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Abstract Misspecifications of econometric models can lead to biased coefficients and 

error terms, which in turn can lead to incorrect inference and incorrect models. There are 

specific techniques such as instrumental variables which attempt to deal with some 

individual forms of model misspecification. However these can typically only address 

one problem at a time. This paper proposes a general method for estimating underlying 

parameters in the presence of a range of unknown model misspecifications. It is argued 

that this method can consistently estimate the direct effect of an independent variable on 

a dependent variable with all of its other determinants held constant even in the presence 

of a misspecified functional form, measurement error and omitted variables. 
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1 Introduction  

Most econometric relationships are subject to specification errors arising from the 

following three problems: (i) the true functional forms of economic relationships are 

usually unknown, (ii) econometric models cannot be specified without omitting some 

relevant explanatory variables, and (iii) data on economic variables contain measurement 

errors. Consequently, misspecification of models is difficult to avoid. There are specific 

techniques which attempt to deal with these problems, usually one at a time. Instrumental 

variables are an obvious example of a technique designed to deal with measurement 

error. But this technique cannot deal with a misspecified functional form or omitted 

variables. Similarly the non-parametric estimators such as neural networks or nearest 

neighbor estimation are designed to deal with an unknown functional form. These 

techniques can not however cope with measurement error and they also typically require 

very large data sets. This paper sets out a new approach to estimation which can deal with 

all three of these problems at the same time and which is practical in relatively small 

samples. 

More specifically, this paper shows how misinterpretations of model coefficients and 

error terms in the presence of model misspecifications can be avoided using a coefficient-

decomposition approach. As we discuss, a key aspect of this approach involves the use of 

what we term “coefficient drivers”. Intuitively, coefficient drivers may be  thought of as 

variables which, though not part of the explanatory variables in a relationship, serve two 

important purposes. First, they deal with the correlations between the included 

explanatory variables and their coefficients.
1
 In other words, even though it can be shown 

that the included explanatory variables are not unconditionally independent of their 

                                                 
1
 A formal definition of coefficient drivers is provided in Swamy and Tavlas (2006).  
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coefficients, they can be conditionally independent of their coefficients given the 

coefficient drivers. Second, the coefficient drivers allow us to decompose the coefficient 

on a regressor into three components such that one of these components representing the 

specification-bias-free component is separately identified from the other two components 

representing specification biases. In one sense the coefficient drivers may be seen as a 

dual (and a generalization) of instrumental variables. A good instrument is correlated 

with the explanatory variable measured with error while being uncorrelated with the 

model‟s error term. A good coefficient driver is correlated with the parts of coefficients 

which arise from the econometric misspecification and therefore provides information 

that allows us to correct the biases which arise in the coefficients. An issue that arises, 

however, is the following: How do we select an appropriate set of coefficient drivers? 

This is much like the problem of how we select an appropriate set of instruments and we 

will discuss this specifically below.      

The remainder of this paper is divided into three sections. Section 2 presents the new 

way of interpreting the coefficients of misspecified econometric models and the 

assumptions that are consistent with those interpretations. Such assumptions may require 

the specification of a time-varying coefficient (TVC) model without the implication that 

these TVC‟s are always true. The identifiability conditions for TVC models and the 

methods of consistently estimating their unknown quantities are presented in Section 3. 

Unresolved problems will be faced if the TVC‟s are assumed to follow a random walk 

process, as shown in Section 3. This section also provides a Bayesian method of 

estimating TVC models satisfying the identifiability conditions. Section 4 concludes.   
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2  The Interpretations of Model Coefficients and Appropriate Assumptions 

 

Conventional econometrics is to a large extent the study of individual causes of biased 

parameters, omitted variable bias, measurement error bias, a misspecified functional form 

etc. These problems are usually dealt with one at a time in a text book context, but of 

course practical work is plagued by all these problems at once. In this section we outline 

the basic problem of interpreting coefficients when these problems are present and our 

proposed procedure for dealing with these problems simultaneously. 

 

When studying the relation of a dependent variable, denoted by 
*

ty , to a hypothesized set 

of K – 1 of its determinants, denoted by 
*

1tx , …, *

1,K tx , where K-1 may be only a subset 

of the complete set of determinates of 
*

ty  a number of problems may arise. If there is a 

correlation between 
*

ty  and 
*

1tx , …, *

1,K tx  and a third set of variables, a phenomenon 

known as spurious correlation may arise (see Lehmann and Casella 1998, p. 107). As a 

first step in avoiding spurious correlations, economic theories may suggest mechanisms 

through which
*

1tx , …, *

1,K tx  could influence 
*

ty . Unfortunately, economic theories may 

suggest direct relationship but it often has very little to say about the true functional form 

of this relationship. Any specific functional form may be incorrect and may lead to 

specification errors resulting from functional-form biases. Another problem that can arise 

in investigating the relationship between the dependent variable and its determinants is 

that 
*

1tx , …, *

1,K tx  may not exhaust the complete list of the determinants of 
*

ty , in which 
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case the relation of *

ty  to *

1tx , …, *

1,K tx  may be subject to omitted-variable biases. In 

addition to these problems, the available data on *

ty , *

1tx , …, *

1,K tx  may not be perfect 

measures of the underlying true variables, causing errors-in-variables problems. The 

purpose of this paper is to propose the correct interpretations and the appropriate method 

of estimation of the coefficients of the relationship between *

ty  and *

1tx , …, *

1,K tx  in the 

presence of the foregoing problems.  

Suppose that T measurements on 
*

ty , 
*

1tx , …, *

1,K tx  are made and these measurements 

are actually the sums of “true” values and measurement errors: ty  = 
*

ty  + 0tv , jtx  = *

jtx  + 

jtv , j = 1, …, K-1, t = 1, …, T, where the variables ty , 1tx , …, Ktx  without an asterisk 

are the observable variables, the variables with an asterisk are the unobservable “true” 

values, and the v‟s are measurement errors. Given the possibility that the functional form 

we are estimating may be misspecified and there may be some important variables 

missing from 1tx , …, 1,K tx  we need a model which will capture all these potential 

problems.  

It is useful at this point to clarify what we believe to be the main objective of 

econometric estimation. In our view the objective is to obtain unbiased estimates of the 

effect on a dependent variable of changing one independent variable holding all others 

constant. That is to say we aim to find an unbiased estimate of the partial derivative of
*

ty  

with respect to any *

jtx . This of course is the interpretation which is usually placed on the 

coefficients of a standard econometric model but this interpretation depends crucially on 

the assumption that the conventional model gives unbiased coefficients which is of 

course not the case in the presence of model misspecification. 
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One way to proceed is to specify a set of time-varying coefficients which provide a 

complete explanation of the dependent variable y. Consider the relationship 

 ty  = 0t  + 1 1t tx  +  + 1, 1,K t K tx .                                                                     (1)  

which we call “the time-varying coefficient (TVC) model”. As this model provides a 

complete explanation of y, all the misspecification in the model, as well as the true 

coefficients must be captured by the time-varying coefficients. Note that if the true 

functional form is non-linear the time-varying coefficients may be thought of as the 

partial derivatives of the true non-linear structure and so they are able to capture any 

possible function. These coefficients will also capture the effects of measurement error 

and omitted variables. The trick then is to find a way of decomposing these coefficients 

into the biased and the bias-free components. Equation (1) is called the observation 

equation and its coefficients are called the state variables if it is embedded in a state-

space model (see Durbin and Koopman 2001, p. 38).  

For empirical implementation, model (1) has to be embedded in a stochastic 

framework. To do so, we need to answer the question: What are the correct stochastic 

assumptions about the TVC‟s of (1)? We believe that the correct answer is: „the correct 

interpretation of the TVC‟s and the assumptions about them must be based on an 

understanding of the model misspecification which comes from any (i) omitted variables, 

(ii) measurement errors, and (iii) misspecification of the functional form‟. We expand on 

this argument in what follows.          

 

Notation and Assumptions Let tm denote the total number of the determinants of 
*

ty . 

The exact value of tm  cannot be known at any time. We assume that tm  is larger than K-
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1 (that is, the number of determinants is greater than the determinants for which we have 

observations) and possibly varies over time. This assumption means that there are  

determinants of *

ty  that are excluded from equation (1). Let *

gtx , g = K, …, tm , denote 

these excluded determinants. Let *

0t  denote the intercept and let both *

jt
, j = 1, …, K-1, 

and *

gt
, g = K, …, tm , denote the other coefficients of the regression of *

ty  on all of its 

determinants. The true functional form of this regression determines the time profiles of 

*
s. These time profiles are unknown, since the true functional form is unknown. Note 

that an equation that is linear in variables accurately represents a non-linear equation, 

provided the coefficients of the former equation are time-varying with time profiles 

determined by the true functional form of the latter equation. This type of representation 

of a non-linear equation is convenient, particularly when the true functional form of the 

non-linear equation is unknown. Such a representation is not subject to the criticism of 

misspecified functional form. For g = K, …, tm , let *

0gt
 denote the intercept and let *

jgt
, 

j = 1, …, K-1, denote the other coefficients of the regression of *

gtx  on 
*

1tx , …, *

1,K tx . The 

true functional forms of these regressions determine the time profiles of 
*
s.  

The following theorem gives the correct interpretations of the coefficients of equation 

(1): 

Theorem 1 The intercept of (1) satisfies the equation,   

 0t  = 
*

0t  + * *

0

tm

gt gt

g K

 + 0tv ,                                                                               (2) 

and the coefficients of (1) other than the intercept satisfy the equations,   
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 jt  = 
jt* * * * * *

jt

v

x

t tm m

jt gt jgt jt gt jgt

g K g K

   (j = 1, …, K-1).                      (3)  

Proof See Swamy and Tavlas (2001, 2007).                                                                         

Thus, we may interpret the TVC‟s in terms of the underlying correct coefficients, the 

observed explanatory variables and their measurement errors. It should be noted that by 

assuming that the 
*
s in equations (2) and (3) are possibly nonzero we do not require that 

the determinants of 
*

ty  included in (1) be independent of the determinants of 
*

ty  excluded 

from (1). Pratt and Schlaifer (1988, p. 34) show that this condition is “meaningless”. By 

the same logic, the usual exogeneity assumption of independence between a regressor and 

the disturbances of an econometric model is “meaningless” if the disturbances are 

assumed to represent the net effect on the dependent variable of the determinants of the 

dependent variable excluded from the model. The real culprit appears to be the 

interpretation that the disturbances of an econometric model represent the net effect on 

the dependent variable of the unidentified determinants of the dependent variable 

excluded from the model. Elsewhere, Pratt and Schlaifer (1984, p. 14) point out that 

although the regressors of (1) cannot be uncorrelated with every determinant of 
*

ty  

excluded from (1), they can be uncorrelated with certain remainder of every such 

determinant. The intercept *

0gt
 in (2) is indeed such a remainder of *

gtx  after the effects 

of 
*

1tx , …, *

1,K tx  on *

gtx  have been subtracted out.  

By assuming that the 
*
s and 

*
s are possibly time-varying, we do not a priori rule 

out the possibility that the relationship of 
*

ty  with all of its determinants and the 

regressions of the determinants of 
*

ty  excluded from (1) on the determinants of 
*

ty  



 10 

included in (1) are non-linear. Note that the last term on the right-hand side of equations 

in (3) implies that the regressors of (1) are correlated with their own coefficients.
2
  

Theorem 2 For j = 1, …, K-1, the component *

jt
 of jt  in (3) is the direct or bias-free 

effect of *

jtx  on *

ty  with all the other determinants of *

ty  held constant and is unique.  

Proof It can be seen from equation (3) that the component *

jt
 of jt  is free of omitted-

variables bias (= * *tm

gt jgtg K
), measurement-error bias (= * * *tm

jt gt jgtg K
 

jtv / jtx ), and of functional-form bias, since we allow the 
*
s and 

*
s to have the 

correct time profiles. These biases are not unique being dependent on what determinants 

of *

ty  are excluded from (1) and the jtv . However, the jt  are unique when their correct 

interpretations given by (2) and (3) are adopted (see Swamy and Tavlas 2007, p. 300). 

Note that *

jt
 is the coefficient of *

jtx  in the correctly specified relation of 
*

ty  to all of its 

determinants. Hence *

jt
 represents the direct, or bias-free, effect of *

jtx  on 
*

ty  with all 

the other determinants of 
*

ty  held constant. The direct effect is unique because it 

represents a property of the real world that remains invariant against mere changes in the 

language we use to describe it (see Basmann 1988, p. 73; Pratt and Schlaifer 1984, p. 13; 

Zellner 1979, 1988).                                                                                                             

The direct effect *

jt  is constant if the relationship between 
*

ty  and all of its 

determinants are linear; alternatively, it is variable if the relationship is non-linear. We 

                                                 
2
 These correlations are typically ignored in the analyses of state-space models. Thus, inexpressive  

conditions and restrictive functional forms are avoided in arriving at equations (2) and (3) so that Theorem 

1 can easily hold; for further discussion and interpretation of the terms in (2) and (3), see Swamy and 

Tavlas (2001, 2007) and Hondroyiannis, Swamy and Tavlas (2007). 
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often have information from theory as to the right sign of *

jt
. Any observed correlation 

between ty  and jtx  is spurious if *

jt
 = 0 (see Swamy, Tavlas and Mehta 2007).

3
  

So to put the previous formal arguments into words; if the true model has some 

unknown non-linear functional form this model may be represented as a linear model 

with time-varying coefficients. If we then add omitted-variable and measurement-error 

effects we have shown that the time-varying coefficients in the estimated model are a 

function of the time-varying coefficients from the true model plus components reflecting 

the omitted-variables and the measurement-error effects. This argument is a matter of 

pure logic and must always be true and so it gives us an unambiguous way of thinking 

about and interpreting coefficients. The next issue is how to make some identifying 

assumptions which will allow us to separate these components. 

As noted above we believe that empirical researchers are interested in the direct 

effects 
*
s, not in the omitted-variable and measurement-error biases. That is, they are 

not interested in the  jt  which are contaminated by omitted-variable and measurement-

error biases. To obtain accurate estimates of the *

jt
 using the observations in (1), we 

need to first decompose each jt  with j > 0 into its components in (3). Our method of 

identifying these components and performing the decomposition is based on the 

following assumptions that are consistent with the correct interpretations of s:  

Assumption 1 Each coefficient of (1) is linearly related to certain drivers plus a random 

error,  

                                                 
3
 Granger and Newbold‟s (1974) definition of spurious regressions does not apply to non-linear equations 

and equation (1) can be non-linear.  
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 jt  = 0j  + 
1

1

p

jd dt

d

z  + jt      (j = 0, 1, …, K-1),                                                (4) 

where the s are fixed parameters, the dtz  are what are called the coefficient drivers, 

and different coefficients of (1) can be functions of different sets of coefficient drivers.  

Assumption 2 For j = 1, …, K-1, the set of p-1 coefficient drivers and the constant term 

in (4) divides into two disjoint subsets 1S  and 2S  so that 0j  + 
1

jd dtd S
z  has the same 

pattern of time variation as *

jt
 and 

2
jd dtd S

z  + jt  has the same pattern of time 

variation as the sum of the last two terms on the right-hand side of equation (3) over the 

relevant estimation and forecasting periods.   

 

This assumption is like the dual of the instrumental variable assumption. Here we are 

assuming that the drivers in the set S2 are correlated with the misspecification in the 

model 

 

Assumption 3 The K-vector t  = 0 1 1,( , ,..., )t t K t  of errors in (4) follows the stochastic 

equation, 

 t  = 1t  + tu ,                                                                                                    (5) 

where  is a K K  (not necessarily diagonal) matrix whose eigenvalues are less than 1 

in absolute value, the K-vector tu  = 0 1 1,( , ,..., )t t K tu u u  is distributed with E( tu | 1tz , …, 

1,p tz ) = 0 and  

 E( t tu u | 1tz , …, 1,p tz ) = 
2       if    

0             if    
u u t t

t t ,                                                                   (6) 

where u  may not be diagonal.  
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This assumption considerably generalizes (4). If we assumed that the errors in (4) were 

independent this would imply a very simple dynamic structure. By making the 

assumption that the errors in fact have a serial correlation structure we are allowing a 

much richer dynamic structure although we are imposing some common factors in this 

structure to keep the model tractable. 

 

Assumption 4 The regressor jtx  of (1) is conditionally independent of its coefficient jt  

given the coefficient drivers in (4) for all j and t. 

Assumptions 1 and 2 answer the question of parameterization: which features of 

equation (1) ought to be treated as constant parameters?
4
 Correct coefficient drivers are 

those that satisfy Assumptions 2 and 4.
5
 Assumption 4 is weaker than the assumption that 

jtx  is unconditionally independent of jt , which is false because the third term on the 

right-hand side of equation (3) introduces a non-zero correlation between jtx  and jt .  

A vector formulation of model (1) is  

 t t ty x ,                                                                                                               (7) 

where tx  = 1 1,(1, ,..., )t K tx x  and t  = 0 1 1,( , ,..., )t t K t . A matrix formulation of (4) is  

                                                 
4
 Assumption 1 was considered in Swamy and Tinsley (1980) who adopted a more general Assumption 3. 

5
 Extensions of model (1) and Assumptions 1-4 to situations where panel data, i.e., multiple observations on 

each of many observational units, are available are made in Swamy, Yaghi, Mehta and Chang (2007) and 

Swamy, Mehta, Chang and Zimmerman (2008). Greene (2008, p. 184) points out that in such situations, 

relating the means of the random coefficients of a model to a set of observable, person specific variables 

makes the model extremely versatile. Whether this is true or not, we do need correct coefficient drivers to 

estimate the direct or bias-free effects 
*

jt
. 
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 t t tz ,                                                                                                         (8) 

where  = 
0 1,0 1jd j K d p

 is a K p  matrix having jd  as its ( 1, 1)j d -th 

element and tz  = 1 1,(1, ,..., )t p tz z . Substituting (8) into (7) gives  

 ( ) Long

t t t t ty z x x ,                                                                                      (9) 

where  denotes a Kronecker product, and Long  is a Kp-vector, denoting a column 

stack of . The observations in (1) can be displayed in a matrix form as  

 
Long

z xy X D ,                                                                                             (10) 

where y  = 1( ,..., )Ty y  is a T-vector, zX  = 1 1( ,..., )T Tz x z x  is T Kp , xD  = 

1 ( )t T tdiag x  is T KT , and  = 1( ,..., )T  is a TK-vector.  

Theorem 3 Under Assumptions 1-4, E ( | )zy X  = 
Long

zX  and Var ( | )zy X  = 
2

x u xD D  

where 
2

u  is the covariance matrix of .                                                  

Proof See Swamy, Yaghi, Mehta and Chang (2007, p. 3386).                                            

If correct coefficient drivers are not included in equation (4), then Assumption 4 and 

Theorem 3 do not hold, since the regressors of (1) are correlated with their coefficients 

jt . Under Assumptions 1 and 3, the variance of jt  is finite for all j and t. The 

Chebychev inequality shows that if jt  has a small variance, then its distribution is tightly 

concentrated about its mean implied by Assumptions 1 and 3 (see Lehmann 1999, p. 52). 

Assumptions 2 and 4 provide a prime consideration guiding the selection of coefficient 

drivers. The magnitude of jt  gets reduced as the number of correct coefficient drivers in 

(4) increases. The larger the number of correct coefficient drivers in (4), the smaller the 

magnitude of jt  and hence the smaller the variance of jt . Including many correct 
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coefficient drivers in (4) may imply that the errors of equation (4) are white-noise 

variables or the matrix  in equation (5) is null. If the error term of (4) is assumed to 

follow a random walk, then the unconditional variance of jt  is not finite. Some workers 

regard the assumption of an infinite variance as unnatural since all observed time series 

have finite values, as Durbin and Koopman (2001, p. 29) point out.      

The fixed-parameter model in (10) performs well in explanation if Assumptions 1-4 

are true because under these assumptions, this model gives an accurate estimate of the 

direct effect of each of *

jtx , j = 1, …, K-1, on 
*

ty  with all the other determinants of 
*

ty  

held constant. Without the coefficient drivers that satisfy Assumptions 2 and 4, the 

explanatory power of model (1) is zero because the observations in (1) intermix *

jt
 and 

the other components of jt  with no prospect of separation. Model (10) has the correct 

functional form and hence performs well in prediction if the coefficient drivers included 

in (4) satisfy Assumptions 1-4 (see Swamy, Yaghi, Mehta and Chang 2007).
6
 The 

stochastic coefficient approach based on the TVC model in (1) and Assumptions 1-4 

leads to the improved fixed-coefficient model in (10) without misinterpreting the 

coefficients of the TVC model, without using meaningless conditions, and without 

misspecifying the time profiles of the coefficients of the TVC model.  

                                                 
6
 This result provides the conditions under which TVC approaches dominate the other approaches to model 

building including state-space approaches. Thus, model (10) can satisfy Zellner‟s (1988) definition of a 

good model: “… logically consistent and sufficient mathematical economic theorems do not qualify to be 

termed laws unless it can be shown that they actually explain a wide range of past data and experience and 

yield good predictions over a broad range of data and experience”. (p. 9)    



 16 

3 Identification and Consistent Estimation of Time-Varying Coefficient Models  

3.1 Identification 

Lehmann and Casella (1998, p. 24) show that unidentifiable parameters are statistically 

meaningless. To show that the parameters of model (10) are statistically meaningful, we 

need to demonstrate that the identifiability conditions for these parameters are satisfied.  

 

The fixed coefficient vector 
Long

 in (10) is identified if zX  has full column rank. A 

necessary condition for zX  to have full column rank is that T > Kp. That has been the 

case for the received applications. The error vector  is not identified because the 

necessary condition T > TK for xD  to have full column rank is false. This result implies 

that  is not consistently estimable (see Lehmann and Casella 1998, p. 57). Swamy and 

Tinsley (1980, p. 117) call this phenomenon “a form of Uncertainty Principle”. Correct 

coefficient drivers are used in (4) to reduce the unidentifiable portions (the jt ) of the 

coefficients of (1). However, xD  being equal to y - 
Long

zX  with identifiable 
Long

 is 

identifiable and the best linear unbiased predictor (BLUP) of xD  can be used to obtain 

consistent estimators of , u , and 
2

u  in (5) and (6). Under Assumptions 1-4, the 

BLUP of xD  exists (see Swamy, Yaghi, Mehta and Chang 2007, p. 3387).   

Thus, Assumptions 1-4 make all the fixed parameters of model (10) statistically 

meaningful. Equation (4) which establishes a link between the coefficients of (1) and the 

coefficients and errors of (10), shows that if the coefficients and xD  of (10) are 

statistically meaningful, so are the coefficients of (1). We next show that these 

identification results do not hold if Assumption 1 is changed to   
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Assumption 1  For all t, each coefficient of (1) is modeled by a random walk of the form  

 jt  = , 1j t  + jt ,                                                                                                 (11) 

where jt , j = 0, 1, …, K-1, are mutually uncorrelated, each of which is serially 

uncorrelated and is distributed with mean zero and constant variance.  

Suppose that Assumption 4 is also changed to  

Assumption 4  The regressor jtx  of (1) is unconditionally independent of its coefficient 

jt  for all j and t.  

 

We have already shown that Assumption 1  implying infinite unconditional variance 

for jt  may be regarded as unnatural and that Assumption 4  is false in the setting of the 

jt  satisfying equations (2) and (3). We now show the consequences of these 

assumptions. Under Assumption 1 , the coefficients of (1) and their components shown in 

(2) and (3) are not identified on the basis of the observations in (1). If so, the coefficients 

of (1) are statistically meaningless because it is not possible to obtain an accurate 

estimate of the direct effect of each of *

jtx , j = 1, …, K-1, on 
*

ty  with all the other 

determinants of 
*

ty  held constant. In the studies that make Assumptions 1  and 4 , the 

time path of jt  is estimated using the Kalman filter with an arbitrary estimate of the 

unidentified initial value 1j . The formula for the Kalman filter (see Durbin and 

Koopman 2001, p. 12) of jt  derived under Assumptions 1  and 4  is inappropriate, since 

Assumption 4  is false. Furthermore, the Kalman filters of the jt  derived under 

Assumptions 1  and 4  are unconditionally inadmissible relative to quadratic loss 
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functions because they do not possess finite unconditional means. Under Assumptions 1  

and 4 , the Kalman filters of s do not provide the predictions of ty  with good 

conditional and unconditional properties. Brown‟s (1990) argument favoring such 

predictors is as follows: 

“Ordinary notions of consistency demand use of procedures which are valid and 

admissible both conditionally and unconditionally. (Numerically minor deviations 

from this goal may be satisfactory and justifiable on the grounds of convenience. 

The preceding statement also requires the qualification that the problem be 

correctly modelled, otherwise it may be desirable to adopt robust but formally 

inadmissible procedures to reflect realistic possibilities that have been omitted 

from the formal model.) 

… It seems to me the conclusion is that none of [(objectively or subjectively 

specified) formal Bayes estimators or empirical or robust Bayes methods] … 

should be applied conditionally without also taking into account the 

unconditional, frequentist structure of the situation.” (p. 491)   

Under Assumptions 1  and 4 , model (1) does not satisfy Brown‟s qualification that it 

needs to be correctly specified because it has statistically meaningless coefficients.    

 

3.2 Estimation under Assumptions 1  and 4  

Methods for calculating the loglikelihood function, and the maximization of it with 

respect to the variances of s in (11), require the joint density of 1y , …, Ty . Suppose 

that for j = 0, 1, …, K-1, 1j , 2j , … are independent according to a normal distribution 

with mean zero and variance 2

j
. Let 1y , …, Ty  denote the values taken by the random 
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variables 1y , …, Ty , respectively. Then if Assumption 4  were true, the conditional 

distribution of ty  given 1tx , …, 1,K tx , 1y , …, 1ty  would be normal with certain mean 

and variance implied by equation (1) and Assumption 1  (see Durbin and Koopman 2001, 

p.14). Let 1 1 1 1,( | ,..., , ,..., )t t t K tp y y y x x    be the probability density function (pdf) of this 

distribution. Then the joint density of 1y , …, Ty  can be written as  

   1 11 1, 1 11 1,1 1 1 1 1,

2

( ,..., | ,..., ) ( | ,..., ) ( | ,..., , ,..., )
T

T K T K t t t K t

t

p y y x x p y x x p y y y x x      ,       (12) 

where it is assumed that  

   1 11 1,1( | ,..., )Kp y x x  with finite unconditional variance exists.                                     (13)  

The joint pdf in (12) is the result of a contradiction because assumption (13) contradicts 

the assumption that model (11) holds for all t. This is because, according to the latter 

assumption, ty  does not possess finite unconditional mean for all t, and, according to the 

former assumption, ty  possesses finite unconditional mean for t = 1. Time t = 1 is not 

unique. Both assumption (13) and model (11) for t > 1 cannot hold if time t = 1 is not 

unique. Wrong initialization of the Kalman filter of jt  (see Durbin and Koopman 2001, 

pp. 17-30) using a wrong distribution of the initial value 1j  can lead to wrong time-paths 

of the coefficients of (1).  

3.3 Estimation under Assumptions 1-4 

While instrumental variable estimation can work in the specific case of measurement 

error alone, we argue that, in the case of the general forms of misspecification we 

consider, there can be no variables which meet the requirements for valid instruments, so 

that instrumental variable estimation is not a sensible way forward. Instrumental variables 
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estimation requires a set of instruments that are correlated with the variable that is subject 

to measurement error, but not correlated with the error process. This is achieved in the 

standard econometric model of measurement error as it is assumed that the error process 

in the equation comprises two components, a term involving the measurement error and a 

random error term (see Greene 2008, p. 326, (12-13)). If this second component is, 

indeed, random then valid instruments may exist. However, an alternative view on the 

nature of this error is that it represents all the misspecification in the model, including 

omitted variables and misspecified functional form; equation 10 makes this clear. In the 

latter case, valid instruments cannot exist as the error will be a function of all relevant 

omitted variables. In effect, we argue that, instrumental variables can only work in the 

complete absence of any other form of misspecification in the model.  

 

Once we assume that there are omitted variables and other forms of misspecification in 

our model the instrumental variables that are correlated with the regressors of model (10) 

but not with its error term do not exist because zX  and xD  have the regressors of (1) in 

common. An extension of this result was made by Pratt and Schlaifer (1988) who had 

warned that “it must not be assumed that because the value of a lagged included variable 

1tx  was determined before the value of the current joint effect tU  of excluded variables, 

1tx  necessarily satisfies the condition for observability – i.e., was independent of tU . It 

may well have been influenced by a forecast of an excluded variable represented in tU , 

or both 1tx  and tU  may have been affected by some third variable – in common 

parlance, a „common cause‟.” (p. 47). What was assumed in the studies covered in 

Greene (2008, pp. 341-349) is what Pratt and Schlaifer said must not be assumed. The 
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warning of Pratt and Schlaifer and the nonexistence of instrumental variables in model 

(10) clarify the distinction between the method of instrumental variables, which has 

become a workhorse technique in the empirical literature, and the use of coefficient 

drivers. The latter variables, with the same pattern of time variation as the components 

(3) of the coefficients of (1) over the relevant estimation and forecasting periods can 

exist. The motive for introducing model (10) is the expectation that such coefficient 

drivers can be found.  

3.4 Practical Estimation 

Under Assumptions 1-4, we can use the following strategy to construct a practical 

estimation method. Model (10) can be estimated by an iteratively rescaled generalized 

least squares (IRSGLS) method developed in Chang, Swamy, Hallahan and Tavlas 

(2000).  

This criterion leads to a good determination of the coefficients of (1) if Assumptions 

1-4 hold with  = 0 and small variances for the errors of (4), as the Chebychev 

inequality shows (see Lehmann 1999, p. 52). The appropriate formulas for computing the 

standard errors of IRSGLS estimates are given in Swamy, Yaghi, Mehta and Chang 

(2007). A Monte Carlo study by Yokum, Wildt and Swamy (1998) shows that model (10) 

performs well in prediction. Further Monte Carlo studies on model (10) are in progress.     

Before applying the IRSGLS method to model (10) we need to select the coefficient 

drivers that satisfy Assumptions 1-4. To operationalize the method of the decomposition 

of jt  outlined in Assumption 2, we make jt  a function of all the variables which we can 

use with the data available to us and which we believe are correct coefficient drivers from 

the following reasoning: If the parameters of the “decision rules” embodied in equation 
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(1) change when economic policies change, then it is sensible to use these policy changes 

as coefficient drivers in (4). With the relevant policy changes entering into (4) as 

coefficient drivers, equation (1) is not subject to “the Lucas (1976) critique”. Any shift 

variables that we believe have changed the functional form of equation (1) and lagged 

changes in the included explanatory variables can also be correct coefficient drivers.
7
 We 

need to satisfy the condition that model (10) provides an adequate approximation, over 

the relevant range of variation in 
*

ty  and its determinants, to the relation of 
*

ty  to all of its 

determinants.   

In developing a procedure for selecting a subset of the included coefficient drivers 

that accurately estimates the direct effect *

jt
 in (3), we use the prior information: *

jt
 is 

unique with known sign so that our procedure is not completely arbitrary. A test statistic 

that is consistent with this prior information is due to Pratt and Schlaifer (1988, p. 44) 

who say that “the relevant „test statistic‟ for a law as opposed to a regression is not 2R  or 

F, but the vector of changes in the estimated effects of X on Y that result when „test 

concomitants‟ are included in the relation”. We cannot use this test statistic because our 

method of using coefficient drivers is different from Pratt and Schlaifer‟s method of using 

concomitants. They include concomitants as additional regressors in (1), whereas we 

include the coefficient drivers in (4) to decompose the coefficients of (1) into their 

components in (3). Hence the following selection procedure is different from Pratt and 

Schlaifer‟s test statistic.  

 

                                                 
7
 Examples of such coefficient drivers are given in Hall, Hondroyiannis, Swamy and Tavlas (2007). 
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3.5 Decomposing the Coefficients 

The final part of the procedure is to decompose the time-varying coefficients into their 

components representing biases and bias-free effects;,this requires the allocation of the 

coefficient drivers into the two sets S1 and S2. This element of the procedure involves 

some judgment and we have the following advice to try and make this process as 

objective as possible. 

 

The whole set or any sub-set of the included coefficient drivers that gives an estimate of 

*

jt
 with the wrong sign should be rejected. The largest possible sub-set of the included 

coefficient drivers that gives an estimate of *

jt
 with the right sign is acceptable unless 

this sub-set gives an overestimate of the magnitude of *

jt
, in which case the coefficient 

drivers with insignificant or relatively small magnitudes of  estimates can be eliminated 

from the sub-set.       

 

This decomposition is based on the intuition that an estimate of *

jt
 can have the wrong 

sign and a wrong magnitude if an accurate estimate of the sum of the last two terms on 

the right-hand side of equation (3) is not subtracted from the corresponding  accurate 

estimate of jt .  

 

Each coefficient of the TVC model considered in this paper is the sum of three 

components. One of the components of the coefficient of a regressor in this model 

measures the direct effect of a determinant of the dependent variable on the dependent 
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variable with all of its other determinants held constant. Under Assumptions 1-4, the 

fitting criterion described in this section gives a formal statistical way of determining the 

sum of the three components and the decomposition of this sum described above gives a 

formal statistical way of determining which coefficient drivers are used to derive the 

direct-effect component.  

 

3.6 Bayesian estimation of the direct effects with probably correct coefficient drivers     

DeGroot (1982) wrote, “All good Bayesian statisticians reserve a little pinch of 

probability for the possibility that their model is wrong”. Accordingly, we assign a less 

than 1 prior probability for the possibility that the coefficient drivers included in (4) are 

correct. Models of the form (10) with the same explanatory variables as in (1) but with 

different coefficient drivers are considered as separate elements of a model space. Models 

of this space differ only in the definitions of coefficient drivers. We assume that this 

space is a finite set. We assume that the prior probabilities assigned to its elements add up 

to 1. That is, the prior probability, denoted by ( )iP M , assigned to the ith model, denoted 

by iM , of the space satisfies the condition ( )ii
P M  = 1. If the set of coefficient drivers 

included in iM  leads to the estimates of the direct effects *

jt
 with the wrong sign and/or 

to poor predictions of future values of the dependent variable ty  of (1), then we will set 

( )iP M  = 0 and adjust the non-zero probabilities assigned to other models in the space so 

that they add up to 1. Let ( | , , , )Long

z ip y X M  denote the probability density function 

(pdf) of y under iM  with ( )iP M   0, where  is a vector having the unknown elements 

of , the distinct but unknown elements of u , and 
2

u  in (5) and (6) as its elements. 
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Note that for notational convenience we suppress the subscript i of zX , Long , and . 

We denote the prior pdf for 
Long

 and  under iM  by ( , | )Long

ip M .  

For fixed  y and zX  of iM , viewed as a function of Long  and , 

( | , , , )Long

z ip y X M  is called the likelihood of Long  and . Note that the parameters 

Long
 and  do not distort the correct interpretations of the coefficients of (1) because 

these parameters are defined by Assumptions 1-4 that establish a close connection 

between the coefficients of (1) and the unknown quantities 
Long

 and  of (10) and these 

parameters call a spade a spade. Suppose that we cannot maintain this connection because 

we have included inappropriate coefficient drivers in (4). Then we will not be estimating 

(1) but will be estimating something else using the likelihood function 

( | , , , )Long

z ip y X M . In this regard, Pratt and Schlaifer (1988) point out that “If a 

statistician with a Bayesian computer program treats the likelihood function of c as if it 

were the likelihood function of b, as he must if he supplies no proper prior distribution of 

b given c, then what his printout will contain will be neither beans nor corn but 

succotash.” (p. 49). To avoid these mistakes, we are trying to satisfy Assumptions 1-4 

that maintain the connection between (1) and (10).  

We may now compute the marginal density of the observations (given iM ) by  

( | , )z ip y X M  = 
Long( | , , ,  ) ( , | )d d

Long

Long Long

z i ip y X M p M                  (14) 

and average over the models to obtain a density which is unconditional of them:  

z i( | X  of all )p y M  = ( | , ) ( )z i i

i

p y X M P M .                                                        (15) 

By the Bayes theorem, the posterior probability of iM  is   
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i( | ,   of all )i zP M y X M  = 
( ) ( | , )

( |  of all )

i z i

z i

P M p y X M

p y X M
.                                                     (16) 

This posterior probability shows how the prior probability assigned to iM  is revised by 

the data. Further, the posterior pdf for the (j, d)th element jd  of Long  in iM  is given by  

( | ,  , )jd z ip y X M  = 

Long

-jd

Long

( | , , , ) ( , | )d d

( | , , , ) ( , | )d d

Long
jd

Long

Long Long

z i i

Long Long

z i i

p y X M p M

p y X M p M
          (17) 

where Long

jd
 is 

Long
 without the (j, d)th element. The mean of this distribution gives the 

posterior mean, denoted by jdE( | , , )z iy X M , of jd .  

A Bayes estimator of the direct effect *

jt
 is  

*

jtE( | ,  of all )z iy X M  = j0[ ( | ,  of all ){E( | , , )i z i z i

i

P M y X M y X M  + 

1

jdE( | , , ) }]
i

z i dt

d S

y X M z                                                                                                (18) 

where 1iS  is a subset of the coefficient drivers in the ith model iM  such that 0j  + 

1i
jd dtd S

z  has the same pattern of time variation as *

jt
 and the subscript i of dtz  is 

suppressed.  

With the model space we have above, we can consider all possible combinations of 

coefficient drivers and then think about how we can try to narrow down the set of drivers 

which should be used in (18). The first step is to eliminate those combinations of drivers 

which would give rise to an estimate of *

jt
 which goes outside some acceptable range 

(possibly just in terms of sign but possibly also in terms of magnitude). For the iM ‟s 

providing only such combinations, we set ( )iP M  = 0. The next step might be to ask if 
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there are any drivers which simply do not matter much, that is to say the *

jt
 estimate is 

much the same regardless of whether they are included or excluded in all the 

combinations they appear in. This may or may not reduce the number of possible 

combinations to consider by quite a lot. After we have excluded the driver combinations 

that give „unacceptable‟ estimates of direct effects then with equal priors on the 

remaining combinations we simply take a weighted average.       

Further, we may express the predictive pdf for a future value, denoted by Fy , of ty  

as  

( | ,  of all )F z ip y y X M  = ( | ,  of all ) ( | , , )i z i F z i

i

P M y X M p y y X M .                  (19)    

4 Conclusions  

Any specified econometric model is likely to be misspecified. This paper offers the 

correct interpretations of the coefficients and the error term of a misspecified model. The 

assumptions that are consistent with these interpretations are also offered. With such 

assumptions it is possible to correct for omitted-variables and measurement-error bias in 

misspecified models. Both Bayesian and non-Bayesian solutions to the problems of 

unknown functional form, omitted variables, and measurement errors are presented.          
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