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In this paper we study learning procedures when counterfactuals (payo�s of not-chosen

actions) are not observed. The decision maker reasons in two steps: First, she updates

her propensities for each action after every payo� experience, where propensity is de�ned

as how much she prefers each action. Then, she transforms these propensities into choice

probabilities. We introduce natural axioms in the way propensities are updated and the

way propensities are translated into choice, and study the decision marker's behavior

when such axioms are in place.
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1 Introduction

In this paper we are concerned with learning by economic decision-makers who have to take

decisions in situations where little is known about the performance of each of the alternatives

available. For example, consider decisions such as how to conduct business negotiations, which

consumption goods to buy, and in which assets to invest our money. In many such situations,

we may not know how many di�erent states of nature are possible, the probability distribution

over these states or the payo�s associated with each alternative and state. Moreover, even if

all this information was available, processing it in order to make optimal choices may prove

overly complicated.

Traditional economic theory assumes that even in such situations agents act as if they

were maximizing expected utility with a unique subjective probability distribution (Savage,

1954 and Anscombe and Aumann, 1963). In situations like the ones described above it seems

unclear why expected utility maximization should be successful in predicting behavior well.

An alternative is to study models where agents arrive at their decisions by learning from their

own experiences or via communication with others1. This is often done by either imposing

some optimality properties on the learning rule agents use or by simply positing an ad-hoc

model which seems a good description of actual behavior2.

In this paper we take a somewhat di�erent route. As in other learning models, we pro-

pose a setting where the decision maker evaluates the di�erent alternatives according to the

payo�s she obtained in the past. Instead of simply positing a model, though, we examine

the implications of some natural and simple requirements on how learning occurs. Unlike

in the literature on optimal learning, we do not impose any kind of optimality requirement

on way learning occurs via our axioms. As opposite to this, we try to �nd axioms which

characterize natural behavior in such situations. The only knowledge the decision maker has

in our setting is the set of available actions. She does not necessarily know about the state

space, the probability distribution over such state, or the payo� associated with each action

at a given state. Over time, the decision maker observes the payo� she obtains in every

period and uses that information for choosing next period.

Our approach is similar to Easley and Rustichini (1999). However, unlike them we assume

that the decision maker does not observe counterfactuals. That is, at any given period,

she does not observe the payo� of the actions she does not choose. This seemingly small

di�erence has a big impact in the way the decision maker tackles the problem of learning:

If counterfactuals are observed, the action chosen is completely irrelevant for the learning

1Fudenberg and Levine (1998) have surveyed some of the vast literature on learning.
2Examples of the �rst class of models are B�orgers et al (2004) or Schlag (1998). Examples for the second

class are Roth and Erev (1995), Camerer and Ho (2004) among many others.

2



process as the decision maker learns the same information independently on her choices. On

the other hand, if counterfactual are not observed, learning is crucially a�ected by the action

chosen as the decision maker only learns about the actions she chooses.

Therefore, in an environment where counterfactuals are not observed, the decision maker

has a trade-o� between exploitation of the currently most preferred action and exploration

of the other alternatives3. The fact that counterfactuals are not observed, as we explain

below, gives rise to a separation between how much the decision maker prefers each action

and how these preferences translate into choices. Hence, the learning procedures we study

can be characterized through two processes: First, we have the updating rule. The updating

rule speci�es how new information, experiences, etc. a�ect the decision marker's propensity

towards each of the possible actions. These propensities could represent beliefs about the

distribution of payo�s associated with each action or a much wider set of feelings such as

con�rmatory bias or forgetting. Secondly, there is the choice rule, which speci�es how these

propensities are translated into actual choices.

As already mentioned, and quoting Easley and Rustichini (1999), \our interest is not

in the existence of a procedure that \works"". Hence, we do not make any requirement

regarding optimality from the learning rules ex ante, i.e. through our axioms. Instead, the

axioms we pose are meant to capture natural features on the agent's behavior rather than

desirable properties of the learning rule. However, in a second step, we investigate how these

natural requirements relate to optimality.

In our results we also relate how the learning behavior induced by our axioms relates to

learning rules that are known in the literature. In particular, we show that under our main ax-

ioms the resulting learning procedure is a form of reinforcement learning which approximates

the replicator dynamics from evolutionary game theory4.

There have been other axiomatizations of learning procedures that lead to a behavior

that resembles replicator dynamics. To our knowledge, this has been the case mostly in

the literature on optimal learning with bounded rational agents (see, for example, B�orgers

et al (2004) and Schlag (1998) among others). Our approach is di�erent in that we are

not interested in characterizing optimal rules. The only axiomatization of the replicator

dynamics using natural axioms is due to Easley and Rustichini (1999). However, and as

already mentioned, their paper deals with learning when counterfactuals are observed. In

section 6.3 we explain the di�erences between Easley and Rustichini (1999) and our approach

in more detail.

3Even though we are dealing with a possibly bounded rational decision maker, the rational solution to such

a problem is also far from trivial (See e.g. Bergemann and Vaelimaeki, 2006).
4See Roth and Erev (1995), Bush and Mosteller (1951) or Sutton and Barto (1998).
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The rest of the paper is organized as follows. In section 2 we present the learning environ-

ment. Section 3 introduces the axioms on the transition function and give a characterization

given such axioms. Section 4 proceeds likewise and a characterization of the choice function

is presented. In section 5, we establish e�ciency and optimality results for the learning rules

resulting from our axioms. A relation between the replicator dynamics and the characteriza-

tions resulting from our axioms is presented in section 6. Finally, section 7 concludes.

2 The Model

Consider a decision maker who at each period t = 0; 1; : : : chooses an action from the �nite

set A = f1; : : : ; ng . Every action yields a random payo� � 2 � = R+. Denote by �ti the

realization of � at time t of action i.

Denote by �Ht = f�htgt�1�=1 the set of all possible histories at t � 1 with elements �ht 2 A�

�n = �Ht and let �H =
S

t�1
�Ht be the entire set of histories. DenoteHt; ht; H correspondingly

as the part of the history that is observed by the decision maker. The initial histories are

assumed to be empty �H0; �h0 = ; and H0; h0 = ;. Finally, let �i
�
ht
�
be the sum of payo�s of

action i under history ht. If action i 2 A was not chosen in history ht then we set �i
�
ht
�
= �0i .

For any history ht denote by #i
�
ht
�
the number of times action i is chosen in ht.

At each point in time the decision maker is assumed to have propensities � 2 � = R
n
+

where �i 2 �i is the propensity of action i 2 A and
Qn

i=1�i = �. We use �ti to denote the

propensity of action i at time t. The initial vector of propensities �0 2 � is given. Propensities

can be interpreted as a numerical representation of preferences5.

Since our agent does not observe counterfactuals, his choices matter crucially for learning.

In particular, it is not necessarily optimal for her to always choose the action with the highest

propensity (as it is the case under expected utility maximization) as this would preclude

learning about other actions. Hence, the agent randomizes his choice every period where the

probability of choosing each action is given by p : �! �n with p = (p1; : : : ; pn) where �
n is

the n-dimensional unit simplex.

At the end of each period the decision maker observes the payo� of the action played

and updates her propensities �. Propensities over actions change according to the transition

function T : � � A � � ! �. Hence, Ti

�
�; j; �tj

�
is the new propensity of action i if

propensities are given by � and the agent chooses j and obtains a payo� �tj . That is,

�t+1
i = Ti(�

t; j; �tj)

5Such numerical representation exist under expected utility maximization by the von Neumann-

Morgenstern theorem
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for all i 2 A when action j is chosen and payo� �tj is obtained.

3 Axioms on Updating Rule T

As mentioned in the introduction, the decision maker separates her reasoning into two steps.

First, there are her propensities (�), which tells us how much she prefers each action. Second,

we have her choices (p), which are simply an application from propensities into probabilities.

In this section we introduce a set of axioms on the way the propensities are updated. These

axioms are not motivated by optimality considerations but rather by behavioral rules of

thumb.

Our �rst axiom on the way propensities are updated deals with the fact that there is, a

priori, no reason why the decision maker would treat propensities di�erently based only on

the label of the actions. This axiom embodies the requirement that the decision-maker should

not have preferences which do not stem from her own experience. It avoids all unreasonable

bias towards any action.

Axiom 1 (Anonymity). The transition function T does not depend on actions per se. That

is, Ti

�
�; j; �tj

�
= Tk

�
�; j; �tj

�
if and only if �i = �k and either j 6= i; k or j = i; k.

Requiring some kind of Anonymity is standard and can also be found in, for instance,

B�orgers et al (2004) or Easley and Rustichini (1999). The second axiom is a monotonicity

requirement. It implies that, all things equal, starting with a higher propensity results in a

higher propensity after the updating takes place. It also implies that, all things equal, higher

payo� translates into higher new propensity of the action chosen. Note that the axiom makes

claim between di�erent actions. That is, it relates only the updating of the propensity of a

given action i with this same action's propensity and payo� �i; �i.

Axiom 2 (Monotonicity). The transition function Ti is strictly increasing in �i and �i.

Our third axiom deals with how big the changes in propensities can be. We assume the

decision maker updates propensities in a su�ciently smooth way. In particular, we assume

that T is di�erentiable with respect to initial propensities � and payo� �. As an extension to

our main results, in section 3.1.1 we characterize the function T when di�erentiability (nor

continuity) is not assumed. We choose to focus on di�erentiability as the resulting function

T is more reasonable as it does not present any sudden changes in slope or jumps.

Axiom 3 (Di�erentiability). The transition function T is di�erentiable in � and �.
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Our �nal axiom speci�es how payo�s are treated when updating propensities. The follow-

ing axiom states that, for any two possible histories that start with the same propensity for a

given action and where the number of times a given action has been played coincides across

these two histories, then the sum of payo�s determines under which history the propensity

of the given axiom is higher. Note that the axiom makes no claim on: how to compare

propensities of di�erent actions and, on how to compare the propensities under two di�erent

histories where the given action has been played a di�erent number of times or had di�erent

initial propensity. Hence the term Weak.

Axiom 4 (Weak Sum). For any histories ht and �hk and any action i, T is such that if

�0i =
��0i and #i

�
ht
�
= #i

�
�hk
�
, then �ti �

��ki if and only if �i
�
ht
�
� �i

�
�hk
�
.

The aim of this paper is to understand learning without counterfactuals when natural

axioms are in place. We are aware that \natural" is an, at most, vague term. Therefore,

considering alternatives to our main axioms is an important part of our article. In section

3.1 we consider other alternatives to the axioms presented above.

We move now to present a characterization on the way propensities are updated given

the four axioms above. Our �rst result is that if an action is not chosen, then its propensity

does not change. This is a consequence of the Weak Sum axiom.

Lemma 1. Given any transition T that satis�es Weak Sum, we have that �t+1
i = Ti(�

t; j; �j)

for any �t, j 6= i and �j.

Proof. Fix the initial propensities �t. Assume action i is not played at time t. Consider the

alternative event (history) where action i is played at time t. Weak Sum implies that �t+1
i = �̂ti

where �̂ indicates the value of � under the alternative history. Since, by construction, �ti = �̂ti ,

we can conclude that �t+1
i = �ti . Thus, we have that the propensity of an action only changes

if that action is played.

The next result states that the propensity of a given action is not a�ected by the propen-

sities of the other actions. That is, propensities are updated independently across action.

This results is again a consequence of the Weak Sum axiom.

Lemma 2. Assume that T satis�es Weak Sum. For any pair �i; � we have that Ti (�; i; �),

where �i is an element of �, is independent of ��i.

Proof. By Weak Sum T , is such that starting from any �t and for any two histories ht+m

and ĥt+m with m 2 n+ that are di�erent only in the periods where action i is not chosen,

the value of �t+m
i equals the value of �̂t+m

i . Thus, the propensities of all actions �i do not

in
uence the propensity of action i and, hence, the function Ti does not depend on ��i.
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We are �nally able to present a characterization of the transition function T . Proposition

1 below states that the way propensities are updated is linear in payo�s. The results is a

consequence of lemmas 1 and 2 above and axioms 1-4.

Proposition 1. A transition T satis�es axioms 1- 4 if and only if for all i 2 A there exists

a � > 0 and a � � 0 such that

�t+1
i =

(
�ti + �� + � if action i is played and payo� � is obtained,

�ti otherwise.

Note that the expression above has two free parameters: � and �. The parameter �

represents how payo�s increase propensities while the parameter � acts as a counter on how

many times an action has been played.

Proof. First note that by Lemma 2 we can �nd a function gi : �i � � that represents Ti for

all i 2 A. That is, for all � 2 �, i 2 A, � 2 � we have that

gi (�i; �) = Ti (�; i; �)

where �i is an element of �.

Take any two payo�s �̂; �� 2 � and consider the following two histories:

h2 = ((i; �̂) ; (i; ��)) ;

ĥ2 = ((i; ��) ; (i; �̂)) :

By Weak Sum we have that �2 = �̂2. Thus, using the de�nition of g we have that for any

�i 2 �i and any �̂; �� 2 �

gi (gi (�i; �̂) ; ��) = gi (gi (�i; ��) ; �̂) : (1)

Furthermore, Weak Sum implies that for all �; " > 0

gi (gi (�i; �̂) + �; ��) = gi (gi (�i; ��) + �; �̂) ;

gi (gi (�i; �̂) ; �� + ") = gi (gi (�i; ��) ; �̂ + ") :

Thus, since g is di�erentiable, we have that

@gi
@�

����
(gi(�i;�̂);��)

=
@gi
@�

����
(gi(�i;��);�̂)

; (2)

@gi
@�

����
(gi(�i;�̂);��)

=
@gi
@�

����
(gi(�i;��);�̂)

(3)
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for all �i 2 �i and ~�; �� 2 �.

If we di�erentiate now (1) with respect to �̂ we obtain

@gi
@�

����
(gi(�i;�̂);��)

@gi
@�

����
(�i;�̂)

=
@gi
@�

����
(gi(�i;��);�̂)

: (4)

On the other hand, di�erentiating (1) with respect to �� we obtain

@gi
@�

����
(gi(�i;�̂);��)

=
@gi
@�

����
(gi(�i;��);�̂)

@gi
@�

����
(�i;��)

: (5)

Thus, combining (2), (3), (4) and (5) we get that

@gi
@�

����
(�i;�̂)

=
@gi
@�

����
(�i;��)

for all �i; �̂; ��. Therefore, using (3) and the fact that g is di�erentiable by Di�erentiability,

there must exist a constant � such that

@gi
@�

����
(�i;�)

= � (6)

for all �i; �.

Using (4) and (6) yields

@gi
@�

����
(gi(�i;�̂);��)

= 1:

Since this is true for any �i; �̂; ��, we have that

gi (�i; �) = �i + f(�) (7)

for some strictly increasing (Axiom 2) and everywhere di�erentiable (Axiom 3) function

f : �! �. But by equation (6) we must have that

f (�) = �� + �: (8)

for some � and �. By Monotonicity we have that � > 0, and by the fact that propensities

are de�ned in R+, � � 0. Combining (7), (8) and Lemma 1 gives the desired result.

3.1 Discussion on the Axioms of T

3.1.1 Di�erentiability

The di�erentiability axiom has been assumed as it seems natural that the decision maker

would want to update propensities in a su�ciently smooth way. However, one might argue
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that this may not necessarily be the case. We now deal with how the decision maker updates

propensities when there is no assumption regarding the smoothness of T . The following result

has an answer:

Proposition 2. A transition T satis�es axioms 1, 2 and 4 if and only if for all i 2 A and

almost all �ti there exists a � > 0, � 2 � and " > 0 such that

�t+1
i =

(
�ti + �� + � when i is played and � is obtained,

�ti otherwise

for � 2 B" (0).

Proof. A known result is that any monotone function is almost everywhere di�erentiable (see,

for example, Theorem 14a in Chabrillac and Crouzeix (1987)). Thus, since T is monotonous,

it is almost everywhere di�erentiable. Once this fact is established, the rest of the proof is a

straightforward extension to the proof of Proposition 1.

If di�erentiability is not assumed, then the functional form in Proposition 1 is still valid

for small neighborhoods of given propensities. However, the functional form of T for a given

neighborhood of �; � may not be valid for the entire � � � space. It may happen that T is

neither di�erentiable nor continuous for some �nite set of points � as the following example

shows:

Example 1.

�t+1
i =

8>><
>>:

�ti + �1� if �ti + �1� < �;

�+
�
�ti + �1� � �

�
�2
�1

+ � if �ti < � and �ti + �1� � �;

�ti + �2� otherwise

for some �1; �2; � > 0 and � > 0.

It is easy to check that the transition T represented above satis�es axioms 1, 2 and 4 but

it doesn't satisfy Di�erentiability (T is not even continuous at � = �). In this case, each

payo� � increases the propensity of its respective action by �� where the value of � is not

constant throughout the whole �� � space. The transition T is has also a discontinuity at

� = � where propensities are increased by �. We choose to avoid such non-smooth behavior

by assuming the transition T to be di�erentiable.

3.1.2 Weak Sum

The Weak Sum axiom has the feature that all payo�s are treated equally independently on

when they happened. Thus, a t-period old payo� a�ects propensities in the same way as a
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payo� obtained in the present period. In this subsection we consider an alternative to the

Weak Sum axiom where recent payo�s a�ect the current propensities more than older ones.

De�ne �
�
�; ht

�
as the discounted sum of payo�s of action i in history ht where each payo�

is discounted at the rate of � 2 (0; 1) per period. Thus, a t-period old payo� of � equals to a

payo� of �t� today. An alternative to Weak Sum is the following:

Axiom' 1 (Weak Weighted Average). For any histories ht and �ht and any action i, T is

such that if �0i =
��0i and #i

�
ht
�
= #i

�
�ht
�
, then �ti �

��ti if and only if �i
�
�; ht

�
� �i

�
�; �ht

�
for some � 2 (0; 1).

Note that two histories can be compared using the Weak Weighted Average only if they

are the same length as otherwise it can be shown that no transition T exists (see Appendix

8.1.2). If we replace the Weak Sum axiom with the Weak Weighted Average axiom we obtain

the following result (proof in Appendix 8.1.1):

Proposition 3. If transition T satis�es axioms 1-3 and 1' then for all i 2 A there exists a

� > 0 and � > 0 such that

�t+1
i =

(
��ti + �� + � if action i is played and payo� � is obtained,

��ti + � otherwise.

Note that the functional form of the transition Ti in this case has three free parameters:

�, � and �.

The Weak Weighted Average is not the only reasonable alternative to the Weak Sum

axiom. So far we have assumed that the decision maker has no concern about risk, that is,

we have taken her to be risk neutral. A natural alternative to this is to consider a risk averse

decision maker. In particular, we could assume that the decision maker attitude towards risk

is lexicographic in the sum of payo� and variance of payo�s. That is,

Axiom' 2 (Risk Averse Sum). For any histories ht and �hk and any action i, T is such that

if �0i =
��0i and #i

�
ht
�
= #i

�
�hk
�
then �i

�
ht
�
> �i

�
�hk
�
implies �ti >

��ki , and �i
�
ht
�
= �i

�
�hk
�

implies �ti �
��ki if and only if var

�
�i
�
ht
��
� var

�
�i
�
�hk
��
.

One can show, however, that there exists no transition T satisfying axioms 1-3 and 2' (see

Appendix 8.1.3). An alternative way of treating risk could be assuming the decision maker

treats sum of payo�s and variance as substitutes. This would imply that she is willing to

give up higher payo�s in favor of less variance. However, an axiom targeting a representation

of such behavior is troublesome. In particular, it is not clear what is the natural way of

exchanging risk into payo� and vice versa.
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4 Axioms on Choice Function p

We proceed now to study how propensities are translated into choices. How the decision

maker chooses between each of the available actions is crucial for the learning process as the

only way the decision maker can gain information about an action is by choosing it.

Our �rst two axioms are equivalent to the Anonymity and Monotonicity axioms for T .

As for the transition functions, Anonymity implies that all actions are given equal treatment

in the sense that their label does not matter. Monotonicity means that, other things equal,

the decision maker tends to assign more probability to the action she prefers more. That is,

higher propensities implies higher probability.

Axiom 5 (Anonymity). The choice rule p does not depend on actions per se.

Axiom 6 (Monotonicity). Each choice function pi is strictly increasing in �i for all i 2 A.

Our third axiom, Continuity, relates to how smooth Behaviour is. In particular, Conti-

nuity means that there are no discrete jumps in how propensities are translated into choices.

Later in section 4.1.1 we discuss what are the implications of dropping the Continuity axiom.

Axiom 7 (Continuity). Each choice function pi is continuous in �.

The �nal axiom relates to how the relative di�erences in propensities are translated into

relative di�erences in choice probabilities. Boundedness means that the decision maker should

not exaggerate the relative di�erences in propensities when translating these into choices.

This has the natural interpretation that the decision maker is always inclined to \try" the

di�erent actions, albeit with small probability, even if the propensities of these actions is low.

We believe that in an environment where counterfactuals are not observed such cautiousness

or willingness to investigate is reasonable. In section 4.1.2 we prove that Boundedness can

be thought as a consequence of another two axioms that we introduce later: Independence

and Lipschitz Continuity.

Axiom 8 (Boundedness). For all i; j 2 A, p is such that there exists a �ij > 0 such that if
�ti
�tj
< � for some � > 0 then pi

pj
< �ij�.

In other words, Boundedness states that if the relative propensities of two actions are

bound by some number � 2 R, then relative choice probabilities should be bound by a �nite

(but possibly arbitrarily large) multiple of �. Hence, the requirement is that the decision

maker does not ever fully discard an action given current propensities. However, she may

assign an arbitrarily small probability to some actions. Hence, loosely speaking, the require-

ment is to be at least "a bit cautious".
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Our �rst result states that the probability of choosing each action negatively depends on

the propensities of the other actions. Given Monotonicity and Anonymity, the result is due

to the fact that the choice probabilities must lie in the n-dimensional unit simplex.

Lemma 3. If p satis�es Anonymity and Strict Monotonicity then for all i 2 A we have that

pi is strictly decreasing in �k, 8k 6= i.

Proof. Since
P

pi = 1 and since pk is strictly increasing in �k, at least some pj 6= pk has to

be strictly decreasing in �k. But then by Anonymity this has to be true for all pj .

Next we show that if an action has a greater propensity than another action, then the

probability of choosing it must also be greater. This result is again a consequence of Mono-

tonicity and Anonymity.

Lemma 4. If p satis�es Monotonicity and Anonymity then �ti > �tj implies pti > ptj.

Proof. The proof is by contradiction. Assume that �ti > �tj but pi(�
t
i ; �

t
j ; �

t) < ptj(�
t
i ; �

t
j ; �

t),

where the �rst argument is the value of � for action i, the second argument for action j and

the third argument the value of � for all other actions. Now by Strict Monotonicity and

Lemma 3 we have that ptj(�
t
i ; �

t
j ; �

t) < ptj(�
t
j ; �

t
j ; �

t). Furthermore (by Strict Monotonicity) we

have pti(�
t
i ; �

t
j ; �

t) > pti(�
t
j ; �

t
j ; �

t). This implies

pi(�
t
j ; �

t
j ; �

t) < pi(�
t
i ; �

t
j ; �

t) < pj(�
t
i ; �

t
j ; �

t) < pj(�
t
j ; �

t
j ; �

t) (9)

violating Anonymity.

We are now able to provide a characterization of the choice probabilities p. The class of

rules satisfying Anonymity, Monotonicity and Continuity is quite large. The Boundedness

axiom, however, turns out to induce a unique characterization. Proposition 4 below states

that the probability of choosing each action is linearly proportional to its propensity.

Proposition 4. A choice rule p satis�es axioms 5-8 if and only if

pi =
�iP
j �j

:

Proof. First we show necessity. It is obvious that pi =
�iP
j �j

satis�es Strict Monotonicity and

Anonymity. For Boundedness note that
pti
ptj

=
�ti
�tj

= ��, 8� > 1. Next we show su�ciency.

Note that Cautious Choice implies that 8i; j :
pti
ptj
� �

�ti
�tj

for some �0 2 R. (If 9i; j s.t.
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pti
ptj
� �0

�ti
�tj
; 8�0 > 0; then assume that

�ti
�tj

= ��
�0

< �. This implies
pti
ptj
� �0

�ti
�tj

= ��; a

contradiction). Next note the self consistency condition

pti � �0

 
�ti
�tj

!
ptj � �0

 
�ti
�tj

!
�0

 
�tj
�ti

!
pti =

�
�0
�2
pti (10)

implies that �0 � 1. Now consider the smallest �0 � 1 for which
pti
ptj
� �0

�ti
�tj
holds true 8i; j 2 A

and denote it by �min. Next note that this is equivalent to

8i; j : pti�
t
j � �min�tip

t
j : (11)

Since this is true 8i; j, summing both sides over j delivers

pti
X
j

�tj � �min�ti
X
j

ptj () (12)

pti �
�min�tiP

j �
t
j

; (13)

since
P

i p
t
i = 1. But now if �min > 1; then 9�

00
2 [1; �min] and i 2 A s.t. pti > �

00 �tiP
j �

t
j

>
�tiP
j �

t
j
. This also implies (since

P
i pi = 1) that there exists j 6= i s.t. ptj <

�tjP
h �t

h

. Fix all

�tj ; 8j 6= i. Now since pi(�) is continuous and mapping � into [0; 1] then (by Anonymity and

monotonicity) it follows that 9�̂ s.t. 8�i > �̂ : pi >
�00�iP
j �j

. 6 But then we have that

8�ti >
1

�00 � 1

X
j 6=i

�tj : p
t
i > 1: (14)

what contradicts p being a probability. Hence we need �min = 1. But then
P

i pi = 1 implies

pti =
�tiP
i �

t
j
.

4.1 Discussion on the Axioms of p

4.1.1 Continuity

What happens if we do not require the continuity axiom, i.e. if we allow the agent to respond to

small changes in propensities with "big" changes in choice probabilities? Without Continuity,

another class of rules is possible, such as, for example, the following: Denote by �max the

maximum of f�1; : : : ; �ng and de�ne pi as follows:

pi =

8>>><
>>>:

0:9 if �maxis unique and �i = �max
(0:1)�iP

�
j
6=�max

�j
if �maxis unique but �i 6= �max

�iP
j �j

if �maxis not unique

6Assume there existed an interval [e� � x; e� + x] s.t. 8e� + x > �j > e� : pj <
�jP
�h

and 8e� � x < �i < e� :

pi >
�iP
�h
, then lim�i;�j!

e�
pj
pi

< lim�i;�j!
e�
�j(
P

h 6=i �h+�i)
�i(
P

h 6=j �h+�j)
= 1 which contradicts Strict Monotonicity (using

Lemma 4). Note also that the limit exists by continuity

13



The rule above satis�es Strict Monotonicity and Anonymity and also the Boundedness

axiom since if �i = �max; then

pi
pj

=
0:9
P

�
h
6=�max

�h

(0:1) �j
<

(0:9) (jAj � 1) �i
(0:1) �j

< 9 (jAj � 1) �

whenever
�i
�j
< � and hence the axiom holds for � = 9 (jAj � 1). (If �i 6= �max; then the axiom

holds for � = 1).

4.1.2 Boundedness

Essentially, the Boundedness axiom rules out choice rules where "too little" exploration is

performed. The simple choice rule where the action with the highest propensity is chosen with

probability one or the exponential choice rule are two examples of rules where the decision

maker converges to a single action quickly without exploring the environment. Obviously,

without the Boundedness axiom the class of admissible choice rules is massive.

One may wonder why we do not assume Lipschitz continuity instead of the Boundedness

axiom. Next we look at the relationship between the Boundedness axiom and Lipschitz

continuity. The �rst thing to note is that Lipschitz continuity does not imply the Boundedness

axiom. To see this consider the following counterexample where pi =
�i�

1
2

P
j �j

2
3

P
j �j

: This function

is Lipschitz continuous for � = 3 (since (pi � pj) =
3

2
P

j �j
(�i � �j)), but it does not satisfy

the Boundedness axiom. Note that this rule is also Anonymous and Monotone.

The example presented in subsection 4.1.1 has already shown that it is also not the case

that Boundedness implies Lipschitz continuity. Furthermore, Boundedness and Continuity

are also not enough to imply Lipschitz continuity. Consider a the following axiom

Axiom' 3 (Independence). If
�ti
�tj
=

�t+1i

�t+1j

, then also
pti
ptj

=
pt+1i

pt+1j

.

Clearly this axiom is weaker than Boundedness and is, for example, satis�ed by the

exponential choice rule (in conjunction with the other axioms). What about, though, if we

require both Independence and Lipschitz continuity? The following proposition shows that

taken together these axioms are stronger than the Boundedness axiom.

Proposition 5. Any choice rule satisfying Independence and Lipschitz continuity also sat-

is�es Boundedness.

Proof. Note �rst that independence requires that pi
pj

is not a function of �k for any k 6= i; j.

Furthermore we know by Rademacher's theorem that every Lipschitz continuous function is

14



almost everywhere di�erentiable. Now taking the partial derivative of pi
pj

with respect to �k

for some k 6= j; i and requiring it to be zero we get the following equation.

@pi
@�k
@pj
@�k

=
pi
pj
;8k 6= j; i: (15)

Thus, all we need to show is that there is a constant bounding the RHS of equation (15).

But we also know that krpi(�)k is bound by the Lipschitz constant L. Hence

rP
j

�
@pi
@�j

�2
�

L which implies that every partial derivative must be bound by a constant and hence also the

RHS of equation (15). Now assume that the derivative @pi
@�j

fails to exist on some set C � �.

It should be easy to see that the above arguments still apply.

Hence, Boundedness is implied by Independence and Lipschitz continuity taken together

while the reverse is not true. Note that Lipschitz continuity also implies Continuity, but

even if we take Continuity and Boundedness together they do not imply Lipschitz continuity.

Our example in subsection 4.1.1 above violated Continuity. Next we present an example of

a rule which satis�es Boundedness and Continuity but violates Lipschitz continuity. Note

that any such example must violate either Anonymity or Strict Monotonicity since the only

rule satisfying all four of these is the rule from Proposition 4 which is Lipschitz continuous.

Consider the following example, where Anonymity is violated,

p1 =
2�1

�1+
P

j �j

pi =
�i

�1+
P

j �j
if i 6= 1

Clearly this rule satis�es Continuity and Boundedness. To see that it violates Lipschitz

continuity, note that

jp1 � pj j =
1

�1 +
P

j �j
j2�1 � �j j :

Hence, we have seen that requiring Lipschitz continuity and Independence together is a

stronger requirement than Continuity and Boundedness. As a matter of fact, Continuity and

Boundedness together do not even imply Lipschitz continuity. This should have convinced

the reader that our Boundedness axiom is relatively weak.7

7One could also consider a stronger version of Lipschitz continuity which is sometimes called Bi-Lipschitz.

A function is Bi-Lipschitz if there exists � such that 8i; j : 1
�
j�i � �j j � jpi � pj j � � j�i � �j j. This could be

interpreted as saying that choice probabilities should not be too far nor too close together. The condition again

is not implied by Boundedness. The proportional choice rule for example violates it since jpi � pj j =
j�i��j jP

j �j
,

but no � can be found which bounds
P

j �j .
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5 E�ciency and Optimality

5.1 E�ciency

As we mentioned in the introduction, our target is not to axiomatize learning procedures

that \work". Instead, our aim is to provide a characterization of learning rules that satisfy

certain natural axioms. A question that arises once such characterization is carried out is

then: do the procedures that satisfy natural axioms work? This is the target to be studied

in this subsection.

We say that a transition function T together with a choice function p is e�cient if it

selects the action with highest average payo� in the long run. Let E (�i) be the expected

payo� of action i at any random period. We have then the following de�nition:

De�nition 1. A pair of transition function together with a choice function, (T; p), is e�cient

if, for k = argmaxj E (�j),

lim
t!1

ptk = 1:

Our next result shows that indeed the natural axioms we placed do make the decision

maker to select the e�cient action in the long run. Proposition 6 below is a consequence of our

characterization and Rustichini's (1998) result on linear procedures without counterfactuals8.

Proposition 6. A pair (T; p) that satis�es axioms 1-4 and 5-8 is e�cient.

Proof. De�ne k = argmaxiE (�i). Rustichini (1998, Proposition 3.2) shows that if

pti(R) =
�0i + �i

�
ht
�

P
j

�
�0j + �j (ht)

� (16)

for all i 2 A then in the limit when t grows large and independently on �0i and ht:

lim
t!1

pk = 1:

Using propositions 1 and 4 we have that if axioms 1-8 are satis�ed then

pti =
�0i + ��i

�
ht
�
+#i(ht)�P

j

�
�0j + �j (ht) + #j(ht)�

�
for some � > 0 and � � 0.

8Rustichini (1998) refers to the situation where counterfactuals are not observed as the partial information

case.
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Consider now a di�erent environment where we multiply times � all the payo�s of all

actions and add � to them. It is clear that in this new environment propensities and payo�s

still belong to R+, so our characterization (propositions 1 and 4) can be applied. It is also

easy to see that for the new environment, argmaxi Ê (�i) = argmaxiE (�i), where Ê denotes

the expected payo� in the modi�ed environment.

Thus, Rustichini's result implies that (16) puts probability 1 to action k in the limit in

this new environment. That is,

lim
t!1

ptk(R) = lim
t!1

�0i + �̂i
�
ht
�

P
j

�
�0j + �̂j (ht)

�
= 1

where �̂ denotes the payo� in the modi�ed environment.

However, we have that

lim
t!1

�0i + �̂i
�
ht
�

P
j

�
�0j + �̂j (ht)

� = lim
t!1

�0i + ��i
�
ht
�
+#i(ht)�P

j

�
�0j + �j (ht) + #j(ht)�

� :
Therefore,

lim
t!1

ptk = lim
t!1

�0i + ��i
�
ht
�
+#i(ht)�P

j

�
�0j + �j (ht) + #j(ht)�

�
= 1:

That is, the learning procedure that satis�es axioms 1-8 chooses action k in the limit in

the original environment. Since k is the e�cient action in the original environment, the result

follows.

5.2 Optimality

There is a sense in which the Boundedness axiom could be interpreted as the agent being

cautious in that she small di�erences in propensities do not translate into large di�erences in

choice. A more standard interpretation of being cautious may be that the choice functions

should be Lipschitz continuous as mentioned above. We now take up this de�nition of being

'cautious' and show that the proportional choice rule is optimal among all 'cautious' (i.e. Lip-

schitz continuous) rules. This result will give us clearer interpretation of what Boundedness

adds over Lipschitz continuity. Consider �rst the following de�nition.

De�nition 2. We say choice rule p is more cautious than choice rule p0 if 8i; jand�i 6= �j :

�(�i; �j) � �0(�i; �j) where �ij := �(�i; �j) :=
pi�pj
�i��j

.
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There are several things worth noticing about this de�nition: First, unlike the Bound-

edness axiom (and in the de�nition of Lipschitz Di�erentiability) � can depend on � and is

allowed to be in�nite. Second, we can set �ii = 1 for simplicity, which will not a�ect any of

our results. We also need �ij = �ji (which follows immediately from self-consistency).

Remark The proportional choice rule pi =
�iP
j �j

can be interpreted as the least cautious

rule, which is Lipschitz continuous and satis�es Anonymity and Strict Monotonicity.

To understand the remark above note that (for strictly monotonous choice rules)
P

i(p
t
i�

ptj) = �
P

i �
t
i � �tj is maximal if �

t
j = 0 and hence

P
i(p

t
i � ptj) = �

P
i �

t
i � 1 implying that

� �
�P

i �
t
i

��1
which is exactly the parameter from the proportional choice rule. Hence, this

suggests that we could replace the Boundedness axiom above with Lipschitz continuity and

then single out from the remaining set of possible rules the ones which are "least cautious"

according to the de�nition above.

Next we look at optimality properties to see how being cautious matters in terms of the

probability of choosing the e�cient action. Denote by i� the e�cient action (and assume for

now that it is unique) and by �ei the expected payo� of action i at any given period. For

simplicity, consider choice rules that are di�erentiable everywhere. Then we can state the

following result:

Proposition 7. Consider choice rules where
@�ij(t)

@t
� 0 and assume that at t = 0 all actions

are chosen with the same probability. Then, there exists t such that for all t > t : pti� � p0ti�

whenever p is less cautious than p0.

Proof. First note that

�ij(�
t
i � �tj) = �ij

�
�t�1i + pt�1i ��ei � �t�1j � pt�1j ��ej

�
= ��ij

�
pt�1i �ei � pt�1j �ej

�
+ �ij

1

�ij

�
pt�1i � pt�1j

�
:

We assume for now that there are only two actions.9 Then using this expression we can

write



pti � pt�1i

�
= �ij(�

t
i � �tj) + (1� pti)� pt�1i

= ��ij

�
pt�1i �ei � pt�1j �ej

�
+
�
pt�1i � pt�1j

�
+ (1� pti)� pt�1i

= ��ij
�
pt�1i �ei � (1� pt�1i )�ej

�
+
�
pt�1i � (1� pt�1i )

�
+ (1� pti)� pt�1i

= ���ij�
e
j + pt�1i

�
��ij

�
�ei + �ej

��
+ pt�1i � pti

9Note that we have assumed for simplicity that e� = 0.
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Taking the continuous time limit we can write

�
pi = �(pi�ij�

e
i � (1� pi)�ij�

e
i ) (17)

= ��(�ij�
e
j + pi�ij

�
�ei + �ej

�
): (18)

By noting that Z
�ij
�
�ei + �ej

�
dt =

�
�ei + �ej

� Z
�ijdt

And by denoting
R
��ij�

e
j exp�

��
�ei + �ej

� R
�ijdt

�
dt =: A(t) we can write the solution

to (17) as

pi(t) = (A(t) + c) exp

��
�ei + �ej

� Z
�ijdt

�

where c stands for a constant that depends on the initial condition pi(0). This equation

is a good approximation of actual behavior whenever (i)
@�ij(t)

@t
=
�
@�ij
@�i

@�i
@t

+
@�ij
@�j

@�j
@t

�
� 0

(decreasing step sizes) and (ii) whenever t is "su�ciently" large. Note that condition (i) is

satis�ed whenever the associated choice rule is Lipschitz continuous.

Furthermore, note that those functions �ij(�i;�j) satisfying
@�ij(t)

@t
� 0 do have a supremum

in � since @�i
@t
� 0;8i.

We are interested in how pi(t) varies with �ij . Since we say a rule is more cautious than

another rule whenever �ij < �0ij ;8i; j and 8�i 6= �j we can replace each function �ij by its

supremum sup�ij := �s. If we do this, then

pi(t) =
��ej

�ei + �ej
+ c exp

�
�
�
�ei + �ej

�
t�s
�

Setting t = 0 we obtain c = pi(0)�
��ej

�ei+�ej
and hence

pi(t) =

0
@ pi(0) exp

�
�
�
�ei + �ej

�
t�s

�
+

��ej
�ei+�ej

�
1� exp

�
�
�
�ei + �ej

�
t�s

��
1
A :

The derivative

@pi(t)

@�s
= t�

�
pi(0)�

e
i � �ej (1� pi(0)

�
exp

�
�
�
�ei + �ej

�
t�s
�
> 0

() �ei > �ej
1� pi(0)

pi(0)
:

Hence the probability to choose i increases with � if and only if action i is optimal, i.e.

yields higher payo�s in expectation and if initial conditions are not too biased against it. It

should also be clear that the proof goes through (with heavier notation) if there are more

than two actions, but if i is uniquely optimal.
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If i is optimal and initial conditions are not too biased against it, then being less cautious

(higher �) is always better among Lipschitz continuous rules. This is intuitive, because if

initially the optimal action is chosen with very small probability, then it is optimal to be

more cautious, i.e. to explore also actions which have initially low propensities (and hence

probabilities) more. If initial propensities towards all actions are approximately the same,

then it is best to be least cautious within the bounds of Lipschitz continuity.

Note that our optimality result is quite revealing. We already know from section 5.1 that

the updating and choice rule derived from our main axioms are e�cient in the sense that they

yield the optimal action in the long run. What the previous proposition shows is that the

the rule from axioms 1-8 yields higher expected payo�s than any other Lipschitz continuous

rule after some �nite time10.

Proposition 7 also implies that the behavior of the decision maker under axioms 1-8 also

has a justi�cation in terms of optimality among Lipschitz continuous rules: as we have seen,

it is the least cautious rule which satis�es Anonymity and Strict Monotonicity.

Axioms 5-8 seem to yield the optimal level of 'cautiousness' in choice. What if we do

not restrict to Lipschitz continuous rules? Is it still better to be less cautious? The answers

is negative. Note that if we do not restrict to Lipschitz continuous rules, the least cautious

rule is always the rule that chooses the action with the highest propensity with probability

one. Clearly this cannot be optimal, since it implies choosing the action that initially has the

highest propensity forever.11

It should also be made clear that no non-anonymous rules may do better (unless the

decision maker has some ex ante knowledge about which action is best, which is something

we rule out). By the same token, there can also be no rule which is anonymous but not

monotonic, since this (together with our updating rule) would imply that for some range of

� higher payo�s lead to lower probabilities which is not optimal. Overall, hence, axioms 5-8

lead to a rule that yields the optimal level of caution among Lipschitz continuous rules.

6 Relation to Other Procedures and Further Discussion

6.1 Replicator Dynamics

Adapting the results from Hopkins (2002) or B�orgers and Sarin (1996) it is easy to show that

the behavior resulting from axioms 1-8 approximates the Replicator Dynamics in the long

10More precisely, it will attach a higher probability to the action with higher expected value.
11Even with an updating rule that allows for decreasing propensities, though, this choice rule does generally

not lead to the optimal action as has been shown by Sarin and Vahid (1999).
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run. Thus, in this respect we provide an axiomatization to the replicator dynamics.

Proposition 8. A pair (T; p) that satis�es axioms 1-4 and 5-8 creates a sequence of choices

that can be approximated, in the sense of stochastic approximation, by the replicator dynamics.

Proof. First note that we can write down the expected change in choice frequencies as follows.



pt+1
i � pti

�
= pti

�ti + �tiP
i �

t
j + �ti

+ (1� pti)
�iP

i �
t
j + �tj

�
�tiP
i �

t
j

(19)

= P t
i

�ti + �ti � �ti

�
1 +

�tiP
�tj

�
P

j �
t
j + �tj

+ (1� pi)
�ti � �ti

�
1 +

�tjP
�tj

�
P

j �
t
j + �tj

: (20)

= pti(1� pti)�
t
i � (1� pti)p

t
i�

t
j +O(

X
�j)

�2: (21)

Taking the continuous time limit of the last equation and neglecting the term of order

(
P

�j)
�2 we get the evolutionary Replicator Dynamics. We are allowed this since by Proposi-

tion 1 all �i are strictly increasing and hence the property of decreasing step sizes is satis�ed.

(See e.g. Hopkins, 2002).

6.2 Separation between Updating and Choice Rule

In a sense the separation between updating and choice rule is a classical separation in Eco-

nomics. In standard decision theory, options are evaluated by assigning probabilities to

di�erent events. These probabilities then imply some (expected) levels of utility of the dif-

ferent options. The choice rule then simply prescribes to choose the option with the highest

evaluation (assigned utility value). However, if there is not enough information about states,

outcomes etc. then typically it will not be optimal to choose the option with the highest

valuation with probability one. This is the case since one should explore the state space and

learn about other options.

All classical learning rules do have this separation in a more or less explicit manner as

well. In (stochastic) �ctitious play, players update their beliefs about the choices of others,

which translates into an update about the expected pro�tability of actions via an updating

rule, and then choose the action they assign the highest expected payo� to. Similarly, a

Bayesian learner will update her beliefs about the world using Bayes rule as an updating

rule and then choose whichever option seems best given the updated beliefs. This separation

seems implicit in any learning rule.

If the decision maker observes information about counterfactuals after each choice, then

her decisions become irrelevant for the learning process because her information at the end

of a period is independent of the action she chose. Hence, she can simply choose the action
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for which she has the highest propensity (preference). As mentioned several times, this is the

main di�erence between our approach and the approach of Easley and Rustichini (1999).

If agents do not observe counterfactuals, such a separation is needed. One may suggest a

di�erent approach where one imposes that the action with the highest propensity is chosen

with probability one and tries to include the exploitation/exploration trade-o� in the way

propensities are formed. Such an approach will fail in the following sense: either propensities

will have to be non-monotonous in payo�s, in which case clearly convergence to the optimal

action will not occur, or an agent can get stuck with a suboptimal action if all actions tried

previously have led to lower payo�s (See e.g. Sarin and Vahid, 1999). I our view, these two

failures require a quite unreasonable decision-maker.

6.3 Further Comparison with Literature

Let us compare our axioms with those of Easley and Rustichini (1999). Their most signif-

icant axioms are Symmetry, Monotonicity, Independence and Exchangeability. Symmetry

and Monotonicity are similar to our axioms of Anonymity and Monotonicity. Weak Sum

is comparable to Exchangeability but somewhat weaker. Exchangeability requires that past

and current payo�s have the same e�ects. Weak Sum requires that everything else equal

(i.e. given two histories of the same length where the action in question was chosen equally

often) the action should have a higher propensity if the sum of payo�s under one history is

larger than under the other. Clearly, this implies that past and current payo�s have the same

e�ect. Furthermore, note that Proposition 3 shows that Weak Sum can be weakened without

fundamentally altering the results.

6.4 Discussion - Allowing for negative propensities

What if some propensities could be negative? This might lead to conceptual mistakes as it is

not necessarily true that agents treat negative propensities the same as positive propensities.

In order to circumvent this a possible approach is to normalize propensities according to some

function. Note that this would require extra assumptions on the normalization function. Now

we suggest a possible normalization.

For any t we order all �ti from smallest to largest and denote by �t(k) the k�th smallest

�ti . Then we can de�ne the following normalization recursively.

�0t(1) = 0 (22)

�0t(2) =
����t(1) � �t(2)

���
�0t(3) = �0t(2) +

����t(2) � �t(3)

��� = �t(3) � �t(1):::
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Note that this normalization is the only possible normalization which (i) respects cardinal

di�erences in propensities and (ii) is minimally distortive in the sense that the sum of changes

made to all the �i is minimal. However, the normalization above is arbitrary, this is why we

chose to deal with positive payo�s only.

7 Conclusions

We have presented a model where a decision maker, oblivious of the environment she lives

in, learns about the payo� of the alternative options by own experience when counterfactuals

are not observed. The reasoning process of the decision maker was separated into two parts:

First, she has propensities over action. These represent her preferences for the di�erent

alternatives and are based on her past experiences. Second, the decision maker then translates

these propensities into choice, the source of her experiences.

We established natural axioms in the way propensities are updated and the way propensi-

ties are translated into choice and characterized the behavior of the decision maker. Further-

more, we considered alternatives to our main axioms and studied the e�ciency and optimality

of the learning procedures resulting from our axioms. Finally, we related our results to known

leading rules in the literature providing, for instance, an axiomatization of the replicator dy-

namics.

This paper targeted covering the gap in the literature whereby learning without counter-

factuals had only been studied from the optimality point of view. We posed natural axioms

and characterized behavior. The approach we followed had only been used so far in situations

where counterfactuals are observed.
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8 Appendix

8.1 Proofs and Extra Results on Propensities

8.1.1 Proof of Proposition 3

First note that Lemma 2 is still valid under Weak Weighted Average. Thus, we can �nd a

function gi : �i �� that represents Ti for all i 2 A.
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Take any two payo�s �̂; �� 2 � and consider the following two histories:

h2 = ((i; �̂) ; (i; ���)) ;

ĥ2 = ((i; ��) ; (i; ��̂)) :

By Weak Weighted Sum we have that �2 = �̂2. Thus, using the de�nition of g we have

that for any �i 2 �i and any �̂; �� 2 �

gi (gi (�i; �̂) ; ���) = gi (gi (�i; ��) ; ��̂) : (23)

Proceeding as in the proof of Proposition 1 we have to

@gi
@�

����
(gi(�i;�̂);��)

= �:

Since this is true for any �i; �̂; ��, we have that

gi (�i; �) = ��i + f(�) (24)

for some strictly increasing (Axiom 2) and everywhere di�erentiable (Axiom 3) function

f : �! �.

Proceeding again as in the proof of Proposition 1 we can show that

f (�) = �� + �: (25)

for some � and �. By Monotonicity we have that � > 0, and by the fact that propensities

are de�ned in R+, � � 0. Combining (24), (25) and Lemma 1 gives the desired result.

8.1.2 A Variation of the Weak Weighted Average Axiom

Consider the following variation of the Weak Weighted axiom:

Axiom' 4 (Weak Weighted Average 2). For any histories ht and �hk and any action i, T is

such that if �0i =
��0i and #i

�
ht
�
= #i

�
�hk
�
, then �ti �

��ki if and only if �i
�
�; ht

�
� �i

�
�; �hk

�
.

The only di�erence between the Weak Weighted Average axiom and the alternative above

lies in the fact that under the original Weak Weighted Average axioms the two histories that

are compared must have the same length. A consequence of this is that under Weak Weighted

Average' a payo� obtained at the same point in time is treated di�erently when comparing

histories of di�erent lengths. That is, assume any histories with di�erent lengths ht and �hk

with k < t. If under both histories a payo� � is obtained at time l < k then in history �
�
ht
�

the payo� � is discounted by �t�l while in �
�
�hk
�
the payo� is discounted by �k�l.
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Proposition 9. There exists no transition T that satis�es axioms 1-3 and 4'.

Proof. We proceed by contradiction. Since axiom 1' follows from axiom 4", we can use the

proof of Proposition 3 to prove that there exists a � > 0 and � 2 R such that

�t+1
i =

(
��ti + �� + � if action i is played and payo� � is obtained,

��ti + � otherwise.

Take any �0i 6= �=(1� �) and any � 2 � and consider two histories h2 and ĥ1 such that

h2 =
�
(i; �) ;

�
�i; �0

��
;

ĥ1 = ((i; ��)) :

By Weak Weighted Average axiom 2 we have that �2i = �̂1. Thus, using the result from

Proposition 3 we have that

�2�0i + �� + 2� = ��0i + �� + �:

Therefore,

� = (1� �) �0i :

Which contradicts the fact that �0i 6= �=(1 � �). The key argument is that � and � are

exogenous constants and their value cannot depend on �0i .

8.1.3 Risk Averse Sum Axiom

Proposition 10. There exists no transition T that satis�es axioms 1-3 and 2'.

Proof. Proceeding as in the proof of Proposition 1 we can show that there must exist a

constant � such that

@gi
@�

����
(�i;�)

= � (26)

for all �i; �. Furthermore, we can show that

gi (�i; �) = �i + f(�) (27)

for some strictly increasing (Axiom 2) and everywhere di�erentiable (Axiom 3) function

f : �! �.
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Take again any �̂; ��. By Risk Averse Sum we have that

f (�̂) + f (��) > f (0) + f (�̂ + ��) :

Di�erentiating both sides with respect to �̂ leads to

@f

@�

����
(�̂)

>
@f

@�

����
(�̂+��)

:

However, this contradicts (26). Thus, no transition exists satisfying axioms 1, 3 and

2'.

8.2 Proofs and Extra Results on Choice Functions

8.2.1 More on Boundedness and Lipschitz continuity

The Boundedness axiom with � � 1 does imply Lipschitz continuity with parameter �. To

see this note that
pti
ptj
�
ptj
pti

< �
�ti
�tj
�
ptj
pti

< �
�ti
�tj
�

�tj
��ti

since by the Boundedness axiom there exists a � :
ptj
pti

< �
�j
�i

and
ptj
pti

> 1
�

�j
�i

for some �:.

But then �
pti
�2
�
�
ptj

�2
ptip

t
j

<
�2
�
�ti
�2
�
�
�tj

�2
��ti�

t
j

,�
pti � ptj

��
pti + ptj

�
ptip

t
j

<

�
��ti � �tj

��
��ti + �tj

�
��ti�

t
j

()

�
pti � ptj

�
<

�
��ti � �tj

� ���ti + �tj

�
ptip

t
j

��ti�
t
j

�
pti + ptj

�
| {z }

<1 if �ti�1;8i.

But then �
pti � ptj

�
<
�
��ti � �tj

�
< �

�
�ti � �tj

�
, � � 1.

Now together with Anonymity we have that

pi (�i; �j ; �)� pj (�j ; �i; �) = pi (�i; �j ; �)� pi (�j ; �i; �) :

implying Lipschitz continuity.
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