[49] Tawn, J. (1990). Modeling Multivariate Extreme Value Distributions, Biometrika
77, 245-253.
[50] Teräsvirta, T. (1994). Speci…cation, Estimation, and Evaluation of Smooth Tran-
sition Autoregressive Models, Journal of the American Statist ical Association 89, 208-

25



218.

Table 1. Two-Tailed Tests: (0)
() (), = 15

Process n  1 5 10 15 20 25 30 60 Av Q ̂0§0
EWN 400 .00 .00 .05 .07 .11 .15 .28 .81 .372 1.57§0.25

600 .00 .00 .00 .00 .00 .06 .13 .70 .407 1.54§0.19
MA(1) 400 .97 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .000 1.59§0.41

600 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .000 1.57§0.32
AR(1) 400 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .000 2.02§1.24

600 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .000 1.75§0.61
HYARCH 400 .01 .02 .05 .14 .22 .34 .42 .78 .592 1.54§0.26

600 .00 .01 .04 .07 .18 .24 .35 .57 .416 1.55§0.22
Notes: a. Co-relation rank.

b. The p-value of a rank- and h-averaged (0)
()()r = [.005n]...[.05], h = 1...4.

c. Average of ̂
0

()

§ 196b~

0
()

(()

 )12 over r = [.005n]...[.05n], i = 1...4.

d. The "extremal white noise" process =1¡1(j¡1j · 15) +.
e. Frequencies are for the maximum Q-statistic over h = 1...4.
f. = 9¡1 + . g. = 9¡1 + .
h. = = 0 +

P
=1j¡j12= ¡2, = 15and Ln = [.25n].

Table 2. Di¤erence in Tails Tests: ¢() (), = 15
Process n  1 5 10 15 20 25 30 60 100 150 200 Av Q ̂0§0
EWN 1000 .02 .03 .04 .05 .05 .08 .09 .12 .18 .31 .46 .365 1.57§.21

1200 .02 .03 .03 .04 .04 .05 .06 .08 .12 .18 .23 .345 1.56§.16
AR(1) 1000 .03 .06 .08 .13 .18 .24 .24 .24 .24 .29 .41 .167 1.49§.09

1200 .02 .04 .05 .08 .10 .17 .17 .21 .21 .24 .37 .161 1.56§.11
SETAR 1000 .78 .81 .84 .85 .86 .91 .91 .92 .93 .94 .98 .000 1.59§.18

1200 .92 .94 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .000 1.66§.16

Notes: a. p-value of rank- and h -averaged ¢ () (), r = [.005]...[.05n], h = 1...4.
b. The p-value it rather small because we are averaging over ranks up to [.05n]. When

we average over r = [.005]...[.01n], the p-values are .311 and .365 respectively.
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Table 3. Sample Co-Relations (= 15)
Two-Tailed Di¤erence in Tails

 EWN MA(1) AR(1) EWN AR(1) SETAR
1 .002§.24 .455§.04 .855§.09 .005§.198 .076§.21 1.13§.28

(.000) (.491) (.911) (.000) (.000) (.911)
2 -.001§.23 -.000§.05 .801§.07 .003§.160 .083§.23 1.08§.32

(.000) (.000) (.823) (.000) (.000) (.823)
3 .000§.21 .001§.05 .711§.06 .006§.162 .055§.21 1.09§.44

(.000) (.000) (.741) (.000) (.000) (.741)
4 -.005§.24 .000§.05 .624§.06 .001§.167 .049§.21 0.96§.51

(.000) (.000) (.665) (.000) (.000) (.665)
5 .003§.25 .001§.05 .535§.05 -.001§.162 .054§.22 0.92§.48

(.000) (.000) (.596) (.000) (.000) (.596)

Notes: a. For two-tailed co-relations, n = 500; for di¤erence-in-tails, n = 1000.
b. Co-relation bands are averages over ranks r = [.005n],...,[.05n].
c. True co-relation: see Example 1 of Section 3.4.

Table 4. Daily USD Exchange Rates and Asset Markets
¢YEN ¢EURO ¢BP

h ̂(0)
 ¢̂ ̂(0)

 ¢̂ ̂(0)
 ¢̂

1 -.004§.02 -.001§.06 .002§.02 -.005§.07 -.002§.02 -.058§.08
2 -.000§.03 -.004§.07 -.010§.02 .001§.04 .011§.02 -.055§.04*

3 .010§.02 -.000§.05 .003§.01 -.002§.07 -.018§.03 -.007§.04
4 -.003§.02 -.002§.05 .008§.02 .000§.06 -.004§.02 .000§.07
Av Q .044 .875 .009 .823 .065 .154
̂0 §0 1.90§.196 1.97§.221 1.89§.220

¢NASDAQ ¢SP500 ¢SSE

h ̂(0)
 ¢̂ ̂(0)

 ¢̂ ̂(0)
 ¢̂

1 .062§.01* .001§.08 .426§..01* .000§.14 .012§.02 .002§.08
2 .003§.01 .000§.07 .003§.01 .000§.05 -.001§.02 .031§.06
3 .005§.01 .005§.08 -.005§.01 .001§.06 -.012§.02 .000§.07
4 .024§.02* .001§.06 -.007§.02 -.001§.04 .012§.02 -.004§.11
Av Q .000 .762 .000 .848 .060 .591
̂0 §0 2.00§.694 1.99§.307 1.72§.531

Notes: a. BP = British pound; b. * = signi…cant at the 5% level (see also Figures 2-3).
c. SSE = Shanghai Stock Exchange.
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Figure 1
Extremal White Noise,

Extremal-AR(1) and Extremal-MA(1)

Extremal White Noise
Two Tailed Auto Co-relations
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Notes: EWN: = 9¡1(j¡1 j · 15) + 
E-AR(1): = 9¡1(j¡1j 15) + .
E-MA(1): = 9¡1(j¡1j 15) + 
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Figure 2
Daily US Dollar Exchange Rates

Auto-Co-Relogram with 95% Con…dence Bands
YEN: Two-TailedCo-Relations
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Figure 3
Daily Stock Market Returns

Auto-Co-Relogram with 95% Con…dence Bands
NASDAQ: Two-Tailed Co-Relat ions
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