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Bayesian Analysis of Determinisitic Time Trend and
Changes in Persistence Using a Generalised

Stochastic Unit Root Model 1
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This paper makes use of the novel Generalized Stochastic Unit Root (GSTUR) model,
Bayesian model estimation and model comparison techniques to investigate the presence of a
deterministic time trend in economic series. The model is speci�ed to allow for changes in
persistence over time, such as shifts from stationarity I(0) to nonstationarity I(1) or vice versa.
This uncertainty raises the crucial question about how sure one can be that an economic time
series has a deterministic trend when there is a change in the underlying properties. Empirical
analysis indicates that the GSTUR model could provide new insights on time series studies.
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1. INTRODUCTION

Application of econometric tests indicates that many macroeconomic time series con-
tain unit roots and are therefore nonstationary I(1) processes. Some of these results are
in contradiction with economic theories, such as the Purchasing Power Parity, which im-
ply the stationarity of some series. Further development in some nonlinear models, such
as TAR (Caner and Hansen 2001), STAR (van Dijk et al. 2002), ESTAR (Kapetanios
et al. 2003), and alternative forms of stationarity, such as ARFIMA (Koop et al. 1997),
have been proposed for reconciling the nonstationarity in macroeconomic time series to
economic theory. This paper makes use of Bayesian techniques in testing for determin-
istic time trend and changes in persistence in time series with a parameter nonlinear
model, Generalised Stochastic Unit Root (GSTUR) model

�t = yt � �t�  (1)

�t = exp(�t)�t�1 +
lP
i=1

�i 4 �t�i + "t (2)

�t = �0 + �1�t�1 + � � �+ �p�t�p + �t (3)

where "t is i:i:d:N(0; �2") and �t is i:i:d:N
�
0; �2�

�
. While the original STUR model,

yt = exp(�t)yt�1 + "t (4)

�t = �0 + �1�t�1 + �t (5)

1 I would like to thank Roberto Gonzalez, Rodney Strachan, Stephen Hall and Wojciech Charemza
for many useful suggestions.

2Corresponding author: Tel: 0044-116-252-5338. Email address: fay1@le.ac.uk
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where "t is i:i:d:N(0; �2") and �t is i:i:d:N
�
0; �2�

�
, is proposed by Granger and Swanson

(1997).
One main distinctive feature of the STUR model is that it allows for the persistence

of macroeconomic series to vary with time. This changing persistence property could be
a characteristic of series that appear to be nonstationary after di¤erencing or detrending.
As evidence were found for changes in persistence with applications of U.S. macroeco-
nomic data sets (Kim 2000, Kim 2002, Busetti and Taylor 2004, Harvey et al. 2006), it
is sensible to argue that a deterministic time trend hypothesis is often rejected because
of the changes in persistence. Therefore, there is always uncertainty as to whether a
macroeconomic series is trend stationary (TS) or di¤erence stationary (DS) or neither
(see Newbold et al. 2001). The crucial questions are: how sure are we that economic
time series have a deterministic trend if the underlying properties changed and whether
the variations of persistence correspond with historical events. Standard algebra shows
that the GSTUR model has the following desirable features: 1. the change in persistence
could be di¤erent at any time point. 2. The parameter characterizing a new degree of
persistence is potentially dependent on its own lagged values. 3. Previous information
and the previous degree of persistence provide information of newly commencing infor-
mation. 4. A deterministic trend might exist regardless the variations of persistence
degrees.
While modelling the changes in persistence as a stochastic process seems attractive,

estimation involved was problematic. One motivation of using Bayesian techniques is
that estimations for this highly parameterized model can only be achieved by Markov
Chain Monte Carlo (MCMC) techniques. Granger and Swanson (1997) used two meth-
ods to estimate the parameters in a STUR model (Equation 4,5), which produced �wild
estimates�that are �fairly imprecise�. Simulations via MCMC techniques could not only
shed light on the distribution properties for any feature of interest, but also be diag-
nosed (see Carlin and Chib 1995, Geweke 1989). Jones and Marriott (1999) provided a
Bayesian method for parameter estimations for the STUR model. In this paper, Bayesian
analyses of a GSTUR model are presented. From model comparison aspects, marginal
likelihoods in Bayesian model selection procedures could not only tell which proposition
is the most supported, but also to what extent is the proposition favoured according to
the data information.
The remainder of the paper is organized as follows. Section 2 presents the GSTUR

models, estimation and model selection in a Bayesian framework together with experi-
ments using simulated data series. Section 3 presents the empirical results with appli-
cations of Nelson and Plosser�s S&P 500 series and the U.K. /U.S. long run exchange
rates using a GSTUR model. Section 4 contains brief concluding remarks.

2. BAYESIAN INFERENCES

According to the GSTUR model (Equation 1, 2 and 3), �t is literally a AR(p)
process. The roots of the polynomials �t are restricted within the unit circle. Then an
unconditional mean �� of the stationary process �t has the following expressions:

�� =
�0

1�
pP
j=1

�j

Also,
�t = exp(�t) (6)

We begin by introducing some notations: Ft denotes the history of observations
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sequence up to time t, Ft = (y1; � � � ; yt)0, y denotes the whole sample of observa-
tions with a sample size of N , y = (y1; y2; � � � ; yn)0. Latent variable �, where � =
(�1�p; � � � ; �0; �1; � � � ; �T�1; �T )0 3 , denotes a series of stochastic roots over the time
T period, which are structurally unobservable and indicate changes in the persistence
of y. Initial values is �initial = (�1�p; � � � ; �0)0.Vector � and � are de�ned as � =�
�1; � � � ; �p

�0
, � = (�1; � � � ; �l)0.

According to equation (6), �t then is a vector
�
�1�p; � � � ; �0; �1; � � � ; �T�1; �T

�0
as-

sociate with �t, t = (1 � p; � � � ; T ). The error precisions are denoted as h" = ��2" and
h� = �

�2
� . � =

�
; �; �; �; ��; �

2
"; �

2
�

�
stands for a vector of all the parameters of interest.

�t varies stochastically in the GSTUR process. To investigate if a process undergoes
shifts in persistence, or being parameter nonlinear, we can make inferences from the
estimates of �t. Process may maintains stationarity (I(0)) if �t < 1, but becomes a
process of higher persistence (I(1)) if �t > 1 . This idiosyncratic property of a STUR
process makes it very di¢ cult to distinguish stochastic process from a Random Walk
(RW)4 process. The di¤erence stationary RW model is nested within the GSTUR model
at the point where �� = 0 and �

2
� = 0 such that �t will be a constant and equals to 1.

Therefore, the behaviours of a process could be learnt about by observing the distribu-
tion of �� and the evolution of �t over time. Hence, our focus of estimations is on ��,
�t and �.

2.1. Bayesian Model Estimation

The nature of Bayesian inference lies in the prior beliefs of various possible hypotheses
and the data information. Base on the Bayes�theorem,

p (M j y; I0) / p (M j I0) p (y jM)

the original belief, the �prior�p (M j I0), could be adapted to the �posterior�p (M j y; I0)
taking the data information p (y jM) into account. In the context of Bayesian frame-
work, estimations via simulation is virtually revolutionized by the Markov Chain Monte
Carlo (MCMC) method (Gelfand and Smith 1990, Tanner and Wong 1987). With
MCMC approach to estimate, we are able to plot the whole density distribution for
the parameter of interest. The latent variable � is treated as �pseudo�parameter whose
behaviour is governed by values of the elements in �. As � is stochastic and unobserved
that it must be estimated as must the parameters in �. Thus, Bayesian analysis uses
the joint density of and conditional on y, will be

p (�; �jy) / p (yj�; �) p (�; �)

The form of priors and generally follow the general recommendations of Jones and
Marriott (1999) with some important exceptions. We assume that each parameter is
a priori independent and formulate prior distributions on the parameters of interest.
The notations of relevant distributions are given as follows: fN

�
�; �2

�
denotes a normal

distribution with a mean of � and a variance of �2, fMN (M;V )denotes a multivariate
normal distribution with a mean ofM and a variance covariance matrix of V , f� denotes
a Gamma distribution, and f�1� denotes an Inversed Gamma distribution.
The prior distributions are: �� � i:i:dfN

�
ln 0:9; 0:12

�
, which pushes �� moving to-

wards with a small variance; multivariate normal for (; �)and �; �i � i:i:dfN
�
��i ; �

2
�i

�
i = 1; � � � ; p. As �� is the mean of stationary AR(p) process, if � (L) = 1� �1L� � � � �

3We also de�ned ��t as ��t = (�1�p; :::; �t�1; �t+1; :::; �T�1; �T )
0

4Random Walk process: yt = yt�1 + "t, where "t � N(0; �2")
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�pL
p is a polynomial of order p in the lag operator, the roots of equation � (z) = 0

should be all greater than one in absolute values. Thus, the prior density function of
�i is chosen as �i s fN (0; 1) 1 (kzjk > 1), where 1 (A) is the indicator function for the
event A that �is are jointly truncated within the stationary region. The error precisions�

prior are h" s f�"
�
�"; �"

�
and h� s f��

�
��; ��

�
, where �" =

1
256 ,�" = 256, �� = 1:5

and �
�
= 0:03. Please refer to Appendix (A) for prior elicitations. Given the above prior

information, the goal of the Bayesian analysis is to learn about the parameter from the
augmented posterior distribution.
The joint posterior density for is then

p (�; � j y) /
N

�
t=2
p (yt j �; �; Ft�1) p (�; �)

/
N

�
t=2
p (yt j �; �; Ft�1) p (�t j ��t; �) p (�) (7)

where Ft�1denotes the history of observations sequence up to time t � 1, with Ft�1 =
(y1; � � � ; yt�1)0.
Inference on the parameters can be conducted by producing sequential draws from

this density by a MCMC procedure. Focusing on the posterior properties, Gibbs sampler
is designed. A full analysis of posterior conditionals and the Codes (in Matlab) are
available on reader�s request. Jones and Marriott (1999) used the ratio of uniforms
methods (see Devroye, 1986) to sample �t. In this paper, the Metropolis-Hastings (M-
H) algorithm is implemented to simulate �t.

2.2. Bayesian Model Comparison

In this paper, the main concerns are the existence of a deterministic time trend
(whether � = 0), the parameter nonlinearity in the process (whether � is time-invariant)
and the value of l for the best model �t. A group of models holding di¤erent hypothesis
will be compared. According to each model�s probability based on the available data
information, the optimal model to represent the data will be selected via Bayes Fac-
tors. The interested reader is directed to Kass and Ra¤rey (1995) who provide detailed
discussion on issues concerning on Bayes factors. Bayes Factors for model comparison
has advantage over-parameterizations (see Koop and Potter, 1999). According to Kass
and Raftery (1995), the Bayes Factor Bij (choice between model Mi and model Mj) is
expressed as

Bij =
p (yjMi)

p (yjMj)
(8)

where p(yjMi)
p(yjMj)

is the marginal likelihood ratio between model Mi and Mj . The strength
of evidence in favours of model Mi versus Mj is evaluated according to the log Bayes
factor scale in Table (1) under Kass and Ra¤rey (1995)�s classi�cations:
The marginal likelihood of the GSTUR models can be approximated from the pos-

terior samples using the approach introduced by Chib (1995), which is also reviewed
by Han and Carlin (2001). According to Chib (1995), the marginal density of y =
(y2; � � � ; yn)0can be written as

p(y) =

N

�
t=2
p(yt j �; Ft�1)p(�)

p(� j y)
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TABLE 1
Bayes factor scale comparing model i with model j

log10Bij Bij Evidence against model j
0� 1 1� 3 Not worth more than a bare mention
1� 3 3� 20 Positive
3� 5 20� 150 Strong
> 5 > 150 Very Strong

with all integrating constants included5 . As the above identity holds for any �, say ��,
the value of posterior density p(�� j y) can be estimated as bp(�� j y) by using the Monte
Carlo samples. Then, the log marginal likelihood can be approximated as:

ln bp(y) = NX
t=2

ln p(yt j ��; Ft�1) + ln p(��)� ln bp(�� j y) (9)

For a more accurately approximation, ��should be evaluated at a high density point,
which are chosen as posterior means in this paper. To achieve ln p(��) and ln bp(�� j y)
are straight forward. However, according to Equation (4), yt is a function of latent
variable �t, thus ln p(yt j ��; Ft�1) evolves calculation of

p (yt j ��; Ft�1) =
Z
p (yt j �t; ��; Ft�1) p (�t j ��; Ft�1) d�t (10)

As �t is non-observable, the exact integrals are hard to obtain. However, with the
help of Monte Carlo averaging p (yt j �t; ��; Ft�1) over the large sample of draws of
�1t ; :::; �

M
t from p (�t j ��; Ft�1), we could have an approximation of p (yt j ��; Ft�1) from

the following:

p (yt j ��; Ft�1) '
1

M

MX
g=1

p
�
yt j �(g)t ; ��; Ft�1

�
(11)

However, a sample of �1t ; � � � ; �Mt from p (�t j ��; Ft�1) would need a sample of �1t�1; � � � ; �Mt�1
from the p (�t�1 j ��; Ft�1) as

p (�t j ��; Ft�1) =
Z
p (�t j �t�1; ��; Ft�1) p (�t�1 j ��; Ft�1) d�t�1 (12)

An Auxiliary Particle Filter (APF) method introduced in Pitt and Shephard (1999a) is
applied here to get samples from p (�t�1 j ��; Ft�1). The idea of APF is that if we can
get a sample of �1t�1; � � � ; �Gt�1 : M � G from p (�t�1 j ��; Ft�2), when the new data
yt�1 arrives and data information is updated from Ft�2 to Ft�1, we can get a sample of
�1t�1; � � � ; �Mt�1 according to the weights of likelihood p (yt�1 j �t�1; ��; Ft�2). Then, the
resampled �1t�1; � � � ; �Mt�1 according to the likelihood weights p (yt�1 j �t�1; ��; Ft�2) will
approximate to a sample from p (�t�1 j ��; Ft�1). The algorithm is explained as follows:
Algorithm: Estimate the log Likelihood for the marginal likelihood using

Auxiliary Particle Filter
First, at time t, we call the lags of �t as �t = (�t�1; � � � ; �t�p). The initial M values

5� is truncated to satisfy the stationary restriction in the transition equation. The integrating
constant for prior � can be evaluated in a simulation manner. For details, please refer to Judge et.al
(1985, p128).
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of �(g)2 : g = 1; � � � ;M can be set as a M � p zero matrix or a sample of M draws
(�
(1)
2 ; � � � ; �(M)

2 )0 of �1 from the conditional prior p(�2j��).
1. Fix t = 2.

(a) For each �(g)t , g = 1; � � � ;M , sample a value �4(g)t using the transition density:

�
4(g)
t � fN (�(g)t �; �2�� )

Note that �4(g)t is a sample from p(�tj��; �t).
(b) An estimate of p(ytj��) is given by:

p̂(ytj��) =
1

M

MX
g=1

p(ytj��; �4(g)t ; F t�1) (13)

2. For each g = 1; � � � ;M de�ne �̂gt = E(�
g
t j�

g
t ) = �

g
t� and calculate:

wg = p(ytj��; Ft�1; �̂gt )

wg =
wgPM
j=1 wj

Get R draws (k1; � � � ; kR) from the discrete distribution de�ned on the integers
(1; 2; � � � ;M) with probabilities w1; � � � ; wM . Note that each value of kr is used to
indicate a value of �(kr)t (and of �̂krt )

3. For each �(kr)t , r = 1; � � � ; R, draw a scalar ��(r)t using the transition density
p(�tj��; �t) with

�
�(r)
t � fN (�krt �; �2�� ) (14)

Note that
�
�
�(r)
t : r = 1; � � � ; R

�
is a sample from p(�tj��; Ft�1; �t)

4. Resample the R � 1 vector
�
�
�(r)
t : r = 1; � � � ; R

�0
M times with probabilities w�r

de�ned as:

w�r =
p(ytj��; Ft�1; ��rt )
p(ytj��; Ft�1; �̂krt )

(15)

w�r =
w�rPM
r=1 w

�
r

Then, the resampled M � 1 vector, which contains values (�(1)t ; � � � ; �(M)
t )0 is (ap-

proximately) distributed as p(�tj��; Ft; �t). This (�
(1)
t ; � � � ; �(M)

t )0 stack on �(g)t :

g = 1; � � � ;M . We have the updated lags of �gt+1 =
�
�
(g)
t ; �

(g)
t�1; � � � ; �

(g)
t�(p�1)

�
:

g = 1; � � � ;M
5. For each �gt+1 : g = 1; � � � ;M , sample a value �

4(g)
t+1 using the transition density:

�
4(g)
t+1 � fN (�gt+1�; �2�� )

Note that �4(g)t+1 : g = 1; � � � ;M is (approximately) a sample from p(�t+1j��; Ft; �t+1).
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6. Fix t = t+ 1 until t = N . An estimate of p(yt+1j��; Ft) is given by6 :

p̂(yt+1j��; Ft) =
1

M

MX
g=1

p(yt+1j��; Ft; �4(g)t+1 )

7. Go to step 2. Finally, the estimate of the log likelihood is

log bp (y j ��) = NX
t=2

log bp (yt j ��; Ft�1) (16)

A particle �ltering method could recursively deliver sequence of draws of p
�
�
(g)
2 j ��; F2

�
,

..., p
�
�
(g)
t j ��; Ft

�
,..., p

�
�
(g)
n j ��; Fn

�
. Note that there other less e¢ cient methods to

calculate the likelihood ordinate p(yj��). For example, one could get random draws of
(�1; �2; :::; �nj��) from the conditional prior p(�1; �2; :::; �nj��) and average the condi-
tional likelihood p(yj�; �1; �2; :::; �n) over these values. Even though this would deliver
also an estimate of the likelihood p(yj��), it is less e¢ cient than using expression (15).
This is because many of the draws from the prior will be in the region where the con-
ditional likelihood (p(yj�; �1; �2; :::; �n)) is very small, and would therefore contribute
little to the accuracy of the estimate. In contrast, the method we are using draws the
� values using the data information, over a region where the conditional likelihood has
greater weight. Therefore, we could say that the other method is �blind�, because it
ignores the data information.
With the marginal likelihood identity from equation (9), estimated posterior ordi-

nates using a reduce Gibbs runs and the estimated likelihood from an Auxiliary Particle
Filter from equation (16), we are able to produce marginal likelihood of any model of
interest for model comparison purpose.
As the models of interest are all nested within the GSTUR model, we can employ

techniques that take advantage of this feature to estimate the marginal likelihood. Al-
though the Random Walk model also nests within the GSTUR model, it is computa-
tional simpler to compute the marginal likelihood directly. As in this case, the marginal
likelihood can be obtained analytically as follows:

pRW (y) =

Z
p(yj�2")p(�2")d�2" (17)

With the marginal likelihoods of any model of interest, the Bayes factors for com-
peting models can be evaluated.

2.3. Evaluation of the MCMC Using Arti�cial Data

To evaluate the estimation e¢ ciency, a series of arti�cial data with a sample size of
118 is simulated from the GSTUR Process with parameters speci�ed as the following:

�t = yt � 1� 0:05t (18)

�t = exp(�t)�t�1 + 0:84 �t�1 + "t
6Here I use this expression that I am more familiar with. In your chapter you give an expression

based on weights, which may also be correct. If you use the expression with weights, I recommend that
you put a reference.
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�t = �0:03125 + 0:8�t�1 + �t
where "t � i:i:dN(0; 1) and �t � i:i:dN(0; 0:012). �� = �0:15625
The graph of the simulated data is plotted in Figure (1):

0 20 40 60 80 100 120
2

0

2

4

6

8

10

Fig 1. Plot of Simulated Data

2.3.1. MCMC Estimation E¢ ciency

A GSTUR model with a constant, a trend, l = 1 and p = 1 is estimated by running
the Gibbs sampler for 8; 000 replications with the initial 2; 000 discarded. Results to-
gether with the �true�values are provided in Table (2) for the purpose of evaluating the
e¢ ciency of the estimates. If the absolute value of CD is smaller than 1:96, convergence
of the MCMC is achieved. From the Table (2), the Gibbs Sampler converged. To illus-
trate the MCMC convergence speed, the estimates of are taken for examples. Figure 2
(a-b), 3 (a-b), and 4(a-b) plot the actual value and the histogram for the �rst 50, 200,
and 6; 000 (after burn-in) draws of from the Gibbs Sampler respectively. The draws of
quickly converge to the �true�value in all the experiments. With more replication time,
the histogram exhibits better normality. Figure (5-8) plots the histogram of the retained
draws 6; 000 draws of , �, �2"and �

2
�. Under the controlled setting, the Gibbs sampler

is able to provide e¢ cient and accurate estimates.

TABLE 2
Estimated Results with Arti�cial Dataset

parameters trueV Est:mean s:t:d CD
 1 1:6960 0:5425 �0:2194
� 0:05 0:0531 0:0059 0:1783
�1 0:8 0:9310 0:0477 0:4036
�� �0:1563 �0:1356 0:0815 0:4263
�1 0:8 0:0507 0:2710 0:2112
�2" 1 0:7392 0:1234 �0:2337
�2� 0:012 0:0935 0:0653 �0:0831
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Fig 2 (a) Plot of �rst 50 �� draws
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Fig 2 (b) Histogram of �rst 50 �� draws
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Fig 3 (a) Plot of �rst 200 �� draws
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Fig 3 (b) Histogram of �rst 200 �� draws
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Fig 4 (a) Plot of 6,000 Actual Draws for ��
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Fig 4 (b) Histogram of 6,000 �� draws after
burn-in
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Fig 6 Histrogram of 6,000 Draws for �

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

3

3.5

Fitted Gamma Distribution of Variance in the Measurement Equation

D
en

si
ty

Fig 7 Histrogram of the 6,000 Draws for �2"
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2.3.2. Model Uncertainties

Under the controlled settings, we are able to re�ect on the model uncertainties from
the log marginal likelihood log [y jM ]. In this experiment, we would expect a signi�cant
support for a model with a constant, a trend, and nonlinearity in Stochastic Root spec-
i�cations, since we know what the true DGP is. The marginal likelihoods of 15 models,

which are speci�ed as di¤erent combinations of
hPl

i=1 �i; ; �
i
, with l = 0; 1; 2; 3; 4 are

evaluated.
Table (2) presents the marginal likelihood of the 15 models. The model with  6= 0,

� 6= 0, and l = 1 is highly favoured, while the �true�data is actually generated with

these features. An Inversed Gamma f�1�
�
�"; �"

�
is selected as the prior of p

�
�2"
�
for

the RW model. Figure (9) plots the of the RW model with di¤erent values of
h
�"; �"

i
,

where �" and �" vary from 0:01 to 5. We may see that the marginal likelihood of RW
log [y jMRW ] maximized at �176. If we use the same prior parameters as in the GSTUR
model, the RW model�s marginal likelihood is only �271. Thus, under the same priors
of p

�
�2"
�
, the nonlinear GSTUR model with  6= 0, � 6= 0 is more favoured than a RW

model. In this case, the Bayes Factor is able to detect the nonlinearity in the data
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generating process.
Table (3) presents the marginal likelihood of the 15 models.

TABLE 3
Model Comparison Results under Controlled Settings

log [y jM ]
lag length  6= 0; � 6= 0  6= 0; � = 0  = 0; � = 0
4 �211:6691 �240:3003 �339:3462
3 �204:2667 �234:2754 �331:8269
2 �195:6707 �224:7850 �323:9709
1 �190:2175� �218:6692 �314:6453
0 �245:7978 �248:8422 �324:9754

Fig 9 Surface plot of the Marginal Likelihood
with Random Walk Model

Koop (1999) state that when comparing nonlinear models with linear models, one
obvious advantage of using Bayes Factor is that according to �Occam�s Razor�, nonlinear
models will be preferred only when expected nonlinearity does exist. The experimental
results re�ect on the model uncertainties and possible existence of the nonlinearities in
the underlying process of time series.

3. EMPIRICAL ILLUSTRATIONS WITH A GENERALISED STUR MODEL

While the time series properties are relaxed from constant I(1) or constant I(0)
to a stochastic unit root process, an application to the series of Standard & Poor 500
indices (S&P500) indicates that a deterministic time trend might exists in the S&P500
series. A further application to U.K. /U.S. long-run exchange rate indicates the changing
persistence consist with monetary events.

3.1. Empirical Results with Stock Price

S&P 500 yearly data set is chosen from the extended Nelson and Plosser�s data set
(from 1877 to 1988) for empirical application. This data set has been previously tested for
an exact Unit Root, deterministic time trend and changing persistence (see Nelson and
Plosser (1982), Kwiatkowski and Phillips et.al (1991), Gil-Alana and Robinson (1997)).

11



This data set has also been applied by Jones and Marriott (1999) with the original
stochastic unit root model (Equation 4 and 5). In this paper, not only the S&P 500
data is applied with a GSTUR model for estimations, but also the model probabilities
are evaluated to shed light on the model uncertainties.

3.1.1. Estimation and E¢ ciency

To ensure that the e¤ect of the starting values in the MCMC algorithms is insigni�-
cant, we take 25,000 draws with the �rst 5,000 discarded. The correlogram plots serial
correlations of the draws from the MCMC algorithm. Figures 10 (a-b) indicate that,
for all the parameters of interest, there is no signi�cant autocorrelations at lag lengths
larger than 15. Thus, the quick decaying autocorrelation indicates quick movements in
the sampled draws. According to the CD from Table (4), the Gibbs sampler converges
for all the parameters of interest. A negative �� and small �

2
� indicate that the S&P500

series could be a good realization of a process with Stochastic Roots.

Fig 10(a) Gibbs Sampler for the SP500 Series for ��, �
2
" and �

2
�

12



Fig 10(b) Gibbs Sampler for the SP500 Series �1,, �, and �1

TABLE 4
Estimations and Sampler E¢ ciency: The Generalized STUR with An Application of

SP500 Series

Prior Posterior
Mean St:Dev Mean St:Dev CD Median 95% Posterior Band

�� ln 0:9 0:1 �0:1769 0:0842 �0:4232 �0:1770 �0:3151 �0:0385
�2� - - 0:0136 0:0095 0:5695 0:0117 0:0043 0:0282

�2" - - 0:8368 0:1512 0:1166 0:8188 0:6256 1:1113
�1 y y 0:0525 0:2208 �0:6449 0:0527 �0:3138 0:4130
 0 106 0:7938 0:1493 �0:0945 0:7995 0:5506 1:0221
� 0 106 0:0356 0:0022 0:0725 0:0356 0:0324 0:0389
�1 0 106 0:8968 0:1149 0:7400 0:8994 0:7394 1:0555

y : �1� fN (0; 1) 1 (kzjk > 1) where 1 (A) is the indicator function for the event A
� : see Appendix A for description
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3.1.2. Illustrations on Stochastic Unit Roots

To illustrate possible changes of the persistence in the underlying process7 , the es-
timated roots �t (from 1877-1988) from the Gibbs Sampler are plotted. With di¤erent
model speci�cations, the estimates of the roots are quite di¤erent. From Figure 11 (a-
e), with di¤erent model speci�cations, the roots of the Stock prices series vary around
E [exp (��)] in the stationary region for most of the time, but go beyond 1 at certain
time points. At these time points, there might be changes in the persistence of the un-
derlying process. These indicate that the STUR process may not be easily distinguished
from a linear unit root process, which may explains the evidence of a Unit Root in the
Stock price series (Nelson and Plosser 1982, Kwiatkowski and Phillips 1991).
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0.8
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0.6
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18771887 1897 1907 1917 19271937 1947 1957 1967 1977 1987
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1

GSTUR With p=3 l=0

Fig 11(a). Unrestricted GSTUR model with p = 3
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Fig 11(b). GSTUR Model with a Deterministic Time Trend p = 3

7 In other words, the integration degrees of the series shift from I(0) to I(1), or vice versa.
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Fig 11(c). GSTUR Model with a Drift p = 3
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Fig 11(d). GSTUR with No Drift or Deterministic Time Trend p = 3
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Fig 11(e). Unrestricted GSTUR with p = 1

15



3.1.3. Model Selection Results

From Figure 11(a-e), imposing � = 0 or  = � = 0 change the results signi�cantly.
Koop (1994) points that imposing restrictions on the deterministic time trend is ruling
out the possibility of a deterministic trend so that any trend behaviour must manifest
itself stochastically, biasing the tests in favour of stochastic nonstationarity. Considering
over-parameterizing problems, it is also important to decide which parameters should
be included for a best �tting model. From Table (5), with the same lengths of l and p,
the unrestricted GSTUR models are the most favoured models according to the highest
marginal likelihoods. Di¤erent choices of p do not a¤ect the log marginal likelihood
log [y jM ] much. However, the length l determines the �ts of the model. From Figure
(3.1.3), with the same prior as in the GSTUR model, the log marginal likelihood of a
RW model is only �261:2901. Thus, an unrestricted GSTUR model with l = 1, p = 1 is
strongly preferred over a RW model under the same choice of prior p

�
�2"
�
. Taking the

model uncertainties into account by Bayesian Model Averaging, if we just consider the
RW model and the unrestricted GSTUR models (with l = 1), the sample series has a
99% probability of being a stochastic unit root process8 .

TABLE 5
Marginal Likelihoods for Di¤erent Model Speci�cations

unrestricted  = 0 � = 0  = � = 0
(a) p = 3
l = 0 �139:9040 �87:2875 �113:3235 �256:0482
l = 1 17:3340 �18:2090 �83:4698 �258:2952
l = 2 11:6699 �39:3168 �87:2765 �265:0540
l = 3 �20:3548 �52:3195 �104:0309 �262:5562
l = 4 �41:175 �81:3793 �111:0549 �294:1133
(b) p = 2
l = 0 �137:0078 �87:9067 �103:8562 �252:0244
l = 1 18:9501 �19:3308 �82:8389 �260:0658
l = 2 8:5642 �46:2332 �87:8234 �261:7946
l = 3 �12:1238 �48:6490 �97:5760 �267:1735
l = 4 �25:2809 �55:0828 �107:6392 �273:3519
(c) p = 1
l = 0 �138:1189 �88:3923 �110:6433 �241:3139
l = 1 20:3223 �8:4980 �83:2075 �250:8019
l = 2 11:8530 �48:3653 �86:4118 �260:8656
l = 3 �9:7283 �47:3286 �101:5861 �271:6706
l = 4 �51:2533 �53:2768 �106:1881 �273:1563

8The weight averaged modelM can be expressed asM =Mip(Mi)+Mjp(Mj), where p(M) indicates

the model probabilties. If we just consider two models Mi and Mj , p(Mj) =
p(yjMj)

p(yjMj)+p(yjMi)
= 1

1+Bij
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Fig 12 Surface plot of the log Marginal Likelihood for
a Random Walk model with SP500

3.2. Empirical Results with Long-run Real Exchange Rate

Another empirical application for the GSTUR model is to analyze the monthly U.K.
/U.S. real exchange rates from Jan 1885 to Feb 1995. This data was tested for a unit
root with the Augmented Dickey-Fuller test by Engel and Kim (1999). The unit root was
rejected at the 5% level. In this section, a restricted GSTUR model (setting  = � = 0)
is applied for the analysis. 25,000 iterations were taken with the �rst 5,000 discarded.
Table (6) reports the estimation results.
Figure (3.2) plots the U.K. /U.S. real exchange rates, nominal exchange rates and

estimated roots. For a review of the historical monetary events within the 111-year
span, please refer to the summaries in Engel and Kim (1999). From Figure (3.2), the
U.K. /U.S. long run real exchange rate is highly persistent according to the estimated
Stochastic Roots. The range of the roots is narrow (from 0.98-1.015) and the roots are
below 1 for most of the time. At certain time points, the roots jump to or above 1, which
are marked with y. At these time points, the series can be recognized as nonstationary
and/or explosive. We �nd that a change of the persistence in the series normally goes
with an important monetary event.

TABLE 6
Estimations and Sampler E¢ ciency: The Generalized STUR with An Application of

U.K./U.S.Real Exchange Rates

Prior Posterior
Mean St:Dev Mean St:Dev CD Median 95%Posterior Band

�� ln 0:9 0:1 �0:0211 0:0510 0:0204 �0:0090 �0:1330 0:0276
�2� � � 0:0002 0:0002 �0:1093 0:0001 0:0000 0:0006

�2" � � 0:0507 0:0020 �0:2337 0:0506 0:0475 0:0540
�1 y y 0:4375 0:4855 �0:3223 0:5488 �0:5100 0:9812
�1 0 106 0:9461 0:0555 1:0901 0:9553 0:8416 1:0204
y : �1� fN (0; 1) 1 (kzjk > 1) where 1 (A) is the indicator function for the event A

� : see Appendix A for description
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Fig 13. U.K./U.S. Long Run Exchange Rates and Estimated Stochastic Unit Roots

4. CONCLUSIONS

A coe¢ cient nonlinear model, the GSTUR model is a �exible approach for modelling
some macroeconomic time series�underlying process. The marginal likelihoods of the
competing models are adequate to shed light on the model uncertainties and the existence
of a deterministic time trend.
With applications of the S&P500 data sets and the U.K. /U.S. long run real ex-

change rates, the Gibbs Sampler algorithm is e¢ cient9 to provide consistent estimates
for the highly parameterized dynamic GSTUR model. Considering the marginal likeli-
hood for a high dimensional GSTUR model, Chib�s method with an APF algorithm can
be implemented when integrating a T � 1 dimension latent variables (�t where t = 1,
2, :::, T ) is necessary but di¢ cult. Therefore, this paper provide a set of tools for a
complete analysis of the GSTUR model that includes MCMC estimation, diagnostics,
model marginal likelihood evaluation, and estimations of the latent data �t.
An analysis of the S&P500 stock prices series suggests that the persistence has shifted

for several times within the sample. The unrestricted GSTURmodel is the most favoured
model, which indicates a support of the deterministic time trend. Therefore, excluding
the possibility of a deterministic trend may mislead the inferences. We propose that
the underlying process of the S&P500 series should be modelled with a more realistic
kind, such as a combination of a drift, a deterministic time trend, and a time varying
persistence with roots varying stochastically. A simple analysis of the monthly U.K.

9The �e¢ cient� here refers to quick convergence in the MCMC algorithm, small serial correlations
between the sample draws and fast movements in the sample draws.
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/U.S. long run real exchange rates suggests that a GSTUR model may help to resolve
the puzzles relating to the puzzle of PPP. The estimated time varying stochastic roots
of the series suggest that important monetary events may cause shifts in the persistence
of the real exchange rates.

APPENDIX A: PRIOR ELICITATIONS

To specify an appropriate prior distribution that adequately re�ects available prior
information on the parameters is important. As the form of prior p

�
�2"
�
is chosen as

an Inversed Gamma distribution f�1�
�
�"; �"

�
and the form of prior p

�
�2�
�
is chosen as

f�1�

�
��; ��

�
. How to selecte the values of �", �", �� and �� became very important.

We allow the variance �2" in the measurement equation varies with a big range, then �" =
1=256 and �

"
= 256. As we presume the variance �2� in the transition equation varies

with a small range and centered around 0:01, we choose �� = 1:5 and �� = 0:03. The

following graphs plot the Inversed Gamma distributions f�1�
�
�"; �"

�
and f�1�

�
��; ��

�
with above selected values.
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APPENDIX B: FUNCTIONS RELATED TO CONDITIONAL DRAWS FOR �
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