Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, June, 2003
J2003 Society for Design and Process Science

SERVICE COMPONENT: A MECHANISM FOR WEB SERVICE
COMPOSITION REUSE AND SPECIALIZATION

Bart Orriéns, Jian Yang and Mike P. Papazoglou
Department of Information Management
Tilburg University
PO Box 90153, 5000 LIE, Tilburg, Netherlands

ABSTRACT

Web services are becoming the dominant paradigm
for distributed computing and electronic business. This
has raised the opportunity for service providers and
application developers to create value added services by
combining web services. Several web service composition
solutions have been proposed, e.g. WSFL and BPEL4WS.
However, none of the existing solutions addresses the
issue of service composition reuse and specialization, i.e.
how applications can be built upon existing simple or
composite services by reuse, restriction or extension. In
this paper we propose the concept of Service Component
that packages together elementary or complex services
and provides composition logic and semantics. Within the
framework of Service Components we examine different
aspects of composition reuse and specialization. A
specification for web component reuse and specialization
is provided, and possible solutions to support this
specification are presented. To demonstrate our
framework we provide an overview of ServiceCom, the
tool that implements the Service Component concept,
supporting reusable web service = composition
specification, combination, and execution.

INTRODUCTION

The Web has become the means for organizations to
deliver goods and services and for customers to search
and retrieve services that match their needs. Web services
are self-contained, web-enabled applications capable not
only of performing business activities on their own, but
also possessing the ability to engage other web services in
order to complete higher-order business transactions.
Examples of such services include catalogue browsing,
ordering products, making payments and so on. The
platform neutral nature of the web services creates the
opportunity for building composite services by using
existing elementary or complex services possibly offered
by different enterprises. For example, a travel plan service
can be developed by combining elementary services such

as hotel reservation, ticket booking, car rental, sightseeing
package, etc., based on their WSDL descriptions.

By composite service, we mean a service that uses other
services. The services that are used in the context of a
composite service are called its constituent services.

Web service design and composition is a distributed
programming activity. There are cases where people want
to reuse the design and implementation of the web
services only by extension or restriction without
developing them from scratch. Therefore the service based
distributed application design process is very similar to
the original vision of component based development, not
purely about development, but about managing the
assembly of collaborative assets to provide a highly
adaptive application solution. This requires software
engineering principles and technology support for service
reuse, specialization, and extension such as those used, for
example, in component based software development.
However it is not possible at the moment to define and
implement a web service composition once, and use it in
similar designs with some variations. Although web
services provide the possibility for offering new services
by specialization and extension their WSDL specification,
to this date there is little research initiative in this area, let
alone mechanism and specification supported.

The basic idea behind composition reuse is simple:
develop web service composition specifications, then
reuse and specialize them in similar composition
conditions. In the object-oriented world, the basic
elements for reuse are object types and classes, and reuse
and specialization are achieved by inheritance and sub-
typing. While for the component systems in which the
reusable objects are components, reuse and specialization
can be realized by various mechanisms such as
inheritance, extension, configuration, parameters, etc.

In this paper we introduce the concept of service
component to facilitate this very idea of web service
component reuse, specialization and extension, and
discuss why the inheritance concepts developed by object-
oriented programming language research cannot be
applied directly to service component inheritance but with

https://core.ac.uk/display/6332318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modification. Service components are a packaging
mechanism for developing web-based distributed
applications in terms of combining existing (published)
web services. Service components have a recursive nature
in that they can be composed of published web services
while in turn they are also considered to be themselves
web services (albeit complex in nature). Once a service
component is defined, it can be reused, specialized, and
extended. In this paper we briefly describe the service
component framework for web service composition,
analyze the characteristics of service component and its
aspects for reuse and specialization. Following this we
discuss the specification requirements for service
component reuse and specialization and possible system
support. Then, to demonstrate our work we provide an
overview of ServiceCom, the tool we developed that
implements our framework for reusable web service
composition specification, combination, and execution.

SERVICE COMPONENT FOR WEB SERVICE
COMPOSITION

As a starting point for the discussion of composition
reuse and specialization, we need to identify several key
elements in composition specification, which are
commonly expressed in the currently proposed standard
such as Business Process Execution Language for Web
Services (BPEL for short) [1] and business process
modeling language (e.g., BPML [2], XPDL [3]). We then
explain how these key elements are supported and
packaged in service components. Service components
then can be used as building blocks for developing web
applications based on composing service functionality.
Consequently, the process of developing web service
composition becomes a matter of reusing, specializing,
and extending the available service components. This
enables a great deal of reusability of service compositions.
To understand how this happens we need to look at the
inner structure and inner workings of a service
component. In the following sub-sections, we will first
introduce the elements of the service components; then we
present the basic constructs for service component
creation.

Service component elements

In most proposed web service composition and
business process modeling specifications, the basic
elements are activities, data and control. In BPML the
control has also been modeled as "activity", within which
a set of activities are included. In this block-structured (as
opposed to activity-transition like WSFL [4]) approach,
each block can itself be considered an activity. For
example, if then else is modeled as a block activity, which
contains a set of alternative activities based on the
conditions. Blocks can then be nested to arbitrary levels.
The fact that the control is expressed as activities allows

the management of the context of these activities at a very
fine level. This is also a good foundation for transactional
semantics and provides a substrate for monitoring the state
of the process. Most importantly, the use of block
structures makes reuse easier. Naturally the proposed
service component is block-structured. However, it
extends the existing block-structure in the following
aspects:

- Service component packs activity blocks
together and define an interface for them,
which can be published as a web service.

- A "block" in the service component has
semantically richer context then normal control
block (e.g., sequential, if then, etc). It specifies
how a composition is constructed in terms of
conditions, order, and alternatives.

- A "block" in the service component is one of
the important aspects for reuse and
specialization.

Figure 1 depicts the ingredients of a service
component. It illustrates that a service component
presents a single public interface to the outside world in
terms of a uniform representation of the exported
functionality of its constituent services and the
input/output messages, It also internally specifies its
composition logic in terms of composition type and
message dependency constructs. Composition logic refers
to the way a composite service is constructed in terms of
its constituent services.

Web Applications)

Service Component

Interface specification

Messages H Operations

Construction specification

portTypes

Composition logic

Composition
Type

iessage
Dependency

Fig. 1: Service Component Ingredients

A block of web service operations is composed
according to the composition logic of the block in a
service component. Here, we assume that all publicly

Service Component

Library

available services are described in WSDL [5]. Composite
logic comprises the following two fundaments:

- Composition type: this construct signifies the
nature of the composition that can take the
combination of the following three forms:

e Order: this construct indicates whether the
constituent services in a composition are
executed in a serial or parallel manner.

e Alternative service execution: Wwhich
indicates whether alternative services can be
invoked in a given service composition.
Alternative services can be tried either in a
sequential or in a parallel manner.

e Conditioned execution: which represents if
then and while do constructs.

- Message dependency: this construct signifies
whether there is a message dependency among
the constituent services and the composite
service. We distinguish between three types of
message dependency handling necessary for a
composition:

* Message synthesis: this construct combines
the output messages of constituent services
to form the output message of the composite
service.

* Message decomposition: this construct
decomposes the input message of the
composite service to generate the input
messages of its constituent services.

* Message mapping: this construct specifies
the mappings among the inputs and outputs
of the constituent services. For example, the
output message of one constituent service
could be the input message of another
service.

What remains to be examined is the core constructs
for expressing composition logic, how they are defined
and how they can be reused and specialized. These issues
are discussed in detail in the following section.

SERVICE COMPONENT ELEMENTS

In this section, we first present the basic constructs
for expressing composition logic; then we illustrate how
service components are defined in terms of these
constructs.

Basic constructs for service composition

The following constructs have been identified to
serve as the basis for compositions [6]:

1. Sequential service composition (sequ). In this
case, the constituent services are invoked
successively. The execution of a constituent
service depends on its preceding service, i.e., one
cannot begin unless its preceding service has
committed. For example, when a composite travel
plan service - composed of an air ticket reservation
service, a hotel booking service, and a car rental
service - makes a travel plan for a customer, the
execution order should be hotel booking, air ticket
reservation, and car rental. The invocation of the
hotel booking service is dependent on a successful
execution of the air ticket reservation, because
without a successful air ticket reservation, hotel
booking cannot go ahead.

2. Sequential alternative composition (seqAlt).
This situation indicates that alternative services
could be part of the composition and these are
ordered on the basis of some criterion (e.g., cost,
time, etc). These will be attempted in succession
until one service succeeds.

3. Parallel service composition. In this case, all the
component services may execute independently.
Here, two types of scenarios may prevail:

a. Parallel with result synchronization
(paraWithSyn). This situation arises
when the constituent services can run
concurrently, however, the results of
their execution need to be combined.
For example, purchasing a PC may
involve sending inquiries to different
companies, which manufacture its
parts. These inquires may run in
parallel, however, they all need to
execute to completion in order to
obtain the total configuration and
price.

b. Parallel alternative composition
(paraAlf). In this situation alternative
services are pursued in parallel until
one service is chosen. As soon as one
service succeeds the remainder are
discarded.

4. Condition. In this case, condition is used to
decide which execution path to take.

5. While do. This is a conventional iteration
construct with testing condition.

The various composition types may result in different
message dependencies and therefore require different
message handling constructs. Table 1 summarizes the
message dependency handling constructs required for
different types of service composition. A cross "X" in the
table indicates the possible message dependency required
to specify for a particular construct. For example, in case

of seqAlt type of composition, message mapping may be
needed. The basic composition types together with
message dependency handling constructs provide a sound
basis for forming the composition logic in a service
component.

Message Message Message
Synthesis ‘Decomposition Mapping
[Seu | x | x | x |

SequAlt X
ParaWithSyn X X X
ParaAlt X
Condition X
WhileDo X

Table 1: Message handling in composition types
Service component class definition

To be able to reuse and specialize service
components, we specify service components as classes. In
Figure 2 below we define a service component class for a
service travelPlan. We assume that a travel plan is a
composite service which combines three services
hotelBooking, ticketReservation, and sightSeeing
which are provided by hotelBookingProvider,
ticketReservationProvider, and sightSeeingProvider
respectively, and presumably have their own input and
output messages and operations defined in their service
component classes. All the message types are defined in
their XML Schemas. A service component can be
specified in two isomorphic forms: A class definition and
an XML/WSDL specification that corresponds and
conforms to the class definition of a service component
and is used to implement the class. The class definition of
a web service is used for discovery, reuse, extension,
specialization, and versioning purposes, whereas its
corresponding XML/WSDL form is used for construction
purposes, message exchange, service invocation and
communication across the network. A complete
XML/WSDL specification of this example can be found
in [6]. In the next subsection we will analyze various
aspects in the service component class for reuse and
specialization.

serviceComponentClass TravelPlan {

Definitions

d1: TripOrderMessage tripOrderMsg
d2: TripResultMessage tripResDetails
o1: travelPlanning (in tripOrderMsg, out tripResDetails)

Construction

c1: sequ(HotelBooking.booking, TicketReservation.ticketRes

c2: ParaWithSyn(c1, SightSeeing.sightseeing)

Providers
p1: HotelBooking HotelBookingProvider
p2: TicketReservation TicketReservationProvider

p3: SightSeeing SightSeeingProvider

MessageHandling

m1: messageDecomposition(TravelPlan.tripOrderMsg,Hotel-
Booking.hotelBookingMsg, TicketReservation.ticketResMsg)
m2: messageSynthesis(HotelBooking.hotelBookingDetails,

TicketReservation.e-ticket, SightSeeing.sightSeeingDetails)

}

Fig. 2: A Service Component Class Definition
REUSE ASPECTS IN SERVICE COMPONENTS

There are five reuse and specialization aspects based
on the service component class definition in Figure 2:
Definition, Construction, Providers, MessageHandling,
and the service component class itself. In the following we
will discuss the possible ways of reusing and specializing
a service component class, and the requirements in the
specification.

To illustrate the first four aspects let us look at the
following example: Suppose a specific travel planning
service includes a fourth service RestaurantBooking that
can be done in parallel with others. Instead of defining a
new composite service from scratch, we can extend the
service component class in Figure 2 by introducing a
subclass AddTravelPlan, in which the construction €3 is
added to the Construction section and a provider for the
new service in the Providers section. We also overwrite
the content of the MessageHandling section to include
the input and output messages results of the
RestaurantBooking service in the decomposition and
synthesizing process. The extended class definition is
depicted in Figure 3.

serviceComponentClass AddTravelPlan
SubclassOf TravelPlan {

Construction

c3: ParaWithSyn(c2, RestaurantBooking.resBooking)

Providers

p4: RestaurantBooking RestaurantBookingProvider

MessageHandling

m1: messageDecomposition(TravelPlan.tripOrderMsg,Hotel-
Booking.hotelBookingMsg, TicketReservation.ticketResMsg,
RestaurantBooking.restaurantBookingMsg)

m2: messageSynthesis(HotelBooking.hotelBookingDetails,
TicketReservation.e-ticket, SightSeeing.sightSeeingDetails,

RestaurantBooking.restaurantDetails)

}

Fig. 3: A Service Component Class Definition
Service Component Reuse and Specialization

Since a service component is specified as a class, it
can be reused whenever a service is required. If any part
of the service component is used, e.g., its messages and
operations, then they have to be prefixed with the name of
the service component. As illustrated above, overriding
and extending any service component aspects is a
specialization of a service component. The keyword
SubclassOf means that the defining service component
class inherits all the aspects from the super service
component class, except the points that are redefined and
modified in the subclass. Any new names introduced in
any aspects for the subclass service component, which are
not defined in the superclass, are treated as extension
aspects to the superclass. All the names appearing in the
subclass, which are also used in the superclass, are treated
as overwriting of the same aspect definitions in the
superclass.

SERVICE COMPONENT CLASS LIBRARY

Service component classes are used as a mechanism
for packaging, reusing, specializing, extending and
versioning web services (or service components). In this
section, we will discuss how service components are
created and how they are used in web service composition
based application development.

Service component creation

There are generally two approaches for creating
service components:

- Converting from a WSDL/XML specification: in
this case, a published WSDL web service or a
XML based service composition (e.g., in BPEL)
is converted into an equivalent object-oriented
notion (class) as illustrated in the previous
section. Any kind of web service (composite or
not) can be represented and stored as a service
component class provided by an organization and
can be used in the development of distributed
applications.

- Defining a service component class from
scratch, in which case there are two scenario:

e Defining a concrete service component
class, i.e. all the aspect elements in the
service component are provided: Definitions,
Construction, MessageHandling, possibly

service providers as well. The example in
Figure 2 is a concrete class.

* Defining an abstract service component
class, 1i.e., only Definitions aspects are
specified in the abstract class. Concrete
service component classes can be used to
implement the abstract classes. For example,
we can define an abstract service component
class as followed:

serviceComponentClass aTravelPlan Abstract {

Definitions

TripOrderMessage tripOrderMsg

TripResultMessage tripResDetails

operation travelPlanning (in tripOrderMsg, out tripResDetails)

}

There are two ways to realize an abstract class by
concrete classes: (1) defining concrete classes as the
subclass of the abstract classes. The example in Figure 2
can be defined as a subclass of the above abstract class. In
this case, the concrete subclasses not only realize the
abstract class, but also can extend the definition, for
instance, adding more operations.

(2) Defining concrete classes by implementing the
abstract class. Similar to Java, in this case, we can have
several service component classes implement the same
abstract class. We can also have a single service
component class implements several abstract service
component class. For example, we can define the
following two concrete service component classes which
implements the abstract class aTravelPlan:

serviceComponentClass DomensticTravelPlan

implements aTravelPlan {

}

serviceComponentClass InternationalTravelPlan

implements aTravelPlan {

}

In this case, the two concrete classes have to have the
same Definitions as the abstract class. Additional binding
rules need to be specified so that the system knows which
implementation to pick up at run time when the abstract
class is used.

Service component class library and repository

The service component class library is a collection of
general purpose and specialized classes implementing the
primitives and constructs discussed in the previous
section. Classes in the service component library act as

abstract data types i.e., they cannot be instantiated. They
provide basic constructs and functionality that can be used
to create service component classes. The service
component library classes can be categorized as followed:

- Service component creation classes: these
classes are used for creating service component
classes out of WSDL/XML specifications.
Service component classes for registered web
services defined in WSDL will be created by
using the construction classes, i.e., the
Definitions, Construction, MessageHandling, and
Providers will be generated for the service
component classes.

- Service component construction classes: these

classes provide the semantics and functions to
implement the composition constructs discussed
in the previous section.
These classes are: Sequ, SeqAlt, ParaWithSyn,
ParaAlt, IfEIse, and WhileDo. The construction
classes are used for building new service
components.

The service component class repository has a
collection of concrete service component classes, service
component application classes. The example in Figure 2 is
a service component application class. All the classes
stored in the repository also have WSDL web service
description published in UDDI, for instance. Therefore
they can be searched and discovered. Developing web
service oriented applications becomes a job of reusing and
specializing service component application classes. The
various types of service component classes and their
relationships are summarized in Figure 4.

Serrice Compaent

classe
[
jREN
* R T o D T
[FEITice COMpent . Sermice COmp Rt | o Sermice COmpEnt
Teation Cleses corsmdion dasses application clases

[

A T

| Sequ” Geq bk | | ParWithSan || Paru il || K _ther else ||Wh.11e_-:b:-|

Fig. 4: Service Component Classes

SERVICE COMPONENT IMPLEMENTATION

To test and demonstrate reuse and specialization of
web service compositions through service components we
developed the ServiceCom tool. ServiceCom is a Java
based implementation of the web service composition
phase model [7], as depicted in Figure 5. This model

provides a high-level description of the web service
composition process. ServiceCom utilizes the service
component mechanism as its underlying mechanism to
support this model. For this purpose a Service
Composition Specification Language (SCSL) has been
developed (see [7] for the syntax). In this language a
service component presents a single public interface to the
outside world in terms of a uniform representation of the
features with exported functionality of its constituent
services. Internally it specifies a set of web services,
which are choreographed in a particular manner. Activity
constructs represent these constituent services through the
use of name and description characteristics. To bind
activities to particular web service providers binding
constructs can be attached to activity constructs. These
bindings utilize information defined in WSDL. To be
exact, they refer to a single operation on a port of a
service in the WSDL interface of the provider.
Alternatively, bindings may provide search criteria to
enable the locating of appropriate providers during
runtime (for example if a suitable provider is not known to
the user). Condition constructs may be used in case of
conditional compositions to govern the control flow
within the service component. To express different forms
of activity choreographies SCSL utilizes the composition
type construct. Supported types are based on the basic
service constructs defined in section 3.1 and include f;
IfElse, ParaWithSync, ParaAlt, SeqAlt, SegNolnt,
SeqWithint and WhileDo.

In the following we first describe the implementation
of the web service composition phase model in
ServiceCom. We then discuss the ServiceCom support for
reuse, extension and specialization.

Web service composition phase model

As can be seen in Figure 5 the web service
composition phase model consists of four phases: the
description, planning, building and invocation phase. We
briefly discuss each phase with regard to its
implementation in ServiceCom.

Description phase

In the Description phase users can specify web
service compositions. For this purpose ServiceCom offers
a composition designer, which provides a visual-oriented
development environment. Activity, binding and condition
constructs may be dragged and dropped on the designer
window. Characteristics may be set and edited through the
use of popup dialogs, which can be opened by double-
clicking a composition construct. Alternatively, constructs
may be inserted, edited and removed through the use of
menus. A screenshot of the composition designer is
provided in Figure 6 in Appendix A.

Planning phase

The Planning phase is concerned with binding the
activities in the service composition to concrete services.
For this purpose ServiceCom offers a web service
provider library facility. This library facility contains
locally known web service providers, which can aid the
user in case he does not know an appropriate provider for
an activity in a composition. (i.e. the WSDL interfaces are
stored on the local system). Web service providers may be
added and removed from the library. Also, a search on the
Internet can be performed to locate suitable providers,
based on user-specified search criteria. Any located
providers may then be added to the library, making them
locally available. Furthermore, provider functionality may
be tested through a quick invocation. As such, the web
service provider library is of great help in the planning
phase of the web service process model. For a screenshot
of the library see Figure 7 in Appendix A.

In case a user does not want to search and select a
service provider manually ServiceCom is capable of
selecting appropriate providers automatically during
runtime. For this purpose the tool utilizes the search
criteria specified in the binding construct(s).

Compaoztion Request
User) orestion requiremert (type,
| condtion, etc)
L
» Define
WEDL
(i]nln]l
repasitary s B
> Flan
Java interface WECL
b
Javairﬂerfacel— Build
Wiek
cotmponent stub files
repozitory X
Irvioke
DL

Fig. 5: The Web Service Composition Phase Model
Building phase

The Building phase is of essence in the web service
composition phase model. It crosses the gap between
composition specification and actual invocation. In this
phase the web service composition specification is used as
input to generate the set of Java source and class files
required for the invocation of the composition. This set of
files comprise of the following:

- Firstly, for each activity in the composition a set
of Java source and class files is created for
invocation. These files are derived from the
WSDL definition of the service provider,
specified in the binding construct of the activity.
For each service in the definition a class is
defined, as well as for the ports of these services.
Operations are represented as Java methods,
whereas faults are expressed as exceptions.
Additionally, files are generated that translate
operation invocations from and to SOAP
messages to enable XML-based invocation.

- Secondly, a set of Java source and class files is
created for the web service composition. These
files enable the invocation of the composition in
the specified manner. The exact types of files that
are generated depend on the type of the
composition. For example, if a composition is of
the type if, then its condition constructs are
mapped to source and class files. In case of
parallel compositions source and class files are
generated that enable the invocation of an
activity in a separate thread of execution.

- Thirdly, a WSDL definition is generated for the
web service composition. This definition
functions as the public interface of the
composition.

Invocation phase

The Invocation phase deals with the execution of a
web service composition and its corresponding result
handling. In most cases users will likely want to
incorporate the composition’s functionality in custom
made programs. In these situations the development of
nice, user-friendly interfaces are left to the designers of
these programs. However, some users may simply want to
invoke the service once and are not interested at all in
software program development. These users may employ
the standard interfaces for the web service composition,
which can be generated prior to invocation. Although
these interfaces are basic, they provide a means to the user
to enter the required inputs and display the received
outputs. We expect that a standard for building web
service user interfaces based on WSDL definitions will be
developed in the near future. If this is the case, then
ServiceCom will be adapted to include support for this
standard.

Support for reuse, extension and specialization

Reuse, extension and specialization of constructs in
the Description phase in ServiceCom is based upon the
use of unique names and namespaces. This combination
ensures that a reference to a construct may only refer to a

single construct, since a construct name must be unique
within a namespace and each composition has a unique
namespace. For the reuse of constructs simple references
can be used. Extension and specialization is supported
through the utilization of base types. When specifying a
base type for a construct the characteristics of this base
construct are inherited by the sub-construct. Additional
information in the sub-construct not present in the base
construct extends the base construct. Similarly, in case of
information that is present in both the sub and base
construct the characteristics of the base construct are
overridden. In ServiceCom both references and base types
can be made through the selection of composition
constructs from the web service composition library.
(See Figure 8 in Appendix A for a screenshot)

In section 3 we distinguished five aspects of reuse,
extension and specialization for service components.
Table 2 shows an overview of the ServiceCom support for
each of these types through the use of, among others, the
above-described mechanism of references and base types.

Reuse aspect Supported

Definition Partly
Construction Yes
Provider Yes
Message handling No
Service component Yes

Table 2: Support for reuse, extension and specialization

As table 2 illustrates ServiceCom supports four of the
five defined reuse aspect. With regard to the Definition
aspect operations may be reused, extended and specialized
through respectively the reuse, extension and
specialization of the WSDL interface that is generated for
the web service composition. Since message constructs
are not used in ServiceCom, there is no support for their
reuse, extension or specialization.

Reuse, extensions and specialization of basic
constructions in the Construction aspect is supported.
Compositions may not contain other compositions directly
in ServiceCom, but references to such compositions can
be made through the use of activity constructs. As such,
reuse, extension and specialization of basic constructions
becomes a matter of reusing, extending and specializing
activity constructs. As mentioned earlier binding
constructs are used in ServiceCom to bind activities to a
certain web service provider. These binding constructs
may be reused, extended and specialized in a similar
fashion as activity constructs. As such, reuse, extension
and specialization in the Provider aspect is

accommodated. Finally, service component as a whole or
their constructs can be reused, extended or specialized.

Besides the reuse, extension and specialization issues
outlined in section 3 ServiceCom enables a further form
of reuse in its implementation of the building phase. As
stated in the discussion, at this phase it pertains to the
generating of Java source and class files based on the
specified web service composition to enable its
invocation. These files are referred to as service
component application classes in section 5 and they are
reusable in the building phase. These files can be reused
in composition building. Source and class files for a
composition will be generated only if they are not already
in the library. For example, suppose a service is involved
in multiple compositions, instead of generating new files
for each composition only one set files will be generated
and it will be reused in all other compositions this service
is involved in.

Furthermore, ServiceCom enables the reuse of
application classes in two other ways: (1) Generated files
can be used in the development of other applications, (2)
the mentioned functionality may be extended and
specialized in an object-oriented fashion through the use
of Java overriding and inheritance mechanisms. However,
these types of reuse are in our opinion best facilitated in
professional programming environments and are thus
considered to be outside the scope of ServiceCom.

Finally, reuse of the generated public interface of the
composition is possible. Firstly, the WSDL definition may
be included in the web service provider library, making it
available for use in other compositions. Secondly, the
interface file can be published in for example an UDDI
registry to make the composite service’s functionality
known to the outside world. For the latter purpose
ServiceCom offers a deploy mechanism. This mechanism
enables the publication of the new, composite web service
in standard web service containers, such as Tomcat and
J2EE.

RELATED WORK

Sub-typing and inheritance is widely supported in
object-oriented systems. However, in object-oriented
system, the concepts involved in sub-typing and
inheritance are classes, attributes, and methods. As we
analyzed in this paper there are more aspects in a service
component to be considered for reuse and specialization.
BPML, XPDL, and BPEL4WS are three representing
standards for XML-based process definition languages.
BPML is a block-structured programming language. It
supports complex activities, which refer to activity sets.
The control and routing are defined within the blocks.
Since a complex activity can appear in an activity set,
BPML supports nesting and recursive process definition.

XPDL on the other hand is a graph-structured language.
Because it only allows process definitions on the top level,
there is no support for nested processes in XPDL. Activity
attributes can be used in XPDL to specify the resource(s)
required to perform the activity. This expression will be
evaluated at execution time to determine the resource
required. This feature is missing in BPML and BPEL.
BPEL4WS is a block-structure programming language,
which allows recursive block but does not support nested
process definition. BPEL4WS is designed specifically for
web service orchestration. However, none of the
proposing standards has addressed the issue of service
composition reuse and specialization. Some similar work
has been done in the area of work class inheritance. [8]
presented a framework to analyze the requirements for
supporting work class inheritance. Different perspectives
of inheritance were discussed and a work class definition
language is proposed. In [9] the authors presented a work
class specification. It consists of a set of object classes as
well as a set of rules. Subclass and inheritance is
supported, at least partially. [10] described a system called
TOWE. It implements a set of classes, which provide the
basic mechanism for work execution. Normal work
classes can then be developed through inheritance of the
functionality of these basic classes. Although all these
work are relevant, the basic difference between the work
done in the work and what we are proposing in this paper
is that all the aspects in the service component class are
the reuse point: they can be referred to inside or outside
the class definition, consequently they are the points
which can be specialized and override because aspect
elements are uniquely labeled.

SUMMARY

In this paper, we present a framework for analyzing
the issues around web service composition reuse and
specialization. The concept service component is
proposed, which is used as a packaging mechanism for
composing web services. Once service component classes
are defined, they can be reuse and specialized by adding
and overriding the definitions of the service component
aspects. Subsequently we discuss ServiceCom, an
implementation of the service component mechanism,
which enables composition development, reuse and
specialization, as such covering the web service
composition phase model.

REFERENCES

[1] F. Curbera, Y. Goland, J. Klein, F. Leymann, D.
Roller, S. Thatte, S. Weerawarana; "Business Process
Execution Language for Web Services", July 31, 2002,
http://www-106.ibm.com/developerworks/webservices/

library/ws-bpel/

[2] Business Process Modelling Initiative; "Business
Process Modeling Language", http://www.bpmi.org

[3] Workflow Management Coalition; “XML Process
Definition Language”, May 22, 2001,
http://www.wfmc.org/standards/docs/ xpdl 010522..pdf

[4] F. Leymann; "Web Service Flow Language", 2001,
http://www.ibm.com/software/solutions/webservices/pdf/
WSFL.pdf

[5] E. Christensen, F. Curbera, G. Meredith, S.
Weerawarana; “ Web Service Description Language”, 15
March 2001, http://www.w3.org/TR/wsdl

[6] J. Yang, M.P. Papazoglou, W.J. v/d Heuvel,
"Tackling the Challenges of Service Composition", ICDE-
RIDE workshop on Engineering E-Commerce/E-
Business, San Jose, USA, 2002

[7] J. Yang, M.P. Papazoglou; "Web Components: A
Substrate for Web Service Reuse and Composition",
Proceedings of 14th Conference on Advanced Information
Systems Engineering (CAiSE(02), Toronto, May 2002.

[8] C. Bussler; "Work Class Inheritance and Dynamic
Work Class Binding", Proceedings of the Workshop
Software Architectures for Business Process Management
at the 11th Conference on Advanced Information Systems
Engineering (CAiSE*99), Heidelberg, Germany, 1999

[9] G. Kappel, P. Lang, S. Rausch-Schott, W.
Retschitzegger; "Work Management Based on Objects,
Rules, and Roles", Bulletin of the Technical Committee
on Data Engineering, Vol. 18, No. 1, March 1995

[10] M.P. Papazoglou, A. Delis, A. Bouguettaya, M.
Haghjoo; "Class Library Support for Work Environments
and Applications", IEEE Transactions on Computers, Vol.

46, No.6, June 1997

APPENDIX A - SERVICECOM SCREEN SHOTS

|5
File E w Insert Tools Help

m

=10l x|

[FEENE Bl e
TR

Composition

For Help, press F1

+ Compuosition Designer - MylIfElseCompaosition

Design averview ——| i Activity Designer - MyActivity | x|
(3 Composition
¢ O Actiities Name: Mysclity |
B MyActivity
trhjt Base: | | [ey]
@[3 Bindings

@ 3 conditions
@ 3 Identifiers
I Rules

My¢ Deseription: [This is my activity

Binding: | MyBdling | | by

(o | =

Fig. 6: The main window, the composition
designer and the activity designer

[Services Provider el
P [Holiday
[Fiiare Name: |K4THntelAva|l |
@ 3 Hatel
: B kaTHotelAyvailvis
AnalLo -
KaTHotelSe Services | RV ‘
B[] Search
SalCentrallnguir 7
SalCentralseard Service
HMethodls
p [Stack Hlarme: |K4THntr:I.£\vai|W‘3
AlphalistServic)
MexusStack Beseription: [Tk Service. < /b2 /p>This WebService search -
for hotel availahility on the GDE
[database</p><p-Demo
[Bite<ar</p= -
Parts: | KeTHoteldwallSSoan -
Port:
Name: 4THatelsvaibSSomn |
Operafions: | GetAvailability x|
Operation:
Mame: (Setdyvailabilty |
Deseription; fo=r sons< /i< /pr<pr<hi*Response</hir< pripra &
bihspankspidL data with search resulc =a
ref="http: //k4t _viatecla.pt/dotnet /R4t /Ech
lemas /H4THotelhvail, wed > <ix (XML
S chena) < fir<ar_ </p> ~| ||
-

Fig. 7: The web service provider library

10

| CDmﬂMUVE the web service composition |

e i

MylfEiseComposii Mame: |MyCom;Josmon |

MyParallelComposi

MyParallelinSyncC X

MySegARComposi 1yRe |If |

My Segithint Comy

MySeciithiointCg) Description:

My SingularCompo:

WyhileDoCompo:

1
Components
Activiies: | MyActivity | | vew |
Bincings: |M]deing V|‘ Wiew |
Conditions: |t V| ‘ Wiew |
Icientifiers: |M]F|ﬂen‘iﬁ3f '| ‘ g |
Rules: | MyRule - | ‘ wiew |

Fig. 8: The web service composition library

