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Abstract

In the standard independent private values (IPV) model, each bidder’s beliefs about the values

of any other bidder is represented by a unique prior. In this paper we relax this assumption

and study the question of auction design in an IPV setting characterized by ambiguity: bidders

have an imprecise knowledge of the distribution of values of others, and are faced with a set of

priors. We also assume that their preferences exhibit ambiguity aversion; in particular, they are

represented by the epsilon-contamination model. We show that a simple variation of a discrete

Dutch auction can extract almost all surplus. This contrasts with optimal auctions under IPV

without ambiguity as well as with optimal static auctions with ambiguity - in all of these,

types other than the lowest participating type obtain a positive surplus. An important point

of departure is that the modified Dutch mechanism we consider is dynamic rather than static,

establishing that under ambiguity aversion–even when the setting is IPV in all other respects–a

dynamic mechanism can have additional bite over its static counterparts.
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1 Introduction

In the standard independent private values (IPV) setting bidders draw privately known

valuations from a given distribution. Each bidder is assumed to maximize subjective

expected utility, so that a bidder’s beliefs about the values of any other bidder is rep-

resented by a unique prior (i.e. a unique distribution over the domain of values). In

this setting Dutch auctions coincide with First Price Sealed Bid auctions,(2) and optimal

auctions leave all but the lowest participating type with a surplus. This is true whether

bidders are risk neutral or risk averse.(3)

In this paper we relax the unique prior assumption and study the question of auc-

tion design in an IPV setting characterized by ambiguity: bidders have an imprecise

knowledge of the distribution of values of others, and are faced with a set of priors. We

also assume that their preferences exhibit ambiguity aversion; in particular we use the

epsilon contamination representation, used extensively in the economics and statistics

literature.

Several papers have studied auctions (or auction-like environments) when bidders

have non-expected utility preferences (e.g. Karni and Safra 1986, 1989a,1989b; Karni

1988; Lo 1998; Nakajima 2004; Ozdenoren 2002; Volij 2002). The closest intellectual an-

tecedents appear in the paper by Bose, Ozdenoren, and Pape (2006), who show that in

the setting of ambiguity that we consider, the optimal static mechanism leaves buyer

types with information rent, and the amount of rent varies continuously with the ex-

tent of the ambiguity. In contrast, our main result shows that in this setting of ambi-

guity averse buyers, the seller can use a simple variation of a discrete Dutch auction

and extract almost all surplus. The important point of departure is that the modi-

fied Dutch mechanism we consider is dynamic rather than static, establishing that a

dynamic mechanism can present the seller with additional surplus extraction oppor-

tunities under ambiguity aversion even in a setting that is captured by the IPV model

in all other respects.

(2)As far as we are aware, Karni (1988) is the first to show that the equivalence between Dutch and

First Price Sealed Bid auctions breaks down under non-expected utility preferences.
(3)Myerson (1981) and Riley and Samuelson (1981) analyze optimal auctions with risk neutral bidders.

Under risk neutrality, all standard auctions are optimal given an appropriate choice of reserve price.

Matthews (1983) and Maskin and Riley (1984) characterize the optimal auction with risk averse bidders.

The optimal auction in this case is quite complex, involving payments by some losing bidders.
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In a seminal paper, Ellsberg (1961) showed that lack of knowledge about the distribu-

tion over states, often referred to as ambiguity, can affect the choice of a decision maker

in a fundamental way that cannot be captured by a framework that assumes a unique

prior. Several subsequent studies have underlined the importance of ambiguity aver-

sion in understanding decision making behavior,(4) and models taking such aversion

into account have provided important insights in a variety of economic applications

including auctions.(5)

We model ambiguity aversion using the maxmin expected utility (MMEU) model of

Gilboa and Schmeidler (1989). Here, the agents have a set of priors (instead of a single

prior) on the underlying state space, and the payoff from any action is the minimum

expected utility over the set of priors. In our setting, each buyer considers a set of

distributions that contain the distribution from which the other buyer’s valuation is

drawn and each action (from the mechanism proposed by the seller) is evaluated based

on the minimum expected utility over the set of distributions. The buyer then chooses

the best action from the set of actions. To make a minimal departure from the standard

model, we assume that the seller is ambiguity neutral(6) and both the buyers and the

seller are risk neutral. In other words, apart from relaxing the unique prior assumption,

our framework is as close to the standard IPV model as possible.(7),(8)

(4)See, for example, Camerer and Weber (1992).
(5)For example, using such preferences Mukerji (1998) explains the incompleteness of contracts and

Mukerji and Tallon (2004) explain the puzzling absence of wage indexation. An application to auction

theory is developed by Lo (1998), who shows that if bidders are ambiguity averse, the revenue equiva-

lence theorem (which holds in the standard IPV setting) is violated - sealed bid first price auctions raise

more revenue than sealed bid second price auctions.
(6)Assuming the seller to be ambiguity neutral allows us to focus on revenue extraction as the seller’s

objective. This also allows us to compare our results directly with the standard results from mechanism

design in a Bayesian setting. If the seller is also ambiguity sensitive, maximum surplus extraction is

not necessarily the objective while designing the mechanism. Studying such issues are interesting, but

beyond the scope of the work here.
(7)With multiple priors, the terms “independent” and “correlated” need to be used carefully. For the

most part we avoid using these terms. The important point is that in the standard model, even with risk-

neutrality, full surplus extraction is not possible when the beliefs do not depend on one’s own valuation

(i.e. in the independent case). Hence it is worth emphasizing that we consider the case where the sets

of probability distributions are the same for every buyer and do not depend on a buyer’s own valuations.

As shown by Bose et al. (2006), the optimal static mechanism does not extract full surplus in this setting.
(8)As in other applied mechanism design papers, we start at the interim stage where agents know their

own types (valuations, beliefs etc.). Of course, one could be interested in the ex ante stage also where

some draw by nature determines the agent’s types. Note, however, that the ex ante stage requires more
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As noted before, we use a version of MMEU known as “epsilon-contamination.” A re-

cent paper by Kopylov (2008) provides an axiomatization for this formulation.(9) The

model we consider has a seller whose valuation of the object is (normalized to) zero.

There are two potential buyers and the seller does not know either buyer’s valuation

but believes that the valuations are determined based on independent draws from the

distribution F(v) having support [0, 1]. Each buyer knows his own valuation and am-

biguity regarding the valuation of the other buyer is represented using the epsilon-

contamination model.(10) Formally, let P denote the set of all distributions on [0, 1] and

PB represent the set from which a buyer thinks the other buyer’s valuation distribution

is drawn. A distribution G(v) is in PB if

G(v) = (1 − ε)F(v) + εL(v)

for some distribution L belonging to P and ε ∈ (0, 1]. Intuitively, for some ε > 0, the

buyer puts 1− ε weight that the other buyer’s valuation is drawn from the distribution

F, but puts ε weight that the valuation could be drawn from some other distribution.

As Kopylov (2008) shows, the weight (1 − ε) can be interpreted as the agent’s confi-

dence in the subjective belief F; alternatively, the weight ε can be thought of as an index

of ambiguity aversion.(11)

Let us now describe our Modified Dutch Mechanism (MDM). The seller declares a

decreasing sequence of prices {p1, .., pn} at the beginning. At stage k, provided the

careful handling here compared to the standard case. For example, if the agents believe that nature

draws valuations of both buyers from the same distribution, knowledge of own value provides some

information about the set of distributions from which the other’s valuation is drawn. To model the ex

ante stage so that the problem remains similar in spirit to the standard IPV model, one would then need

an assumption such as nature drawing values from distributions which are themselves chosen according

to some independent but unknown (ambiguous) process.

It can be shown however, that even if nature draws both valuations from the same distribution, our

results remain unaffected. However, since full surplus extraction is possible even in the unique prior

case when beliefs vary with valuations, we do not focus on such situations.
(9)See also Nishimura and Ozaki (2006).

(10)The specification is in widespread use for its intuitive qualities and analytical tractability. It is used

extensively in the literature on robust statistics, starting with (as far as we are aware) Huber (1973).

Examples from the economics literature include Chen and Epstein (2002), Chu and Liu (2002), Mukerji

(1998), Nishimura and Ozaki (2004).
(11)Epsilon contamination is used for all the results below. However, F being focal is inessential; any

other distribution in place of F to generate the set PB would suffice just as well. We use the same F to

represent the seller’s beliefs as well as to generate PB to save on notation.
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item has not been sold up to that point, the seller randomly (with equal probability of

selecting any one buyer) approaches a buyer and offers the item at price pk. This offer

is secret in the sense that the other buyer is not made aware of this. If the approached

buyer passes, the seller approaches the other buyer (also in secret) and offers the item

at the same price pk. If the second buyer refuses as well the game goes to stage k +

1. If both buyers refuse at stage n, the seller keeps the item. We assume that the

randomization is independent across periods.

As in any mechanism design exercise the seller commits to the mechanism (including

the price offered in each period). Assuming that the buyers are approached randomly

and secretly in every period only helps to keep the mechanism symmetric. However,

this latter feature serves only an aesthetic purpose; the results do not depend on the

mechanism being symmetric.

Our surplus extraction result states the following. Fix a preference parameter ε > 0.

There is a δ∗(ε) such that for any given δ < δ∗(ε) and any η > 0, the seller can construct

an MDM (i.e. choose a price sequence) such that the mass of buyer types who do not

buy is at most [0, η] (i.e. the reserve type is at most η), and the types who buy do so at

a price such that their ex post surplus is at most δ. Since both δ and η can be arbitrarily

small, the seller can therefore extract almost full surplus.

The basic intuition for the result is that for any v and any price p where p < v, the

buyer gets a sure payoff of v − p from buying at p, whereas the payoff from waiting

one more period is v − p + ∆p times the probability that the current buyer obtains

the item in the next period, where ∆p is the difference between p and the next lower

price. With epsilon contamination preferences, the buyer attaches at least probability

ε that the item gets sold before he has the chance to obtain it next period. Thus the

loss from waiting is at least ε (v − p) whereas the gain from waiting is of the order ∆p.

For any given ε, since ∆p can be made arbitrarily small independent of the value of ε,

the gain from waiting can be made arbitrarily smaller than the loss from waiting. Put

differently, even though purchasing at price p results in the ex post surplus being at

most δ, the price sequence is constructed in such a way that this is still larger than the

(expected) surplus from waiting to buy at a lower price.

Note that this cannot happen in the standard (i.e. the unique prior) model. There,

for any type v, as long as the seller sells to types below v with positive probability,
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the surplus of type v cannot be made arbitrarily small.(12) Roughly speaking, in the

absence of ambiguity, given that F is smooth, the expected gain and expected loss from

waiting shrink at the same rate as the price gap becomes smaller. The above discussion

also shows the importance of the set of priors in our case. Essentially, the full surplus

extraction result requires that the set be such that even though expected gain from

waiting can be made vanishingly small by making the price gaps small, the expected

loss from waiting is bounded away from zero. We discuss this issue further in section 6.

As mentioned before, Bose et al. (2006) study optimal auction design for the same en-

vironment that we consider in this paper. They use the revelation principle to design

their mechanism and there types earn positive information rent; further the rents ap-

proach those found in the unique prior case as ε → 0. Our dynamic mechanism, in

contrast, extracts almost all rents for an arbitrarily small ε and is thus discontinuously

different from the unique prior case. While the full surplus extraction result is special

to the specific model we use, a general insight is that in the presence of ambiguity, dy-

namic mechanisms may have additional power over optimal static ones even in situa-

tions where the two types of mechanisms do not produce different results in ambiguity

neutral settings. More importantly, the standard direct revelation game characterizes

the optimal static mechanism and a dynamic mechanism can improve upon it. We

explain these in more detail with the help of a simple example in section (6.1.1)

While in a unique prior setting the optimal auction under IPV does not extract full sur-

plus, a different strand of the literature considers environments with correlated types

where it is possible to do so. (See Crémer and McLean (1988) and Crémer and McLean

(1985). See also McAfee and Reny (1992).) Note however that unlike the mechanisms

in this literature, ours do not involve any extraneous lotteries and satisfies limited lia-

bility.(13) It is also important to note that our mechanism meets better the criticism of

the so-called Wilson doctrine(14) and is an example of more robust mechanism design.

(12)In the expected utility setting (with unique prior F), the optimal revenue maximizing mechanism

does not allocate the object if no bidder’s type is greater than v∗ where v∗ −
1 − F(v∗)

f (v∗)
= 0 and types

v > v∗ obtain expected surplus equal to

∫ v

v∗

F(y)dy. Given that the probability of obtaining the item is

bounded away from zero, ex post surplus cannot be made arbitrarily small.
(13)Robert (1991) shows that the Cremer-McLean result relies crucially on risk neutrality as well as

limited liability. While we do not explicitly consider risk-aversion, it is easy to show that our basic result

is unchanged if bidders are risk averse.
(14)This requires that the mechanism should not require the designer to possess detailed knowledge of
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The seller in our case does not need to know the exact distribution F, nor the specifics

of the contaminating set of distributions (beyond the fact that it has certain properties -

see section 6.3). We do assume in the formal model that the seller does know the value

of ε; note however that the seller is not required to know the exact value of ε as long as

it is known that there is a bound such that the true value of ε lies above this bound.

A final comment on the nature of the ambiguity in our model. Here each buyer faces

ambiguity with respect to the other buyer’s valuation distribution. There is neither

any ambiguity about the strategy of the other buyer nor does the seller introduce any

ambiguity through the mechanism. However, introducing any of these other sources

of ambiguity would only make it easier for us to prove the central result. To see this,

note that the central idea in the construction of the MDM is to give each buyer a choice

at each stage between an ambiguous alternative and a sure payoff. The mechanism

then exploits the ambiguity of one of the alternatives to make the sure payoff more

attractive, which helps extract surplus. Adding extra sources of ambiguity does not

change the sure payoff, but does affect the ambiguous alternative, which makes sur-

plus extraction easier.

Earlier work in the area of robust Bayesian statistics have studied dynamic inference

problems facing a decision maker with maxmin preferences. The literature shows that

the juxtaposition of maxmin preferences with full Bayesian updating can give rise to

surprising results.(15) However, as far as we are aware, this paper is the first to study

the question of dynamic mechanism design under such non-EU preferences.

The rest of the paper is organized as follows. The next section presents the model.

Section 3 presents our mechanism, and characterizes equilibria in the induced game.

The main result of the paper appears in section 4, and section 5 presents a numerical

example. Section 6 discusses some aspects of the model, and section 7 concludes.

the environment.
(15)See, for example, Augustin (2003), Grunwald and Halpern (2004), Seidenfeld (2004).
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2 The Model

2.1 The Basic Set-up

There is a seller with one indivisible object for sale. The seller’s valuation of the item is

(normalized to) zero. There are two potential buyers with valuations of the object lying

in the interval [0, 1].(16),(17) Own valuation is private information of each buyer. Each

buyer believes that the other’s valuation is drawn from some distribution from a set

of distributions on [0, 1]. The preferences of the buyers is represented by the maxmin

expected utility (MMEU, henceforth) model of Gilboa and Schmeidler (1989). Briefly,

if Ω is a set, P is a set of distributions on Ω, and F is a set of acts from Ω to the real

line R, then an act f ∈ F is evaluated according to the rule

min
p∈P

∫
u( f )dp

where u is some real valued function. In our context, we assume buyers are risk-

neutral.

The seller is (risk and) ambiguity neutral(18) and has a prior over a buyer’s valuation

given by the distribution F(v) with a continuous density f (v) > 0. We model the set of

priors representing buyer’s ambiguous beliefs using the epsilon contamination model.

Let P denote the set of all distributions on [0, 1]. The set of distributions, PB, repre-

senting the buyers’ beliefs, is given by the following: G(·) ∈ PB if for any v ∈ [0, 1],

G(v) ≡ (1 − ε)F(v) + εL(v) for L(·) ∈ P .(19) As noted in the introduction, Kopylov

(2008) has recently provided an axiomatic foundation for preferences to be represented

by the epsilon contamination model.

Note also that other than non-unique priors, the rest of the model conforms as closely

as possible to the IPV model standard in auction theory.

(16)We could, for the sake of generality, represent the buyer’s possible valuations to be the set [v, v].

However, we do allow the seller to have a non-trivial reserve price, and, as the result below shows, the

normalization to the space [0, 1] is harmless, and reduces algebraic clutter.
(17)Generalization to arbitrary N > 2 buyers is straightforward.
(18)See footnote (6).
(19)Use of F to generate both the seller’s beliefs as well as the set PB representing the buyers’ beliefs is

not essential. See footnote (11).
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2.2 Extension to a dynamic setting

The Gilboa-Schmeidler model is atemporal. We need to extend this static choice model

to suit the specific context of our dynamic mechanism. To this end, we assume that

the buyer’s have maxmin - in particular, epsilon contamination - preferences at ev-

ery stage, and choose actions to maximize the minimum expected payoff from a set of

updated distributions. Specifically, based on the available information, an agent up-

dates F and the distributions in the set P , and then chooses the action that maximizes

the minimum expected value of payoff where the minimizing set of distributions is

obtained by taking a convex combination of updated F (with weight (1 − ε)) and the

updated distributions in P (with weight ε). This procedure is in keeping with the inter-

pretation of ε that arises from the axioms of Kopylov (2008), where the weight (1 − ε)

can be interpreted as the decision makers degree of confidence in her subjective belief

F.(20)

The updating rule we use is the “full Bayesian” (also called “prior-by-prior”) rule. This

has been used in economics as well as in the extensive literature on robust statistics.(21)

Even though this is probably the most well known rule, other rules have been proposed

in the literature. We discuss this issue in more detail in section 6.2.

Finally, we assume that the dynamic behavior of the buyers is sophisticated. They form

their decisions based on the entire game tree, correctly anticipate their own behavior

at future dates, and form consistent plans. Recently, Siniscalchi (2006) has provided an

axiomatic foundation of such sophisticated dynamic choice for maxmin utility and full

Bayesian updating. We follow the same idea here and posit that the (conditional) pref-

erences are defined over trees, rather than acts; we comment more on this in section 6.1

below.

This completes the description of the general aspects of dynamic choice. Next, we

(20)Alternatively, the weights ε and 1 − ε can be used simply to generate the set of priors of the Gilboa-

Schmeidler model. In this case the mixture is done only once (at the initial stage) to generate the set

G, and in subsequent periods the distributions in G are updated. However, even though the algebraic

expressions for the updated minimizing distributions would be different if one follows this alternative

approach, this would not affect our main result.
(21)See, for example, Walley (1991), Rios and Ruggeri (2000), Epstein and Schneider (2003). For an ax-

iomatization of this rule, see Jaffray (1994), Pires (2002). See Siniscalchi (2006) for an axiomatization for

an approach that is closest to the one we take in this paper.
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specify the mechanism, which clarifies the precise nature of dynamic choice facing

the bidders. The strategies of the bidders and the nature of equilibria induced by the

mechanism are then discussed in section 3.2.

3 The Modified Dutch Mechanism

We now describe the Modified Dutch Mechanism (MDM). The mechanism works as

follows. At the beginning, the seller declares a price sequence {p1, p2, ...pn} where pt

is the asking price in period t. In each period t, for t = 1, 2, ..., n, the seller randomly

chooses a buyer to approach first and offers the object at price pt. The randomizations

are independent across periods and each buyer has equal chance of being asked first.

If the buyer buys at that price the game is over; otherwise the seller approaches the

other buyer and offers the same price. If the second buyer accepts, the game is over;

otherwise we go to period t + 1 if t < n and the game is over (and the seller keeps the

item) if both buyers refuse even in period t = n. We assume that the buyers are asked

in secret, so that in every period, a buyer, when asked by the seller, does not know

whether he is being asked first or is being asked because the other buyer has refused

the current offer.

The mechanism is a modification of a discrete price Dutch auction; in particular we

assume–as is standard in dynamic auctions–that there is no discounting between pe-

riods. The seller’s ex post payoff is the price at which the item is sold if it is sold and

zero otherwise. The ex post payoff of a buyer of type v is v − p if it obtains the item at

price p and is zero otherwise.

We maintain the standard assumption of mechanism design literature that the seller,

the mechanism designer in our context, can commit to the mechanism. In particular this

means that the price sequence declared at the beginning of the game and the random

procedure of approaching buyers every period is adhered to as the game progresses.

Put differently, once a mechanism is chosen, only the two buyers - and not the seller

- are the players in the game induced by the mechanism. We also make the standard

assumption that all of the above is common knowledge.
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3.1 The Price Sequence

As mentioned before, the MDM consists of a price sequence {p0, p1, ..., pn} where pk

is the asking price in period k. Our objective is to show that for any ε > 0, there is an

MDM such that in the equilibrium of the game resulting from it, the seller can extract

almost all surplus from almost all types. Let us start by describing how the required

price sequence is constructed. For δ > 0, let {p0, p1, ..., pn} be the price sequence where

p0 = 1 and

pk =
(1 − δ)k

(1 − δ + εδ/2)k−1
for any k > 0 (3.1)

We remind the reader that ε is a preference parameter; we explain the role of δ shortly.

Let ∆k denote the “price gap” pk − pk+1, where

p0 − p1 ≡ ∆0 = δ, and

pk − pk+1 ≡ ∆k =

(
1 − δ

1 − δ + εδ/2

)k εδ

2
for any k > 0 (3.2)

Note therefore that both pk, and the gap ∆k, are decreasing in k. It also follows directly

that

lim
n→∞

n∑

k=0

∆k = 1

Since in the limit the prices cover the entire unit interval, we have the following prop-

erty, which is important for later results:

Property: Given any η ∈ (0, 1), there exists an integer T such that
∑T

k=1 ∆k > 1 − η.

Given any η ∈ (0, 1), let T∗ be the smallest integer for which the above inequality is

satisfied. We set n = T∗, which defines the last offered price pn.

The basic idea of the surplus extraction result (derived in section 4) is then as follows.

The prices are constructed so that they cover the entire unit interval in the limit. The

parameter δ controls the price gaps ∆k, k > 0. For any given positive ε - no matter how

small - we can specify δ so that all price gaps are “small” compared to ε. This is the

crucial feature that allows us to exploit the ambiguity sensitivity of bidders: for any

ε, there is a δ∗ such that for any choice of δ < δ∗ the gain from waiting can be made

arbitrarily small compared to the loss from waiting, making it optimal for bidders to
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stop “within δ” of their values. This means all participating types get a surplus of at

most δ.

The remaining question, then, is to see which types participate. By suitably choosing n,

the price sequence can be designed so that in equilibrium, the lowest type that plans to

purchase the good has valuation η. Therefore all types above η participate and obtain

a surplus of at most δ. Since both δ and η can be made arbitrarily small, the result

follows.

3.2 Strategies and equilibria

As explained above, the MDM results in a sequential (extensive form) game of incom-

plete information. A strategy of a type in this game is a plan to accept or reject the

seller’s offer at every information set (i.e. at every instance where the seller makes the

offer) given the history of the game so far. An equilibrium is a pair of strategies, one

for each buyer, satisfying the standard conditions: the pair is commonly known and

each is a best response with respect to the other. Further restrictions on the structure

of behavior of buyers are discussed below.

First, we make the standard assumption that the game itself is common knowledge.

Each buyer faces ambiguity about the type of the other buyer, but, as in the standard

models, knows how each type behaves in equilibrium. Previous research has studied

static mechanisms in exactly this context and since our objective is to focus on the

role played by dynamic mechanisms, we preserve the other aspects of the framework.

Note that we are ruling out strategic ambiguity: players do not doubt each other’s

rationality. However, as noted in the introduction, other sources of ambiguity only

makes it easier to show the surplus extraction result of this paper.

Second, as noted in section 2, buyers have maxmin preferences throughout the game,

use the full Bayesian updating rule, and form consistent plans. As noted, Siniscalchi

(2006) provides an axiomatic foundation of such sophisticated dynamic choice with

maxmin utility and full Bayesian updating.

Third, the equilibrium strategy of a buyer is perfect in the sense that just like in the stan-

dard case, the same consistency requirement is imposed on the off-the-equilibrium-

path information sets as well. A type’s equilibrium decision in any period (i.e. to ac-
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cept or to reject the seller’s offer) is optimal not only with respect to the other buyer’s

strategy and the history of the game but also with respect to the knowledge of its own

behavior at all future information sets, including those that will not occur if the type is

to carry out its own equilibrium plan. We discuss this issue further in section 6.1 .

3.3 Characterizing Strategies

In this section, we discuss a particularly convenient way of representing strategies in

the game induced by the MDM.

Recall that at each price pk, k ∈ {1, . . . , n}, a buyer, if asked by the seller, must choose

one of two actions: accept or reject the seller’s offer. A strategy of a type of buyer i is

therefore a plan to accept or reject the seller’s offer at each price given the history up

to price pk−1. We assume that a buyer type accepts when indifferent between accept-

ing and rejecting and buys at the earlier period if indifferent between buying in two

different periods.(22)

An important feature of the strategies is that the decisions to buy by different types

must have a certain monotonicity property. Specifically, suppose that pk is the highest

price that a buyer of type v accepts. This means that the payoff v − pk is better than

the best (maxmin) expected payoff from either not accepting the seller’s offer at all or

accepting some future price. Since all types start with the same set of priors and use

the same rule to update the set, any type v′ > v must then also optimally accept the

offer pk rather than to continue. If pk is the first price at which type v plans to accept,

then the highest price that all higher types plan to accept must be at least as high as pk.

And similarly, the highest price that types below v accept is either pk or a lower price.

For each price pk there is a set of types (possibly empty) who buy at pk. Note that

(22)Note that this need not be an entirely innocuous assumption. Since at every node, a buyer can

either accept or reject, the strategies are pure. In a non-EU setting, an agent who is indifferent be-

tween two pure actions might nevertheless strictly prefer a randomization over them to either pure

action (see Crawford (1990) for the seminal contribution). However, in our case allowing for random-

ization does not create any problem. This is because the action “accept” gives rise to a sure (and hence

unambiguous) payoff. And an implication of the axiom certainty independence (see axiom A.2. in

Gilboa and Schmeidler (1989)) is that (even though there may be gains from hedging ambiguous acts)

there is no gain in hedging an ambiguous and an unambiguous act. A comment by an anonymous

referee helped us simplify the exposition of this point significantly.
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monotonicity implies that if pk is the highest price accepted by types v and v′, where

v > v′, then the same is true of any type v′′ ∈ (v′, v). Therefore such a strategy gives

rise to a vector of n cut-offs {v1, . . . , vn} where 1 > v1 > v2 > . . . > vn > 0, and where

types in the interval [v1, 1] plan to buy at p1, and types in the interval [vk, vk−1) plan to

buy at pk, k ∈ {2, . . . , n}.

To continue, we see that any strategy satisfying monotonicity must give rise to a vec-

tor of n cut-offs as described above. Thus without loss of generality we can restrict

attention to such strategies, and refer to these as “cut-off strategies.” Note that any

such cut-off strategy currently places no restriction on the parts of the strategies which

specify actions at prices below the highest acceptable price. For a strategy to be part

of a perfect equilibrium, further restrictions are required and we clarify these once we

establish the next result.

Next, we define an “interior cut-off strategy.”

Definition 1 Interior Cut-off Strategy: A strategy of buyer i, i ∈ {1, 2}, is called an inte-

rior cut-off strategy if there exists a vector vi = (vi
1, . . . , vi

n), 0 6 vi
n < vi

n−1 < . . . < vi
1 < 1,

such that for k > 1, the highest price accepted by the non-degenerate interval of types [vi
k, vi

k−1)

is pk, where vi
0 ≡ 1.

3.4 Characterizing Equilibria

In this section we discuss the properties of equilibria that results from the game in-

duced by the MDM. We show that when the price sequence {p1, ..., pn} is chosen ap-

propriately, any equilibrium has the property that for every price, there are sets of

types of positive measure for both buyers who plan to buy at that price. (For the rest

of the paper, the phrase “positive measure” is used with respect to the distribution F.)

We also define perfect cut-off strategy, i.e. cut-off strategies that are part of a perfect

equilibrium, and show existence of a symmetric equilibrium where both buyers follow

the same cut-off strategy.

For the rest of the section, we fix the preference parameter ε > 0.

The first result calculates the difference between the payoffs from buying at the current

price and waiting for the next lower price. This calculation is useful later when we

show that exactly such a calculation features in deriving equilibrium cut-off vectors.

13



Lemma 1 Suppose the item has not been sold in periods 1, . . . , k − 1 and in period k < n

the seller offers the item to buyer i at price pk (given by equation (3.1)). Suppose j follows an

interior cut-off strategy that gives rise to a vector of cut-offs vj = (v
j
1, . . . , v

j
n). For any type

v of i the difference in payoff from buying immediately at price pk versus waiting one period to

buy at price pk+1 is

Gi
k(v) = v − pk − (1 − ε)(v − pk+1)Hi

k (3.3)

where

Hi
k ≡

F(v
j
k) + F(v

j
k+1)

F(v
j
k) + F(v

j
k−1)

(3.4)

where v
j
0 ≡ 1.

The proof is given below. Derivation of the conditional probabilities Hi
k used in the

proof is provided in section A.1 in the appendix.

Proof: If buyer i accepts the price pk, the payoff is v − pk. If the buyer waits to buy in

period k + 1 and manages to obtain the item then the ex post payoff is v − pk+1.

It is shown in section A.1 in the appendix that Hi
k is the probability under the distribu-

tion F that i obtains the item at pk+1 given that he refuses the current offer of pk. Under

epsilon contamination preference, the buyer’s expected payoff from waiting one pe-

riod is given by (1 − ε)(v − pk+1)Hi
k. Therefore Gi

k(v) is as specified. ‖

The next result shows that all equilibrium strategies are interior cut-off strategies when-

ever the price gaps are small. In other words, this shows that for each price there is a

positive measure of types of each bidder who plan to buy at that price. The result plays

a crucial role in characterizing all equilibria.

Proposition 1 There exists δ > 0 such that for all δ < δ, the equilibrium strategies of both

buyers are interior cut-off strategies.

The formal proof is relegated to the appendix (section A.2). Here we provide a brief

sketch of the basic idea behind the result. Suppose the strategy followed by buyer j

is not an interior cut-off strategy. In other words, the strategy has “gaps” in the sense

that there are prices such that no type of buyer j plans to buy at those prices.

For example, suppose there are no types of j who would accept offers of pk−ℓ through

pk, but there are types of j who buy at pk−ℓ−1 and also types who buy at pk+1. Let

14
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Figure 1: A cut-off strategy for buyer i under n = 5 with gaps at p2 and p3 - there are no types

of bidder i who buys at p2 or p3. Our results rule out all gaps in equilibrium.

v
j
k−ℓ−1 be the lowest type of j who buys at price pk−ℓ−1. Clearly, this type is indifferent

between buying at pk−ℓ−1 and waiting till the price drops to pk+1.

Now, according to the supposed equilibrium, all types in (pk+1, v
j
k−ℓ−1) refuse price

offers pk−ℓ through pk. Note first that if ℓ is at least 1, and j does not plan to buy

at prices pk−ℓ through pk, the best response of i should be not to buy at prices pk−ℓ

through pk−1. It is possible that some type of i may want to buy at price pk; however,

the important point is that a gap from j will give rise to a corresponding gap from i.

Consider now v
j
k−ℓ−1, the lowest type buying at pk−ℓ−1. The type is indifferent between

buying at pk−ℓ−1 and waiting till pk+1. Therefore a type just below (but arbitrarily close

to) v
j
k−ℓ−1 is approximately indifferent between those options. An important part of the

argument is showing that as δ becomes small so that the gaps between prices decrease,

the term H
j
k−ℓ−1, which is the conditional probability (under distribution F) that j ob-

tains the item in period k + 1 if he passes in period k − ℓ− 1, is approximately equal to

H
j
k, the conditional probability (again, under F) that j obtains the item in period k + 1

if he passes in period k.

The above argument is used to derive a contradiction. In the proposed equilibrium,

a type just below v
j
k−ℓ−1 is approximately indifferent between pk−ℓ−1 and pk+1 (and

in particular is not supposed to buy at prices pk−ℓ through pk). However, given that

H
j
k−ℓ−1 ≈ H

j
k, and pk < pk−ℓ−1, in period k when the seller actually offers the price pk,

such a type strictly prefers to buy at pk rather than wait till period k + 1, contradicting

15



the supposed equilibrium behavior. It is essentially this argument that rules out any

gaps in the strategies adopted by either player in equilibrium, proving the stated result.

While this is the basic intuition, the formal proof has to carefully check several cases,

and is somewhat lengthy. We have relegated it to the appendix.

Recall that our definition of an interior cut-off strategy above did not impose any out-

of-equilibrium restrictions. We now impose such restrictions and define a perfect cut-

off strategy. For a strategy to be part of a perfect equilibrium, it must specify behavior

that is optimal at every information set given the (correct) assessment of the behavior

of the other player as well as one’s own behavior at every continuation information

set. Specifically, if, say pk(v) is the highest acceptable price for type v, it must be better

for v to accept pk(v) than to reject and act optimally at every (off-equilibrium-path)

future occasion if asked by the seller. The following result shows that for the appro-

priately chosen price sequence, such optimality simply implies that v must accept all

subsequent (off-equilibrium-path) offers by the seller as well.

Lemma 2 Let pk(v) be the highest acceptable price for type v of buyer i, i ∈ {1, 2}. For δ < δ,

optimal behavior at any subsequent information set requires that type v also accepts all prices

lower than pk(v).

Proof: From Proposition 1 we know that for δ low enough equilibrium strategies are

interior cut-off strategies. Hence for every price, there are types of positive measure

who plan to buy at that price.

Next, suppose pk is the highest acceptable price for a type v. Suppose, to the contrary,

that type v does not find some price pk+ℓ, ℓ > 1, acceptable. From Proposition 1,

there is some type v′ for whom pk+ℓ is the highest acceptable price. The monotonicity

property then immediately gives a contradiction. If v′ > v, then the higher price pk

cannot be acceptable to v. On the other hand, if v′ < v, then since v′ finds it optimal to

accept when offered pk+ℓ, the same must be true of the higher type v.

Thus, if pk is the highest price type v accepts in equilibrium, then the (off-equilibrium-

path) strategy of type v is to accept every lower price as well.‖
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Therefore, a perfect cut-off strategy is an interior cut-off strategy with the additional

requirement that if a type accepts any price, it must also accept all subsequent prices.

From definition 1, the highest price accepted by a non-degenerate interval of types

(vi
k−1, vi

k] is pk. It follows that for a perfect cut-off strategy, vi
k is the lowest type of

i who buys at pk, and is indifferent between accepting pk or continuing for just one

more period and accepting the next available price pk+1.

We now use the results above to characterize perfect cut-off strategies. Since any equi-

librium involves such strategies, this characterizes all equilibria.

Proposition 2 For δ < δ, in any equilibrium the strategy of any bidder i is a perfect cut-off

strategy vi = (vi
1, . . . , vi

n) where vn = pn. Further, for 1 6 k 6 (n − 1), vi
k ∈ (pk, vi

k−1),

where v0 ≡ 1, and vi
k is given by

vi
k = pk + ∆k

(1 − ε)Hi
k

1 − (1 − ε)Hi
k

where Hi
k is given by equation (3.4). For any given vj, vi

k is unique.

Proof: For δ small, it follows from Lemma 2 that in any equilibrium buyers must

use a perfect cut-off strategy. From Lemma 3 (in Appendix A.2), we have vi
n = pn.

From Lemma 1 we know that if the strategy of j gives rise to the cut-off vector vj =

(v
j
1, . . . , v

j
n), then for any type v of i the difference in payoff from buying immediately

versus waiting one period to buy at price pk+1 is given by Gi
k(v). Since the type vi

k is

the lowest type that buys at k, it must be that vi
k is determined by solving Gi

k(v) = 0

for v.

Now, clearly, Gi
k(pk) < 0. Therefore vi

k > pk. Since (as shown by Proposition 1) a

positive measure of types of i plan to buy at each price, we also have vi
k < vi

k−1. Thus

it must be that Gi
k(vk−1) > 0. Further, Gi

k(v) is strictly increasing and continuous in

v. Therefore if an equilibrium (vi , vj) exists, for any given vj there exists a unique

vi
k ∈ (pk, vi

k−1) such that Gi
k(vi

k) = 0. Finally, Gi
k(vi

k) = 0 implies (from equation (3.3))

vi
k − pk = (1 − ε)(vi

k − pk+1)Hi
k = (1 − ε)(vi

k − pk + ∆k)Hi
k. Solving, we get the stated

equation.‖

The result above characterizes all equilibria. Finally, the next result proves existence.

The proof is essentially an application of Brouwer’s fixed point theorem and has been

relegated to the appendix.

17



Proposition 3 There is δ > 0 such that for any δ < δ, a symmetric equilibrium exists.

4 The Main Result

We now present the main result of the paper which follows directly from the charac-

terization results derived in the last section. For any preference parameter ε > 0, the

seller can design an MDM such that the object is sold to almost all types and the types

who buy pay a price that is arbitrarily close to their valuation of the item. More specif-

ically, for any given ε > 0, there is δ∗(ε) such that for any chosen δ ∈ (0, δ∗(ε)) and

η > 0, the reserve type is no greater than η (i.e. the item is sold if at least one buyer’s

valuation is greater than η) and no buyer type obtains (an ex post) surplus greater than

δ. (Of course, the types that do not buy get zero surplus. However, the seller makes

zero revenue from them as well and so an important point of the result is that while

extracting almost all surplus from the types that buy, the mass of non-buying types can

be made to be arbitrarily small.) Since the set of types who are excluded are at most

[0, η] and the ex post surplus of the types who buy is at most δ, and since both δ and η

can be arbitrarily small, the result follows.

Proposition 4 For any preference parameter ε > 0, there exists δ∗(ε) > 0 such that for any

δ < δ∗(ε), and η > 0, there is an MDM such that in any equilibrium of the game induced by

the MDM, the item is sold if at least one buyer has valuation greater than η and no type obtains

an ex post surplus greater than δ.

Proof: The results in the previous section show that for any ε > 0, there is δ∗(ε) > 0

such that whenever δ < δ∗(ε), an equilibrium exists, and all equilibria can be charac-

terized as in Proposition 2. Further, as noted in section 3.1, for any η ∈ (0, 1), there

exists an integer T such by choosing n = T, the price sequence (which consists of n

prices) of the MDM covers at least a fraction (1 − η) of types so that the item is not

sold to at most types in [0, η]. Thus, it only remains to show that no type that buys gets

an ex post surplus greater than δ.

Now, since types in [vk, vk−1) buy at price pk, the ex post surplus of any type buying

at pk is at most vk−1 − pk, which is bounded above by δ as follows: From the necessary
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conditions for equilibrium presented in Proposition 2, we have

vk−1 − pk = pk−1 − pk + ∆k−1
(1 − ε)Hk−1

1 − (1 − ε)Hk−1

< ∆k−1 + ∆k−1
(1 − ε)

ε

=
∆k−1

ε
=

δ

2

(
1 − δ

1 − δ + δε/2

)k−1

< δ

where the second step follows from the fact that Hk−1(vk−1) < 1. The final inequality

follows from the fact that the coefficient of δ is less than 1 for any ε > 0. This completes

the proof.‖

As mentioned in the introduction, the basic intuition for the result is that for any v and

faced with any price p where p < v, a buyer can get a sure payoff v − p from buying

now, or wait to be offered a lower price but face the prospect that the other buyer

accepts it before this can happen. As explained before, the loss from waiting is at least

(v − p)ε whereas the gain from waiting is of the order ∆p. For any given ε, by making

∆p successively small, the gain from waiting can be made arbitrarily small. Further,

the price sequence is constructed so that v − p is at most δ, and even when δ is small,

the loss from waiting is still larger than the gain from waiting.

It is also worth reiterating that this cannot happen in the standard unique prior model.

Roughly speaking, in the absence of ambiguity, given that F is smooth, the expected

gain and expected loss from waiting shrink at the same rate as the price gap becomes

smaller.
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5 A Numerical Example

Suppose F is the uniform distribution on the unit interval. We know that for any k < n

the equation for vk is

vk = pk + ∆k
(1 − ε)Hk

1 − (1 − ε)Hk

where

Hk =





(v1 + v2)/(1 + v1) for k = 1, and

(vk + vk+1)/(vk−1 + vk) for 2 6 k 6 (n − 1)

Given vn = pn, the equations can be solved for any given n. It can be directly verified

(as well as already noted in Proposition 3) that there is a unique positive solution for

any vk.

The following table shows a few steps (n = 7) for δ = 0.05, and ε = 0.2. In this case we

extract a surplus of at least 0.05 from the top 8% types. The prices pk and cut-offs vk are

as shown. The right hand column shows the maximum rent obtained by any type. The

rent obtained by any type v ∈ [v(k+1), vk) is given by v − p(k+1) 6 vk − p(k+1), which is

the maximum rent.

Price Vk Maximum Rent

0.950 0.968 0.0500

0.945 0.964 0.0232

0.940 0.959 0.0243

0.935 0.954 0.0241

0.930 0.949 0.0240

0.925 0.943 0.0238

0.920 0.920 0.0228

It is interesting to compare this with the outcome of the static optimal mechanism.

Bose et al. (2006) show that in their mechanism, the reserve type, v∗ is given by the

equation

v∗ − (1 − ε)
1 − F(v∗)

f (v∗)
= 0

and the (expected) surplus of type v is equal to (1 − ε)
∫ v

v∗
F(y)dy.(23) When F is the

uniform distribution, the surplus is approximately equal to 0.32 for v = 1. Of course,

(23)They show that the optimal (static) direct revelation mechanism is a full insurance mechanism, and
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this is the surplus type v = 1 gets when the reserve type is (approximately) 0.44. To

have a better comparison, suppose the seller were to choose 0.92 as the reserve type.

Then in that mechanism, type v = 1 gets surplus equal to (.8)
∫ 1

0.92 ydy = 0.06 (approx).

In contrast, in the MDM, type v = 1 gets a surplus of exactly δ which in this numerical

example is 0.05 (and, in general, can be made arbitrarily small).

Returning to the example, note that continuing in this fashion (i.e. by increasing n

beyond 7), it is possible to extract a rent of at least a fraction 0.95 of value from any

fraction of types less than 1. The figure below shows the price steps for n = 2000 for

different values of δ (given ε = 0.2). The rate of change of prices is given by

pk − p(k+1)

pk
=

δε

(1 − δ + δε)

This is increasing in δ. So with lower δ, prices fall “more slowly.”

δ=0.05

δ=0.025

0 20001000

1

p

k

k

0.75

0.5

0.25

Figure 2: With ε = 0.2 and δ = 0.05, 1000 steps is enough to for price to get very close to

zero - extracting a rent of at least a fraction 1 − δ = 0.95 of value from almost all types. With

δ = 0.025 the rent extracted from each type is at least 0.975 of value, but extracting this from

almost all types requires about 2000 price steps.

a type’s surplus, when reporting its type truthfully is a function of its own report only and do not vary

with the report of the other buyer. Hence, under truthtelling, expected surplus is also ex post surplus.

For details see Bose et al. (2006).
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6 Discussion

Maxmin preferences, and in particular the epsilon contamination formulation, have

been used extensively in the literature to represent ambiguity averse behavior. Our

results show the effect that a dynamic mechanism can have in a setting which is IPV in

all aspects other than the ambiguity aversion of the buyers. In this section we discuss

various aspects of our model to explain their role in delivering the main result. Some

of these issues have been briefly mentioned earlier.

6.1 Dynamic Consistency

Preferences satisfy dynamic consistency if an optimal plan based on prior preferences

coincides with the sequentially optimal plan in a decision tree, and vice versa. This

is unproblematic in the expected utility paradigm,(24) but does not arise naturally un-

der ambiguity. It is well known that with ambiguity sensitive (and in general, non-

expected utility) preferences, well known updating rules (including the one we use)

can give rise to dynamic inconsistency. One response, adopted by several authors, is to

impose dynamic consistency as an added axiom.(25) However, the literature also points

out that in certain situations it makes more intuitive sense to allow for preferences that

violate dynamic consistency. In particular, we refer the reader to Epstein and Schneider

(2003) for an excellent discussion in an Ellsberg type setting which shows that when

there are intuitive choices for different periods, ambiguity may result in dynamic con-

sistency being problematic.

We explore this issue in the following parts. Using a simple example, we explore in

section 6.1.1 the role of a dynamic mechanism when preferences are not dynamically

consistent over Savage acts. In particular, we discuss how a dynamic mechanism dif-

(24)In the expected utility paradigm, assuming that preferences satisfy dynamic consistency is

not a problem if one assumes that the updating follows Bayes rule. It is well known (see

Epstein and Schneider (2003)) that if the conditional preferences at every time-event pair satisfy ex-

pected utility theory, they satisfy dynamic consistency if and only if the updating is done using Bayes

Rule.
(25)See, for example, Epstein and Schneider (2003), Maccheroni, Marinacci, and Rustichini (2006),

Klibanoff, Marinacci, and Mukerji (2006). Alternatively, one can have a dynamically consistent updating

rule but give up consequentialism. For such an approach, see Hanany and Klibanoff (2006).
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fers from the optimal direct revelation mechanism. A second objective is to highlight

the general insight regarding the role of dynamic mechanisms under ambiguity that

extends beyond the specific settings used in the paper. We construct the example us-

ing the general maxmin model rather than the epsilon contamination specification.

While section 6.1.1 discusses the role of dynamic mechanisms in the presence of dy-

namic inconsistency over acts, we should emphasize that our formal model does not

suffer from any inconsistency. Section 6.1.2 clarifies this latter point. It also points out

why defining preferences over acts might be inadequate for the setting we consider.

6.1.1 Dynamic Versus Static Mechanisms and the Role of the Revelation Principle

Consider the following 2 period decision problem. A buyer has value v for an object.

Initially, nature moves and either offers or does not offer the object at a price p. We

assume that v > p. If the offer is made, the buyer chooses to accept or reject. If the

buyer rejects, nature moves again and either offers or does not offer a price p − ∆,

for some ∆ > 0. If the offer is made, the buyer accepts. (Note that the mechanism in

the paper has a similar structure of choice at each stage for each buyer. Since in this

example the game ends in 2 periods, there is no loss of generality in simplifying the

second period actions.)

Let us translate the above decision tree into states and acts. Let E1 denote the state

that “nature does not offer p.” The complement of E1 is broken up into two further

states: E2 (nature offers p, does not offer p − ∆) and E3 (nature offers p, offers p − ∆).

Hence, the state space is E1 ∪ E2 ∪ E3. Since the buyer accepts the offer p − ∆ if he

hasn’t already accepted the previous offer of p, it suffices to consider two acts: a which

denotes “accept p” and r, denoting ”reject p.” The acts are defined as:

a(E1) = 0, a(E2) = a(E3) = v − p

r(E1) = 0, r(E2) = 0, r(E3) = v − p + ∆

Suppose Pr[E2] = α, Pr[E3] = β, and Pr[E1] = 1 − α − β. By varying α and β we

can generate a suitable set of distributions. To avoid the degenerate case we assume

α > 0, β > 0 and α + β < 1.

Initially, the buyer compares min {(α + β)(v − p)} to min{β(v − p + ∆)}. However,

suppose E1 did not happen and the buyer now faces the offer p. Now the compari-
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son is between the sure payoff of v − p and (using the full Bayesian updating rule)

min
{(

β
α+β

)
(v − p + ∆)

}
. It is easy to find numbers such that even though min{β(v−

p + ∆)} > min {(α + β)(v − p)} (implying r is preferred to a initially), we have v− p >

min
{(

β
α+β

)
(v − p + ∆)

}
(implying a is preferred to r conditional on E1 not occur-

ring). Note that unlike in an EU setting, such a “switch” can occur here because in

calculating the conditional expected payoff under ambiguity, the updated minimizing

distribution is not the update of the minimizing distribution used at the initial stage.

For example, suppose v − p = 10, ∆ = 5, and there are only two possible priors as

shown below (where the entries are probabilities):

E1 E2 E3

Prior 1 0.89 0.01 0.1

Prior 2 0.8 0.1 0.1

The initial payoff from r is 0.1 × 15 = 1.5 and that from a is min{.2, .11} × 10 = 1.1

Therefore r is preferred to a. However the conditional payoffs (conditioning on E1 not

occurring) are: 10 from a and min
{

0.1
0.11 × 15, 0.1

0.2 × 15
}

= 7.5 from r. Therefore a is now

preferred to r. Thus a plan based on the initial preferences does not coincide with the

sequentially optimal plan for this decision problem.

An important objective of this exercise is to point out that even though the full sur-

plus extraction is special (and as we indicate later, depends on specific preferences and

properties of sets of priors), in a general setting with ambiguity averse dynamically in-

consistent preferences, a dynamic mechanism can exploit conditional preferences and

thus have extra opportunities for surplus extraction compared to a static mechanism

that are not available in the standard EU model.

An important related point is that the standard direct revelation game essentially car-

ries out the mechanism design exercise in terms of the “initial preferences.” If the ac-

tual (indirect) mechanism is also static, this procedure is without loss of generality.

However the mechanism from the standard direct revelation game extends to dynamic

mechanisms with agents of the type we consider only if agents were to have the power

to commit to the decisions formed from the initial preferences.(26) In contexts where

(26)The surplus earned by the buyers if they face the same price sequence as in the MDM but could

somehow commit to a strategy, would be at least as much as the surplus they earn in the optimal static

mechanism in Bose et al. (2006). Hence one could view the difference between an agent’s surplus in
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such additional power is unavailable, the mechanism derived using the revelation

game corresponds to the optimal static mechanism and use of a dynamic mechanism

can produce results different from the optimal static one.

6.1.2 Consistent Plans

A coherent theory of dynamic choice must allow for consistent planning. Further, the

theory must provide a consistent way of reconciling preferences at different time peri-

ods.

In this paper, we do this by adopting Siniscalchi (2006) as the foundation for dynamic

behavior in our model. First, we use the idea that agents are forward looking. For-

mally, the axiom of sophistication allows for agents to form plans and to carry them

out consistently: a sophisticated decision maker correctly anticipates his future prefer-

ences while making current plans, hence precluding the problem of future deviations

from the current plan. Second, considering preferences defined over (decision) trees

rather than over acts (with conditional preferences defined over sub-trees), results in

a coherent theory of dynamic choice that does not need to appeal to the notion of

dynamic consistency.(27),(28) In fact, as we now argue, the example from the previous

section suggests that in settings like ours, acts may not be rich enough to capture all

aspects of a problem that a decision maker cares about.

Consider a variation of the example discussed in the previous section. Now, the buyer

moves first and chooses between one of two actions, a or r. Following each choice

of the buyer, nature chooses between E1, E2 and E3. The corresponding payoffs are

(0, v − p, v − p) if a is chosen, and (0, 0, v − p + ∆) if r is chosen.

This alternative tree gives rise to exactly the same acts as in the previous section. Hence

if preferences are defined over acts only, the two situations should not give rise to dif-

ferent outcomes. However, this second decision tree corresponds to a static choice

their model and ours as the maximum price the agent is willing to pay to access a commitment device.

We thank Peter Klibanoff for this observation.
(27)See in particular section 4 of Siniscalchi for an axiomatization for the maxmin model and full

Bayesian updating.
(28)It is indeed the case that buyers in our model have preferences that are sophisticated (so that they

can carry out a plan consistently) and dynamically inconsistent (over Savage acts). The formal model

however, does not refer to the property of dynamic consistency.
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model, or alternatively, a situation where the buyer facing the choice problem de-

scribed in the previous section can somehow access a commitment device and hence

can commit to choices based on the initial preferences.(29) From a formal point of view,

this alternative decision tree is different from that of the previous section, and therefore

when preferences are defined over trees, there is no inconsistency if the buyer’s choice

of actions differ across these two trees. Note finally, that the buyer, being sophisticated,

will anticipate correctly that he chooses r in the decision tree described here and that

he chooses a in the decision problem faced in the previous section.

6.2 Updating Rules

We use the full Bayesian updating rule where the decision maker uses Bayes rule to

update all distributions (except those under which the observed event would be im-

possible), and the payoff is equal to the minimum expected utility calculated by con-

sidering this entire set of updated distributions. While this is one of the most well used

rules in the literature, other rules have been proposed as well. For example, a second

well known rule with an axiomatic foundation is the generalized maximum likelihood

rule (Gilboa and Schmeidler, 1993). Under this, the retained (and updated) distribu-

tions are those that give maximum likelihood to the event known to have occurred.

Our result holds under this alternative updating rule as well. Faced with an offer pk

in period k, a buyer knows that the object remained unsold in previous rounds, i.e. the

other buyer’s type is in [0, vk−1). Therefore, when calculating the payoff from rejecting

pk, the buyer’s contaminating set admits only distributions that are “most favorable”

in terms of the event [0, vk−1). However, within this set, the worst distribution is still

the one the puts the entire weight on the event that the current buyer will not obtain

the item if he waits. Therefore the minimum expected payoff is the same as under the

full Bayesian rule.

Note that the general issue with respect to updating rules is that the results in the

paper would hold as long as the rule does not throw away these worst distributions.

And we are not aware of any general argument that would require removal of these

worst distributions as the game progresses. To be specific, consider an event [vk, vk−1)

and note that the set of distributions that the buyers consider initially has amongst it

(29)See footnote (26).
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(at least) one distribution F̃ which puts an epsilon weight on this event. Now, suppose

the buyer is told that the event [vk−1, 1] has not occurred. There is no obvious reason

to suggest that this extra information should now make F̃ irrelevant.

6.3 Set of Priors

The version of epsilon contamination we use takes the set of all distributions to be

the set of contaminating distributions. It has often been pointed out, especially in the

statistics literature, that this may be too general, and a ”reasonable” modification of the

model might involve requiring each element of this set to satisfy certain properties. For

example, suppose F is differentiable and satisfies the monotone hazard rate property;

it might then be considered desirable to require elements of the set of contaminating

distributions to satisfy these two properties as well.(30) However, such modifications

do not automatically invalidate the main result of this paper. To see why, suppose the

contaminating distributions are of the form Ln(v) = vn, n = 1, 2, ...Each distribution in

this family is differentiable and satisfies the monotone hazard rate property.(31) Since

the conditional probability of the event [vk, vk−1), given the event [0, vk−1) is equal to

1 −
(

vk
vk−1

)n
, and since infn

(
vk

vk−1

)n
= 0, it is as if, for all practical purposes, there is

a contaminating distribution that puts the entire mass on [vk, vk−1) (which is precisely

what is done in the formal analysis).

On the other hand, if the above example was changed to include the set of distributions

of the form Ln(v) = v
1
n , n = 1, 2, ..., the full surplus extraction result clearly does not

hold. Similarly, if the set contains only finitely many distributions, again full surplus

extraction is not possible.

The above discussion illustrates that even though we have taken the set of contaminat-

ing distributions to be the set of all distributions over [0, 1], our result should hold for

many–though not all–subsets of distributions as well. Letting P denote the set of con-

taminating distributions, a sufficient condition is that P contains all the distributions

(30)The interpretation is that as before the decision maker puts a weight ε on the true distribution not

being F. Now, however, he has confidence that the true distribution, even if not F, has certain properties

similar to F.
(31)Of course this is only a particular family of distributions having the property of being differentiable

and having monotone hazard rate. However, since the minimum cannot increase if sets are made bigger,

considering only a particular family like this suffices to illustrate our point.
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such that(32)

inf
L∈P

[L(x) ≡ Pr{v 6 x} according to L] = 0 for all x ∈ [0, 1]

As noted before, the crucial idea is that when an agent decides whether to accept the

current price pk (and get a certain payoff), his gain from waiting for a further drop

in price is made small compared to the loss from waiting. The contaminating set of

distributions must be such that the updated distribution - used to calculate the (mini-

mum) expected payoff from waiting - allows this to happen and it can be seen that the

sufficient condition guarantees exactly this.

6.4 (Seemingly) minor differences in the design of the mechanism

In the MDM, in any round k, the price pk is offered to the buyers sequentially which

allows each buyer to obtain an unambiguous payoff from accepting the offer. To make

the mechanism symmetric, we have chosen a formulation where in each round the

seller randomly chooses the order in which buyers are offered the price for that round.

We can also allow a variation in which the seller chooses, at the start of the game, a

buyer who is asked first in each period. This encumbers the algebra since the two

buyers have slightly different problems to contemplate, but the main result holds un-

changed.

However, consider now a variation where at each stage k, the price pk is offered to the

two buyers simultaneously, and the winner is chosen randomly if both accept. In all

other respects this alternative mechanism is similar to the MDM.

In a standard Bayesian setting, the two formats would clearly not yield significantly

different outcomes. However, with ambiguity aversion, this seemingly minor differ-

ence produces a dramatically different outcome. Under the alternative specification,

both accepting and rejecting an offer produce ambiguous outcomes, which is why the

full surplus extraction result fails.

From the perspective of mechanism design theory this implies that minor differences

in the construction of mechanisms - differences that might be outcome irrelevant in the

standard EU framework - can have a drastic impact under ambiguity aversion.

(32)We thank an anonymous referee for this observation as well as the one about the role of seemingly

minor design differences noted in the next section.
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7 Conclusion

Evidence (experimental and otherwise) suggests that it is important for economic mod-

els to explore the consequence of non-expected utility preferences. The fairly large (and

growing) literature in this area has given us many valuable insights.

In this paper, we consider a private values auction model with ambiguity and buyers

with ambiguity averse preferences. In the standard setting with a unique prior, the

optimal mechanism leaves all but the lowest participating type with information rent.

Previous work shows that even under ambiguity aversion, the optimal static mecha-

nism leaves buyer types with rent. In contrast, we show that in the latter environment,

dynamic mechanisms have more power, and using the epsilon contamination specifi-

cation to model ambiguity aversion, we construct a very simple dynamic mechanism

that extracts almost all surplus.

We view the contribution of our work as providing an example of the non-standard

effects that ambiguity aversion can have on mechanism design. Our formal model

uses the epsilon contamination specification and clearly our result of full surplus ex-

traction is related to this setting. Nevertheless, the idea that in auction like settings,

dynamic mechanisms can extract a greater surplus than static ones by exploiting am-

biguity aversion is a more general one. By showing that the equivalence between static

and dynamic mechanisms (standard under the unique prior model) need not extend

to a setting with ambiguity, our results strike a cautionary note for working in the

non-unique prior environment. This is further highlighted by the contrast between

our results and those in Bose et al. (2006) who study optimal static auctions under am-

biguity, and leads us to conclude that a straightforward application of the revelation

principle has its limitations when preferences are no longer characterized by subjec-

tive expected utility. Understanding the proper scope of the revelation principle with

such “non-probabilistically sophisticated” preferences is an interesting question that

we hope to address in future research.
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8 Appendix: Proofs

A.1 Some Conditional Probabilities

This section derives some conditional probabilities that are used repeatedly in the anal-

ysis.

Let Hi
k denote the probability under the distribution F (i.e. if there were no ambiguity)

that i obtains the item the item at pk+1 given that he refuses the current offer of pk. This

can be calculated in two parts.

First, let φi
k denote the probability under the distribution F that i obtains the item at

pk+1 conditional on the item not being sold at pk. Second, let πi
k denote the probability

(again, this is the probability under F) that if i refuses the current offer pk the object

remains unsold till the next price pk+1. Then we have Hi
k = πi

kφi
k.

Calculating φi
k: φi

k can be derived is as follows. If buyer i is asked first in period

k + 1 (which happens with probability 1/2), he obtains the item for sure. If j is asked

first (probability 1/2), i obtains the item only if j passes. Given that the object is unsold

at pk, we know that the type of j is lower than v
j
k. Therefore the probability that j will

refuse pk+1 given that he has refused pk is given by Prob(vj
< v

j
k+1|v

j
< v

j
k) =

F(v
j
k+1)

F(v
j
k)

.

Therefore

φi
k =

1

2
+

1

2

F(v
j
k+1)

F(v
j
k)

(A.1)

Calculating πi
k: Next, πi

k can be derived as follows.

First, we need to work out the probability that a buyer is being asked first given that he

is asked whether he wants to buy at pk. The conditioning on being asked is important

since the fact that a buyer is asked whether he wants to buy at pk conveys information

about whether he is first or second. Let qi ∈ {1, 2} denote the position (1st or 2nd) of

buyer i in any period. Further, let Ai denote the event that “buyer i is asked whether
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he wants to buy at pk.” We want to determine Prob(qi = 1|Ai).

Prob(qi = 1|Ai) =
Prob(qi = 1)Prob(Ai|qi = 1)

Prob(qi = 1)Prob(Ai|qi = 1) + Prob(qi = 2)Prob(Ai|qi = 2)

=

1

2

1

2
+

1

2

F(v
j
k)

F(v
j
k−1)

=
F(v

j
k−1)

F(v
j
k−1) + F(v

j
k)

where v
j
0 ≡ 1. Next, Prob(qi = 2|Ai) = 1 − Prob(qi = 1|Ai) =

F(v
j
k)

F(v
j
k−1) + F(v

j
k)

.

We are now ready to derive πi
k. Note that given i refuses pk, the probability of the

object being unsold if i is second (qi = 2) is 1, and the probability of the object being

unsold if i is first (qi = 1) is
F(v

j
k)

F(v
j
k−1)

. Therefore

πi
k = Prob(qi = 1|Ai)

F(v
j
k)

F(v
j
k−1)

+ Prob(qi = 2|Ai)(1)

=
2F(v

j
k)

F(v
j
k−1) + F(v

j
k)

(A.2)

where v
j
0 ≡ 1. Finally, using equations (A.1) and (A.2), we get

Hi
k = πi

k φi
k =

F(v
j
k) + F(v

j
k+1)

F(v
j
k) + F(v

j
k−1)

where v
j
0 ≡ 1.
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A.2 Proof of Proposition 1

In this section we prove Proposition 1. The basic outline of our argument is as follows.

In Lemma 3 we show that in any equilibrium, for both buyers, the cut-off type for price

pn is in fact pn and that there are types of positive measure who plan to buy at price pn.

Next, we show in Lemma 4 that for both buyers, there are types of positive measure

that plan to buy at p1. Lemma 6 is crucial, it shows that whenever δ is sufficiently small,

given that a positive measure of types of both buyers buy at prices p1 and pn, there

must be a positive measure of types of both buyers who buy at price pn−1. Proposition 1

now follows from a recursive argument: provided types of positive measure plan to

buy at prices p1 and pk+1, ..., pn, there must be types of positive measure who plan to

buy at pk as well.

We remind the reader that the term vi
k, is used to denote the lowest type of buyer i who

plans to buy at price pk. Also, to avoid confusion with respect to superscripts versus

exponents, in the rest of this Appendix, we refer to the two buyers as i and j instead of

1 and 2.

Lemma 3 In any equilibrium, vi
n = v

j
n = pn. Further, a positive measure of types of both

buyers plan to buy at price pn but not at any earlier price.

Proof: Consider a type v ∈ (pn, pn−1) of either buyer. Buying at any price greater than

pn−1 is dominated by not buying at all. Further, while the surplus from not buying

is zero, that from buying at price pn is v − pn > 0. Hence types of positive measure

(pn, pn−1) must plan to buy at pn but not at any earlier price. Furthermore, the lowest

type (the type that is indifferent between buying at price pn and not buying at all) that

buys at pn is pn, so that vi
n = v

j
n = pn. ‖

In what follows, we use the word “probability” to mean probability with respect to the

distribution F.

Before we proceed, a comment on the notation we use in considering out-of-equilibrium

cases where no type of a buyer plans to buy at some prices. For k > 1, let pk through

pk+t be prices such that no types of a buyer buy at these prices; however, there are types

who buy at price pk−1. In this case as vk−1 = vk = ... = vk+t and let pk−1 be the price at
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which types [vk+t, vk−1) plan to buy. For k = 1, we still denote 1 = v0 = v1 = ... = vk+t,

but now pk+t+1 is the price at which types [vk+t+1, 1] plan to buy.

Lemma 4 In equilibrium a positive measure of types of each buyer plan to buy at p1.

Proof: Suppose buyer j does not plan to buy at prices p1, . . . , pk for 1 6 k < n, and pk+1

is the first price at which j buys. (This is denoted as v
j
1 = . . . = v

j
k = 1 and v

j
k+1 < 1.)

Clearly, the best response of i is not to buy at prices p1, . . . , pk−1. If i refuses pk, the

probability that the game reaches pk+1 is 1. Thus πi
k = 1. Therefore Hi

k = πi
kφi

k =

φi
k = 1/2 + (1/2)F(v

j
k+1).(33) Further, if i refuses pk, he is asked first next period with

probability 1/2 and gets the unambiguous payoff of (v − pk+1). Therefore, the payoff

from refusing pk is
(

1/2 + 1/2(1 − ε)F(v
j
k+1)

)
(v − pk+1).

Define the following function.

Ĝi
k(v) ≡ v − pk −

(
1/2 + 1/2(1 − ε)F(v

j
k+1)

)
(v − pk+1) (A.3)

Ĝi
k(v) can be rewritten as 1

2(v − pk)(1 − (1 − ε)F(v
j
k+1)) −

1
2(1 + (1 − ε)F(v

j
k+1))∆k .

Note that

2Ĝi
k(1) = (1 − pk)(1 − (1 − ε)F(v

j
k+1)) − (1 + (1 − ε)F(v

j
k+1))∆k

> δε − (2 − ε)∆k > δε − (2 − ε)∆1 =
δε2

2(1 − δ) + δε
> 0

where the second step follows from the fact that (1 − pk) > (1 − p1) = δ, and the fact

that F(v
j
k+1) < 1, and the third step uses ∆1 > ∆k.

Since Ĝi
k(v) is continuous, increasing in v, and negative at v = pk, there exists vi

k such

that Ĝi
k(v) > 0 for v > vi

k and Ĝi
k(vi

k) = 0. Since we know that i does not plan to buy at

any earlier price than pk, it must be that types [vi
k, 1] of buyer i plan to buy at pk.

Now consider buyer j. If j refuses pk, the probability (under F) that the object is sold

at pk is strictly positive. Therefore, the minimizing distribution for j puts the entire

weight on the type of i being such that the object is sold at pk. Let

G
j
k(v) ≡ v − pk − (1 − ε)(v − pk+1)H

j
k

(33)Note that this is the same formula as in equation (A.1), since here F(v
j
k) = F(v

j
k−1) = 1.
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We have

G
j
k(1) = 1 − pk − (1 − ε)(1 − pk+1)H

j
k = (1 − pk)(1 − (1 − ε)H

j
k)− (1 − ε)∆k H

j
k

> δε − (1 − ε)∆k > δε − (1 − ε)∆1 = δε

(
1 − δ + ε

2(1 − δ) + δε

)
> 0

where the first inequality follows since H
j
k < 1, and (1 − pk) > (1 − p1) = δ and the

second one follows since ∆k 6 ∆1. Since G
j
k(v) is increasing and continuous, there are

types of j of positive measure near 1 who would deviate and buy at pk. Contradiction.‖

We now derive an inequality in the next lemma that is useful for later proofs. The

reader can skip the proof of the lemma without losing the thread of the argument.

Lemma 5 vi
n−ℓ−t − vi

n < δ(ℓ + t).

Proof: Case 1: Some types of j buy at least some price in {pn−ℓ−t, . . . , pn−ℓ−1}, t > 1.

In this case, if i refuses pn−ℓ−t, it is possible that the game ends before pn−ℓ is offered.

We know that vi
n−ℓ−t is given by Gi

n−ℓ−t(v) = 0, i.e.

vi
n−ℓ−t − pn−ℓ−t = (1 − ε)(vi

n−ℓ−t − pn−ℓ)Hi
n−ℓ−t

= (1 − ε)(vi
n−ℓ−t − pn−ℓ−t + ∆n−ℓ−t + . . . + ∆n−ℓ−1)Hi

n−ℓ−t

Solving,

vi
n−ℓ−t − pn−ℓ−t = (∆n−ℓ−t + . . . + ∆n−ℓ−1)

(1 − ε)Hi
n−ℓ−1

1 − (1 − ε)Hi
n−ℓ−1

< (∆n−ℓ−t + . . . + ∆n−ℓ−1)
(1 − ε)

ε
(A.4)

Let α ≡ 1−δ
1−δ+δε/2 . Note that α < 1. From equation (3.2), we have ∆k = 1

2δεαk <
1
2δε.

Therefore

vi
n−ℓ−t − pn = vi

n−ℓ−t − pn−ℓ−t + pn−ℓ−t − pn

= vi
n−ℓ−t − pn−ℓ−t + ∆n−ℓ−t + . . . + ∆n−1

< (∆n−ℓ−t + . . . + ∆n−ℓ−1)
(1 − ε)

ε
+ ∆n−ℓ−1 + ∆n−ℓ + . . . + ∆n−1

= (∆n−ℓ−t + . . . + ∆n−ℓ−2)
(1 − ε)

ε
+

∆n−ℓ−1

ε
+ ∆n−ℓ + . . . + ∆n−1

<
1

2
(δ(1 − ε)(t − 1) + δ + δεℓ)

< δ(ℓ + t) (A.5)
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where the third step follows from the inequality (A.4) above, and the last step follows

from the facts that 0 < ε < 1.

Finally, since vi
n = pn, vi

n−ℓ−t − vi
n < δ(ℓ + t).

Case 2: No type of j buys at prices {pn−ℓ−t, . . . , pn−ℓ−1}, t > 1.

We know that types of i buy at pn−ℓ−t and at pn−ℓ but not at the prices in between.

If t > 1, any type of i who buys at pn−ℓ−t can deviate profitably and buy at pn−ℓ−1

instead. Contradiction. Therefore in this case the only possibility is t = 1.

So it remains to prove the inequality when t = 1 and no type of j buys at pn−ℓ−1. In

this case, analogously with (A.3), vi
n−ℓ−1 is given by Ĝi

n−ℓ−1(v) = 0, where

Ĝi
n−ℓ−1(v) ≡ v − pn−ℓ−1 −

(
1/2 + 1/2(1 − ε)Ri

n−ℓ−1

)
(v − pn−ℓ)

where Ri
n−ℓ−1 is the conditional probability that j rejects pn−ℓ.

(34) Using the fact that

v − pn−ℓ = v − pn−ℓ−1 + ∆n−ℓ−1, and solving,

vi
n−ℓ−1 − pn−ℓ−1 = ∆n−ℓ−1

1 + (1 − ε)Ri
n−ℓ−1

1 − (1 − ε)Ri
n−ℓ−1

<
2 − ε

ε

Proceeding as in (A.5),

vi
n−ℓ−1 − pn = vi

n−ℓ−t − pn−ℓ−1 + ∆n−ℓ−1 + . . . + ∆n−1

<
2

ε
∆n−ℓ−1 + ∆n−ℓ + . . . + ∆n−1 < δ +

δε

2
ℓ < δ(ℓ + 1)

This completes the proof.‖

To continue with the proof of the proposition, let us now show that both buyers have

types who plan to buy at price pn−1.

We use the following observation repeatedly in the following proofs. Suppose buyer

j does not plan to buy at prices {pn−ℓ+1, . . . , pn−1} where 2 6 ℓ 6 n − 1, but plans

to buy at pn−ℓ (and of course at pn). Then the best response of buyer i involves not

planning to buy at prices {pn−ℓ+1, . . . , pn−2} whenever ℓ > 2. Further, there must be

types of i who plan to buy at pn−ℓ. (Otherwise types of j buying at pn−ℓ can profitably

deviate to, say, pn−2. This contradicts the assumption that j buys at pn−ℓ). Armed with

these facts, let us now show the result.

(34)Suppose the lowest price higher than pn−ℓ at which some types of j buy is pn−ℓ−1−s for s > 1. Then

Ri
n−ℓ−1−s =

F(v
j
n−ℓ

)

F(v
j
n−ℓ−1−s

)
.
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Lemma 6 There is δ > 0 such that for δ < δ there are types (of positive measure) of j who buy

at pn−1.

Proof: In the proposed equilibrium, types v > v
j
n−ℓ

of j buy at prices p > pn−ℓ, with

type v
j
n−ℓ

and some types just above buying at price pn−ℓ. But since j does not buy at

prices {pn−ℓ+1, . . . , pn−1}, types just below v
j
n−ℓ

must buy at pn and not before. There-

fore, in the proposed equilibrium, it must be that v
j
n−ℓ

is indifferent between buying at

pn−ℓ or pn. So we have, for buyer j,

v
j
n−ℓ

− pn−ℓ = (1 − ε)(v
j
n−ℓ

− pn)H
j
n−ℓ

(A.6)

where H
j
n−ℓ

= π
j
n−ℓ

π̂
j
n−1 φ

j
n−1, where π

j
n−ℓ

is the probability that the object is unsold

at pn−ℓ given that j refuses the current offer of pn−ℓ, π̂
j
n−1 is the probability that the

object will remain unsold at pn−1, and φ
j
n−1 is the probability that j obtains the item at

price pn.

We know some types of i buy at price pn−ℓ. Let pn−ℓ−t, t > 1, be the price before pn−ℓ

at which some types of i buy in equilibrium. We have

π
j
n−ℓ

=
2F(vi

n−ℓ
)

F(vi
n−ℓ

) + F(vi
n−ℓ−t)

and π̂
j
n−1 =

F(vi
n−1)

F(vi
n−ℓ

)

Note that if there are no types of i who buy at pn−1, then F(vi
n−1) = F(vi

n−ℓ
), and

π̂
j
n−1 = 1. Otherwise π̂

j
n−1 is less than 1.

Finally φ
j
n−1 =

1

2
+

1

2

F(vi
n)

F(vi
n−1)

, where, again, if there are no types of i who buy at pn−1,

then F(vi
n−1) = F(vi

n−ℓ
). From the above,

H
j
n−ℓ

=
F(vi

n−1) + F(vi
n)

F(vi
n−ℓ

) + F(vi
n−ℓ−t)

(A.7)

Now, we can rewrite equation (A.6) above as

v
j
n−ℓ

− pn−ℓ =
(1 − ε)(pn−ℓ − pn)H

j
n−ℓ

1 − (1 − ε)H
j
n−ℓ

(A.8)

Let

G
j
n−1(v) ≡ v − pn−1 − (1 − ε)(v − pn) H

j
n−1
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where H
j
n−1 = π

j
n−1 φ

j
n−1, where φ

j
n−1 is as given above, and π

j
n−1 is the proba-

bility that the object remains unsold at pn−1 given that j refuses the current offer of

pn−1. Note that π
j
n−1 = 1 if no types of i buy at price pn−1, otherwise it is equal to

2F(vi
n−1)

F(vi
n−1)+F(vi

n)
. In either case, since φ

j
n−1 < 1, we have H

j
n−1 < 1 as well. To establish

that contrary to what has been supposed, there are types of j who will in fact want to

buy at price pn−1, it is useful to break up the analysis into several cases.

Case 1: ℓ and t are fixed positive integers.

Intuitively, this is the case where both i and j follow strategies where they do not buy

for some finite number of prices. Note that in this case δ(ℓ + t) → 0, as δ → 0

We use the fact that vi
n−ℓ−t − vi

n < δ(ℓ + t) (shown in Lemma 5) in the proof below.

We must consider two subcases: the case in which some types of i buy at pn−1 and the

complementary case.

Case 1.1: Some types of i buy at pn−1.

Now, since there are no types of j who buy at pn−1, it must be that G
j
n−1(v) is not

strictly positive for any v ∈ [pn−1, v
j
n−ℓ

]. Consider the value of G
j
n−1(·) at v

j
n−ℓ

. We

have

G
j
n−1(v

j
n−ℓ

) = v
j
n−ℓ

− pn−1 − (1 − ε)(v
j
n−ℓ

− pn) H
j
n−1

= (v
j
n−ℓ

− pn−ℓ) + (pn−ℓ − pn)− ∆n−1

− (1 − ε)
[
(v

j
n−ℓ

− pn−ℓ) + (pn−ℓ − pn)
]

H
j
n−1

= (pn−ℓ − pn)

(
1 − (1 − ε) H

j
n−1

1 − (1 − ε) H
j
n−ℓ

)
− ∆n−1

>

[
2

(
1 − (1 − ε) H

j
n−1

1− (1 − ε) H
j
n−ℓ

)
− 1

]
∆n−1

where the second step follows from equation (A.8), and the third step follows from the

fact that pn−ℓ − pn > pn−2 − pn = ∆n−2 + ∆n−1 > 2∆n−1.

Now, H
j
n−ℓ

is given by (A.7), and H
j
n−1 =

F(vi
n−1) + F(vi

n)

F(vi
n−1) + F(vi

n−ℓ
)

. Therefore

H
j
n−1

H
j
n−ℓ

=
F(vi

n−ℓ
) + F(vi

n−ℓ−t)

F(vi
n−ℓ

) + F(vi
n−1)
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From Lemma 5, vi
n−ℓ−t − vi

n−1 < vi
n−ℓ−t − vi

n < δ(ℓ + t). Therefore, as δ → 0, the ratio

H
j
n−1

H
j
n−ℓ

converges to 1. Hence for sufficiently small δ, the term
1−(1−ε) H

j
n−1

1−(1−ε) H
j
n−ℓ

is greater than

1
2 and we have G

j
n−1(v

j
n−ℓ

) > 0.

Case 1.2: No type of i buys at pn−1.

In this case, if buyer j refuses pn−1, he knows that the game proceeds to the next stage

and with probability 1/2 he gets the first offer next period. Analogously to equa-

tion (A.3), define

Ĝ
j
n−1(v) ≡ v − pn−1 −

(
1

2
+

1

2
(1 − ε)

F(vi
n)

F(vi
n−1)

)
(v − pn)

Let R
j
n−1 ≡

F(vi
n)

F(vi
n−1)

. It follows that

2Ĝ
j
n−1(v

j
n−ℓ

) = (v
j
n−ℓ

− pn−1)(1 − (1 − ε)R
j
n−1)− ∆n−1(1 + (1 − ε)R

j
n−1)

= (pn−ℓ − pn)

(
1 − (1 − ε) R

j
n−1

1 − (1 − ε) H
j
n−ℓ

)
− ∆n−1(1 + (1 − ε)R

j
n−1)

>

[
2

(
1 − (1 − ε) R

j
n−1

1 − (1 − ε) H
j
n−ℓ

)
− (2 − ε)

]
∆n−1

where the final inequality follows, as before, from the fact that pn−ℓ − pn > 2∆n−1.

From Lemma 5, vi
n−ℓ−t − vi

n < δ(ℓ + t). Therefore, as δ → 0, the ratio
R

j
n−1

H
j
n−ℓ

converges

to 1. Hence for sufficiently small δ, Ĝ
j
n−1(v

j
n−ℓ

) > 0.

Case 2: t is arbitrary and ℓ varies with n.

This is the case when the gap pn−ℓ − pn−1 does not vanish as δ → 0.

As δ → 0, since (pn−ℓ − pn) does not vanish, and since for any given η > 0, H
j
n−ℓ

is bounded away from zero, it follows from equation (A.8) that v
j
n−ℓ

− pn−ℓ does not

vanish. Therefore, v
j
n−ℓ

− pn−1 does not vanish. However, pn − pn−1 → 0, and (1 −

ε)H
j
n−1 < 1 (for case 1.1) and (1 − ε)R

j
n−1 < 1 (for case 1.2). Therefore for δ small

enough, G
j
n−1(v

j
n−ℓ

) > 0 (case 1.1) and Ĝ
j
n−1(v

j
n−ℓ

) > 0 (case 1.2).

In cases 1 and 2 above, we have shown that G
j
n−1(v

j
n−ℓ

) > 0 (and Ĝ
j
n−1(v

j
n−ℓ

) > 0). But

since G
j
n−1(·) (and Ĝ

j
n−1(·)) is strictly increasing, continuous, and negative at pn−1, this

38



implies that there is v
j
n−1 ∈ (pn−1, v

j
n−ℓ

) such that G
j
n−1(v) > 0 (and Ĝ

j
n−1(v) > 0) for

v ∈ (v
j
n−1, v

j
n−ℓ

). Since types below v
j
n−ℓ

do not buy at any price greater than or equal

to pn−ℓ, these types (of positive measure) strictly prefer to stop at pn−1 rather than wait

till pn. This contradicts the supposition that there are no types of j who buy at pn−1.

We need to consider a third possibility in order to complete the Lemma.

Case 3: ℓ is a fixed integer and t varies with n.

This is the case when as δ → 0, δ(ℓ + t − 1) does not go to zero because t (and n)

becomes arbitrarily large as δ becomes small. However, this is analogous to a case we

have analyzed before with i and j roles switched. We know that in equilibrium, both

buyers have types who plan to buy at price pn−ℓ. If i plans to buy at prices pn−ℓ−t

and pn−ℓ, but not to buy at prices {pn−ℓ−t+1, ..., pn−ℓ−1}, the best response of j should

involve not buying at prices {pn−ℓ−t+1, ..., pn−ℓ−2}. If pn−ℓ−t − pn−ℓ−1 does not go to

zero, we can use the arguments in case 2 above to argue that contrary to what is being

supposed, for small δ, buyer i will in fact have some types of positive measure who

buy at pn−ℓ−1 rather than waiting till pn−ℓ.

This completes the proof of the lemma.‖

To continue now with the proof of the Proposition, suppose both buyers have a positive

measure of types buying at prices pn−k to pn, where 1 6 k 6 n − 2. By exactly the same

argument as above we can establish that both buyers must also buy at pn−k−1. This,

combined with the previous steps complete the proof of Proposition 1.‖
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A.3 Proof of Proposition 3

Define Ak = [pk, 1] for k = 1, 2, . . . , n− 1. Let A be the cartesian product of Ak. A vector

x ∈ A is of the form: x = {x1, . . . , xn−1}, such that xk ∈ [pk, 1]. Note that A is closed

and bounded and hence compact, and it is also convex.

Let Z be the cartesian product of [0, 1] taken n − 1 times. Let C be the subset of Z such

that

C =
{

x ∈ [0, 1]n−1 |x1 > x2 > . . . > xn−1

}

Note that C is compact and convex. Let D ≡ C ∩ A. Since C and A are both finite

dimensional compact and convex sets, D is also compact and convex.

Finally, we define the set of cut-off vectors E:

E =
{

v ∈ [0, 1]n+1 |v0 = 1, {v1, . . . , vn−1} ∈ D, vn = pn

}

E is the set of cut-off vectors D with each vector augmented by an initial and final

element, which are fixed at 1 and pn, respectively.

Throughout the proof we assume that δ is small enough so that all previous results

hold. The following definitions are used throughout the proof.

Any vector (v1, . . . , vn−1) is said to be in the interior of D if vk > vk+1 for all k ∈

{1, . . . , n − 2}, and any vector in D not in the interior of D is said to be in the border

of D. Any vector v is said to be in the interior (border) of E if (v1, . . . , vn−1) is in the

interior (border) of D.

Let EB denote the border of B, and let EI denote the interior of E. Clearly, E = EB ∪ EI .

Next, similar to the term Hi
k in Lemma 1 (as well as in appendix A.1), let Hk(v) denote

the probability that the a buyer can buy at pk+1 conditional on passing at pk. As before,

this is given by Hk(v) =
F(vk) + F(vk+1)

F(vk) + F(vk−1)
.

Let y(v) ≡ {y0(v), . . . , yn(v)} denote the best response to any v ∈ E.

STEP 1: First, consider the set of vectors in EI (the interior of E). From Proposition 2,

we know that the best response is unique, continuous, and given by y0(v) = 1, yn(v) =

pn, and for 0 < k < n:

yk(v) = pk + ∆k
(1 − ε)Hk(v)

1 − (1 − ε)Hk(v)
(A.9)
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STEP 2: Next consider v ∈ EB. Let us first show that the best response mapping can

be discontinuous at border vectors. For example, consider any border vector where

vk−1 = vk = vk+1 for some k. For any such vector, Hk = 1, and the best response

involves not buying at pk, implying yk = yk−1.

Note that for any v ∈ EI , Hk < 1. The argument in step 1 shows that for any v ∈ EI ,

yk < yk−1. Further, limHk→1 yk < yk−1. But if Hk = 1, yk = yk−1. Thus the best response

mapping could be discontinuous at any v ∈ EB.

To solve the problem we proceed as follows. We set up a “pseudo best response”

function as follows. In taking a best response to any v ∈ EI , a buyer behaves according

to equation (A.9). Thus the pseudo best response coincides with the true best response

on EI . For any v ∈ EB, there is at least one k for which vk−1 = vk (i.e. no type of the

other buyer buys at pk). Faced with any degenerate interval [vk, vk−1), the pseudo best

response corresponds to the best response of the (fictitious) situation where the buyer

believes that if he does not buy at pk, then with probability ε the object is sold to the

other buyer before the game reaches pk+1.(35)

Thus faced with any border vector, when offered any price pk, the pseudo best response

compares v − pk to (1 − ε)(v − pk+1)Hk for all values of Hk 6 1 (i.e. even when Hk = 1).

For any v ∈ EB let ŷk(v) denote the pseudo best response. From the above, this is

exactly similar to equation (A.9) for interior points, and is given by

ŷk(v) = pk + ∆k
(1 − ε)Hk(v)

1 − (1 − ε)Hk(v)

for Hk(v) 6 1.

Consider any ṽ ∈ EB. From equation (A.9), clearly limv→ṽ yk(v) = ŷk(ṽ). Thus replac-

ing y by ŷ on EB preserves continuity of the best response mapping.

With this specification, the calculations in Proposition 2 can be retraced and it can be

easily seen that all conclusions are exactly the same (even with Hk = 1 we preserve

the factor (1 − ε), and none of the results require Hk < 1). In particular, note that

ŷk < ŷk−1 for all k ∈ {1, . . . , n}, and therefore the pseudo best response vector belongs

in the interior of E.

(35)In other words, while the true best response to any such border point would assume correctly that

refusing pk would mean that the game reaches the next stage with probability 1, the pseudo best re-

sponse in effect assumes that the interval [vk, vk−1) is not degenerate, but there are some types of the

other buyer who do buy at pk.
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STEP 3: Finally, define the mapping Ψ : E → E such that

Ψ0(v) = 1

Ψk(v) =





yk(v) if v ∈ EI

ŷk(v) if v ∈ EB

Ψn(v) = pn

Since Ψ maps E continuously to itself, by Brouwer’s fixed point theorem, there exists a

fixed point of Ψ, i.e. there exists v∗ such that Ψ(v∗) = v∗.

We know from Proposition 2 that for any v ∈ EI , Ψ(v) belongs to the interior of E. As

noted at the end of step 2, the same is true for vectors in EB. Thus the range of Ψ is a

subset of EI . Therefore any fixed point must be in EI . But Ψ(v) is the true best response

for any v ∈ EI . It follows that any fixed point must be a true mutual best response, and

therefore a symmetric equilibrium.‖
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