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Abstract

This note studies the problem of implementing social choice correspondences

in environments where individuals have doubts about the rationality of their oppo-

nents. We postulate the concept of ε-minimax regret as our solution concept and

show that social choice correspondences that are Maskin monotonic and satisfy

the no-veto power condition are implementable in ε-minimax regret equilibrium

for all ε ∈ [0, 1).
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1 Introduction

This note studies the problem of implementing social choice correspondences in environ-

ments where individuals have doubts about the rationality of their opponents.

Now, if an individual is uncertain about the rationality of his opponents, which

conjectures about his opponents’ actions should he form? This is a very intricate issue.

Admittedly, he can form a subjective probabilistic assessment and play a best response

to his assessment. However, any subjective assessment is largely arbitrary, and there

is no obvious reasons to favor one assessment over another. Bayesian theory is silent

on how to form initial probabilistic assessments. Moreover, experimental evidence such

as the Ellsberg paradox suggests that individuals frequently experience difficulties in

forming a unique assessment. In this note, we postulate that “regret” guides individuals

in forming probabilistic assessments and, ultimately, in making choices. Specifically, we

consider the concept of ε-minimax regret equilibrium as the solution concept (Renou

and Schlag (2009)).

In an ε-minimax regret equilibrium, each player believes that his opponents are

playing according to the equilibrium strategies with probability 1− ε, and is completely

uncertain about the play of his opponents, otherwise. Whenever uncertain about the play

of his opponents, a player conjectures that his opponents would play so as to maximize

his regret. In particular, there is no mutual belief in rationality in an ε-minimax regret

equilibrium (unless ε = 0). Intuitively, if a player believes with probability one that

his opponents are rational, he must conclude that his opponents will not play strictly

dominated strategies. However, this might contradict his conjecture that his opponents

aims at maximizing his regret with probability ε: strictly dominated strategies might

maximize his regret. The parameter ε thus captures the extent to which players are

doubtful about the rationality of others: the higher ε is, the more doubtful a player is.

We show that the social choice correspondences that are Maskin monotonic and sat-

isfy the no-veto power condition are implementable in ε-minimax regret equilibrium for

any ε < 1. Perhaps surprising, this result states that even arbitrarily large uncertain-

ties about the rationality of others does not undermine the implementation of social

correspondences that are Maskin monotonic and satisfy no-veto power. We also show

that Maskin monotonicity is not a necessary condition for implementation in ε-minimax

regret equilibrium, even when implementation is required for all ε ∈ (0, 1). A larger set
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of social choice correspondences can be implemented.

For excellent surveys on implementation theory, we refer the reader to Jackson (2001)

and Maskin and Sjöström (2002). A closely related contribution to our work is Tumen-

nasan (2008), who studies the problem of implementation in quantal response equi-

librium. The distinctive feature of this solution concept is that players make errors

in evaluating their payoffs and, thus, may play sub-optimal strategies. Tumennasan

makes, however, two additional and key assumptions. Firstly, he considers limiting

quantal response equilibrium, i.e., as the probability of errors goes to zero. Secondly,

he requires each limiting quantal response equilibrium to be a strict Nash equilibrium.

These two additional assumptions makes the problem of implementation in quantal re-

sponse equilibrium essentially equivalent to the problem of implementation in strict Nash

equilibria. He shows that quasi-monotonicity together with a condition termed no-worst

alternatives are necessary and almost sufficient conditions for implementation.1 Quasi-

monotonicity and Maskin monotonicity do not imply each others. Unlike Tumennasan,

we do not refine the set of ε-minimax regret equilibria and, in fact, show that neither

Maskin monotonicity nor quasi-monotonicity are necessary conditions for implementa-

tion in ε-minimax regret equilibrium.

2 Preliminaries

An environment is a triplet 〈N, X, Θ〉 where N := {1, . . . , n} is a set of n players, X a

finite set of alternatives, and Θ a finite set of states of the world. For each player i ∈ N ,

there is a Von Neumann-Morgenstern utility function ui : X × Θ → R.

We denote by Li(x, θ) := {y ∈ X : ui(x, θ) ≥ ui(y, θ)} player i’s lower contour set of

x at state θ.

A social choice correspondence f : Θ → 2X \ {∅} associates with each state of

the world θ a non-empty subset of alternatives f(θ) ⊆ X. Two classic conditions for

Nash implementation are Maskin monotonicity and no-veto power. A social choice

correspondence f is Maskin monotonic if for all (x, θ, θ′) in X × Θ × Θ with x ∈ f(θ),

we have x ∈ f(θ′) whenever Li(x, θ) ⊆ Li(x, θ′) for all i ∈ N . Maskin monotonicity is a

1For sufficiency, he also needs the no-veto power condition. For the problem of implementation in

strict Nash equilibrium, Cabrales and Serrano (2008) show that quasi-monotonicity and the condition

of no-worst alternatives are necessary and almost sufficient conditions.
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necessary condition for Nash implementation. A social choice correspondence f satisfies

no-veto power if for all θ ∈ Θ, we have x ∈ f(θ) whenever x ∈ arg maxx′∈X ui(x
′, θ) for

all but at most one player i ∈ N . Maskin monotonicity and no-veto power are sufficient

conditions for Nash implementation (if n ≥ 3). Denote FNE the set of social choice

correspondences that are Maskin monotonic and satisfies the no-veto power condition.

A mechanism (or game form) is a pair 〈(Mi)i∈N , g〉 with Mi the set of messages of

player i, and g : ×i∈NMi → X the allocation rule. Let M := ×j∈NMj and M−i :=

×j∈N\{i}Mj , with m and m−i generic elements, respectively.

A mechanism 〈(Mi)i∈N , g〉 together with a state θ induce a strategic-form game G(θ)

as follows. There is a set N of n players. The set of pure actions of player i is Mi, and

player i’s payoff when he plays mi and his opponents play m−i is ui(g(mi, m−i), θ). Let

Σi be the set of mixed strategies of player i and denote Σ−i := ×j∈N\{i}Σj , with generic

elements σi and σ−i, respectively.

The aim of this paper is to study the problem of full implementation when players

behave according to the solution concept of ε-minimax regret equilibrium (Renou and

Schlag (2009)). Before defining our solution concept, we wish to stress that the concern

for minimizing maximal regret does not arise from any behavioral or emotional consider-

ations. Rather, it is a consequence of relaxing some of the axioms of subjective expected

utility (e.g., the axiom of independence to irrelevant alternatives); we refer the reader to

Hayashi (2008) or Stoye (2008) for recent axiomatizations. At state θ, player i’s ex-post

regret ri((mi, m−i), θ) associated with the profile of messages (mi, m−i) is given by

ri((mi, m−i), θ) = sup
m′

i
∈Mi

ui(g(m′
i, m−i), θ) − ui(g(mi, m−i), θ). (1)

Player i’s regret is thus the difference between player i’s payoff when the profile of

messages (mi, m−i) is played and the highest payoff he would have got, had he known that

his opponents were playing m−i. With a slight abuse of notation, we write ri((σi, σ−i), θ)

for the expected regret when the profile (σi, σ−i) of mixed strategies is played. A profile

of strategies (σ∗
i , σ

∗
−i) is an ε-minimax regret equilibrium of the game G(θ) if

(1 − ε)ri((σ
∗
i , σ

∗
−i), θ) + ε sup

σ−i∈Σ−i

ri((σ
∗
i , σ−i), θ) ≤

(1 − ε)ri((σ
′
i, σ

∗
−i), θ) + ε sup

σ−i∈Σ−i

ri((σ
′
i, σ−i), θ)

for all σ′
i ∈ Σi, for all i ∈ N .
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Let us briefly comment on our solution concept. In an ε-minimax regret equilibrium

(σ∗
i , σ

∗
−i), player i believes that his opponents are playing σ∗

−i with probability 1 − ε

and is completely uncertain about the play of his opponents, otherwise. And whenever

uncertain about the play of his opponents, player i conjectures that his opponents play

so as to maximize his regret. In particular, this implies that there is no mutual belief in

rationality (unless ε = 0). To see this, suppose that there are only two players, 1 and

2, that player 2 has a strictly dominant action and player 1 believes with probability

one that player 2 is rational. Since player 1 is certain that player 2 is rational, player

1 must conjecture that player 2 plays his strictly dominant action with probability

one. However, the strictly dominant action of player 2 might not coincide with the

action that maximizes player 1’s regret. According to our solution concept, player 1

might therefore conjecture that player 2 plays a strictly dominated action with strictly

positive probability (at most ε, however), a contradiction with his belief about player 2’s

rationality. (See Example 1.) The parameter ε quantifies the beliefs in rationality: the

higher ε, the more doubtful a player is about the rationality of his opponents. Similarly,

there is no common belief in conjectures (unless ε = 0). Two additional remarks are in

order. Firstly, the concept of ε-minimax regret equilibrium with ε = 0 coincides with

the concept of Nash equilibrium. Secondly, if ε = 1, there is no strategic considerations:

a player simply minimizes his maximal regret, without making inferences about the play

of his opponents, given his knowledge of their payoffs and the fact that they minimize

maximal regret. We refer the reader to Renou and Schlag (2009) for additional results.

Definition 1 Fix ε ∈ [0, 1]. The mechanism 〈(Mi)i∈N , g〉 implements the social choice

correspondence f in ε-minimax regret equilibrium if for all θ ∈ Θ, the following two

conditions hold:

(i) For each x ∈ f(θ), there exists an ε-minimax regret equilibrium m∗ of G(θ) such

that g(m∗) = x.

(ii) If σ is an ε-minimax regret equilibrium of G(θ), then g(m) ∈ f(θ) for all m in the

support of σ.

Before proceeding, it is important to note that our definition of implementation

in ε-minimax regret equilibrium follows Maskin (1999)’s definition and, in particular,

considers mixed strategies in part (ii). This contrasts with most of the literature on
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Nash implementation: with the notable exceptions of Maskin (1999) and Mezzetti and

Renou (2009), mixed strategies are not considered in this literature.2 With the concept

of ε-minimax regret equilibrium, however, it is fundamental to consider mixed strategies:

unlike the concept of Nash equilibrium, a player might be indifferent between two pure

actions and yet strictly prefers a mixture of the two over each one.3 We now illustrate

our concept of implementation in ε-minimax regret equilibrium with the help of a simple

example.

Example 1. There are two players, 1 and 2, two states of the world, θ and θ′, and

four alternatives, a, b, c, and d. The utilities are represented in the table below. For

instance, at state θ, player 1’s payoff of a is 10, while player 2’s payoff is 2.

θ θ′

1 2 1 2

a 10 2 5 5

b 4 5 1 0

c 5 0 0 1

d 5 1 0 0

Consider the social choice function f with f(θ) = d and f(θ′) = a. It is imple-

mentable in Nash equilibrium (Maskin (1999)), as well as in rationalizable outcomes

(Bergemann, Morris and Tercieux (2009)). A simple mechanism to implement f is the

following: each player i has two messages mi and m′
i, and the allocation rule is given in

the table below.

m2 m′
2

m1 a b

m′
1

c d

In particular, at state θ, the strategic-form game G(θ) is:

2Note a substantial difference between Maskin (1999) and Mezzetti and Renou (2009): in part (i) of

the definition of implementation, Maskin does not consider mixed Nash equilibria, while Mezzetti and

Renou do.
3This follows from the axiomatization of the minimax regret criterion, which requires the uncertainty

axiom. The uncertainty axiom says that if an individual is indifferent between two acts, he prefers a

mixture of these acts over each of them. (See Stoye (2008).)
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m2 m′
2

m1 10, 2 4, 5

m′
1

5, 0 5, 1

So, if player 1 is certain that player 2 is rational, then (m′
1
, m′

2
) is the unique rationaliz-

able outcome, hence the unique Nash equilibrium. Suppose now that player 1 has some

doubts about the rationality of player 2 and, thus, is not certain that player 2 plays

his strictly dominant action m′
2
. Assume that player 1 believes that player 2 is rational

with probability 1−ε and, thus, believes that player 2 plays m′
2

with probability at least

1−ε. With probability ε, player 1 is completely uncertain about the play of player 2 and

conjectures that player 2 plays so as to maximize his (player 1) regret. We argue that

(m′
1
, m′

2
) is nonetheless the unique ε-minimax regret equilibrium whenever ε is small

enough.

Clearly, it is optimal for player 2 to play his strictly dominant action m′
2
. Now, if

player 1 considers playing m′
1
, his maximal regret is 5ε. With probability 1 − ε, player

1 believes that player 2 is rational and thus plays m′
2
, in which case m′

1
is player 1’s

best reply. With probability ε, player 1 conjectures that player 2 maximizes his (player

1) regret, and thus plays m2. In that case, m1 (and not m′
1
) is the best reply, so that

the regret is 5.4 Alternatively, if player 1 considers playing m1, his maximal regret

is 1. We might then conclude that m′
1

minimizes player 1’s maximal regret whenever

ε ≤ 1/5. However, if ε > 1/6, player 1 can guarantee himself a maximal regret of

5/6 by randomizing between m1 and m′
1

with probability 5/6 and 1/6, respectively.

In other words, m′
1

is not a profitable deviation whenever 1/5 > ε > 1/6, but the

randomization between m1 and m′
1

is; this highlights the importance of considering

mixed strategies. In fact, (m′
1
, m′

2
) is the unique ε-minimax regret equilibrium whenever

ε ≤ 1/6.5 This simple example suggests that social choice correspondences that are

Maskin monotonic and satisfies the no-veto power condition are implementable in ε-

minimax regret equilibrium whenever ε is small enough, i.e., whenever the doubt about

the rationality of others is small enough. Surprisingly, this turns out to be true even for

arbitrarily large ε, i.e., for all ε < 1.

4That is u1(g(m1, m2), θ) − u1(g(m′
1
, m2), θ) = 5.

5If ε > 1/6, there is a unique ε-minimax regret equilibrium, in which player 1 plays m1 with

probability 5/6 and player 2 plays m′
2

with probability one.
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3 Monotonicity and no-veto power

The main result of this note is that social choice correspondences that are Maskin mono-

tonic and satisfy the no-veto power condition are implementable in ε-minimax regret

equilibrium for all ε ∈ [0, 1). Maskin’s result is surprisingly robust: even arbitrarily

large uncertainties about the rationality of opponents do not undermine the implemen-

tation of social choice correspondences in FNE.

Proposition 1 Let n ≥ 3. If the social choice correspondence f is Maskin monotonic

and satisfies no-veto power, then it is implementable in ε-minimax regret for all ε ∈ [0, 1).

The intuition for Proposition 1 is simple. The canonical mechanism for Nash imple-

mentation features an integer game, whereby whenever it is not the case that at least

n−1 players announce the same message, the alternative implemented is the alternative

nominated by the player announcing the highest integer (if there are several such play-

ers, choose the player with the lowest index). Consider now a profile of messages such

that the integer game applies. The regret to any player is then the difference in payoffs

between his most preferred alternative and the alternative implemented. Indeed, had

the player known the integers of the others, he could have chosen a strictly higher integer

and got his most preferred alternative. Clearly, his maximal regret is then the difference

in payoffs between his most preferred alternative and his less preferred alternative. Fur-

thermore, regardless of the strategy a player follows, his opponents can always trigger

the integer game and impose to the player his maximal regret. With probability ε, the

maximal regret to a player is therefore constant and, consequently, only the regret of

facing rational opponents matters. In turn, this implies Nash behavior.

Proof Since f is Maskin monotonic and satisfies the no-veto power condition, it is

implementable in Nash equilibrium. In particular, the mechanism of Maskin and Sjötröm

(2002) implements f . The mechanism has the following distinctive feature: each player

i has to report an alternative xi, a state θi, an integer zi and a mapping αi : X×Θ → X

from alternatives and states to alternatives satisfying αi(x, θ) ∈ Li(x, θ) for all (x, θ).

Moreover, under rule 3 of the mechanism, whenever it is not the case that at least

n − 1 players announce the same alternative x, the same state θ and the integer 1, the

alternative implemented is the alternative announced by the player with the highest

integer (if there are several such players, choose the player with the lowest index): it is
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an integer game.

We claim that the maximal regret a player can experience is independent of the

strategy σi he plays. To see this, assume that the state of the world is θ. Suppose that

the profile (mi, m−i) is realized such that rule 3 applies, i.e., g((mi, m−i)) = xi∗ with i∗

the player with the lowest index among the players announcing the highest integer. The

regret to player i in state θ is therefore:

max
x∈X

ui(x, θ) − ui(g(mi, m−i), θ),

since player i can always get his most preferred alternative by announcing an integer

strictly higher than the ones of his opponents. Furthermore, by choosing m−i such that

at least one player other than i announces an integer higher that the one of player i

and all players other than i announce the less preferred alternative of player i (i.e.,

m−i = (θj, αj, xj , zj)j∈N\{i} with xj ∈ minx∈X ui(x, θ) for all j ∈ N \ {i} and zj > zi for

at least two players j), the maximal regret to player i is

max
x∈X

ui(x, θ) − min
x∈X

ui(x, θ) := Ki(θ).

It then follows that for any σi, the supremum of the regret is attained in Ki(θ). (It is

actually a maximum whenever σi has a finite support. But no maximum exists when σi

has an unbounded support.)

Finally, let (σ∗
i , σ

∗
−i) be a Nash equilibrium of the mechanism at state θ. Note that

this is equivalent to ri((σ
∗
i , σ

∗
−i), θ) ≤ ri((σi, σ

∗
−i), θ) for all σi ∈ Σi. It follows that

(1 − ε)ri((σ
∗
i , σ

∗
−i), θ) + ε sup

σ−i∈Σ−i

ri((σ
∗
i , σ−i), θ) =

(1 − ε)ri((σ
∗
i , σ

∗
−i), θ) + εKi(θ) ≤

(1 − ε)ri((σi, σ
∗
−i), θ) + εKi(θ) =

(1 − ε)ri((σi, σ
∗
−i), θ) + ε sup

σ−i∈Σ−i

ri((σi, σ−i), θ),

for all σi ∈ Σi, so that (σ∗
i , σ

∗
−i) is an ε-minimax regret equilibrium.

Conversely, if (σ∗
i , σ

∗
−i) is not a Nash equilibrium, there exist a player i and a strategy

σ′
i such that ui((σ

′
i, σ

∗
−i), θ) > ui((σ

∗
i , σ

∗
−i), θ), so that ri((σ

∗
i , σ

∗
−i), θ) > ri((σ

′
i, σ

∗
−i), θ). It

follows from the above arguments that (σ∗
i , σ

∗
−i) is not an ε-minimax regret equilibrium

provided that ε < 1. This completes the proof. �
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Conversely, if a social choice correspondence is implementable in ε-minimax regret

equilibrium for all ε ∈ [0, 1), then it is Maskin monotonic. Maskin monotonicity is thus

necessary and almost sufficient for implementation in ε-minimax regret equilibrium for

all ε ∈ [0, 1).

4 Discussion

We conclude this note with two remarks. Firstly, we show with the help of a simple

example that Maskin monotonicity is not a necessary condition for implementation in

ε-minimax regret equilibrium, even when implementation is required for all ε ∈ (0, 1).6

Example 2. Consider an economy with a perfectly divisible good in fixed supply

of one unit. There are three consumers in this economy. Consumers 1 and 2 have

strictly monotonic preferences, while consumer 3 has single-peaked preferences. In state

θ, consumer 3’s preferences are single-peaked at 1/2, while they are single-peaked at

1/3 in state θ′. In both states, consumer 3 strictly prefers a positive consumption

over a zero consumption. The social planner aims to implement the allocation f(θ) =

{(1/3, 1/3, 1/3)} at state θ and the allocation f(θ′) = {(1/4, 1/4, 1/2)} at state θ′.

The social choice function f cannot be implemented in Nash equilibrium. Intuitively,

consumer 3 prefers the allocation f(θ′) in state θ and the allocation f(θ) in state θ′, so

that he has no incentive to truthfully reveal his preferences. Indeed, the social choice

function f is not Maskin monotonic, a necessary condition for Nash implementation.

Yet, the social choice function f is implementable in ε-minimax regret equilibrium

for all ε ∈ (0, 1): there is a discontinuity at ε = 0. To see this, consider the following

mechanism: Each consumer has to announce either a state θ or θ′, or an integer z. If all

consumers announce a state, the allocation rule is as below:

θ θ′

θ 1/3, 1/3, 1/3 1/3, 0, 1/2

θ′ 0, 1/3, 1/2 0, 0, 1/2

θ θ′

θ 0, 0, 1/3 0, 1/3, 1/3

θ′ 1/3, 0, 1/3 1/4, 1/4, 1/2

θ θ′

Alternatively, if exactly one consumer announces an integer and the two others announce

a state, the allocation is the bundle (0, 1/3, 0) if consumer 1 announces the integer,

6The example is adapted from Sjötröm (1994).
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(1/3, 0, 0) if consumer 2 announces the integer and (0, 0, 0) if consumer 3 announces the

integer. If two consumers or more announce an integer, the allocation is the bundle

(1/3, 0, 0) if consumer 1 announces a higher integer than consumer 2 or consumer 2

announces a state, and (0, 1/3, 0) if consumer 2 announces a strictly higher integer than

consumer 1 or consumer 1 announces a state.

We have to show that at state θ (resp., θ′), the profile of messages (θ, θ, θ) (resp.,

(θ′, θ′, θ′)) is the unique ε-minimax regret equilibrium for any ε ∈ (0, 1). Suppose that

the true state is θ. We first argue that in any ε-minimax regret equilibrium at state θ,

consumer 3 announces the true state θ. To see this, observe that the message θ is weakly

dominant at state θ for consumer 3 and, consequently, consumer 3’s regret of playing θ is

strictly smaller (in fact, zero) than the regret of playing any other strategies, regardless

of the strategies of consumers 1 and 2. We next argue that consumers 1 and 2’s maximal

regret is minimized at θ when consumer 3 announces the true state θ (with probability

1 − ε). To see this, note that, conditional on consumer 3 announcing the true state, it

is weakly dominant for consumers 1 and 2 to match the announcement of consumer 3.

Moreover, the presence of an integer game between consumers 1 and 2 implies, as with

Proposition 1, that the maximal regret to consumer 1 (resp., consumer 2) when facing

“irrational” opponents is independent of the strategy he plays. Consequently, (θ, θ, θ) is

the unique ε-minimax regret equilibrium at state θ. A similar reasoning applies at state

θ′.7

In addition, it is worth noting that the social choice function f is implementable in

undominated Nash equilibrium (Palfrey and Srivastava (1991), Jackson et al. (1994)

and Sjötröm (1994)). This suggests a possible connection between implementation in

ε-minimax regret equilibrium and in undominated Nash equilibrium (Palfrey and Sri-

vastava (1991)). In particular, we conjecture that if a social choice correspondence is

implementable in ε-minimax regret equilibrium, then it is implementable in undomi-

nated Nash equilibrium. Unfortunately, we have not been able to prove it. Nonetheless,

the following example due to Jackson (1992) shows that both concepts do not coincide.

Example 3. There are five players, labeled 1 to 5, two states of the world θ and θ′

7The logic of this example can be generalized to show that, in separable environments (Jackson

et al. (1994)), any individually rational social choice function is implementable in ε-minimax regret

equilibrium for all ε ∈ (0, 1).
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and two alternatives x and y. The preferences are:

θ θ′

1 2 3 4 5 1 2 3 4 5

y y x x y y y x x x

x x y y x x x y y y

The social choice correspondence selects the less preferred alternative of player 5 at each

state, i.e., f(θ) = {x} and f(θ′) = {y}. It is implementable in undominated Nash

equilibrium, but not in ε-minimax regret equilibrium for any ε. Assume by contraction

that f is implementable in ε-minimax regret equilibrium by the mechanism 〈M, g〉. At

state θ, there must exist a pure ε-minimax regret equilibrium m∗ with g(m∗) = x.

We argue that for m∗ to be a pure equilibrium, it must be that ui(g(m∗
i , m−i), θ) ≥

ui(g(mi, m−i), θ) for all mi, for all m−i, for all i ∈ {1, 2, 5}. Consider player 5. (A similar

argument applies to players 1 and 2.) To the contrary, assume that there exists a profile

of messages (m′
5
, m′

−5
) such that g(m∗

5
, m′

−5
) = x and g(m′

5
, m′

−5
) = y. The maximal

regret of playing m∗
5

is therefore at least ε(u5(y, θ)−u5(x, θ)). It is ε(u5(y, θ)−u5(x, θ))

whenever g(m5, m
∗
−5

) = x for all m5 ∈ M5, and u5(y, θ) − u5(x, θ), otherwise. Clearly,

if m′
5

weakly dominates m∗
5
, m∗ cannot be an equilibrium. Similarly, if m′

−5
= m∗

−5
, m∗

cannot be an equilibrium: the regret of playing m∗
5

would be u5(y, θ) − u5(x, θ), while

the regret of playing m′
5

would be at most ε(u5(y, θ) − u5(x, θ)). However, if none of

the previous holds, it has to be that the maximal regret of playing m′
5

is the same of

playing m∗
5
, i.e., ε(u5(y, θ) − u5(x, θ)). But then player 5 has a profitable deviation:

he can randomize between m∗
5

and m′
5

and strictly decreases his maximal regret. A

direct implication of the above result is that g(m1, m2, m
∗
3
, m∗

4
, m5) = x for all m1, for

all m2, for all m5. Similarly, at state θ′, there must exist a pure ε-minimax regret

equilibrium m∗∗ with g(m∗∗) = y. Following the same logic as above, it follows that

g(m∗∗
1

, m∗∗
2

, m3, m4, m5) = y for all m3, for all m4, for all m5, a contradiction.
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