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Abstract: A Benefit Function Transfer obtains estimates of Willingness-to-Pay (WTP) for the
evaluation of a given policy at a site by combining existing information from different study sites.
This has the advantage that more efficient estimates are obtained, but it relies on the assumption
that the heterogeneity between sites is appropriately captured in the Benefit Transfer model. A
more expensive alternative to estimate WTP is to analyse only data from the policy site in question
while ignoring information from other sites. We make use of the fact that these two choices can
be viewed as a model selection problem and extend the set of models to allow for the hypothesis
that the benefit function is only applicable to a subset of sites. We show how Bayesian Model
Averaging (BMA) techniques can be used to optimally combine information from all models.

The Bayesian algorithm searches for the set of sites that can form the basis for estimating a
Benefit function and reveals whether such information can be transferred to new sites for which
only a small dataset is available. We illustrate the method with a sample of 42 forests from U.K. and
Ireland. We find that BMA benefit function transfer produces reliable estimates and can increase
about 8 times the information content of a small sample when the forest is ‘poolable’.
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1 Introduction

The technique of Benefit Function Transfer (BFT) was first proposed by Loomis (1992) as a the-

oretically sounder method than the transfer of unconditional mean values to obtain estimates of

recreational benefits for policy sites. This technique is applicable to natural resource sites for

which site-specific data is not available, too costly to obtain or too urgently needed for policy ap-

praisal to allow for a full-blown on-site study. The method BFT obtains estimates of the visitors

population’s (conditional) mean and median Willingness-To-Pay (WTP) for recreational access to

a site (e.g. forest) by combining information from different sites for which on-site data on WTP

are available from previous surveys.

In the same issue of Water Resources Research, Smith (1992) revised the practice of benefit

transfer and—after assessing the practical importance of this in policy contexts—outlined some

research strategies. Smith emphasized how, up until then, legislation had relied

“on using research as the basis for these evaluations [ thereby assuming that ] research

on valuing non-market resources is systematically “stocking the research shelf” with

models that ultimately will respond to future policy needs. In fact, this is not the way

research has proceeded” (page 691)

We feel that, nearly fifteen years down the road, this statement is still quite true. The theoretical

advantages of BFT as a technique in non-market valuation are well known (cost-effectiveness,

increased efficiency of conditional estimates, time-saving procedure etc.), yet studies investigating

its robustness have given ambiguous results. For example, negative results on reliability have been

reported by a number of authors (e.g. Loomis et al. (1995), Downing and Ozuna (1996), Kirchhoff

et al. (1997), and Feather and Hellerstein (1997)). The econometric techniques used in most of

these studies though, require the data analyst to choose a priori which sites form the basis for

the estimation of the benefit function. Hence, it is possible that a different selection of sites may

change the outcome of the reliability test.

Another limitation of the standard approach to reliability testing is that the test will have low
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power when the sample size is small. As a consequence, one might too often accept the null

hypothesis that the benefit transfer estimate is reliable when in fact it is not. Because of this

limitation, reliability studies are usually carried out in the context of large samples. Finally, as

discussed by Kristofersson and Navrud (2005), some empirical studies might well have had a

misplaced emphasis in testing hypotheses.

The main contribution of this study is to broaden the existing approach so as to relax this

dependency on large samples and on an arbitrarily chosen set of sites. We propose a Bayesian

Model Averaging (BMA) algorithm that systematically searches for the subset of sites in which

the assumptions of homogeneity are valid. In addition, in the event of an inconclusive reliability

test, perhaps due to a small sample size, the Bayesian estimation averages WTP estimates over

all specification hypotheses, providing credible (i.e. confidence) intervals that are robust to the

hypotheses in question. Hence, our ultimate goal is not to decide which model is generating the

data, but to provide efficient and reliable interval and point estimates of WTP.

We view the decision to use benefit transfer estimates as a model selection problem. The most

general model that we consider has different parameters for each site. Estimation of this model is

equivalent to analysing data for each site separately. The most restrictive model is the traditional

BFT model. In addition, we consider intermediate cases, in which the BFT model only applies to

a subset of sites, whereas each of the other sites has different parameters. Hence, our approach

combines models that completely rule out any type of exchangeability with models that assume

some type of homogeneity in parameters.

In order to evaluate these models we use a Bayesian Model Averaging (BMA) approach. The

posterior density in the BMA approach is a weighted average of the posterior densities that arise

from each model and the weight is equal to the posterior probability of each model. Therefore, the

extent to which our final WTP estimates rely on assumptions of homogeneity is determined by the

data, which inform the posterior probability of each specification.

Although there are previous studies that propose procedures to test the reliability of transfer

estimates and also Bayesian approaches to benefit transfer (e.g. Atkinson, Crocker and Shogren,
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1992, León et al. 2002, León, León and Vázquez-Polo 2007, Moeltner, Boyler and Paterson, 2006),

the BMA-BFT approach has a number of advantages over previous approaches. Firstly, the BMA

approach does not require the data analyst to decide a priori which is the the set of sites where

the homogeneity or exchangeability assumptions apply. Note that it is quite likely that assump-

tions of homogeneity or exchangeability are applicable only to a subset of sites (the ‘poolable’ or

exchangeable set), whereas the benefit for the remainder set of sites (the ‘non-poolable’ set) may

well be generated by completely different processes. The BMA approach evaluates all possible

subsets. Secondly, the proposed approach also provides valid credible (i.e. confidence) intervals

for WTP when only a small sample is available for the site for which a benefit transfer estimate is

being considered. This contrasts with the traditional frequentist approach to testing, which suffers

from the problem of ‘low statistical power’ when the sample size is small. Since there is greater

need of benefit transfer estimates when the sample size is small, this is an important advantage.

This approach is of particular interest in contexts in which an agency managing outdoor recre-

ation sites is in the process of ‘stocking the research shelf’ for future use. We note that the es-

timation of nonmarket values is periodically carried out by many public land management agen-

cies. For example, the UK Forestry Commission recently assessed nonmarket values (Willis et al.,

2003) and the study indicates that they vastly exceed the market value of timber and other tradeable

goods. In contexts such as these, once the agency has collected moderately large sample sizes for

a number of sites, WTP in other sites could be reliably estimated with smaller sample sizes. As

we show in the empirical application, a small sample size of 50 observations might yield as much

information as 450 if information from previous studies is taken into account. Thus, in practice

our approach is likely to reduce substantially the costs of reliably estimating WTP at new sites.

We illustrate the BMA methodology with dichotomous-choice contingent valuation data col-

lected with the same survey instrument in spring-summer 1992 at 42 natural parks from U.K and

Ireland. The rest of the paper is organized as follows. In the following section we describe the

method. Section 3 illustrates the method with both real and artificial data. The last section con-

cludes.
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2 Econometric Methodology

2.1 Models for different degrees of transferability

2.1.1 Complete Transferability

Let us assume that there are j = 1, 2, . . . , J sites, each site j contributing with Nj respondents to

the total sample. Our Benefit Transfer setup allows Nj to be small for one or several sites. It is

chiefly for these sites that the BT exercise is carried out, thereby using information from other sites

and possibly improving the accuracy of WTP estimates. However, in our setup it is not necessary

to provide different notation for sites with small samples, and therefore all sites enter in the model

with the same notation, regardless of their sample size. Each site j is also described on the basis of

a site-specific vector qj of site attributes relevant for recreational purposes, and hence expected to

explain the variation of benefits from forest access by visitors. Information from other sites is most

useful when all the relevant differences among the sites are adequately captured in the vector of

site characteristics qj . In our setup, the assumption that information from other sites is transferable

simply means that we can use the following benefit function (Scarpa et al. 2007):

ln(WTPij) = α+ qjβ + sijγ + λ−1εij i = 1, ..., Nj j = 1, ..., J (1)

where εij ∼ N (0, 1), i denotes respondents and j denotes sites, qj is a horizontal vector of site

attributes describing the jth site, sij is a horizontal vector of socioeconomic characteristics of the

i-th respondent interviewed in site j, α is an unknown intercept and γ, β are vectors of unknown

parameters. Parameter λ controls the variance of ln(WTP ) and also influences the expected value

ofWTP , but not its median or any quantile. Our analysis assumes dichotomous choice data (single

or double-bounded) or open-ended data.1

Equation (1) is the most restrictive specification that we consider. However, it has the advantage

1Single-bounded dichotomous data means that each respondent i answers to a dichotomous choice question as
to whether or not she would be willing to pay a proposed bid tij . Data is double-bounded when each respondent is
presented with a second bid. Data is open-ended when the exact value of ln(WTPij) is observed.
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that if the underlying assumptions are correct, it results in the most accurate estimates of mean

WTP .

2.1.2 No transferability.

There are always plausible explanations as to why any particular assumption of exchangeability

could be wrong. In our setup it is possible that the WTP for each site depends on site attributes

missing from the vector of descriptors qj available to the researchers. In addition, the parameters

in γ associated with respondents’ characteristics might be different for each site. Under these two

assumptions, the BFT model (1) is incorrectly specified and might lead to seriously biased WTP

estimates. These considerations lead us to consider this alternative model:

ln(WTPij) = αj + sijγj + λ−1
j εij i = 1, ..., Nj j = 1, ..., J (2)

Note that all parameters are site-specific and therefore equation (2) is the least restrictive case

that we consider. It results in a total lack of transferability or in other words, it rules out any

assumption of exchangeability. 2 More precisely, information on sites (1, ..., h − 1, h + 1, ..., J)

is irrelevant to learn about WTP in site h, for every h. However, this model results in less precise

estimates of mean WTP for each site.

2.1.3 Partial Transferability

Equation (1) assumed that the BT function was applicable to all sites, whereas equation (2) as-

sumed that it was applicable to none. We now consider the intermediate and most likely case in

which the BT function (1) is applicable only to a subset of sites. Thus, benefit transfer is possi-

ble for a subset of sites but not for others. The BT function selected by the analyst might be not

applicable to a given site j if WTP to access this site depends on site characteristics that are not

contained in qj , or if the response of the log-WTP function to the individual characteristics (the

2For definitions of different types of exchangeability see Bernardo and Smith, 1994, pp. 167-171
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value of γj) is in that site different from that in the BTF. Thus, to estimate mean WTP in such a

site one cannot rely on a transfer, but needs to use only data collected at that site (equation (2)).

For convenience we define the following two groups of sites. Group NP (where NP stands

for ‘not pooling’ information) consists of sites for which information from other sites is not trans-

ferable. That is, the benefit function (1) is not applicable to sites inNP . Let the group with the rest

of sites be denoted by P (where P stands for ‘pooling’ information) and assume that the benefit

function (1) is valid for all sites in P . Therefore, in contrast with NP sites, the WTP for each site

in P can be validly estimated by the specification chosen by the researcher and described in (1)

using the data for the sites in P and ignoring those in theNP set. Hence, this partial transferability

(PT) model can be described with the following two equations:

ln(WTPij) = α+ qjβ + sijγ + λ−1εij j ∈ P (3)

ln(WTPij) = αj + sijγj + λ−1
j εij j ∈ NP

We would argue that for eachWTP data collection across recreational sites this mixture of specifi-

cations represents the most likely reality faced by analysts. By explicitly allowing for such mixture

our proposed approach is improving the state of practice.

2.2 Benefit Transfer, Bayesian Model Averaging and Random Effects Mod-

els

Note that while each of the equations (1) and (2) corresponds to just one model, many models are

represented by equation (3), since there are many possible partitions (P , NP ). In this paper we

consider only partitions in which the regression matrix has full rank. Note that this requires the

number of sites in P to be greater than the number of attributes in q.

The extent to which information is transferable boils down to deciding which of the equations,

(1), (2) or (3) is more appropriate given the data. Therefore, deciding whether information between

sites is transferable can be expressed as a problem of uncertainty over model specifications for
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which Bayesian techniques offer a compelling treatment. For example, BMA point estimates are

optimal in the sense that they minimise the expected value of a loss function, when the expectation

is taken with respect to the prior. In particular, the posterior mean minimises the expected square

error, while the posterior median minimises expected absolute error. In addition, credible intervals

have appropriate Bayesian coverage.3 For a review of the statistical properties of BMA see Raftery

and Zheng (2003), who also show, in the context of a linear model, that BMA is quite robust to

mis-specification of the prior.

Let θh be the parameter of interest, which in our context is usually mean or median WTP for a

site h. For instance, median WTP for site h evaluated at sih = s∗ is given by:

Ŵh,s∗ = exp (α+ qhβ + s∗γ) if h ∈ P

Ŵh,s∗ = exp (αh + s∗γh) if h ∈ NP (4)

and similar expressions exist for mean WTP. Let each model be represented by mj , j = 1, ...,M ,

and let y denote the observed data. The posterior density of θh is a mixture of the posterior densities

under each specification:

π(θh | y) =
M∑

j=1

π(mj | y)π(θh | y,mj) (5)

where π (θh | y,mj) is the posterior density of θh conditional on model mj and π (mj | y) is the

posterior probability of model mj (Koop 2003, p.p. 23-26).

In our context, given a particular site h, it is illustrative to divide the set of models into two

groups: MP
h are those models in which h ∈ P and MNP

h are those in which h ∈ NP . Note

that models in MNP
h analyse data for site h separately from all the other sites. In other words,

3A credible interval is the Bayesian analogue to the classical confidence interval (Koop 2003, p. 44). Bayesian
coverage, as in the frequentist case, can be defined in terms of repeated sampling (e.g. Raftery and Zheng, 2003). The
difference is that in the frequentist case all samples come from the same population (i.e. all samples are generated
using the same fixed value for the parameters), whereas in the Bayesian case each sample comes from a different
population (i.e. the vector of parameter values for each sample is a random draw from the prior). When only one
model is considered, there are many cases in which Bayesian and classical intervals are identical (e.g. in the linear
regression model with a flat prior).
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these are models that yield the same estimates for θh that would be obtained by analysing only

the data for site h while ignoring data for all the other sites. In this sense, therefore, these are

models in which no benefit transfer takes place for site h. Note that all the models in MNP
h yield

the same posterior for θh. In contrast, models in MP
h assume that the WTP function in site h has

parameters in common with other sites. Given this division, we can see the posterior density of θh

as a mixture between the posterior density that arises when mh ∈MNP
h and the posterior densities

corresponding to mh ∈MP
h . Thus, equation (5) can be rewritten as:

π (θh | y) = π (h ∈ P | y)π (θh | y, h ∈ P ) + (1− π (h ∈ P | y))π (θh | y, h ∈ NP ) (6)

where:

π (h ∈ P | y) =
∑

j|mj∈MP
h

π (mj | y) (7)

π (θh | y, h ∈ P ) =
1

π (h ∈ P | y)
∑

j|mj∈MP
h

π (mj | y)π (θh | y,mj) (8)

and π (θh | y, h ∈ NP ) is the posterior of θh that arises when information for site h is analysed

independently of other sites. Note that the probability π (h ∈ P | y) determines the extent to which

models in MP
h affect the posterior of θh. In other words, it determines the extent to which WTP

estimates for site hwill rely on benefit transfer functions, as opposed to relying only on site-specific

data. As mentioned above, this probability has good statistical properties: it guarantees that point

estimates are optimal and that credible (i.e. confidence) intervals have appropriate coverage (e.g.

Raftery and Zheng, 2003).

An analogy arises with the random effects model, which has been proposed for benefit transfer

in previous literature (e.g. Atkinson et al. 1992 and Moeltner et al. 2006). As noted by Atkinson et

al. (1992), the posterior mean for θh in the random effects model is a weighted average between the

estimate that uses only data for site h (the NT estimate) and the pooled estimate that results from

assuming that all sites share a common WTP function (the BT estimate). However, a random
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effects (RE) model is much more restrictive than BMA, since it assumes that departures from

the common WTP function follow a parametric distribution, usually normal. Furthermore, a RE

model, unlike the BMA approach, assumes that all sites are exchangeable. To illustrate this, recall

that in a RE model the weight given to the BT estimate is σ2
ε/(σ

2
ε + Nhσ

2
α), where σ2

α is the

variance of the random effects, σ2
ε the variance of the other error term and Nh is the sample size in

site h. Note that the weight of the BT estimate is the same for each site (except for the sample size

effect), because all sites are assumed to be exchangeable. In contrast, the weight of BT estimates

in the BMA approach (π (h ∈ P | y)) is site specific. This greater flexibility results from explicitly

allowing for the possibility that each site belongs to NP and is thus not ’poolable’. That is, our

analysis does not rule out that information for sites (1, ..., h− 1, h+ 1, .., J) could be irrelevant to

learn about WTP at site h.

2.3 Prior Density

2.3.1 Prior for each model

In order to determine the prior probability of each model, let us define δj as the prior probability

that site j belongs to P . Note that each model is associated with a partition (P,NP ): the BFT

model (1) arises when NP is an empty set, while the NT model (2) arises when P is an empty set.

Let Ij be an indicator function that takes value 1 if j ∈ P and zero otherwise. The prior probability

of a model Mh associated with (I1, ..., IJ ) is:

p(Mh) =
J∏

j=1

(δj)
Ij (1− δj)

1−Ij (9)
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2.3.2 Prior for Parameters

In order to reduce the number of parameters that need to be elicited a priori, we specify a g-prior

(Zellner, 1983). Let us reparameterize the model as:

ln(WTPij) = αP + (sij − s̄P ) γ + (qj − q̄P )β + λ−1εij ifj ∈ P (10)

ln(WTPij) = αj + (sij − s̄j) γj + λ−1
j εij ifj ∈ NP (11)

where q̄P and s̄P are the sample means of qij and sij in sites that belong to P , and s̄j is the

sample mean of sij in site j. We assume that, for j ∈ NP , the vector (αj, γj, λj) is independent of

(αP , γ, β, λ). This implies that information for sites in P is analysed independently of information

for sites in NP . Similarly, for (j, l) ∈ NP , the prior assumes that the vector (αj, γj, λj) is

independent of (αl, γl, λl). The prior for (αj, γj) conditional on λj is a normal with mean (tj,0).

A zero mean for γj implies that γj has the same probability of being positive as being negative.

The variance-covariance matrix is specified as in a g-prior:

gjλ
−2
j

 Nj 0

0
∑

i (sij − s̄j)
′
(sij − s̄j)


−1

Note that this is proportional to the inverse of the cross-products of the matrix of regressors. The

prior for λj isN(0, Kjgj), which implies that the prior for λ−2
j is an inverted Gamma-2 distribution

with one degree of freedom (Bauwens, Lubrano and Richard (1999), Appendix A).

Similarly, the prior for (αP , γ, β) conditional on λ is a normal with mean (tP , 0, 0) and variance-

covariance matrix:

gPλ
−2


∑

j∈P Nj 0 0

0
∑

j∈P

∑
i(qj − q̄P )

′
(qj − q̄P )

∑
j∈P

∑
i(qj − q̄P )

′
(sij − s̄P )

0
∑

j∈P

∑
i(sij − s̄P )

′
(qij − q̄P )

∑
j∈P

∑
i(sij − s̄P )

′
(sij − s̄P )


−1

and the prior for λ is N(0, KPgP ).
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2.3.3 Prior Elicitation

With this prior specification the parameters that have to be elicited a priori are: (tj, gj, Kj) for

j ∈ NP , and (tP , gP , KP ). In our empirical application we choose the value of these parameters

to approximate the prior information that the bid design reveals. For this purpose note that αj is

the log of median WTP for site j evaluated at sij = s̄j . We choose its prior mean (tj) to be the

mid-point between the lowest and the highest log-bid in site j. The value of tP is chosen in the

same way, but considering the minimum and the maximum of the log bids offered in all the sites

in P .

In order to choose a value for Kj , we note that this parameter determines the prior probability

that median WTP for site j is between the smallest and the largest bid. To see why, note that a priori

(αj − tj)(gj/Nj)
−1/2|λ ∼ N(0, λ−2), and recall that λj ∼ N(0, Kjgj). Thus, if we marginalize

over λj we obtain that (αj − tj)(KjNj)
1/2 follows a t1 (i.e. Student t distribution with one degree

of freedom). This result can be used to select a value of Kj such that median WTP (i.e. exp(αj))

lies in a given interval with high probability.

For example, if we choose Kj so that Pr(tlj ≤ αj ≤ thj ) = p, where tlj is the log of the lowest

bid and thj is the log of the highest bid, then the value of Kj is given by the following expression:

Kj =
c2p

Nj(thj − tj)2
(12)

where cp is a value from the table of the Student t distribution verifying that Pr(−cp ≤ t1 ≤ cp) =

p and where we have used that tj = (thj − tlj)/2. Note that (12) does not depend on the value of gj .

Finally recall that a student t with one degree of freedom has very fat tails. Thus, we still allow,

although with a small prior probability, for exp(αj) to take values that are far outside the interval

(tlj, t
h
j ).

Similarly, we choose the value of KP to ensure that the prior probability that exp(αP ) lies

between the lowest and the highest bid is high. In order to choose a value for gj , note that gj

controls the prior variance for all parameters. While it might be tempting to choose a large value
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for gj , as noted in Dasgupta et al. (2006), in the context of dichotomous choice data a sufficiently

large prior variance results in a very informative prior density. To see this, let us define π as the

probability that a respondent with average characteristics (sij = s̄j) accepts to pay the amount

exp(tj). This probability is given by π = Φ (z), where Φ is the cdf of a standard normal, and z is

defined as:

z =
(αj − tj)

|λ−1
j |

Note that our prior implies that z ∼ N(0, gjN
−1
j ). It is easy to see that a sufficiently large value of

gj implies a very informative prior for π. In particular, it implies that a priori π can only be one or

zero (almost certainly). Dasgupta et al. (2006) note that choosing gj = Nj implies that the prior

for π is a uniform in the interval (0,1). In addition, they show that choosing gj = 2.46Nj results

in a prior density for π that approximates well a Beta(0.5, 0.5), which is a density that has been

recommended in the context of estimating a probability with a binomial likelihood (e.g. Bernardo

and Smith, 1994, p. 315). Therefore, in a sensitivity analysis it seems reasonable to try values for

gj that are not too far fromNj or (2.46Nj). For instance, one could try values that lie in the interval

[Nj, 5Nj]. In our empirical application we choose gj = Nj and following a similar reasoning, we

fix gP =
∑

j∈P Nj . This choice of g was also recommended by Fernández, Ley and Steel (2004)

in the context of a linear model.

2.4 Computation

In order to analyze the characteristics of the posterior distribution we use the algorithm of Holmes

and Held (2006). The algorithm provides an approximate random sample from the posterior dis-

tribution of (M ,ψM ), where M represents a model and ψM represents the parameters of model M .

For example, if M is the BFT model (1), then ψM = (αP , γ, β, λ), whereas if M is the NT model

(2) then ψM = (α1, γ1, ..., αJ , γJ). At each iteration the Markov Chain generates a value for M

and a value for ψM . The Markov Chain is started at an arbitrary value and it is run for a large
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number of iterations. After discarding the initial iterations, the remaining values can be consid-

ered as a sample from the posterior distribution of (M ,ψM ). The posterior probability of a model

mj can be calculated as the proportion of times that the chain visited model mj . The median (i.e.

point estimate) and percentiles (i.e. credible interval) of the posterior distribution of parameters (or

transformation of parameters) can also be approximated with their sample analogues. The main

parameters of interest are median WTP (as defined in (4)) and mean WTP for each site. Note

that by transforming ψM each iteration provides a value for these two parameters, and these trans-

formed values can be used to approximate point estimates and credible intervals. The details of the

algorithm are described in appendix A.

3 Robust Benefit Transfer in Irish and Scottish Parks

We illustrate the BMA methodology using data from discrete-choice contingent valuation surveys

collected for a group of 42 forest parks: 14 from Northern Ireland (U.K.), 13 from Ireland, and 15

from Scotland (U.K.) (Ni Dhubhain et al. 1994). Reliability of benefit function transfers across

the 28 Irish forest parks was first analysed in Scarpa (1999), and extended in Scarpa et al. (2007)

within a classic BT framework. The surveys were all conducted face-to-face, had the same format

and were collected within a time interval of 3-4 months in spring-summer 1992, thereby avoiding

previously suggested causes for observed non-transferability results, such as temporal instability

of preferences (Downing and Ozuna 1996), or diversity of survey formats.

Preliminary trials suggested that the use of 64,000 iterations after discarding the initial 1000

iterations would be adequate for our purposes. To ease comparison with previous work we include

just a measure of household income in sij , and 7 variables for park attributes qj . These are the

same variables used in Scarpa et al. (2007) and definitions can be found in Table 1. Table 2 shows

the names and some characteristics of the 42 forests. We employ single-bounded data, although,

as explained in appendix A, the same approach can be adapted to deal with double-bounded data.

We use the prior described in Section 2.3.3 with p =0.90. Recall that p is the prior probability
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that median WTP evaluated at the sample mean is between the lowest and the highest log-bid.

With respect to the prior for models, we choose δj =0.5, for j = 1, ..., J . As a first exploratory

analysis, we obtain the BMA posterior density of median WTP using full sample sizes from data

of the 42 forests. Median WTP is evaluated at the median income of each forest. We describe

the posterior density with the 2.5%, 50% and 97.5% percentiles. The 2.5% and 97.5% percentiles

are the bounds of a 95% credible interval (i.e. the Bayesian counterpart of the 95% confidence

interval). The 50% percentile is the posterior median and plays the role of a point estimate. We

also report the posterior probability that a forest belongs to NP and we label it Pr. We compare

the BMA estimates with the estimates from the NT model (eq. 2) and the standard BFT model (1).

Table 3 shows the result for 4 selected forests (Table (8) in on-line appendix B shows the results

for all the forests). These 4 are the forests with largest sample sizes for which Pr is close to one or

zero. For forests 30 and 33 Pr equals one, which implies that BMA estimates are identical to NT

estimates (any difference is due to simulation error). For forests 2 and 13 Pr is close to zero, and

we observe that in this case BMA credible intervals still overlap with NT credible intervals, but are

narrower. Thus, BMA benefit transfer can bring efficiency gains even for samples of moderate and

large sizes. Note that BFT credible intervals are the narrowest. They overlap with NT intervals

in forests 2 and 13, but are very different in forests 30 and 33. Given the large sample sizes (413

and 454 observations for forests 30 and 33) this difference casts doubts on the BFT estimates. The

next two subsections provide examples in which sample sizes for some forests are small. Section

3.1 uses simulated data, in which case the exact true value of WTP is known, and Section 3.2 uses

actual data.

3.1 Simulated Data

We simulate data for the 42 forests. We used the actual value of the regressors and simulated values

for the dependent variable. With the exception of forests 2, 13, 30 and 33, the sample size for each

forest is the same as shown in Table 2. We simulate 25 observations for each of the forests 2, 13,

30 and 33 (5 observations for each of the 5 bids). We set NP = (16, 22, 30, 33). The true value of
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the parameters was obtained randomly as one draw from the prior. Table 6 shows the estimation

results and the true value of median WTP for the selected 4 forests (Table 11 in on-line appendix

B shows results for all forests). Table 6 shows that none of the BFT credible intervals contain

the true value of median WTP and that they are specially misleading for forests 30 and 33. Note

that the BFT model (1) makes the wrong assumption that all forests belong to P . This causes a

substantial bias in the estimates of all forests, even of those that actually belong to P . In contrast,

BMA credible intervals do contain the true value of median WTP in all forests, even for those that

actually belong to NP . For forests 2 and 13 BMA credible intervals are tight, even though there

are only 25 observations. The widths of credible intervals are 5 and 12 pence, respectively. Table

11 in the on-line appendix shows that NT estimates often do not achieve this level of accuracy

even with full-blown on-site samples. Intervals for forests 2 and 13 are narrow because Pr takes

values 0.01 and 0.06, respectively, and therefore benefit transfer takes place. In contrast, Pr takes

values 0.54 and 0.21 for forests 30 and 33, which do actually belong to NP . Because of the small

sample sizes, these probabilities are not conclusive. However, they are sufficiently big to give NT

estimates enough weight so as to make credible intervals contain the true value of WTP. Figure 3

shows that the posterior density of median WTP for forests 30 is bimodal. One mode corresponds

to the NT estimate and the other one corresponds to a benefit transfer estimate (Figure 4 in the

on-line appendix B shows the same for forest 33). Table 7 shows what happens if we increase the

sample size from 25 to 50. The pattern is similar, except that now Pr takes higher values for forests

30 and 33 (0.97 and 0.42, respectively), as one would expect with a larger sample size.

3.2 Real Data

From the real data we randomly select 25 observations for forests 2, 13, 30 and 33 (5 for each of

the 5 bids). We use all available observations for the other forests. In this case we do not know

the true value of median WTP. However, we expect the true value to be within the bounds of the

NT 95% credible intervals based on full-samples and shown in Table 3. Table 4 shows that BFT

estimates for forests 2 and 13 are consistent with the NT estimates in Table 3 and therefore seem
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to be reliable. However, BFT estimates for forests 30 and 33 are clearly misleading, since they

are very different from the NT estimates in Table 3. In contrast, BMA estimates are consistent

with the estimated true values in all cases, since credible intervals substantially overlap with the

NT estimates in Table 3. There are efficiency gains in forests 2 and 13: for the same number of

observations credible intervals are narrower than their NT counterparts. However, unlike in the

simulated data case, 25 observations are not enough to get the same information as in a full-blown

on-site study. The probabilities that forests 30 and 33 belong to NP are high: 93% and 86%. As

in the simulated data case, figures 2 (in on-line appendix B) and 1 show that the posterior densities

for these two forests are bimodal.

Let us examine what happens if we had samples of 50 observations in forests 2, 13, 30 and 33

(10 for each of the 5 bids). We randomly select another 25 observations from the real data and put

them together with the previous 25. Table 5 shows the results for forests 2, 13, 30 and 33 (Table

10 in the on-line appendix B shows the results for all forests). With respect to BFT estimates,

they continue to appear reliable for forests 2 and 13, but they are clearly very misleading for

forests 30 and 33. In contrast, BMA estimates seem to be reliable since credible intervals overlap

substantially with the full-sample-NT credible intervals shown in Table 3. Note that Pr takes now

more conclusive values: almost zero for forests 2 and 13 and almost one for forests 30 and 33.

Therefore, BMA estimates for forests 30 and 33 are virtually undistinguishable from NT estimates

that use the same observations. Hence, there is no benefit transfer and no efficiency gains for

forests 30 and 33. In contrast, BMA credible intervals for forests 2 and 13 are much narrower than

their NT counterparts. The widths of the BMA credible intervals for forests 30 and 33 are 33 and

31 pence, respectively. We note that these are not much different from those obtained when all

observations are used (413 and 454): 29 and 33 pence, respectively (Table 3). Thus, with BMA

a sample of 50 observations can have a similar information content as a sample of 413 (or 454)

observations.
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4 Conclusions

Our empirical and simulated results illustrate that a traditional BFT approach can result in seriously

misleading inferences when the homogeneity assumptions are wrong. In contrast, the BMA BFT

approach increased the information content of a sample in a reliable manner. Our case study with

Scottish and Irish data showed that a sample of 50 observations can yield a similar information

content as a sample of 454 observations.

The main reason for the greater reliability of this method is that it relaxes the assumption of

homogeneity (i.e. exchangeability) that have underlied previous benefit transfer analyses. More

precisely, the BMA approach does not rule out that information on sites (1, ..., h− 1, h+ 1, ..., J)

might be irrelevant to learn about site h, for every h. This is important because there are always

plausible explanations as to why any assumption of exchangeability could be wrong and thus lead

to very misleading estimates. The Bayesian algorithm effectively searches for the subset of sites

that can form the basis of a benefit function regression. The BMA approach detects which sites are

amenable for benefit transfer and which ones are not, even if the sample sizes for these sites are

small. If the sample size for a particular site is small and the probability of the site belonging to the

set of transferable sites is not conclusive, the BMA approach combines a benefit transfer estimate

with the site specific estimate to provide reliable credible intervals. The BMA approach not only

informs the analyst about the value of WTP from the data, but it also provides information on

whether a site can be pooled with others in a single assumed specification of the benefit function.

The decision of whether or not to use information on other sites can be viewed as a model

selection problem, for which Bayesian techniques offer a compelling treatment. The traditional

BFT approach relies on assumptions that might be unverified for all available sites. By simultane-

ously considering models in which these assumptions are relaxed, one introduces prior uncertainty

with regard to crucial specification assumptions. Using a BMA approach, one will then get esti-

mates of WTP and credible intervals that are robust because they allow for the possibility that the

homogeneity assumptions are incorrect.

To illustrate how this approach might be used in practice, consider an agency that has already
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collected moderate or large sample sizes for J sites, and is considering evaluating WTP at a new

site (J + 1), for which it has no data. The agency would first collect a small sample at the new

site, of say 50 observations, and carry out the BMA BFT analysis. As suggested by our empirical

results, it is possible that such small sample will be sufficient to estimateWTP accurately, thereby

allowing savings on further data collection. If instead the posterior credible interval turns out to

be too wide, which is likely to happen if the forest is ‘non poolable’, then the agency would be

advised to collect a larger sample at site (J + 1).

For simplicity we have assumed WTP to be log-normally distributed. This not necessary and

future research could use existing flexible Bayesian approaches (e.g. Fernández et al 2004, Araña

and León, 2005). While our analysis assumes dichotomous choice (single or double-bounded) or

open-ended contingent valuation data, future research could generalize this to the case in which

contingent valuation data is available for some sites and travel cost data for others. Another inter-

esting, although challenging, avenue for future work is to study the implications of BMA BFT on

the optimal sample size (e.g. Berger, 1985, Section 7.2).

TOTAR Total Area, hundred of hectares
CONIFS Conifers as a proportion of total number of trees
BDLEAF Broadleaves as a proportion of total number of trees
LARCH Larch as a proportion of total number of trees
PRE1940 Trees before 1940, as a proportion of the total
NAT Dummy variable: 1 if it is a natural reserve
CONGESTION Estimated number of visits divided by 100 over the number of cars that

can be fitted in the car-park of the forest site.
INC Indicator of household income bracket, from 1 to 8. 1 = under £3,999;

2 = £4000−£7,999; 3 = £8,000−£11,999; 4 = £12,000−15,999;
5 =16,000−19,999; 6= 20,000−29,999; 7 = £30,000−£39,999;
8 = higher than £40,000

Table 1: Definition of individual and site attributes
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Forest Sample Size TOTAR CONIFS BDLEAF LARCH NATR
1 Tollymore 392 629.2 57 5 21 0
2 Castlewellan 443 641.2 44 7 17 0
3 Hillsborough 355 198.8 57 12 17 0
4 Belvoir 310 95 24 6 27 1
5 Gosford 399 251.2 40 21 0 0
6 Drum Manor 265 94.2 20 9 0 0
7 Gortin glen 303 1459.8 70 2 3 0
8 Glenariff 424 1181.8 67 1 7 1
9 Ballypatrick 80 1461.2 81 0 3 0
10 Somerset 116 138 59 14 6 0
11 Florencecourt 105 1393 32 5 0 1
12 Lough Navar 217 2608.8 68 1 1 1
13 Castlearchdale 407 499.4 54 3 4 1
14 Crawfordsburn 346 80 5 40 1 0
15 Loch Trool 200 9399 37 1 8 0
16 Culzean 379 234 12 35 0 1
17 Calderglen 136 180 10 20 1 0
18 Vogrie 323 105 12 40 1 0
19 Almondell 181 35.6 23 41 9 1
20 Beecraigs 221 882.2 62 2 8 0
21 Kinnoul Hill 101 250 46 20 4 0
22 Tentsmuir 381 1480 93 3 1 1
23 Hermitage 77 14 66 17 5 0
24 Glenmore 224 2677 61 0 1 1
25 Strathyre 165 2772 53 3 6 0
26 Queen Eliz/David Marshall 280 20000 69 6 4 0
27 Rowardeenan 317 925 57 18 16 1
28 Aden 396 110 20 26 1 0
29 Killiecrankie 165 22 0 93 0 0
30 Lough Key 413 340 22 78 0 0
31 Hazelwood 274 70 7 93 0 0
32 Dun a Dee 171 240 51 48 1 0
33 John F Kennedy 454 252 35 60 5 0
34 Dun a Ree 183 229 64 36 0 0
35 Currachase 405 200 20 68 12 0
36 Cratloe 109 65 56 3 41 0
37 Douneraile 244 160 4 96 0 0
38 Farran 373 75 83 7 10 0
39 Guaghan Barra 98 140 46 12 42 0
40 Avondale 281 286 30 10 4 1
41 Killykeen 169 240 90 8 2 0
42 Glendalough 343 326 42 7 27 1

Table 2: Name and some characteristics of forests. The sample size is after eliminating missings and
protests.
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BMA BFT NT BFT
Forest Est. Int. R Pr Est. Int. R Est. Int. R

2 1.46 1.59 1.70 0.24 0.03 1.51 1.65 1.80 0.29 1.56 1.63 1.69 0.13
13 1.54 1.68 1.81 0.27 0.02 1.58 1.73 1.90 0.33 1.64 1.71 1.78 0.13
30 1.80 1.94 2.08 0.28 1.00 1.81 1.94 2.08 0.28 1.56 1.65 1.75 0.20
33 2.26 2.46 2.70 0.44 1.00 2.26 2.46 2.70 0.44 1.77 1.86 1.95 0.18

Table 3: Real Data with full samples. ”Est. Int.” gives the 2.5%, 50%, and 97.5% percentiles of the
posterior distribution of median WTP. ”R” is the difference between the 97.5% and the 2.5% percentile.
”Pr” is the posterior probability that the forest belongs to NP

BMA BFT NT BFT
Forest Est. Int. R Pr Est. Int. R Est. Int. R

2 1.21 1.55 1.69 0.48 0.10 0.98 1.33 1.75 0.77 1.53 1.60 1.68 0.15
13 1.35 1.49 1.77 0.40 0.02 0.95 1.35 1.82 0.86 1.65 1.72 1.80 0.15
30 1.29 1.81 2.36 1.10 0.93 1.43 1.84 2.36 0.92 1.39 1.50 1.61 0.22
33 1.56 2.11 2.76 1.20 0.86 1.72 2.14 2.75 1.03 1.58 1.68 1.77 0.19

Table 4: Real Data with 25 observations for forests 2, 13, 30 and 33. Full samples were used for other
forests. Labels are defined as in Table 3

BMA BFT NT BFT
Forest Est. Int. R Pr Est. Int. R Est. Int. R

2 1.30 1.47 1.63 0.33 0.02 1.19 1.50 1.90 0.70 1.53 1.60 1.68 0.15
13 1.57 1.72 1.88 0.31 0.00 1.36 1.75 2.30 0.94 1.65 1.73 1.81 0.15
30 1.61 1.94 2.31 0.69 0.96 1.61 1.93 2.30 0.69 1.39 1.50 1.61 0.22
33 1.95 2.26 2.66 0.71 1.00 1.94 2.25 2.66 0.71 1.60 1.69 1.78 0.19

Table 5: Real Data with 50 observations for forests 2, 13, 30 and 33. Full samples were used for other
forests. Labels are defined as in Table 3

BMA BFT NT BFT
Forest True What if Est. Int. Pr Est. Int. Est. Int.

2 0.79 0.76 0.79 0.81 0.01 0.52 0.83 1.12 0.66 0.69 0.72
13 1.06 1.02 1.06 1.24 0.06 0.97 1.23 1.54 0.94 0.97 1.00
30 1.79 2.50 1.47 2.19 2.59 0.54 1.42 1.81 2.39 2.77 2.94 3.13
33 1.18 0.88 0.85 0.89 1.25 0.21 0.90 1.13 1.33 0.73 0.77 0.81

Table 6: Simulated data with 25 observations for forests 2, 13, 30 and 33. Full samples were used for other
forests. ”True” is the true value of median WTP. For a forest that belongs to NP , ”What if” is the value
of median WTP if the forest belonged to P . ”Est. Int.” gives the 2.5%, 50%, and 97.5% percentiles of the
posterior distribution of median WTP. ”Pr” is the posterior probability that the forest belongs to NP
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BMA BFT NT BFT
Forest True What if Est. Int. Pr Est. Int. Est. Int.

2 0.79 0.76 0.79 0.81 0.05 0.55 0.75 0.92 0.66 0.69 0.72
13 1.06 1.02 1.06 1.09 0.07 0.93 1.12 1.32 0.94 0.97 1.00
30 1.79 2.50 1.61 1.92 2.58 0.97 1.60 1.86 2.22 2.75 2.93 3.11
33 1.18 0.88 0.86 1.05 1.28 0.42 1.00 1.15 1.31 0.74 0.77 0.81

Table 7: Simulated data with 50 observations for forests 2, 13, 30 and 33. Full samples were used for other
forests. Labels are defined in Table 6

Figure 1: BMA Posterior density of median WTP for forest 33: 25 real observations
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Appendix A: Algorithm
Let y∗j be a vector containing the logWTP values for site j: y∗j = (ln(WTP1j), ..., ln(WTPNjj))

′ ,
where Nj is the number of respondents at site j, and let y∗ = (y∗′1 , ..., y

∗′
J )

′ . The algorithm will
deliver a sample from the posterior distribution of (M, y∗, ψM). Let us define M as a J × 1 vector
of ones and zeros. The ith element of M is one if site i ∈ P , and it is zero otherwise.

Let (Mn, y∗n, ψn
M) be the value of (M, y∗, ψM) at iteration n. The algorithm to generate the

value of (M, y∗, ψM) at iteration (n+ 1) can be summarised as follows:

1. Propose a candidate model M∗ from a distribution over the set of models π(M |Mn).

2. Fix Mn+1 = M∗ with probability ρ and fix Mn+1 = Mn with probability (1 − ρ), (ρ is
defined in (13) below).

3. Sample ψn+1
M from its posterior conditional distribution given y∗ = y∗n and M = Mn+1.

4. Sample y∗(n+1) from its posterior conditional distribution given ψM = ψn+1
M and M =

Mn+1.

In the following we describe in more detail each of these steps.

Defining π(M |Mn)

Let QP be the matrix which has each row equal to (1 qj), for j ∈ P . Recall that the set of
possible models is defined by all the possible partitions (P,NP ) subject to the restriction that
QP has rank equal to (kq + 1), where kq is the number of attributes in q. In order to define the
algorithm, instead of restricting the set of models, it appears more convenient to put this restriction
in the prior. That is, the set of possible models include the NT model (2) plus all partitions (P,NP )

with at least (kq + 1) sites in P , but partitions that result in QP having rank smaller than (kq + 1)

have zero prior probability.
If the number of ones in Mn is greater than (kq + 1), then π(M |Mn) is a uniform over the

following set of models:

• Models that result from changing one element in Mn from zero to one.

• Models that result from changing one element in Mn from one to zero.

Note that π(M |Mn) is a uniform over J models, and thus in this case π(M |Mn) = 1/J .
If the number of ones in Mn is exactly equal to (kq + 1), then π(M |Mn) is a uniform over the

following set of models:

• Models that result from changing one element in Mn from zero to one.

• The NT model defined by (2), where P is the empy set.

25



Hence, in this case π(M |Mn) = 1/(J − (kq + 1) + 1).
If Mn is the NT model defined by (2), then π(M |Mn) is a uniform over the following set of

models:

• Models with just (kq + 1) sites in P .

Thus, in this case π(M |Mn) = 1
( J!
(kq+1)!(J−(kq+1))!

)
, where ( J !

(kq+1)!(J−(kq+1))!
) is the number of

models with exactly (kq + 1) elements in P .

The Acceptance Probability ρ
Formally, the algorithm generates a draw for (ψM ,M) conditional on y∗ (Holmes and Held,

2006), with ψM being generated from its conditional posterior distribution. The general expression
for the acceptance probability for a move from (ψn

M ,M
n) to (ψn+1

M ,M∗) can be found for example
at Waagepetersen and Sorensen (2001) and it is equal to:

ρ = min

{
1,
π(Mn|M∗)

π(M∗|Mn)

fM∗(y∗, ψn+1
M )

fMn(y∗, ψn
M)

gMn(ψn
M)

gM∗(ψn+1
M )

π(M∗)

π(Mn)

}
where fM∗(y∗, ψM) is product of the augmented likelihood (that is, the density function of y∗

conditional on ψM and M = M∗) times the prior density of ψM conditional on M = M∗. The
function gM∗(ψM) is the distribution from which ψM is generated and π(M∗) is the prior proba-
bility of model M∗. Holmes and Held (2006) choose gM∗(ψM) to be the conditional posterior of
ψM given y∗ and M = M∗, in which case ρ simplifies to:

ρ = min

{
1,
π(Mn|M∗)

π(M∗|Mn)

fM∗(y∗)

fMn(y∗)

π(M∗)

π(Mn)

}
(13)

where

fM∗(y∗) =

∫
fM∗(y∗, ψM)dψM

This integral is the marginal likelihood in a linear model and can be calculated with standard
operations (e.g. Zellner, 1971). If model M∗ is neither equal to the BFT model nor to the NT
model, then fM∗(y∗) can be written as fM∗(y∗) = fP (y∗P )

∏
j∈NP

fNP (y∗j ), with:

fP (y∗P ) =
1

Γ(1/2)
Γ

(
NP + 1

2

)
|V0P |−1/2 |VP |1/2 1√

KPgP

×∣∣∣∣ 1

KPgP

+ y∗′P y
∗
P − µ′PV

−1
P µP + µ′0PV

−1
0P µ0P

∣∣∣∣−(NP +1)/2
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where y∗P is a vector concatenating all y∗i for i ∈ P , NP =
∑

j∈P Nj , and (µ0P , V0P , µP , VP ) are:

V0P = gP


∑

j∈P Nj 0 0

0
∑

j∈P

∑
i(qj − q̄P )

′
(qj − q̄P )

∑
j∈P

∑
i(qj − q̄P )

′
(sij − s̄P )

0
∑

j∈P

∑
i(sij − s̄P )

′
(qij − q̄P )

∑
j∈P

∑
i(sij − s̄P )

′
(sij − s̄P )


−1

µ0P =

 tP

0

0



VP =

V −1
0P +


∑

j∈P Nj 0 0

0
∑

j∈P

∑
i(qj − q̄P )

′
(qj − q̄P )

∑
j∈P

∑
i(qj − q̄P )

′
(sij − s̄P )

0
∑

j∈P

∑
i(sij − s̄P )

′
(qij − q̄P )

∑
j∈P

∑
i(sij − s̄P )

′
(sij − s̄P )




−1

µP = VP




∑
j∈P

∑Nj

j=1 y
∗
ij∑

j∈P

∑
i(qj − q̄P )

′
y∗ij∑

j∈P

∑
i(sij − s̄P )

′
y∗ij

+ (V0P )−1µ0P


and gP and KP are prior parameters defined in Section 2.3.2.

For j ∈ NP :

fNP (y∗j ) =
1

Γ(1/2)
Γ(
Nj + 1

2
) |V0j|−1/2 |Vj|1/2 1√

Kjgj

×∣∣∣∣ 1

Kjgj

+ y∗′j y
∗
j − µ′jV

−1
j µj + µ′0jV

−1
0j µ0j

∣∣∣∣−(Nj+1)/2

where:

V0j = gj

(
Ni 0

0
∑

i(sij − s̄i)
′
(sij − s̄i)

)−1

µ0j =

(
tj

0

)

Vj =

(
V −1

0j +

(
Nj 0

0
∑

i(sij − s̄i)
′
(sij − s̄i)

))−1

µj = Vj

(( ∑Nj

j=1 y
∗
ij∑

i(sij − s̄i)
′
y∗ij

)
+ (V0j)

−1µ0j

)

and where gj and Kj are prior parameters defined in Section 2.3.2.
If M∗ is the BFT model then fM∗(y∗) = fP (y∗P ). If M∗ is the NT model then fM∗(y∗) =

27



J∏
j=1

fNP (y∗j ).

Sample ψn+1
M from its posterior conditional distribution given y∗ = y∗n and M = Mn+1.

The variance parameters (λ−2, {λ−2
j : j ∈ NP}) are sampled first from inverted Gamma-2 dis-

tributions (Bauwens, Lubrano and Richard (1999), Appendix A), and then the intercept and slope
parameters

(
αP , γ, β, {(αj, γj, βj) : j ∈ NP}

)
are sampled conditional on the variance parame-

ters. In particular, λ−2 is sampled from an inverted Gamma-2 with (NP + 1) degrees of freedom
and parameter equal to:

1

KPgP

+ y∗′P y
∗
P − µ′PV

−1
P µP + µ′0PV

−1
0P µ0P

Each of the λ−2
j is sampled indepedently from an inverse Gamma-2 with (Nj + 1) degrees of

freedom and parameter equal to:

1

Kjgj

+ y∗′j y
∗
j − µ′jV

−1
j µj + µ′0jV

−1
0j µ0j

The parameters (αP , γ, β) are sampled from a normal distribution with mean µP and variance
λ−2VP . Each vector (αj, γj, βj), for j ∈ NP , is sampled independently from a normal with mean
µj and covariance matrix λ−2

j Vj .

Sample y∗(n+1) from its posterior conditional distribution given ψM = ψn+1
M and M =

Mn+1.
Each ln(WTPij) is sampled independently from a truncated normal distribution with variance

equal to λ−2
P if j ∈ P or equal to λ−2

j if j ∈ NP . The mean is given by:

αP + (sij − s̄P ) γ + (qj − q̄P )β if j ∈ P

αj + (sij − s̄j) γj if j ∈ NP (14)

In the single-bounded model, the truncation area will be (tij,∞) if the individual accepted to
pay exp(tij), or (−∞, tij) if he declined. The procedure is the same with double-bounded data,
except that the truncation area has to be changed accordingly. Note that in the case of open-ended
data the observed value of ln(WTPij) is used and hence step 4 of the algorithm is not needed.
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Appendix B: Additional Tables and Graphs

Figure 2: BMA Posterior density of median WTP for forest 30: 25 real observations

Figure 3: BMA Posterior density of median WTP for forest 30: 25 artificial observations

Figure 4: BMA Posterior density of median WTP for forest 33: 25 artificial observations
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Forest BMA BFT NT BFT

Est. Int. R Pr Est. Int. R Est. Int. R

1 1.69 1.80 2.21 0.52 0.17 1.86 2.07 2.33 0.47 1.49 1.56 1.63 0.14

2 1.46 1.59 1.70 0.24 0.03 1.51 1.65 1.80 0.29 1.56 1.63 1.69 0.13

3 0.92 1.00 1.09 0.17 0.00 0.90 1.02 1.15 0.25 0.83 0.89 0.96 0.13

4 1.07 1.18 1.30 0.23 0.01 0.95 1.11 1.28 0.33 1.08 1.17 1.27 0.19

5 1.34 1.41 1.48 0.14 0.00 1.29 1.42 1.57 0.29 1.48 1.53 1.59 0.11

6 1.33 1.44 1.56 0.23 0.00 1.21 1.40 1.61 0.40 1.39 1.47 1.55 0.16

7 1.32 1.40 1.48 0.16 0.00 1.23 1.38 1.56 0.33 1.36 1.41 1.47 0.11

8 1.72 1.83 2.19 0.47 0.25 1.88 2.06 2.27 0.39 1.73 1.80 1.87 0.14

9 1.18 1.36 1.47 0.29 0.18 1.09 1.31 1.56 0.47 1.34 1.40 1.46 0.13

10 0.49 0.69 0.88 0.39 1.00 0.49 0.69 0.88 0.39 1.46 1.51 1.56 0.10

11 1.16 1.70 1.86 0.70 0.17 1.03 1.32 1.66 0.63 1.76 1.85 1.95 0.19

12 1.58 1.75 1.90 0.32 0.00 1.49 1.71 1.98 0.49 1.69 1.76 1.84 0.15

13 1.54 1.68 1.81 0.27 0.02 1.58 1.73 1.90 0.33 1.64 1.71 1.78 0.13

14 1.07 1.18 1.29 0.23 1.00 1.07 1.18 1.30 0.23 1.22 1.28 1.36 0.14

15 1.38 1.54 1.90 0.52 0.43 1.53 1.72 1.94 0.41 1.52 1.62 1.72 0.20

16 2.38 2.60 2.87 0.49 1.00 2.38 2.60 2.87 0.49 1.88 1.98 2.09 0.21

17 1.16 1.26 1.35 0.19 0.01 0.95 1.12 1.32 0.37 1.27 1.34 1.41 0.14

18 1.06 1.14 1.22 0.16 0.00 1.03 1.16 1.29 0.25 1.01 1.07 1.13 0.12

19 0.82 0.95 1.08 0.26 1.00 0.82 0.95 1.08 0.26 1.57 1.66 1.76 0.19

20 0.90 1.06 1.24 0.33 1.00 0.90 1.06 1.23 0.33 1.21 1.26 1.31 0.10

21 1.01 1.40 1.81 0.80 0.54 0.98 1.22 1.49 0.51 1.40 1.44 1.49 0.09

22 1.07 1.20 1.33 0.26 1.00 1.07 1.20 1.33 0.26 1.51 1.60 1.70 0.19

23 1.76 1.99 2.23 0.47 0.00 1.69 2.13 2.80 1.11 1.21 1.27 1.34 0.13

24 2.03 2.23 2.47 0.44 0.01 2.15 2.57 3.24 1.09 1.56 1.63 1.71 0.16

25 1.33 1.44 1.51 0.19 0.02 1.06 1.24 1.43 0.37 1.35 1.39 1.44 0.09

26 1.41 1.61 1.83 0.42 0.02 1.36 1.56 1.80 0.45 1.45 1.62 1.81 0.37

27 1.89 2.04 2.17 0.28 0.00 1.69 1.95 2.27 0.57 1.92 2.01 2.10 0.18

28 1.30 1.37 1.44 0.14 0.00 1.26 1.43 1.62 0.36 1.35 1.40 1.46 0.11

29 1.95 2.22 2.53 0.58 0.00 2.11 2.64 3.65 1.54 1.60 1.69 1.79 0.18

30 1.80 1.94 2.08 0.28 1.00 1.81 1.94 2.08 0.28 1.56 1.65 1.75 0.20

31 1.23 1.35 1.49 0.26 0.00 1.20 1.36 1.54 0.34 1.49 1.59 1.71 0.22

32 1.12 1.33 1.75 0.63 0.84 1.11 1.31 1.54 0.43 1.47 1.52 1.58 0.11

33 2.26 2.46 2.70 0.44 1.00 2.26 2.46 2.70 0.44 1.77 1.86 1.95 0.18

34 1.37 1.57 1.78 0.41 0.78 1.36 1.54 1.75 0.39 1.41 1.47 1.53 0.12

35 1.51 1.64 1.78 0.26 0.00 1.46 1.62 1.80 0.34 1.91 2.02 2.14 0.23

36 0.71 0.96 1.33 0.62 0.96 0.71 0.96 1.21 0.49 1.66 1.80 1.96 0.29

37 1.30 1.47 1.66 0.35 1.00 1.30 1.47 1.66 0.36 1.64 1.76 1.88 0.24

38 1.40 1.52 1.63 0.22 0.00 1.38 1.53 1.70 0.32 1.39 1.45 1.52 0.13

39 1.46 2.08 2.37 0.91 0.21 1.36 1.65 2.00 0.64 1.65 1.79 1.95 0.31

40 1.31 1.46 1.63 0.32 1.00 1.31 1.46 1.63 0.32 1.73 1.81 1.89 0.16

41 1.50 1.69 1.85 0.34 0.03 1.26 1.48 1.72 0.47 1.23 1.30 1.37 0.15

42 2.38 2.65 2.93 0.55 0.00 2.17 2.42 2.73 0.56 1.91 2.03 2.17 0.25

Table 8: Real data with full samples. Labels defined in Table 3
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Forest BMA BFT NT BFT

Est. Int. R Pr Est. Int. R Est. Int. R

1 1.86 2.07 2.33 0.47 1.00 1.87 2.07 2.33 0.46 1.46 1.53 1.61 0.15

2 1.21 1.55 1.69 0.48 0.10 0.98 1.33 1.75 0.77 1.53 1.60 1.68 0.15

3 0.95 1.04 1.13 0.18 0.00 0.90 1.02 1.15 0.25 0.84 0.91 0.98 0.14

4 1.06 1.18 1.31 0.25 0.03 0.95 1.11 1.28 0.33 1.13 1.23 1.34 0.21

5 1.37 1.45 1.53 0.16 0.00 1.29 1.43 1.58 0.29 1.42 1.49 1.55 0.12

6 1.25 1.39 1.49 0.24 0.00 1.21 1.40 1.61 0.40 1.39 1.48 1.57 0.18

7 1.34 1.43 1.52 0.17 0.00 1.22 1.38 1.55 0.33 1.33 1.39 1.45 0.12

8 1.73 2.03 2.26 0.53 0.87 1.87 2.06 2.27 0.39 1.71 1.79 1.87 0.16

9 1.13 1.40 1.55 0.40 0.32 1.09 1.32 1.55 0.47 1.30 1.37 1.43 0.13

10 0.48 0.69 0.87 0.39 1.00 0.49 0.69 0.88 0.39 1.40 1.46 1.51 0.11

11 1.34 1.55 1.77 0.38 0.02 1.03 1.31 1.66 0.63 1.78 1.88 1.98 0.21

12 1.41 1.53 1.89 0.48 0.01 1.49 1.71 1.98 0.49 1.68 1.76 1.85 0.17

13 1.35 1.49 1.77 0.40 0.02 0.95 1.35 1.82 0.86 1.65 1.72 1.80 0.15

14 0.99 1.12 1.24 0.25 0.04 1.07 1.18 1.29 0.23 1.19 1.27 1.35 0.16

15 1.48 1.62 1.86 0.38 0.16 1.53 1.72 1.93 0.40 1.53 1.63 1.74 0.22

16 2.38 2.60 2.87 0.49 1.00 2.38 2.60 2.86 0.48 1.83 1.94 2.05 0.22

17 1.16 1.29 1.39 0.23 0.02 0.95 1.13 1.32 0.37 1.27 1.34 1.42 0.15

18 0.99 1.07 1.15 0.16 0.00 1.03 1.15 1.29 0.26 1.00 1.06 1.12 0.12

19 0.84 1.01 1.22 0.37 0.54 0.82 0.95 1.08 0.26 1.54 1.64 1.74 0.21

20 0.95 1.23 1.31 0.36 0.31 0.90 1.06 1.23 0.33 1.21 1.26 1.32 0.10

21 1.22 1.32 1.41 0.18 0.00 0.98 1.22 1.48 0.51 1.36 1.41 1.46 0.10

22 1.12 1.29 1.42 0.30 0.19 1.07 1.20 1.33 0.26 1.48 1.58 1.69 0.20

23 1.45 2.13 2.81 1.44 0.96 1.70 2.14 2.79 1.09 1.17 1.25 1.32 0.14

24 2.16 2.57 3.26 1.10 1.00 2.15 2.57 3.23 1.08 1.58 1.66 1.75 0.17

25 1.30 1.38 1.45 0.14 0.01 1.06 1.24 1.44 0.37 1.34 1.39 1.44 0.10

26 1.40 1.58 1.78 0.37 0.00 1.36 1.56 1.80 0.44 1.44 1.61 1.81 0.37

27 1.56 1.69 2.08 0.61 0.31 1.69 1.95 2.28 0.58 1.85 1.95 2.05 0.19

28 1.25 1.33 1.48 0.19 0.06 1.27 1.43 1.62 0.36 1.33 1.38 1.44 0.12

29 2.10 2.64 3.63 1.55 1.00 2.11 2.64 3.66 1.55 1.42 1.51 1.62 0.20

30 1.29 1.81 2.36 1.10 0.93 1.43 1.84 2.36 0.92 1.39 1.50 1.61 0.22

31 1.24 1.37 1.53 0.28 0.00 1.20 1.35 1.53 0.34 1.31 1.41 1.53 0.22

32 1.22 1.33 1.50 0.27 0.00 1.11 1.31 1.54 0.43 1.35 1.41 1.47 0.12

33 1.56 2.11 2.76 1.20 0.86 1.72 2.14 2.75 1.03 1.58 1.68 1.77 0.19

34 1.37 1.53 1.75 0.39 0.88 1.37 1.54 1.75 0.39 1.32 1.38 1.44 0.12

35 1.53 1.70 1.85 0.32 0.00 1.46 1.62 1.79 0.33 1.69 1.81 1.93 0.24

36 0.71 0.97 1.32 0.60 0.94 0.72 0.96 1.20 0.48 1.60 1.75 1.91 0.31

37 1.20 1.43 1.64 0.44 0.74 1.30 1.47 1.65 0.35 1.43 1.56 1.70 0.27

38 1.36 1.45 1.57 0.21 0.00 1.38 1.53 1.70 0.32 1.33 1.40 1.47 0.14

39 1.31 1.63 1.94 0.62 0.04 1.36 1.65 2.01 0.66 1.58 1.73 1.90 0.32

40 1.32 1.45 1.68 0.37 0.06 1.31 1.46 1.64 0.33 1.75 1.83 1.92 0.18

41 1.16 1.26 1.48 0.32 0.00 1.26 1.48 1.72 0.47 1.19 1.26 1.33 0.15

42 2.17 2.42 2.74 0.56 1.00 2.17 2.43 2.74 0.57 1.90 2.03 2.17 0.27

Table 9: Real data with 25 observations for forests 2, 13, 30 and 33. Full samples for other forests. Labels
defined in Table 3
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Forest BMA BFT NT BFT

Est. Int. R Pr Est. Int. R Est. Int. R

1 1.67 1.98 2.31 0.64 0.62 1.86 2.08 2.33 0.47 1.46 1.53 1.61 0.15

2 1.30 1.47 1.63 0.33 0.02 1.19 1.50 1.90 0.70 1.53 1.60 1.68 0.15

3 0.90 0.99 1.08 0.18 0.00 0.90 1.02 1.15 0.25 0.84 0.91 0.98 0.14

4 1.05 1.17 1.29 0.24 0.01 0.95 1.11 1.28 0.33 1.13 1.23 1.34 0.21

5 1.31 1.38 1.45 0.15 0.00 1.29 1.42 1.57 0.29 1.43 1.49 1.55 0.12

6 1.27 1.38 1.50 0.23 0.00 1.21 1.40 1.61 0.40 1.40 1.48 1.58 0.18

7 1.28 1.37 1.45 0.17 0.00 1.22 1.38 1.55 0.33 1.34 1.39 1.45 0.12

8 1.72 1.85 2.13 0.40 0.16 1.87 2.06 2.27 0.39 1.72 1.80 1.88 0.16

9 1.14 1.34 1.51 0.37 0.44 1.10 1.32 1.56 0.46 1.31 1.37 1.44 0.13

10 0.49 0.69 0.88 0.39 1.00 0.49 0.69 0.88 0.39 1.41 1.46 1.52 0.11

11 1.16 1.72 1.90 0.74 0.15 1.02 1.32 1.66 0.64 1.78 1.89 1.99 0.21

12 1.63 1.81 2.00 0.37 0.00 1.49 1.71 1.98 0.49 1.69 1.77 1.86 0.17

13 1.57 1.72 1.88 0.31 0.00 1.36 1.75 2.30 0.94 1.65 1.73 1.81 0.15

14 1.07 1.18 1.29 0.23 1.00 1.07 1.18 1.29 0.23 1.19 1.27 1.35 0.15

15 1.42 1.70 1.93 0.51 0.89 1.53 1.72 1.93 0.40 1.53 1.63 1.74 0.21

16 2.38 2.60 2.86 0.49 1.00 2.38 2.60 2.87 0.49 1.84 1.95 2.06 0.22

17 1.12 1.22 1.31 0.19 0.01 0.95 1.13 1.32 0.36 1.27 1.34 1.42 0.15

18 1.07 1.15 1.24 0.17 0.00 1.03 1.16 1.29 0.26 1.00 1.06 1.12 0.12

19 0.82 0.95 1.08 0.26 1.00 0.82 0.95 1.09 0.26 1.54 1.64 1.74 0.20

20 0.91 1.06 1.25 0.35 1.00 0.90 1.06 1.24 0.33 1.21 1.26 1.32 0.10

21 1.02 1.60 1.78 0.76 0.47 0.98 1.22 1.48 0.50 1.36 1.41 1.46 0.10

22 1.07 1.20 1.33 0.25 1.00 1.07 1.20 1.33 0.25 1.49 1.59 1.69 0.20

23 1.71 1.98 2.26 0.55 0.00 1.69 2.14 2.78 1.09 1.17 1.24 1.32 0.14

24 2.10 2.31 2.58 0.49 0.00 2.15 2.57 3.23 1.08 1.58 1.66 1.75 0.17

25 1.30 1.39 1.48 0.18 0.02 1.06 1.24 1.44 0.38 1.35 1.39 1.44 0.10

26 1.37 1.56 1.78 0.40 0.01 1.36 1.57 1.80 0.44 1.44 1.61 1.81 0.37

27 1.90 2.04 2.18 0.29 0.00 1.69 1.95 2.27 0.58 1.86 1.96 2.05 0.19

28 1.27 1.34 1.41 0.15 0.00 1.27 1.43 1.62 0.36 1.33 1.39 1.45 0.12

29 1.98 2.29 2.68 0.71 0.02 2.10 2.64 3.67 1.57 1.43 1.52 1.62 0.20

30 1.61 1.94 2.31 0.69 0.96 1.61 1.93 2.30 0.69 1.39 1.50 1.61 0.22

31 1.27 1.40 1.56 0.29 0.00 1.20 1.35 1.53 0.34 1.32 1.43 1.54 0.22

32 1.12 1.34 1.77 0.65 0.84 1.11 1.31 1.54 0.43 1.36 1.42 1.48 0.12

33 1.95 2.26 2.66 0.71 1.00 1.94 2.25 2.66 0.71 1.60 1.69 1.78 0.19

34 1.36 1.55 1.75 0.39 0.96 1.36 1.54 1.75 0.39 1.32 1.38 1.45 0.13

35 1.46 1.60 1.74 0.28 0.00 1.46 1.62 1.79 0.33 1.71 1.82 1.95 0.24

36 0.72 0.99 1.44 0.72 0.83 0.71 0.96 1.20 0.49 1.61 1.75 1.91 0.31

37 1.31 1.47 1.66 0.35 1.00 1.31 1.47 1.66 0.35 1.44 1.56 1.70 0.26

38 1.35 1.48 1.61 0.25 0.00 1.38 1.53 1.70 0.32 1.34 1.40 1.47 0.14

39 1.47 1.86 2.27 0.79 0.06 1.36 1.65 2.01 0.65 1.58 1.73 1.90 0.32

40 1.31 1.46 1.65 0.34 1.00 1.31 1.46 1.63 0.32 1.75 1.84 1.93 0.18

41 1.49 1.70 1.88 0.38 0.02 1.26 1.48 1.72 0.46 1.19 1.26 1.34 0.15

42 2.26 2.54 2.85 0.59 0.00 2.17 2.42 2.74 0.57 1.90 2.03 2.17 0.27

Table 10: Real data with 50 observations for forests 2, 13, 30 and 33. Full samples for other forests. Labels
defined in Table 3
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BMA BFT NT BFT

Forest True What if Est. Int. Pr Est. Int. Est. Int.

1 0.77 0.73 0.76 0.79 0.00 0.71 0.77 0.82 0.74 0.77 0.80

2 0.79 0.76 0.79 0.81 0.01 0.52 0.83 1.12 0.66 0.69 0.72

3 0.55 0.49 0.52 0.55 0.00 0.45 0.51 0.56 0.57 0.61 0.65

4 0.98 0.90 0.95 1.01 0.00 0.89 0.96 1.04 0.78 0.84 0.90

5 0.88 0.84 0.87 0.90 0.00 0.78 0.84 0.90 0.73 0.76 0.79

6 1.23 1.18 1.23 1.28 0.00 1.10 1.20 1.30 0.93 0.97 1.02

7 0.64 0.60 0.62 0.64 0.00 0.54 0.62 0.69 0.62 0.65 0.67

8 0.92 0.87 0.92 0.95 0.02 0.79 0.86 0.92 0.86 0.89 0.93

9 0.54 0.51 0.53 0.55 0.00 0.46 0.60 0.74 0.56 0.58 0.61

10 0.67 0.64 0.65 0.67 0.00 0.46 0.58 0.68 0.61 0.64 0.66

11 1.49 1.23 1.45 1.55 0.48 1.21 1.32 1.45 1.13 1.18 1.24

12 1.00 0.96 1.00 1.04 0.00 0.94 1.03 1.13 0.95 0.98 1.02

13 1.06 1.02 1.06 1.24 0.06 0.97 1.23 1.54 0.94 0.97 1.00

14 2.20 2.10 2.18 2.27 0.00 1.99 2.14 2.30 2.01 2.11 2.22

15 1.06 1.04 1.08 1.13 0.00 1.00 1.10 1.21 0.84 0.88 0.93

16 0.41 1.92 0.32 0.46 0.59 1.00 0.33 0.46 0.59 1.40 1.46 1.53

17 1.22 1.16 1.21 1.26 0.01 1.14 1.29 1.44 0.90 0.94 0.98

18 1.20 1.11 1.16 1.20 0.01 1.06 1.15 1.24 1.02 1.07 1.12

19 2.70 2.60 2.71 2.83 0.00 2.40 2.66 2.97 2.73 2.88 3.03

20 0.83 0.77 0.80 0.83 0.01 0.69 0.77 0.84 0.88 0.91 0.94

21 1.10 1.05 1.08 1.11 0.00 0.93 1.06 1.19 1.09 1.12 1.16

22 3.70 1.01 1.03 2.64 15.30 1.00 0.98 2.54 43.36 1.26 1.32 1.38

23 1.09 1.00 1.05 1.10 0.07 0.88 1.04 1.23 1.33 1.40 1.46

24 1.62 1.56 1.62 1.69 0.01 1.48 1.62 1.78 1.73 1.80 1.87

25 0.84 0.80 0.82 0.84 0.00 0.78 0.86 0.95 0.78 0.80 0.83

26 1.12 1.07 1.15 1.24 0.00 1.07 1.16 1.25 1.11 1.22 1.34

27 1.02 0.99 1.02 1.06 0.00 0.93 1.01 1.09 0.93 0.97 1.01

28 1.15 1.11 1.14 1.17 0.00 1.10 1.17 1.25 0.92 0.95 0.98

29 2.33 2.25 2.34 2.45 0.01 2.24 2.51 2.84 2.13 2.25 2.38

30 1.79 2.50 1.47 2.19 2.59 0.54 1.42 1.81 2.39 2.77 2.94 3.13

31 1.14 1.07 1.12 1.18 0.00 1.01 1.11 1.21 0.88 0.94 1.00

32 1.00 0.95 0.98 1.03 0.04 0.93 1.02 1.11 1.05 1.09 1.13

33 1.18 0.88 0.85 0.89 1.25 0.21 0.90 1.13 1.33 0.73 0.77 0.81

34 0.85 0.79 0.82 0.85 0.01 0.78 0.87 0.96 0.92 0.95 0.99

35 0.94 0.91 0.95 1.00 0.00 0.89 0.95 1.02 0.70 0.74 0.79

36 0.56 0.53 0.57 0.71 0.02 0.60 0.72 0.83 0.48 0.52 0.56

37 3.32 3.18 3.36 3.55 0.00 2.89 3.18 3.53 3.48 3.74 4.02

38 0.52 0.49 0.51 0.52 0.00 0.47 0.52 0.58 0.56 0.58 0.61

39 0.80 0.75 0.81 0.86 0.01 0.69 0.79 0.90 0.72 0.78 0.85

40 1.85 1.80 1.87 1.95 0.00 1.80 1.96 2.13 1.56 1.62 1.68

41 0.66 0.61 0.63 0.68 0.01 0.69 0.77 0.84 0.82 0.86 0.90

42 1.55 1.52 1.58 1.65 0.01 1.49 1.61 1.74 1.42 1.50 1.58

Table 11: Simulated data with 25 observations for forests 2, 13, 30 and 33. Full sample sizes for other
forests. Labels defined in Table 6
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BMA BFT NT BFT

Forest True What if Est. Int. Pr Est. Int. Est. Int.

1 0.77 0.73 0.76 0.78 0.00 0.71 0.77 0.82 0.74 0.77 0.80

2 0.79 0.76 0.79 0.81 0.00 0.55 0.75 0.92 0.66 0.69 0.72

3 0.55 0.49 0.52 0.55 0.00 0.45 0.51 0.57 0.57 0.61 0.65

4 0.98 0.90 0.95 1.01 0.00 0.89 0.96 1.04 0.78 0.84 0.90

5 0.88 0.84 0.87 0.89 0.00 0.78 0.84 0.91 0.74 0.76 0.79

6 1.23 1.18 1.23 1.28 0.00 1.11 1.20 1.30 0.93 0.97 1.02

7 0.64 0.60 0.62 0.64 0.00 0.54 0.62 0.69 0.63 0.65 0.67

8 0.92 0.89 0.92 0.95 0.00 0.79 0.86 0.92 0.87 0.90 0.93

9 0.54 0.51 0.53 0.55 0.02 0.46 0.60 0.74 0.56 0.58 0.61

10 0.67 0.63 0.65 0.67 0.00 0.46 0.58 0.68 0.62 0.64 0.66

11 1.49 1.22 1.38 1.55 0.69 1.21 1.32 1.45 1.13 1.18 1.24

12 1.00 0.96 1.00 1.03 0.00 0.94 1.03 1.12 0.95 0.98 1.02

13 1.06 1.02 1.06 1.09 0.00 0.93 1.12 1.32 0.94 0.97 1.00

14 2.20 2.10 2.18 2.27 0.00 1.99 2.14 2.30 2.00 2.10 2.20

15 1.06 1.04 1.08 1.13 0.00 1.00 1.11 1.21 0.84 0.88 0.93

16 0.41 1.92 0.33 0.46 0.59 1.00 0.32 0.46 0.58 1.40 1.46 1.53

17 1.22 1.16 1.21 1.26 0.01 1.14 1.29 1.45 0.90 0.94 0.98

18 1.20 1.12 1.16 1.20 0.00 1.06 1.15 1.24 1.02 1.07 1.12

19 2.70 2.60 2.71 2.83 0.00 2.40 2.66 2.99 2.72 2.87 3.02

20 0.83 0.78 0.80 0.83 0.00 0.70 0.76 0.84 0.88 0.91 0.94

21 1.10 1.05 1.08 1.11 0.00 0.93 1.06 1.19 1.09 1.12 1.15

22 3.70 1.01 1.05 2.46 12.16 1.00 1.08 2.45 9.76 1.26 1.32 1.38

23 1.09 0.99 1.05 1.11 0.06 0.87 1.05 1.24 1.33 1.39 1.45

24 1.62 1.56 1.62 1.68 0.00 1.49 1.62 1.78 1.72 1.79 1.86

25 0.84 0.80 0.82 0.84 0.00 0.78 0.86 0.95 0.78 0.80 0.83

26 1.12 1.07 1.15 1.24 0.00 1.07 1.16 1.25 1.11 1.22 1.34

27 1.02 0.99 1.02 1.06 0.00 0.93 1.01 1.09 0.93 0.97 1.01

28 1.15 1.11 1.14 1.17 0.00 1.10 1.17 1.25 0.92 0.95 0.98

29 2.33 2.25 2.35 2.50 0.03 2.23 2.51 2.84 2.13 2.25 2.37

30 1.79 2.50 1.61 1.92 2.58 0.71 1.60 1.86 2.22 2.75 2.93 3.11

31 1.14 1.07 1.12 1.18 0.01 1.02 1.11 1.21 0.89 0.94 1.01

32 1.00 0.95 0.98 1.03 0.03 0.93 1.02 1.11 1.05 1.09 1.13

33 1.18 0.88 0.86 1.05 1.28 0.53 1.00 1.15 1.31 0.74 0.77 0.81

34 0.85 0.79 0.82 0.86 0.02 0.78 0.87 0.96 0.92 0.95 0.99

35 0.94 0.91 0.95 1.00 0.00 0.89 0.95 1.02 0.71 0.75 0.79

36 0.56 0.53 0.56 0.60 0.00 0.60 0.71 0.83 0.48 0.52 0.56

37 3.32 3.18 3.36 3.56 0.00 2.89 3.18 3.51 3.46 3.72 3.99

38 0.52 0.49 0.50 0.52 0.00 0.47 0.52 0.58 0.56 0.58 0.61

39 0.80 0.75 0.81 0.86 0.00 0.69 0.80 0.90 0.72 0.78 0.84

40 1.85 1.80 1.87 1.94 0.00 1.80 1.96 2.13 1.56 1.62 1.68

41 0.66 0.60 0.63 0.67 0.00 0.69 0.77 0.84 0.82 0.86 0.90

42 1.55 1.51 1.58 1.65 0.00 1.50 1.61 1.74 1.41 1.49 1.57

Table 12: Simulated data with 50 observations for forests 2, 13, 30 and 33. Full sample sizes for other
forests. Labels defined in Table 6
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