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Abstract

We study sequential and single-round uniform-price auctions with a¢ liated values. We derive
symmetric equilibrium for the auction in which k1 objects are sold in the �rst round and k2 in the
second round, with and without revelation of the �rst-round winning bids. We demonstrate that
auctioning objects in sequence generates a lowballing e¤ect that reduces the �rst-round price. Total
revenue is greater in a single-round, uniform auction for k = k1 + k2 objects than in a sequential
uniform auction with no bid announcement. When the �rst-round winning bids are announced, we
also identify a positive informational e¤ect on the second-round price. Total expected revenue in
a sequential uniform auction with winning-bids announcement may be greater or smaller than in a
single-round uniform auction, depending on the model�s parameters.

Journal of Economic Literature Classi�cation Numbers: D44, D82.

Keywords: Multi-Unit Auctions, Sequential Auctions, Uniform-Price Auction, A¢ liated Values,
Information Revelation.

1 Introduction

Uniform-price auctions are widely used to sell identical, or quite similar, objects. Sometimes

sellers auction all objects together in a single round, while other times they auction them

separately in a sequence of rounds. For example, cattle, �sh, vegetables, timber, tobacco, and

wine typically are sold in sequence, while government securities and mineral rights are sold

in a single round. When using sequential auctions, the seller must decide what information

to release after each round of bidding.
1We would like to thank the Associate Editor and referees for very useful comments, Tsetlin is grateful to

the Centre for Decision Making and Risk Analysis at INSEAD for supporting this project.
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Two important questions arise. Do sequential sales raise the seller�s revenue, or is revenue

maximized in a simultaneous auction? How do equilibrium prices in each round of a sequential

auction depend on the information that the seller reveals about bidding in earlier rounds?

To address these questions, we suppose that the seller owns k identical objects. Each buyer

demands only one object.2 Buyers�value estimates, or signals, are a¢ liated random variables,

as in Milgrom and Weber (1982, 2000).

We �rst derive the equilibrium bidding strategies of two versions of a sequential uniform-

price auction, in which k1 objects are sold in the �rst round and k2 = k � k1 are sold in the

second round. In both versions, the price in a given round is equal to the highest losing bid

in that round. (The extension of our results to more than two rounds is discussed in Section

3.) The two versions di¤er in the information policy followed by the seller. Under the �rst

policy, the seller does not reveal any information after the �rst round. Under the second

policy, the seller announces all the �rst-round winning bids before the second round.3

While we are the �rst to study and provide an equilibrium for the sequential, uniform-price

auction with winning-bids announcement, the equilibrium of the sequential auction with no

bid announcement (when only one object is sold in each round) was conjectured by Milgrom

and Weber (2000), �rst circulated as a working paper in 1982. In a forward and bracketed

comments, Milgrom and Weber (2000) explain that the delay in publishing their work was

due to the proofs of this and other related results having �refused to come together�(p. 179).

They add that the conjectured equilibrium �should be regarded as being in doubt�(p. 188).

In Theorem 1, we have been able to prove (for the case of two rounds) that the equilibrium

conjectured by Milgrom and Weber (extended to more than just one object per round) is

indeed an equilibrium.

After deriving the equilibrium bidding strategies, we compare prices and revenues in the

two sequential auctions and the single-round uniform-price auction (Milgrom and Weber,

2000, obtained the equilibrium of the single-round auction). We show that with no bid

2Government-run auctions often limit each bidder to bid for at most one asset. This has been the case,
for example, in the spectrum auctions of many European countries in the last few years.

3As we point out in the concluding section, it is simple to see that intermediate information policies like
the policy of revealing only the lowest �rst-round winning bid (an approximation of the policy of revealing
the winning price) yield lower revenue than the policy of revealing all winning bids.
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announcement there is a lowballing e¤ect at play in the �rst round. The expected price is

lower in the �rst than in the second round. Furthermore, in the second round the bidding

function is the same as in a single-round uniform auction for k objects; bidders bid as if they

are tied with the k-th highest bid. As a result, total revenue is greater in a single-round

auction than in a sequential auction with no bid announcement.

When the �rst-round winning bids are announced the lowballing e¤ect is still present,

but there is also a positive informational e¤ect on second-round bids. The informational

e¤ect is closely related to the revenue enhancing e¤ect at work in the single-item model,

when the seller reveals information that is a¢ liated with the bidders�signals. Because of the

combination of the lowballing and the informational e¤ect, total revenue in a sequential

uniform auction with winning-bids announcement could be greater or smaller than in a

single-round uniform auction. The ranking depends, in a complicated way, on the signal

distribution, the number of bidders and their payo¤ functions, and the number of objects

sold in each round. When the sequential auction with winning-bids announcement yields

higher revenue than the uniform auction, it may also yield higher revenue than the English

auction, and hence any standard simultaneous auction.4

Intuition derived from the single-item model had led Milgrom and Weber (2000) to con-

jecture that auctioning items in sequence would raise greater revenue than a single-round

auction for k objects. This conjecture was based on intuition derived from the single-unit,

a¢ liated-values model, where public revelation of information raises revenue (see Milgrom

and Weber, 1982). As we pointed out, this conjecture is incorrect; only when the winning

bids are announced, there are model parameters under which the sequential auction raises

greater revenue than the single-round auction.

While there are many papers on sequential auctions with bidders having independent

private values (see Klemperer, 1999, and Krishna, 2002, for surveys), sequential auctions

with a¢ liated values have been little studied. Two papers related to our work are Ortega

Reichert (1968) and Hausch (1986). In both papers, bidders demand more than one object.

4Milgrom and Weber (1982, 2000) have shown that the ascending (English) auction raises the highest
revenue among standard simultaneous auctions. When there are three bidders and two objects, the single-
round uniform-price auction is equivalent to an ascending auction.
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Ortega Reichert (1968) studies a two-bidder, two-period, sequential �rst-price auction with

positive correlation of bidders�valuations across periods and across bidders. He shows that

there is a deception e¤ect. Compared to a one-shot auction, bidders reduce their �rst-round

bids to induce rivals to hold more pessimistic beliefs about their valuations for the second

object. Hausch (1986) studies a special discrete case of a two-bidder, two-unit demand, two-

signal, two-period, common-value, sequential �rst-price auction in which both the losing and

the winning bids are announced after the �rst round. Besides the deception e¤ect, he shows

that there is an opposite informational e¤ect that raises the seller�s revenue. In our model,

bidders have unit-demand, so there is no deception e¤ect; with no bid announcement �rst-

round bids are lower because bidders condition on being tied with the price setter, not because

they want to deceive their opponents. Furthermore, when the seller reveals the �rst-round

winning bids, there are informational e¤ects on both �rst and second-round bidding.

We introduce the model in the next section. Section 3 studies the symmetric equilibria

of the sequential auction with and without winning-bids announcement. Section 4 compares

the price sequences and revenues in the sequential and single-round auctions. Section 5

concludes. The proofs of the theorems reported in Section 3 are in the Appendix.

2 The Model

We consider the standard a¢ liated-value model of Milgrom and Weber (1982, 2000). A seller

owns k identical objects. There are n bidders participating in the auction, every bidder

desiring only one object. Before the auction, bidder i, i = 1; 2; : : : ; n, observes the realization

xi of a signal Xi. Let s1; :::; sm be the realizations of additional signals S1; :::; Sm unobservable

to the bidders, and denote with w the vector of signal realizations (s1; :::; sm; x1; :::; xn). Let

w _ w0 be the component-wise maximum and w ^ w0 be the component-wise minimum of w

and w0. Signals are drawn from a distribution with a joint pdf f(w), which is symmetric in

its last n arguments (the signals xi) and satis�es the a¢ liation property:

f(w _ w0)f(w ^ w0) � f(w)f(w0) for all w;w0: (1)
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The support of f is [s; s]m � [x; x]n, with �1 � s < s � +1, and �1 � x < x � +1.

The value of one object for bidder i is given by Vi = u(S1; :::; Sm; Xi; fXjgj 6=i), where the

function u(�) satis�es the following assumption.

Assumption 1. Vi = u(S1; :::; Sm; Xi; fXjgj 6=i) is non-negative, bounded, continuous, in-

creasing in each variable, and symmetric in the other bidders�signals Xj, j 6= i:

We compare two standard auction formats. In a single-round uniform auction (see Vick-

rey, 1961) the seller auctions all objects simultaneously in a single round. The bidders with

the k highest bids win one object each at a price equal to the (k + 1)-st highest bid. In a

sequential uniform auction, the seller auctions the objects in two rounds, k1 objects in the

�rst round and k2 = k� k1 in the second round. In round t, t = 1; 2, the bidders with the kt
highest bids win one object each at a price equal to the (kt + 1)-st highest bid. Since bidders

have unit demand, only the n�k1 �rst-round losers participate in the second round. For the

sequential auction, we consider two information policies. According to the �rst policy, the

seller does not reveal any information after the �rst round. This is referred to as the no-bid-

announcement policy. The second policy prescribes that the seller announces the �rst-round

winning bids (i.e., the k1 highest bids), before the second round bids are submitted. This is

referred to as the winning-bids-announcement policy.

3 Symmetric Equilibria

To derive the symmetric equilibrium bidding functions in each of the auction formats, it is

useful to take the point of view of one of the bidders, say bidder 1 with signal X1 = x, and

to consider the order statistics associated with the signals of all other bidders. We denote

with Y m the m-th highest signal of bidders 2; 3; :::; n (i.e., all bidders except bidder 1).

An important implication of a¢ liation is that if H (�) is an increasing function, then

E
�
H
�
X1; Y

1; :::; Y k
�
jc1 � Y 1 � d1; :::; ck � Y k � dk

�
is increasing in all its arguments (Mil-

grom and Weber, 1982, Theorem 5). We use this property repeatedly in our proofs; when we

refer to a¢ liation, we refer to this property.
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We denote with bs(�) the symmetric equilibrium bidding function of the single-round

uniform auction; bnt (�) and bat (�) are the symmetric equilibrium bidding functions in round t,

t = 1; 2, of the sequential uniform auction with no bid announcement and with winning-bids

announcement, respectively.

We begin by recalling (see Milgrom and Weber, 1982, 2000) that a symmetric equilibrium

bidding function in the single-round uniform auction is:

bs(x) = E
�
V1jX1 = x; Y

k = x
�
: (2)

Due to a¢ liation and Assumption 1, bs(x) is an increasing function of x. Bidder 1 bids the

expected value of an object conditional on his own signal, X1 = x, and on his signal being

just high enough to guarantee winning (i.e., being equal to the k-th highest signal among all

other bidders�signals).

Theorem 1. A symmetric equilibrium bidding function in the sequential uniform auction

with no bid announcement is given by

bn2 (x) = E
�
V1jX1 = x; Y

k = x
�
; (3)

bn1 (x) = E
�
bn2
�
Y k
�
jX1 = x; Y

k1 = x
�
: (4)

In an auction with no bid announcement, bids in both rounds depend only on a bidder�s

own signal. In a sequential auction with winning-bids announcement, the second-round bid

must also depend on the �rst-round winning bids. If the �rst-round symmetric-equilibrium

bidding function is increasing (as shown below), announcing the winning bids is equivalent to

announcing the k1 highest signals. Taking the point of view of a bidder who is bidding in the

second round, without loss of generality bidder 1, the announced bids reveal the realizations

y1; :::; yk1 of Y
1; :::; Y k1, the k1 highest signals among bidders 2; :::; n.

Theorem 2. Let y1; :::; yk1 be the realizations of the signals that correspond to the winning

bids in the �rst round. A symmetric equilibrium bidding function in the sequential uniform
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auction with winning-bids announcement is given by

ba2(x; y1; :::; yk1) = E
�
V1jX1 = x; Y

1 = y1; :::; Y
k1 = yk1 ; Y

k = x
�
; (5)

ba1(x) = E
�
ba2
�
Y k;Y 1; :::; Y k1�1; x

�
jX1 = x; Y

k1 = x
�
: (6)

The proofs are in the Appendix; here we discuss the underlying intuition.

First, note that a¢ liation and Assumption 1 imply that the bidding functions (3), (4),

and (6) are increasing in x, while the bidding function (5) is increasing in x and y1; :::; yk1 .

Second, observe that the bidding function in the second round of the auction with no bid

announcement (3) coincides with the bidding function in the single-round uniform auction

(2). Intuitively, this makes sense. With no announcement, the only additional information

that bidders have in the second round is that in the �rst round k1 bidders bid higher than

they did. Since the �rst-round bid function is increasing, this implies that the remaining

bidders know that k1 of the signals of the other bidders are higher than their own. Thus, a

bidder bids the expected value of an object conditional on (a) his own signal, (b) the fact

that the k1 �rst-round winners have higher signals, and (c) his own signal being just high

enough to win (i.e., being equal to the (k � k1)-th highest signal of the n� 1� k1 remaining

opponents). This is equivalent to saying that a bidder conditions on his own signal and on

his signal being equal to the k-th highest signal of the other n� 1 bidders, which yields the

same equilibrium bidding function as in a single-round uniform auction.

Third, the second-round bidding function for the case in which the �rst-round winning

bids are announced must also condition on the signals revealed by this announcement. In

this case, each remaining bidder bids the expected value of an object conditional on (a) his

own signal, (b) his own signal being just high enough to win (i.e., being equal to the k-th

highest signal of his opponents), and (c) the revealed signal values of the �rst-round winning

bidders.

Finally, a bidder knows that if he loses in the �rst round of a sequential auction with

or without winning-bids announcement, then he will get another chance to win the object.

Hence, he does not want to pay more than what he expects to pay in the second round.
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He bids the expected second-round price conditional on the observed value of his own signal

and his own signal being just high enough to win in the �rst round (i.e., being equal to the

k1-th highest signal of the opponents). The second-round price is the second-round bid of

the opponent with the k-th highest signal: bn2 (Y
k) in an auction with no bid announcement

and ba2
�
Y k;Y 1; :::; Y k1

�
in an auction with winning-bids announcement.

As we shall see in the Appendix, it is simpler to prove Theorem 2 than Theorem 1. There

are two steps in the proof of Theorem 2. Assuming that all other bidders follow the bidding

functions ba1(�) and ba2(�), �rst we show that, no matter what bidder 1 did in the �rst round,

in the second round it is optimal for him to bid according to ba2(�). Then we show that in

the �rst round it is optimal to follow ba1(�). This method of proof does not fully generalize

to the case of no bid announcement. In this case, it is optimal for bidder 1 with signal x to

bid according to bn2 (x) in the second round if and only if he has bid according to b
n
1 (x), or

lower, in the �rst round. On the contrary, if bidder 1 has bid higher than bn1 (x) in the �rst

round and lost, he will want to bid higher than bn2 (x) in the second round. This, in turn,

makes it di¢ cult to show that it is optimal to bid according to bn1 (x) in the �rst round. As

Milgrom and Weber (2000, p. 182) point out, the di¢ culty in proving equilibrium existence

in this case is in ruling out that �a bidder might choose to bid a bit higher in the �rst round

in order to have a better estimate of the winning bid, should he lose.�Our proof of Theorem

1 overcomes this di¢ culty.

We conclude this section with a remark about extending Theorems 1 and 2 to more than

two rounds of bidding.

REMARK. Theorem 2 and its proof readily generalize to the case of any �nite number of

rounds. Suppose that there are T rounds of bidding and kt objects are sold in round t. Let

mt =
Pt

�=1 k� . Then the symmetric equilibrium bidding functions of the sequential auction

with winning-bids announcement are

baT (x; y1; :::; ymT�1) = E
�
V1jX1 = x; Y

1 = y1; :::; Y
mT�1 = ymT�1 ; Y

mT = x
�
;
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bat (x; y1; :::; ymt�1) =

= E
�
bat+1

�
Y mt+1 ; y1; :::; ymt�1 ; Y

mt�1+1; :::; Y mt�1; x
�
jX1 = x; Y

mt = x; Y 1 = y1; :::; Y
mt�1 = ymt�1

�
:

In the case of no bid announcement, this extension presents a technical di¢ culty. We can

show that if a symmetric increasing equilibrium exists, then the bidding functions must have

the following form:5

bnT (x) = E [V1jX1 = x; Y
mT = x] ;

bnt (x) = E
�
bat+1 (Y

mt+1) jX1 = x; Y
mt = x

�
:

However, we have not been able to generalize the existence part of the proof of Theorem 1

to more than two rounds.

4 Properties of Sequential Auctions

This section establishes the properties and compares the equilibrium bidding strategies of the

single-round and the sequential uniform auctions with and without winning-bids announce-

ment. It is now convenient to take the point of view of the seller, or of an outside observer,

and consider the order statistics of the signals of all n bidders. Denote with Zm the m-th

highest signal among all n bidders.

We �rst look at the sequential auction with no bid announcement. Let P nt be the price

in round t of such an a auction. Prices are random variables: P n1 = bn1 (Z
k1+1), and P n2 =

bn2 (Z
k+1). We show that, conditional on the realization pn1 of P

n
1 , the expected second-round

price is higher than pn1 .

Theorem 3. In a sequential uniform auction with no bid announcement, the expected

second-round price conditional on the realized �rst-round price is higher than the realized

�rst-round price: E [P n2 jpn1 ] � pn1 .

Proof. The realized price in the �rst round is given by pn1 = bn1 (zk1+1), where zk1+1 is the

5Milgrom and Weber (2000) conjectured that this is an equilibrium (for the case m1 = ::: = mT = 1).
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realized value of Zk1+1, the (k1 + 1)-st highest out of n signals. Thus, conditioning on pn1 is

the same as conditioning on Zk1+1 = zk1+1. The price in the second round is P
n
2 = b

n
2 (Z

k+1).

Since conditioning on the event fZk1+1 = zk1+1g is equivalent to conditioning on the event

fY k1 � X1 = zk1+1 � Y k1+1g,6 the expected price in the second round conditional on pn1 is

E[P n2 jpn1 ] = E[bn2 (Z
k+1)jZk1+1 = zk1+1] = E[bn2 (Y k)jY k1 � X1 = zk1+1 � Y k1+1]

� E[bn2 (Y
k)jY k1 = X1 = zk1+1] = b

n
1 (zk1+1) = p

n
1 ;

where the inequality follows from a¢ liation.

We will call the di¤erence between the expected �rst-round price and the expected second-

round price the lowballing e¤ect, Ln = E[P n1 ]�E[P n2 ]: Theorem 3 implies that if signals are

strictly a¢ liated, then Ln < 0; that is, the expected price in the second round is higher than

the expected price in the �rst round. If, on the other hand, signals are independent, then

Ln = 0.

Two observations are useful for an intuitive understanding of the lowballing e¤ect. First,

in a uniform auction a bidder�s payo¤ only varies with a small change in his �rst-round bid

if he is the �rst-round price setter and his bid is tied with one of the winners�bids (hence

they have the same signals). Optimal bidding requires that, conditional on such an event,

a bidder is indi¤erent between winning in the �rst or in the second round. In other words,

conditional on being the �rst-round price setter and his bid being tied with the bid of one of

the �rst-round winners, a bidder expects the �rst and second round prices to be equal.

Second, consider the event, call it event �, in which bidder 1 is the �rst-round price

setter and he and a �rst-round winner have the same realized signal value. By the �rst

observation, conditional on �, the expected �rst-round price equals the expected second-

round price. The expected �rst-round price, conditional on �, is a correct estimate of the

6Because of the symmetry of signals, conditioning on the event fZm+1 = xg is equivalent to conditioning
on the event fX1 � x; Y m = xg, or on the event fY m � X1 = x � Y m+1g. In other words, the event that
the (m+1)-st highest signal is x is equivalent to the event that one bidder, without loss of generality bidder
1, has a signal higher than or equal to x, and the m-th highest signal among all other bidders�signals is x. It
is also equivalent to the event that bidder 1 has signal x and the m-th highest signal among all other bidders
is greater than x, while the (m+ 1)-st highest signal is smaller than x.
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�rst-round price conditional on bidder 1 being the �rst-round price setter. On the other hand,

the expected second-round price, conditional on �, is a correct estimate of the second-round

price conditional on bidder 1 being the �rst-round price setter only if signals are independent,

while it is an underestimate if signals are strictly a¢ liated. This is because, when bidder 1 is a

price setter in the �rst round, all �rst-round winners have higher signal values with probability

one. It follows that, conditional on bidder 1 being the �rst-round price setter (and hence also

unconditionally, by the law of iterated expectations), the �rst-round expected price is strictly

lower than the second-round expected price when signals are strictly a¢ liated. This is the

lowballing e¤ect. With independent signals, the expected prices in the two rounds coincide

and the price sequence is a martingale.7

As shown in the next proposition, it is a direct consequence of the lowballing e¤ect,

Ln � 0; and the equality of the second-round price with the price in a single-round auction,

that the seller�s expected revenue is higher in a single-round uniform auction than in the

sequential uniform auction with no bid announcement.

Proposition 4. The seller�s expected revenue in a sequential uniform auction with no bid

announcement is lower than in a single-round uniform auction for k objects.

Proof. The second round bidding function bn2 (x), given by (3), is the same as the bidding

function in a single-round auction bs(x), given by (2). Therefore, the expected second-round

price in the sequential auction is the same as the expected price in the single-round auction.

By Theorem 3, the expected price in the �rst round of a sequential auction is lower than

the expected price in the second round. Thus expected revenue in the sequential auction is

lower.

We now study the sequential auction with winning-bids announcement. Let the random

variable P at be the price in round t: P
a
1 = ba1(Z

k1+1), P a2 = ba2(Z
k+1;Z1; :::; Zk1). We �rst

show that prices drift upward in this case as well.

7Milgrom and Weber (2000) and Weber (1983) discuss this result in the standard independent private
value model. In a recent paper, Feng and Chatterjee (2005) compare equilibrium prices and revenue in
single-round and sequential auctions with independent private values, under the assumption that bidders
discount future payo¤s and there is uncertainty about the number of items being sold.
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Theorem 5. In a sequential uniform auction with winning-bids announcement, the expected

second-round price conditional on the realized �rst-round price is higher than the realized

�rst-round price: E [P a2 jpa1] � pa1.

Proof. The proof is analogous to the proof of Theorem 3. Letting pa1 = ba1(zk1+1), where

zk1+1 is the realized value of Z
k1+1, we have

E[P a2 jpa1] = E[ba2(Z
k+1;Z1; :::; Zk1)jZk1+1 = zk1+1]

= E[ba2(Y
k;Y 1; :::; Y k1)jY k1 � X1 = zk1+1 � Y k1+1]

� E[ba2(Y
k;Y 1; :::; Y k1�1; zk1+1)jY k1 = X1 = zk1+1] = b

a
1(zk1+1) = p

a
1:

When the winning bids are announced, we can de�ne the lowballing e¤ect as La = E[P a1 ]�

E[P a2 ]; it is L
a � 0, with the inequality being strict if signals are strictly a¢ liated. As in the

case of no bid announcement, the lowballing e¤ect stems from the �rst-round price setter�s

bidding so as to equate a correct estimate of the �rst-round price and an underestimate of

the second-round price. The lowballing e¤ects under the two di¤erent announcement policies

cannot be easily compared; their di¤erence depends on the details of the signal distribution,

the number of bidders, the payo¤ function, and the number of objects auctioned in each

round.

Revealing the winning bids has an impact on the equilibrium prices. In particular, in the

second round bidders have more information on which to base their bids. De�ne the infor-

mational e¤ect on second-round prices, Ia2 , as the di¤erence between second-round expected

prices with and without winning-bids announcement: Ia2 = E[P
a
2 ]� E[P n2 ].

We now show that when the �rst-round winning bids are announced the informational

e¤ect on second-round bids is positive; that is, the expected second-round price is higher

when the �rst-round winning bids are announced than when they are not.

Proposition 6. In the sequential auction with winning-bids announcement the expected

second-round price is higher than the expected second-round price in a sequential auction

with no bid announcement: Ia2 � 0.
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Proof. Let zk+1 be the realization of the (k + 1)-st highest signal among the n bidders. The

expected price in the second round of the sequential auction with winning-bids announcement,

conditional on Zk+1 = zk+1, is

E[P a2 jZk+1 = zk+1] = E[ba2(zk+1;Y
1; :::; Y k1)jX1 � Y k = zk+1]

� E[ba2(zk+1;Y
1; :::; Y k1)jX1 = Y

k = zk+1]

= E[E[V1jX1 = Y
k = zk+1; Y

1; :::; Y k1 ]jX1 = Y
k = zk+1]

= E[V1jX1 = Y
k = zk+1]

= bn2 (zk+1) = E[P
n
2 jZk+1 = zk+1];

where the inequality follows from a¢ liation. Taking expectations over Zk+1 concludes the

proof.

Recall that the lowballing e¤ect can be explained by focusing on the behavior of the

�rst-round price setter. To understand the intuition behind the informational e¤ect we must

look at the second-round price setter, say bidder 1. Under both policies, in the second round

bidder 1 bids his expected value for the object conditional on (i) being the price setter, (ii)

his bid being tied with the bid of a winner, and (iii) any additional available information.

By (i) and (ii), in both sequential auction formats the second-round price setter�s bid is an

underestimate of his true value for the object when signals are a¢ liated. By (iii), when

the �rst-round bids are announced the price setter conditions on them, and so his bid is

a better estimate of the object�s value; that is, the bid is closer to the second-round price

setter�s expected value, and hence the second-round price is higher than when there is no bid

announcement.

Announcing the �rst-round winning bids also changes the �rst-round bids. Let Ia1 be the

di¤erence between �rst-round expected prices with and without winning-bids announcement:

Ia1 = E[P a1 ] � E[P n1 ]. It is useful to think of Ia1 as being the sum of two components, the

second-round informational e¤ect and the di¤erence in lowballing e¤ects: Ia1 = I
a
2+(L

a � Ln).

For the same reason that it is not possible to say anything general about La � Ln, no

13



general result about Ia1 is available. As the numerical example in the next subsection will

show, Ia1 could be either positive or negative.

All auction formats discussed in this paper are e¢ cient and, as shown by Proposition 4,

the single-round uniform auction yields higher revenue than the sequential auction with no

bid announcement. The revenue comparison between the single-round uniform auction and

the sequential auction with winning-bids announcement, on the other hand, is ambiguous.

The numerical example in Section 4.1 shows that either could yield higher revenue. Let E[Rs]

be the expected revenue in the single-round auction,

E[Rs] = kE[P s] = kE[P n2 ]:

LetE[Ra] be the expected revenue in the sequential auction with winning-bids announcement,

E[Ra] = k1E[P
a
1 ] + (k � k1)E[P a2 ] = k1La + kE[P a2 ]:

It follows that

E[Ra]� E[Rs] = k1La + kIa2 ;

the �rst component of the revenue di¤erence, the lowballing e¤ect, is negative, while the

second component, the information e¤ect, is positive. Intuitively, increasing the number of

objects sold in the �rst round reduces revenue because of the lowballing e¤ect (La � 0), and

it increases revenue due to the informational e¤ect. In general, the second-round expected

price E[P a2 ] and, as a consequence, the informational e¤ect I
a
2 , is increasing in k1, because as

more objects are sold in the �rst round, more information �lters to the second round when

the winning bids are announced.8 However, the rate of change in the informational e¤ect

with respect to k1 depends in a complicated way on the signal distribution, the number of

bidders and objects, and the payo¤ function. Intuitively, it depends on the informational

content of revealing one additional order statistic; it could well be a non-monotone function

of k1. Similarly, the lowballing e¤ect and its rate of change with respect to k1 could increase

8The proof follows the same lines as the proof of Proposition 6.
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or decrease and in general are not monotone functions of k1: It follows that, if k objects are

to be auctioned, the number of objects k1 that should be sold in the �rst round to maximize

revenue depends on the signal distribution, the number of bidders and objects, and the

bidders�payo¤ function.

There is a special version of the model that yields unambiguous �rst-round price and

revenue ranking. It is the case in which values are private: Vi = Xi. In the second round

of a sequential auction with a¢ liated private values, a bidder bids his own value; that is,

the second-round bid coincides with the bid in a single-round uniform auction, irrespective

of whether the �rst-round winning bids are revealed. It follows that the �rst-round bidding

function is independent of the information policy. Because of the lowballing e¤ect, with

strictly a¢ liated signals the �rst-round expected price is lower than the second-round ex-

pected price. Thus, with a¢ liated private values, auctioning the objects in a single round

yields the seller higher revenue, independently of the information policy that he follows.

Proposition 7. With a¢ liated private values, the seller�s expected revenue in a sequential

uniform auction with winning-bids announcement is the same as in a sequential uniform

auction with no bid announcement, and is lower than in a single-round uniform auction for

k objects.

4.1 A Numerical Example

We now present a numerical example that shows that revenue and �rst-round price com-

parisons are ambiguous, when values are not purely private. The example is constructed to

make the numerical calculations as simple as possible, not to be realistic. We assume that

there are three bidders, two objects, each bidder has the same value for one object, and that

each bidder�s signal is a conditionally independent estimate of this common value. This is a

special case of our model in which n = 3, k1 = k2 = 1, u(V;X1; X2; X3) = V , and each Xi,

i = 1; 2; 3, is independently drawn from a conditional density f(xjv). The common value has

a discrete distribution: its value is either v1 = 0 or v2 = 0:5, with equal probability. The pdf
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Figure 1: Prices as functions of the parameter �.

f(xjv) is given by

f(xjv) =

8<: 1 + � (x� v)

0

if x 2
�
v � 1

2
; v + 1

2

�
;

if x =2
�
v � 1

2
; v + 1

2

�
;

(7)

where � 2 [�2; 2].9

Figure 1 plots the expected prices E [P n1 ], E [P
n
2 ], E [P

a
1 ], and E [P

a
2 ] as functions of �.

Recall that, by (2) and (3), E [P n2 ] is equal to E [P
s]. The following conclusions can be drawn

from the �gure.

First, as claimed by Theorems 3 and 5, E [P n1 ] is always less than E [P
n
2 ], and E [P

a
1 ] is

9In such a case, the a¢ liation property can be written as f(xjv)f(x0jv0) � f(xjv0)f(x0jv) for all x; x0; v; v0
such that x � x0 and v � v0. The signal distribution (7) satis�es the a¢ liation property (1). All the results
in the previous sections extend to the model with a common value V having a discrete distribution.
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Figure 2: Revenues as functions of the parameter �.

always less than E [P a2 ]. Second, as stated in Proposition 6, E [P
a
2 ] is always higher than

E [P n2 ]. Third, E [P
a
1 ] may be smaller or greater than E [P

n
1 ], depending on whether � is

smaller or greater than 0:25. Fourth, E [P a1 ]may be smaller or greater than E [P
n
2 ], depending

on whether � is smaller or greater than 0:85.

Figure 2 plots expected auction revenues for the sequential auction with no bid announce-

ment, E [Rn], the sequential auction with winning-bids announcement, E [Ra], and the single-

round auction for two objects, E [Rs]. As we know from Theorem 4, the expected revenue

of a sequential auction with no bid announcement is always lower than the expected revenue

of a single-round auction. Figure 2 shows that the expected revenue of a sequential auction

with winning-bids announcement may be smaller or greater than the expected revenue of a

single-round auction, depending on whether � is smaller or greater than zero.10

10In our example, for all values of �, expected revenue in a sequential auction is higher with winning-bids
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5 Concluding Remarks

We have derived the symmetric equilibrium bidding functions for the sequential uniform auc-

tion with and without winning-bids announcement (Theorems 1 and 2), and we have identi-

�ed two e¤ects on revenue of auctioning objects sequentially, rather than simultaneously: a

lowballing e¤ect and an informational e¤ect. The lowballing e¤ect reduces bids in the �rst

round (Theorems 3 and 5). When there are no bid announcements (or values are private),

only the lowballing e¤ect is at work and both the �rst-round expected price and the seller�s

revenue are lower than in a single-round auction (Propositions 4 and 7). When the �rst-round

winning bids are announced, the informational e¤ect raises the expected second-round price

above the price in a single-round auction (Proposition 6). Because of the combination of

the lowballing and the informational e¤ect, the �rst-round expected price in the sequential

auction with winning-bids announcement could be lower or higher then the expected price

in the single-round auction.11

We know from Milgrom and Weber (1982, 2000) that the ascending (English) auction

raises the highest revenue among the standard auctions in which all objects are sold simulta-

neously. Since the ascending auction is equivalent to the single-round uniform auction when

there are only three bidders for two objects, we can conclude that in some cases the sequen-

tial uniform-price auction with winning-bids announcement raises greater revenue than any

standard simultaneous auction.12

Milgrom and Weber (2000) were the �rst to report, for their conjectured equilibrium,

that with no bid announcement prices drift upward in a sequential uniform auction. We have

extended this result to the case of winning-bids announcement. Surprisingly, even though

announcement than with no bid announcement. In other words, even though Ia1 may be negative, I
a
1 + I

a
2

turns out to be positive. We have obtained the same result in all other numerical examples we have tried,
but we have not been able to provide a formal proof.
11As shown in the example of Section 4.1, the �rst-round expected price in the sequential auction with

winning-bids announcement could even be lower than the �rst-round expected price with no bid announce-
ment.
12When it raises greater revenue than an ascending auction, the sequential uniform auction with winning-

bids announcement also raises greater revenue than a sequence of ascending auctions. As as shown by Milgrom
and Weber (2000), the equilibrium outcome of a sequence of ascending auctions is the same as the equilibrium
outcome of an ascending auction in which all objects are sold simultaneously.
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they noticed that the price sequence is upward drifting, Milgrom and Weber (2000, p. 193)

conjectured that the sequential auction with no bid announcement yields greater revenue

than the single-round uniform auction. We have shown that this is incorrect. Because of the

lowballing e¤ect, the sequential auction with no bid announcement yields a lower revenue

than the single-round auction.

The linkage principle is a mathematical result for single-item auctions, �rst obtained

by Milgrom and Weber (1982), which has been broadly interpreted as saying that public

revelation of information raises prices and revenue.13 Our result that sequential auctions

may yield lower revenue than a single-round auction, even if the winning bids are announced,

could be interpreted as a failure of the broad interpretation of the �linkage principle�in multi-

unit, sequential auctions.14 On the other hand, one could also argue that our result that the

informational e¤ect raises second-round prices is consistent with the broad interpretation of

the linkage principle. It is to be noted that in the derivation of both results we make no use

of the narrower, mathematical de�nition of the linkage principle.

In the auctions we see in practice, it is common to announce only the winning price.

Unfortunately, as Milgrom and Weber (2000, pp. 181-182) pointed out, analyzing such a

policy in a sequential uniform auction involves technical complications. If the �rst round

bidding function is increasing, then announcing the winning price reveals the price-setter�s

signal (i.e., the highest losing signal). In the second round, the �rst-round price-setter will

�nd himself at a disadvantage, and in an asymmetric position with respect to all other

remaining bidders.15 An approximation of the policy of announcing the �rst-round price

is to announce the lowest �rst-round winning bid; such a bid converges to the �rst-round

13See Krishna (2002, pp.103-110) for a survey and nice discussion.
14In our model bidders have unit-demand. See Perry and Reny (1999) for an example of a �failure of the

linkage principle,�in a multi-unit, single-round auction, in which bidders have multi-unit demand.
15de Frutos and Rosenthal (1998) studied an example with three bidders and two objects, in which the

objects�common value is the sum of the bidders�signals, and signals are independent random variables that
can only take values 0 or 1. They showed that, whether or not the winning price is announced, the expected
second-round price, conditional on the �rst-round price, can be either higher or lower than the �rst-round
price. This result does not contradict our results. In our paper, a¢ liation in the bidders�signal is the reason
why the price sequence is a submartingale. In de Frutos and Rosenthal (1998), signals are independent and
discrete, and it is because equilibrium is in mixed strategies that the price sequence can be either increasing
or decreasing.
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price as the number of losing bidders increases (see Mezzetti and Tsetlin, 2007). For such a

policy, it is straightforward to establish equilibrium existence and to derive the equilibrium

bidding function, using arguments analogous to those in the proof of Theorem 2. It is also

simple to show that the policy studied in this paper of announcing all �rst-round winning

bids yields higher expected prices in both rounds. More generally, regardless of whether any

other winning bids are released, analogues of Theorem 2 and all results in Section 4 still hold,

as long as the lowest winning bid is announced after the �rst round, and no losing bids are

revealed.16 Once some of the losing bids are announced, a signaling motive is introduced in

bidders��rst-round behavior, besides the potential asymmetry of the bidders in the second

round mentioned above. When a signaling motive is present, bidders will want to conceal

their information and �rst-round pooling of bids typically occurs.

We have considered two-rounds uniform auctions. As we point out at the end of Section

3, Theorem 2, that deals with the equilibrium bidding functions when all winning bids are

announced, easily extends to auctions with any number of rounds. While we have so far been

unable to generalize the existence part in the proof of Theorem 1 to more than two rounds,

we conjecture that this generalization is possible, and that the bidding functions displayed

at the end of Section 3 correspond to an equilibrium. With this caveat, all theorems about

revenue ranking and comparison of prices in di¤erent rounds and auction formats generalize

to more than two rounds. The lowballing e¤ect and informational e¤ect on the last-round

price generalize as well. Expected prices increase over time because, by the lowballing e¤ect,

the price setter in round t bids so as to equate a correct estimate of the price in round t and

an underestimate of the price in round t+1. In the last round, if the winning bids have been

announced, then, by the informational e¤ect, the price setter�s bid is a better estimate of the

objects�s value; that is, the expected price is higher than in a single-round auction.

16Revealing the lowest winning bid eliminates the di¢ culty mentioned by Milgrom and Weber (2000, p.182)
of proving that it is not pro�table to bid higher in order to have better information in subsequent rounds.
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Appendix

Proof of Theorem 2. First, note that the last round of the sequential uniform auction

is equivalent to a single-round uniform auction in which (i) the �rst k1 signals have been

revealed, (ii) there are n� k1 bidders and k � k1 objects left. De�ne

v2(x; y1; :::; yk1 ; yk) = E
�
V1jX1 = x; Y

1 = y1; Y
2 = y2; :::; Y

k1 = yk1 ; Y
k = yk

�
: (8)

The results in Milgrom and Weber (1982, 2000) imply that

ba2(x; y1; :::; yk1) = v2(x; y1; :::; yk1 ;x): (9)

Now consider the �rst round. Assume that all bidders other than bidder 1 use the bidding

function ba1(�). Suppose that bidder 1 observes signal x and bids �1. Note that bidding below

min (ba1) in the �rst round yields bidder 1 the same payo¤ as bidding min (b
a
1) - in this case

bidder 1 never wins - while bidding above max (ba1) yields the same payo¤as bidding max (b
a
1)

- in this case bidder 1 always wins. Since the bidding functions are continuous, this implies

that we can de�ne �1 such that ba1(�1) = �1; that is, we can think that bidder 1 uses the same

bidding function as all other bidders, but in the �rst round he bids as if he had observed

signal �1. We need to show that �1 = x. Let

v1(x; yk1 ; yk) = E
�
V1jX1 = x; Y

k1 = yk1 ; Y
k = yk

�
(10)

= E
�
v2(x;Y

1; :::; Y k1�1; yk1 ; yk)jX1 = x; Y
k1 = yk1 ; Y

k = yk
�
;

b�2(yk; yk1jx) = E
�
ba2(yk;Y

1; :::; Y k1�1; yk1)jX1 = x; Y
k1 = yk1 ; Y

k = yk
�
; (11)

where the second equality in (10) follows from (8).

Let h(yk1 ; ykjx) be the joint density of Y k1 and Y k conditional on X1 = x. Bidder 1�s
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total expected pro�t at the beginning of the �rst round is

�a(x;�1) =

Z �1

x

Z yk1

x

�
v1(x; yk1 ; yk)� ba1(yk1)

�
h(yk1 ; ykjx)dykdyk1

+

Z x

�1

Z x

x

�
v1(x; yk1 ; yk)� b�2(yk; yk1 jx)

�
h(yk1 ; ykjx)dykdyk1 ;

where the �rst (second) term is the pro�t from the �rst (second) round. Di¤erentiating

�a(x;�1) with respect to �1 yields

@�a (x;�1)

@�1
=

Z �1

x

�
v1(x;�1; yk)� ba1(�1)

�
h(�1; ykjx)dyk

�
Z x

x

�
v1(x;�1; yk)� b�2(yk;�1jx)

�
h(�1; ykjx)dyk

=

Z �1

x

�
b�2(yk;�1jx)� ba1(�1)

�
h(�1; ykjx)dyk (12)

+

Z �1

x

�
v1(x;�1; yk)� b�2(yk;�1jx)

�
h(�1; ykjx)dyk:

To prove that �a(x;�1) is maximized at �1 = x, we will show that @�a(x;�1)
@�1

has the same

sign as (x� �1). The second term in (12) is zero for �1 < x (by de�nition, Y k1 � Y k and

hence h(�1; ykjx) = 0 for �1 < x), while for �1 > x it is negative because

Z �1

x

�
v1(x;�1; yk)� b�2(yk;�1jx)

�
h(�1; ykjx)dyk

=

Z �1

x

E
�
v2
�
x;Y 1; :::; Y k1�1; �1; yk

�
jX1 = x; Y

k1 = �1; Y
k = yk

�
h(�1; ykjx)dyk

�
Z �1

x

E
�
ba2
�
yk;Y

1; :::; Y k1�1; �1
�
jX1 = x; Y

k1 = �1; Y
k = yk

�
h(�1; ykjx)dyk

=

Z �1

x

E
�
v2
�
x;Y 1; :::; Y k1�1; �1; yk

�
jX1 = x; Y

k1 = �1; Y
k = yk

�
h(�1; ykjx)dyk

�
Z �1

x

E
�
v2
�
yk;Y

1; :::; Y k1�1; �1; yk
�
jX1 = x; Y

k1 = �1; Y
k = yk

�
h(�1; ykjx)dyk � 0;

where the �rst equality follows from (10) and (11), the second equality follows from (9), and

the inequality follows from a¢ liation and yk � x.
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By (11) and (6), the �rst term in (12) is equal to

Z �1

x

E
�
ba2
�
yk;Y

1; :::; Y k1�1; �1
�
jX1 = x; Y

k1 = �1; Y
k = yk

�
h(�1; ykjx)dyk

�ba1 (�1)
Z �1

x

h(�1; ykjx)dyk

= E
�
ba2
�
Y k;Y 1; :::; Y k1�1; �1

�
jX1 = x; Y

k1 = �1
� Z �1

x

h(�1; ykjx)dyk

�E
�
ba2
�
Y k;Y 1; :::; Y k1�1; �1

�
jX1 = �1; Y

k1 = �1
� Z �1

x

h(�1; ykjx)dyk:

Because of a¢ liation, this di¤erence has the same sign as (x��1). Hence @�a(x;�1)
@�1

is positive

for �1 < x and negative for �1 > x; the expected pro�t of bidder 1 is maximized at �1 = x.

This implies that bidder 1�s optimal �rst-round bid is ba1(x) and concludes the proof.

In the proof of Theorem 1 we use the following lemma.

Lemma 1. Let D(s) be an integrable function de�ned on [0; S]. Let a(s) be a non-decreasing

positive function, de�ned on [0; S]. If
R x
0
D(s)a(s)ds � 0 for all x 2 [0; S], then

R x
0
D(s)ds � 0

for all x 2 [0; S].

Proof of Lemma 1. De�ne F (x) =
R x
0
D(s)a(s)ds and F 0(x) = D(x)a(x) for all x 2 [0; S].

Then, using integration by parts, we have

Z x

0

D(s)ds =

Z x

0

D(s)a(s)
1

a(s)
ds

=

Z x

0

F 0(s)
1

a(s)
ds

= F (x)
1

a(x)
� F (0) 1

a(0)
+

Z x

0

F (s)
a0(s)

a2(s)
ds:

The �rst term on the third line is non-positive because F (x) � 0 and a(x) > 0 by assumption.

The second term is zero, because F (0) = 0. The third term is non-positive because F (s) � 0

and a0(s) � 0 (a(s) is di¤erentiable a.e.). Therefore
R x
0
D(s)ds � 0, as claimed.

Proof of Theorem 1. Assume that all bidders other than bidder 1 use the bidding functions

bn1 (�) and bn2 (�) given by (4) and (3). We want to show that it is also optimal for bidder 1 to
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use them. Suppose that bidder 1 observes signal x and bids �1 in the �rst round and �2 in

the second round. As argued in the proof of Theorem 2, we can de�ne �1 and �2 such that

bn1 (�1) = �1 and b
n
2 (�2) = �2.

If bidder 1 does not win an object in the �rst round, he knows that yk1 > �1. Then his

expected second-round pro�t conditional on �1, �2, and X1 = x can be written as

�n2 (x;�1; �2) =

Z x

�1

Z �2

x

�
v1(x; yk1 ; yk)� bn2 (yk)

� h(yk1 ; ykjx)R x
�1

R eyk1
x
h(eyk1 ; eykjx)deykdeyk1 dykdyk1 ; (13)

where v1(�) is given by (10) and h(yk1 ; ykjx) is the joint density of Y k1 and Y k conditional on

X1 = x.17 Di¤erentiating �n2 (x;�1; �2) with respect to �2, we obtain

@�n2 (x;�1; �2)

@�2
=

Z x

�1

�
v1(x; yk1 ;�2)� bn2 (�2)

� h(yk1 ; �2jx)R x
�1

R eyk1
x
h(eyk1 ; eykjx)deykdeyk1 dyk1 ;

which is equal to

�
E[V1jX1 = x; Y

k1 � �1; Y k = �2]� E[V1jX1 = �2; Y
k = �2]

� R x
�1
h(eyk1 ; �2jx)deyk1R x

�1

R eyk1
x
h(eyk1 ; eykjx)deykdeyk1 :

It follows from a¢ liation and Assumption 1 that, when �1 � x, @�
n
2 (x;�1;�2)

@�2
has the same sign

as (x � �2). This shows that if bidder 1 bids less than or equal to bn1 (x) in the �rst round

(i.e., if �1 � x), then his optimal bid in the second round is bn2 (x) (i.e., �2 = x).

We complete the proof by showing that it is optimal for bidder 1 to bid bn1 (x) in the �rst

round (i.e., �1 = x). Let ��2(�1) be the value of �2 that maximizes �
n
2 (x;�1; �2); we have

already shown that ��2(�1) = x for �1 � x. Using (10) and (13), bidder 1�s total expected

pro�t at the beginning of the �rst round is

�n (x;�1) =

Z �1

x

Z yk1

x

�
v1(x; yk1 ; yk)� bn1 (yk1)

�
h(yk1 ; ykjx)dykdyk1

+

Z x

�1

Z ��2(�1)

x

�
v1(x; yk1 ; yk)� bn2 (yk)

�
h(yk1 ; ykjx)dykdyk1 :

17The second-round pro�t depends on �1, contrary to the case in which the winning bids are announced.
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Di¤erentiating with respect to �1 and applying the envelope theorem, we obtain

@�n(x;�1)

@�1
=

Z �1

x

�
v1(x;�1; yk)� bn1 (�1)

�
h(�1; ykjx)dyk

�
Z ��2(�1)

x

�
v1(x;�1; yk)� bn2 (yk)

�
h(�1; ykjx)dyk

=

Z �1

x

�
bn2 (yk)� bn1 (�1)

�
h(�1; ykjx)dyk (14)

+

Z �1

��2(�1)

�
v1(x;�1; yk)� bn2 (yk)

�
h(�1; ykjx)dyk:

The �rst term in equation (14), using (4), is

�Z �1

x

�
bn2 (yk)� bn1 (�1)

� h(�1; ykjx)R �1
x
h(�1; eykjx)deyk dyk

�Z �1

x

h(�1; eykjx)deyk =�
E
�
bn2 (Y

k)
��X1 = x; Y

k1 = �1
�
� E

�
bn2 (Y

k)
��X1 = �1; Y

k1 = �1
�� Z �1

x

h(�1; ykjx)dyk:

By a¢ liation, this term has the same sign as (x� �1).

It only remains to show that the second term in (14) is non-negative for �1 < x and

non-positive for �1 > x.

First, observe that if ��2(�1) � �1 then the second term in (14) is zero, since, by de�nition,

h(�1; ykjx) = 0 for yk > �1. Therefore, since ��2(�1) = x for �1 � x, the second term in (14)

is zero for �1 � x. To show that in the case �1 > x and ��2(�1) < �1 the second term in (14)

is non-positive, we will use Lemma 1.18 De�ne

D(yk) =

 R x
�1
v1(x; yk1 ; yk)h(yk1 ; ykjx)dyk1R x

�1
h(yk1 ; ykjx)dyk1

� bn2 (yk)
!
h(�1; ykjx); (15)

and note that, by a¢ liation, the second term in (14) is smaller than
R �1
��2(�1)

D(yk)dyk. Then

a su¢ cient condition for the second term in (14) to be negative is

Z �1

��2(�1)

D(yk)dyk � 0: (16)

18This is precisely where lies the di¢ culty mentioned by Milgrom and Weber (2000). We need to show
that in the �rst round bidder 1 does not want to bid as if his signal were higher than x.
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De�ne

a(yk) =

R x
�1
h(yk1 ; ykjx)dyk1
h(�1; ykjx)

: (17)

Since ��2(�1) maximizes �
n
2 (x;�1; �2), by (13) we have, for all �2,

Z x

�1

Z ��2(�1)

x

�
v1(x; yk1 ; yk)� bn2 (yk)

�
h(yk1 ; ykjx)dykdyk1 �Z x

�1

Z �2

x

�
v1(x; yk1 ; yk)� bn2 (yk)

�
h(yk1 ; ykjx)dykdyk1 :

Rearranging terms yields, for all �2,

Z �2

��2(�1)

Z x

�1

�
v1(x; yk1 ; yk)� bn2 (yk)

�
h(yk1 ; ykjx)dyk1dyk � 0: (18)

Using the de�nitions (15) and (17) of D(yk) and a(yk), expression (18) can be rewritten as

Z �2

��2(�1)

 R x
�1
v1(x; yk1 ; yk)h(yk1 ; ykjx)dyk1R x

�1
h(yk1 ; ykjx)dyk1

� bn2 (yk)
!�Z x

�1

h(yk1 ; ykjx)dyk1
�
dyk

=

Z �2

��2(�1)

D(yk)a(yk)dyk � 0 for all �2: (19)

By a¢ liation a(yk), de�ned in (17), is positive and increasing. Then, by Lemma 1, equation

(19) implies that
R z
��2(�1)

D(yk)dyk � 0 for all z � ��2(�1); in particular,
R �1
��2(�1)

D(yk)dyk � 0,

and (16) holds. Thus, the second term in (14) is negative. This concludes the proof.
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