
 

 
 

 

DEPARTMENT OF ECONOMICS 
  

 
 
 
 
 
 
 
 
 

Probability Matching and Reinforcement 
Learning* 

 
 
 

 
 
 

 

Javier Rivas, University of Leicester, UK 
 

 
 
 

 
 

 
 

Working Paper No. 11/20 
March 2011 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6331457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Probability Matching and Reinforcement Learning∗

Javier Rivas

University of Leicester †

March 2, 2011

Abstract

Probability matching occurs when an action is chosen with a frequency equivalent

to the probability of that action being the best choice. This sub-optimal behavior has

been reported repeatedly by psychologist and experimental economist. We provide an

evolutionary foundation for this phenomenon by showing that learning by reinforcement

can lead to probability matching and, if learning occurs sufficiently slowly, probability

matching does not only occur in choice frequencies but also in choice probabilities. Our

results are completed by proving that there exists no quasi-linear reinforcement learning

specification such that behavior is optimal for all environments where counterfactuals are

observed.
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1 Introduction

Consider an urn with 60 black balls and 40 white balls. If we were to predict the color of the

ball in five draws with replacement, it would be optimal to guess black five times. However,

psychologist and experimental economist have reported that in such a situation individuals

tend to guess black three times and white two times. Three out of five represents a 60%

frequency and two out of five represent a 40% frequency. That is, the frequencies of agents’

responses match the frequencies of the balls in the urn. This is what is known as probability

matching.

Probability matching has been reported repeatedly by psychologist and experimental

economist. For example, Rubinstein (2002) conducts several experiments similar to that of

the example above and finds that probability matching is present in between 30% and 80%

of the population depending on the specifics of the problem. Similar results are obtained by

experimental psychologist Siegel and Goldstein (1959) and Gaissmaier and Schooler (2008)

among others. Probability matching seems to be an innate characteristic of behavior not only

present in the human specie. This phenomenon is also found, for instance, in fish (Behrend

and Bitterman (1961)) and pigeons (Bullock and Bitterman (1962)).

In this paper we show that in environments where the payoff of not chosen actions is

observed the choices made by an individual who learns by reinforcement, i.e. actions that

were successful in the past are more likely to be chosen, converge to probability matching. On

top of that, we show that if learning speed is sufficiently slow then this convergency does not

only occur in the frequency with which each action is chosen but also in the probability with

which each action is chosen at any given point. This suggests that the probability matching

behavior exhibited by some subjects can be explained as the result of reinforcement learning.

We also find that this sub-optimality property of reinforcement learning is robust, meaning

that it is not possible to design an specification of quasi-linear reinforcement learning such

that behavior is optimal for all environments where counterfactuals are observed.

According to reinforcement learning, actions that were more successful in the past are

more likely to be adopted in the future. Reinforcement learning has been found to be one of

the main driving forces of human behavior in decision problems. For some detailed expositions

on reinforcement learning and its relationship with real life behavior the reader is referred to

Roth and Erev (1995), Erev and Roth (1998) and Camerer and Ho (1999).

To our knowledge, our paper is the first one to explicitly obtain a direct link between

reinforcement learning and probability matching. Nevertheless, there have been previous

articles suggesting the possibility of a relationship between these two phenomena. Simon

(1959) points out to the fact that under a specific class of reinforcement learning models
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the frequency of choices converges to the frequencies with which each of these choices is

the best alternative. Apart from the fact that we consider a much general specification of

reinforcement learning, what we show in this paper is that not just the frequency converges,

but that under some conditions the probability of choosing each action at any given point

in time also converges. To understand this difference consider a situation where only two

actions exists. Imagine two choice patterns: one such that each action is chosen alternatively

and a different one whereby each action is chosen with a 50% probability. In this case,

these two different behaviors give rise to the same observed choice frequencies even though

the probability of choosing each action at any point in time differs across the two choice

patterns.

Other relevant papers indicating the possibility of a relationship between reinforcement

learning and probability matchings are those of Börgers and Sarin (2000) and Erev and

Barron (2005). Börgers and Sarin find that probability matching can arise in a model of re-

inforcement learning if agents have aspiration levels. By further exploring the implications of

reinforcement learning, we find that probability matching still appears even in the absence of

aspiration levels. This suggests that the link between reinforcement learning and probability

matching is deeper than initially thought. Erev and Barron (2005) present an experimental

exercise where subjects exhibit probability matching behavior and show that reinforcement

learning is the behavioral model that better fits the data they observed. Therefore, our

theoretical exercise is supported by their findings.

A fact worth mentioning is that no relationship between reinforcement learning and prob-

ability matching occurs in environments where the decision maker has no information about

counterfactuals (payoffs of not chosen actions). To our knowledge, this fact was first ob-

served by Rustichini (1998), who showed that in environments where there is no information

about counterfactuals linear reinforcement learning results in the decision maker choosing

with probability one the action that is best in the long run.

2 The Model

2.1 Environment

Consider a decision maker who every period t = 0, 1, . . . has to choose an action from the

finite set A = {1, . . . , n}. The payoff of the decision maker at time t depends on her action

and on the state of nature st ∈ S = {1, . . . ,m} at time t unknown to the decision maker. If

the decision maker chooses action i and the state of nature equals s then her payoff equals

πis. To simplify the exposition, we assume that πis ∈ [0, 1] and for any state s the payoff
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maximizing action is unique. Define πs as the vector of payoffs of each action in state s,

πs = (π1s, . . . , πns).

The sequence of states of nature {st}t follows an independent and identically distributed

process where ps ∈ [0, 1] is the probability of each state s occurring at any given t with
∑

s ps = 11. An environment is defined by the payoff vectors together with the probabilities

of each state occurring: {(π1, . . . , πm), (p1, . . . , ps)}.

Let σti ∈ [0, 1] denote the probability with which the decision maker chooses action i at

time t with
∑

i σ
t
i = 1 for all t. We assume σ0

i is given for all i and lies between (0, 1) so that

all actions have positive initial probability of being chosen. Finally, define σi = {σti}t.

The timing within each time period t goes as follows: First, the decision maker chooses

an action according to σti for all action i. Second, nature decides the state. Third, payoffs

are realized and the decision maker observes the payoff of all actions2. Finally, the decision

maker updates the probability of choosing each action σt+1
i for all i.

2.2 The Learning Rule

The type of reinforcement learning we consider is such that the next period’s likelihood of

choosing a given action is quasi-linear in the current likelihood of choosing that action and the

payoff each action yielded. This implementation of reinforcement learning is a generalization

of the linear reinforcement learning models pioneered by psychologists Bush and Mosteller

(1951) and applied to economics first by Simon (1959) and Cross (1973).

By ways of reinforcement, the decision maker increases the probability of choosing the

action that yielded a higher payoff in the previous period. As argued above, we focus our at-

tention on a generalization of the most widely used implementation of reinforcement learning,

whereby the increase in the probability of choosing a given action next period is quasi-linear

in the probability of choosing that action in the current period and the payoff of each action.

Let σt+1
i (s) be the value of σt+1

i if at period t the state of nature is s. We have the following

definition:

Definition 1. The quasi-linear reinforcement learning rule is given for any s ∈ S by

σt+1
i (s) =

{
σti +

(
1− σti

)
µf(πs) if πis > πjs∀j ∈ A,

σti − σtiµf(πs) otherwise
(1)

with µ ∈ (0, 1] and f : [0, 1]n → (0, 1].
1In Rivas (2008) we show that when states of nature follow a Markov process results presented here are

still valid.
2For the case where foregone payoffs are not observed see Rivas (2008).

4



The function f above can be seen as the intensity or strength of the reinforcement whilst

the parameter µ is interpreted as the learning speed. The reason why µ is not included in f

will be clear later on. The function f , as imposed by reinforcement, is weakly increasing in

the payoff of the action that yielded the highest payoff and weakly decreasing in the payoff

of all the other actions. That is, f is weakly increasing (decreasing) in πis if and only if

πis > (<)π−is.

As an example, consider the case where payoffs enter exponentially in f in the following

form:

f(πs) =
maxi{eπis}∑

j e
πjs

.

Hence, if we define k(s) ∈ A as k(s) = arg maxi πis, equation (1) becomes

σt+1
i (s) =





σti +
(
1− σti

)
µ e

πk(s)sP
j e
πjs if i = k(s),

σti − σtiµ e
πk(s)sP
j e
πjs otherwise.

Another possible specification of f includes the case where f(πs) = 1 for all πs. In this

situation, the resulting learning rule is equivalent to what is known in the population games

literature as the best response with inertia (see Samuelson (1994) or Kosfeld et al. (2002)).

Previous literature relating reinforcement learning and probability matching assumed

that f(πs) = 1 and µ = 1. In this case, the frequency with which each action is chosen

trivially converges to the frequency with which that action is the best choice. Allowing for a

much general specification permits us to better understand the relationship between the two

phenomena. In particular, as we shall show, under some circumstances convergence not only

occurs in the frequency by which each action is chosen but also in the probability of choosing

each action.

3 Results

3.1 Convergence in Frequencies

Our first result is that under reinforcement learning the frequency with which each action

is chosen is closely related to the probability of that action being the best choice. This

relationship is given by the specific functional form of f used and is independent on the

parameter µ. Proposition 1 below states this finding formally.

Proposition 1. Define E0 as the expected value operator evaluated at time 0. Furthermore,

for all action i ∈ A define

σ̄i =

∑
s:πis>π−is psf(πs)∑

s psf(πs)
.
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We have that

lim
t→∞E

0
(
σti
)

= σ̄i.

Proof. The result follows directly from applying Breiman’s strong law for Markov processes

(Breiman (1960)) to the sequence σi for all action i. However, in order to improve exposition

we show a self-contained proof that uses the well known law of iterated expectations (see, for

instance, Ljungqvist and Sarget (2000)).

Applying law of iterated expectations to our model yields

E0
(
σti
)

= E0 ◦ . . . ◦ Et−1
(
σti
)
.

Simple algebra shows that at any time q

Eq−1 (σqi ) = σq−1
i +

(
1− σq−1

i

) ∑
s:πis>π−is

psµf(πs)− σq−1
i

∑
s:πis<π−is

psµf(πs)

= σq−1
i

(
1−

∑
s

psµf(πs)

)
+

∑
s:πis>π−is

psµf(πs)

= aσq−1
i + b,

with a = 1−∑s psµf(πs) and b =
∑

s:πis>π−is psµf(πs). Therefore, using the law of iterated

expectations we have that

E0
(
σti
)

= (a)tσ0
i + b

t∑

r=1

(a)t−r.

Hence, as t grows large and taking into account that a < 1

lim
t→∞E

0
(
σti
)

= lim
t→∞ b

t∑

r=1

(a)t−r

=
b

1− a
=

∑
s:πis>π−is psµf(πs)

1− (1−∑s psµf(πs))

=

∑
s:πis>π−is psf(πs)∑

s psf(πs)
= σ̄i.

That is, the expected probability with which an action is chosen converges to the prob-

ability of that action being the best choice, corrected by the specific function f used and
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the payoff vectors (π1, . . . , πm). Previous literature relating reinforcement learning and

probability matching assumed f(πs) = 1 and µ = 1, which by proposition 1 implies that

limt→∞E0

(
σti
)

=
∑

s:πis>π−is ps. That is, the frequency with which an action is chosen

converges to the probability of that action being the best choice. This is what is known as

probability matching.

Proposition 1 generalizes on previous literature by allowing for a more general specification

of reinforcement learning. In section 3.3 we study whether or not this general specification

is able to select the best action in the long run.

3.2 Convergence in Probabilities

Apart from convergence in frequencies, we find that converge in probabilities is also possible.

This means that not only the frequency with which each action is chosen converges but that

the probability with which each action is chosen also converges to the probability of that

action being a best choice.

The following proposition characterizes the convergence of σi for all action i when learning

speed µ is arbitrarily small.

Proposition 2. For any ε > 0 there exists a µ̄ > 0 such that for all µ < µ̄

Pr
(

lim
t→∞

∣∣σti − σ̄i
∣∣ > ε

)
= 0.

Proof. We proceed by showing that for any ε > 0, if µ < ε then limt→∞E0
((
σti − E0

(
σti
))2)

<

ε2. That is, σti converges in 2-nd order mean when learning speed µ converges to zero. In

other words, we proceed by showing that for any ε > 0, if µ < ε then the variance of σi is

bounded above by ε2.

Using the result in proposition 1 it is true that

lim
t→∞E

0
((
σti −E0

(
σti
))2) = lim

t→∞E
0
((
σti
)2)− (σ̄i)

2

= lim
t→∞E

0


(σt−1

i

)2 + 2σt−1
i

∑
s:πis>π−is

psµf(πs)− 2
(
σt−1
i

)2∑
s

psµf(πs)




− (σ̄i)
2 + p(2) (µ)

= lim
t→∞E

0
(
a′
(
σt−1
i

)2 + b′σt−1
i

)
− (σ̄i)

2 + p(2) (µ)

= lim
t→∞ a

′E0
((
σt−1
i

)2)+ b′σ̄i − (σ̄i)
2 + p(2) (µ)

where a′ = 1 − 2
∑

s psµf(πs), b′ = 2
∑

s:πis>π−is psµf(πs) and p(2) : (0, 1] → (0, 1] is a

polynomial whose lowest power is 2. Iterating on the term E0
((
σt−1
i

)2) in the equation
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above leads to

lim
t→∞E

0
((
σti −E0

(
σti
))2) =

b′

1− a′ σ̄i − (σ̄i)
2 + p(2) (µ)

=

∑
s:πis>π−is psµf(πs)∑

s psµf(πs)
σ̄i − (σ̄i)

2 + p(2) (µ)

= (σ̄i)
2 − (σ̄i)

2 + p(2) (µ)

= p(2) (µ)

≤ µ2.

Thus, for any ε > 0 if we choose a learning speed µ < ε then

lim
t→∞E

0
((
σti −E0

(
σti
))2)

< ε2.

Therefore, σti converges in 2-nd order mean when learning speed µ converges to zero. As

convergence in r-th order mean with r > 1 implies converges in probability, we have that

σti converges in probability to E0
(
σti
)

when learning speed µ is arbitrarily small. Since by

proposition 1 E0
(
σti
)

= σ̄i, the result follows.

The intuition behind proposition 2 is that as learning speed parameter µ becomes small,

the change in the probabilities of choosing each action also becomes small. In the limit this

means that the the variance of the stochastic process on σi for all i collapses to zero. This

fact together with proposition 1 implies than on top of converges in frequencies converge in

probabilities also occurs.

If instead of a general function f we consider the case where f(πs) = 1 for all πs, we have

the following corollary:

Corollary. If f(πs) = 1 then for any ε > 0 there exists a µ̄ > 0 such that for µ < µ̄

Pr


 lim
t→∞

∣∣∣σti −
∑

s:πis>π−is

ps

∣∣∣ > ε


 = 0.

That is, the probability of choosing action i converges to the probability with which that

action is a best response to the environment. This is a stronger result than that of probability

matching: not only there is convergency in frequencies but also in probabilities if learning

speed is sufficiently slow.

3.3 Optimality

We continue our analysis by formulating the following question: Is it possible to design an

specification of f such that the resulting probability of choosing the action that has the
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highest expected payoff converges to 1? For understanding this issue we use the concept of

optimality:

Definition 2. We say that the quasi-linear reinforcement learning rule is optimal if there

exists a function f such that for all environment {(π1, . . . , πm), (p1, . . . , ps)} and all ε > 0,

Pr
(

lim
t→∞

∣∣σtk − 1
∣∣ > ε

)
= 0

with k = arg maxi
∑

s:πis>π−is psπis.

A feature of reinforcement learning is that the decision maker can be “distracted” towards

non-optimal actions by the random process on the states of nature. This is because non-

optimal actions can be the best action for some states of nature. Therefore, randomness can

lead the decision maker to increase the probability of choosing a non-optimal action even if

she is currently choosing the optimal action with probability one. As a consequence, there are

environments such that for any rule the limit of the learning process converges to a situation

where non-optimal actions are chosen with some positive probability. This is formally proven

in our next proposition.

Proposition 3. The quasi-linear reinforcement learning rule is not optimal.

Proof. Assume, without loss of generality, that k = arg maxi
∑

s:πis>π−is psπis, so that action

k has the highest expected payoff.

The proof goes by contradiction. Assume that for all ε > 0 there exists a function f such

that for all the environments {(π1, . . . , πm), (p1, . . . , ps)}, |σ̄k − 1| < ε. This can be rewritten

as follows: for any sequence {εr}∞r=0 converging to 0 with εr > εr+1 > 0 for r ∈ {0, . . . ,∞}
and ε0 given, we have that there exists an associated sequence of functions {fεr}∞r=0 with

fεr : [0, 1]n → [0, 1] such that σ̄k(fεr) < σ̄k(fεr+1) with r ∈ {0, . . . ,∞} and

lim
n→∞ σ̄k(fεr) = 1,

where σ̄k(fεr) is the value of σ̄k associated with the function fεr .

The limit above holds if and only if

lim
n→∞

∑
s:πks>π−ks psfεr(πs)∑
s:πks<π−ks psfεr(πs)

=∞ (2)

holds.

Take now an environment {(π1, π2), (p1, p2)} where 0 < π11 < π22 and π12 = π21 = 0.

We could consider more general environments but that will only complicate the exposition
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leaving the logic of the proof unchanged. The probabilities of each state occurring are such

that
∑2

s=1 psπ1s >
∑2

s=1 psπ2s with p1, p2 > 0. In this situation, equation (2) implies that

lim
n→∞

p1fεr(π1)
(1− p1) fεr(π2)

=∞.

Since p1 ∈ (0, 1), the equation above holds if and only if the following limit holds:

lim
n→∞

fεr(π1)
fεr(π2)

=∞. (3)

However, given that π11 < π22 and π12 = π21 = 0, we have that fεr(π1) ≤ fεr(π2) for all

r > 0, a contradiction.

The logic behind the proof is that if the quasi-linear reinforcement learning rule is optimal

then there exists a function f that magnifies the payoffs of each action. This can be seen

in equation (3), where the finite difference in payoffs is magnified to infinity. However, if

this is the case, an environment can be found such that there is a rare state of nature for

which the payoff of the suboptimal action is greater than that of the optimal action. In

such environment, f cannot result in the decision maker choosing the optimal action with

probability one in the long run.

4 Conclusions

We studied the relationship between probability matching and reinforcement learning in an

environment where counterfactuals are observed and found that the two phenomena are

significantly related. In particular, under a general class of reinforcement learning rules that

we called the quasi-linear reinforcement learning rule, the expected probability with which an

action is chosen converges to the probability of that action being the best choice, corrected

by the specific learning rule used and the payoff vectors. Moreover, if the decision maker’s

learning speed is sufficiently slow then convergence not only occurs in the frequency with

which each action is chosen but also in its probability. We concluded our results by showing

that this sub-optimality property of reinforcement learning is robust, meaning that it is not

possible to design an specification of quasi-linear reinforcement learning such that behavior

is optimal for all environments.
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