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Abstract

M acroeconomic model builders attempting to construct forecasting models frequently

face constraints of data scarcity in terms of short time series of data, and also of parameter

non-constancy and underspecification. Hence, a realistic alternative is often to guess rather

than to estimate parameters of such models. This paper concentrates on repetitive guessing

(drawing) parameters from iteratively changing distributions, with the straightforward

objective function being that of minimisation of squares of ex-post prediction errors,

weighted by penalty weights and subject to a learning process. The numerical M onte Carlo

examples are those of a regression problem and a dynamic disequilibrium model.
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W ojciech W . Charemza*)

Guesstim ation

1. Introduction

The noun ‘guesstimation’ has a bad press in econometric and forecasting literature. It

ironically emphasises the fact that somebody, not being able to properly estimate an

empirical model, is guessing its values, using own expertise and intuition. Such a procedure

is generally dismissed as ‘unscientific’, sometimes even unethical and definitely not

recommended to minors. It is, however, widely known but rarely acknowledged, that

guessing parameters is a widespread procedure among macroeconomic model builders, non-

econometric forecasters, policy analysts etc.. Suppose that a government policy advisor is

asked about his/her projections concerning, say, future industrial output. The ‘purist’ way to

do this is to collect long series of data on output, prices, labour and capital inputs, interest

rates etc., built a model, check for integration, cointegration, heteroscedasticity,outliers,

ARIM A properties and the like, carefully estimate the model, compute the prediction and

forecasting intervals and then deliver the outcome to the government. It is a sad fact that,

regrettably, such an ideal procedure rarely works. In practice econometricians are plagued

with regime switching, unobservability of some important variables and, above all, short

series of data. If two, or three quarters before the date of desired prediction a Statistical

Office, which publishes data concerning industrial production, decided to redefine its index

of industrial output, the only thing an honest econometrician can do is to wait for another

twenty years for the time series to grow into a sufficient length (during this twenty years

they will redefine it again, anyway). As far as modelling of newly established European

economies is concerned, such as the Baltic States or the Balkan Republics, there is no
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possibility for an econometrician wishing to built a traditional model describing the dynamics

of these economies for quite a long time to come.

It is therefore no surprise that such econometrics, while confronted with the every day

requirements of a policy analyst creates the desire to cut corners. ‘If I cannot estimate

marginal labour productivity, why should not I assume that it is equal to, say, 0.33? After all,

I am a decent economist, with a lot of practice and I feel that this should be somewhere

around 0.33’; this is something a lot of us are tempted to do and, perhaps, some even do.

Especially that, very often, the price for being a purist is not to do the requested research at

all. This seems to be confirmed indirectly, and perhaps inadvertently, by M cCloskey and

Zilak (1996), who gave a damming report of ‘bad econometric practices’ found in 182

empirical papers published in the American Economic Review. According to their findings, in

most of the papers there have been substantial interpretational errors in empirical regression

analyses, often performed with the use of large samples. It is difficult to believe that authors

whose papers are admitted to such a prestigeous journal and their referees do not know

basic econometrics. Presumably the authors squeezed what they could out of the empirical

data; if they had followed ‘best practice’ to the letter, they would likely have finished with

little or no conclusions. Then, their referees agreed, this was the best they could do under

the limitations of the regression tool.

One may argue that a guess about parameters is indeed the prerequisite of any economic

empirical research. Econometric estimation is just one of the methods which delivers, in

certain situations and under certain conditions, an answer to the question: ‘what is the best

guess concerning the unknown parameters of the model?’ Let an applied economist recall,

and perhaps reconsider, the reason econometrics was invented: that, for the sake of

conducting research we must have some knowledge about the parameters of the process we

believe we are analysing. If econometrics cannot provide us with such parameters we have to

do something more radical than estimation; guessing perhaps.

The problem this paper attempts to describe is the process of guessing the parameters of

a complex, and generally large, empirically oriented model. It is assumed that data allow for

simulation (solving) of such a model with guessed parameters, and that there is the

possibility of checking the quality of the guess by computing some accuracy measure. Such

an accuracy measure can be, for instance, the one-step ahead forecast error. Let us suppose

that we have data necessary for making such a forecast. In such a case, it is possible to



perform guesstimation repeatedly and every time check the accuracy of forecasting results. If

appropriate priors, representing the researcher’s prior belief and expertise, can be applied,

then the resulting objective function may have an economically sensible extremum, either

global or local. It is argued that the behavioural algorithm presented in this paper represents,

generally, the way the ‘guesstimator’ (no relation to ‘estimator’ here; a guesstimator is a

person involved in guessing the parameters) acts in terms of formulating, applying and then

correcting his/her priors.

The plan of the paper is as follows. Section 2 introduces the problem of guesstimation

with the use of an example of a linear function with an infinite number of solutions. In

section 3 a more general model and algorithm describing the guesstimator’s behaviour in the

case of repetitive guesstimation with a learning process is developed. Two artificial examples

of repetitive stochastic guesstimation are given in section 4. The first is a simple one, of an

ordinary least squares problem in a linear regression model and the other one is rather more

complicated, describing the guesstimation of a canonical disequlibrium model with lagged

unobservable dependent variables and time-varying parameters.

There are no theoretical pretences in this paper. I am quite convinced that its

mathematics is well known, although I have been unable always to trace proper references.

All this paper is trying to achieve is to show that where econometrics fails, the best

alternative is not always to sit down, drink beer, and complain about data, the Statistical

Office and the heterogeneity of the universe instead.

2. A sim ple exam ple: adding two num bers together

To illustrate the problem, let us use probably the simplest and most well-rehearsed

example of a ‘model’:

y x zt t t t== ++ ++aa bb ee    , (1)

where aa  and bb  are unknown positive constants, and eet is a loosely defined error term. Let

us suppose that we have two observations for t= 1, 2, on xt and zt, each equal to one, and

we have one observation on yt, for t= 2 only, equal to one. Hence, the model essentially

becomes:

yt t== ++ ++αα ββ εε    .



Suppose further, that someone’s objective is the evaluation of the parameters’ values of this

model according to some prior economic knowledge, acknowledging, at the same time, the

fact that forecasting of yt with the use of these parameters should be reasonably accurate.

Obviously, such a ‘model’ cannot be estimated, due to the lack of identification. There is an

infinite number of pairs of real numbers from the interval (0,1) which minimises square of

prediction error of yt to zero (e.g. 0.9 and 0.1; 0.8 and 0.2 ...). In other words, there is no

unique minimum of the objective function, if the objective function is defined simply as the

square of forecast error. This trivial example represents the essence of problems

econometricians face with undersized (short) samples.

A guesstimator seems to encounter a similar problem. W hatever guess he/she makes

concerning one of the parameters, there is always another one which can be set in such a

way that the squared forecast error will be zero. This is only the case if the guesstimator is

completely ignorant concerning the investigated economy. In practice, he/she nearly always

has some prior knowledge about the ‘true’, empirical or theoretical, model. For instance,

he/she can strongly reject the combinations αα == 1 and ββ == 0 (or vice versa) as economically

nonsensical. He/she might be also inclined to dismiss the combination αα == 095.  and

ββ == 005.  albeit, perhaps, less strongly. It is also possible that the guesstimator might prefer,

on economic grounds, some combinations which lie outside the constraint given by non-

identification. To illustrate this, let us suppose for a while that (1) is a production function,

(xt being a logarithm of labour input and zt a logarithm of capital input), y2 11== . rather

than y2 1==  and the guesstimator believes that there should be constant returns to scale, that

is, that αα ββ++ == 1. On economic grounds, he/she would accept that, for instance, αα == 05.

and ββ == 05.  rather than αα == 055.  and ββ == 055. , even if the latter combination forecasts

better. Finally, we might assume that the restriction is not known to the guesstimator. This

looks strange in the simple example given above, but it can be more plausible if we consider

a complex, dynamic, multiequation model with a more complicated objective function

instead.

Returning to the original example, where y2 1== , let us suppose that his/her prior beliefs

concerning aa  is that it is equal to 0.5 and concerning bb , that it is equal to 0.7. Every other

value is also admissible, but subject to a penalty weight. Let us denote these values as $αα  and



$ββ  respectively and call them the guesses. It seems to be reasonable to assume that the

penalties deviate from the initially believed values of aa  and bb , according to, say, mutually

independent standard normal distributions. Since the parameters might vary in their

magnitude, it would be of advantage to scale them by their means. The lowest penalty (zero)

is associated with the situation where the guesses are equal to the prior beliefs ($ .αα == 05 and

$ .ββ == 07). Every other guess carries a non-zero penalty distributed as standard normal with

the arguments [($ / .) ]αα 05 1−−  and [($ / .) ]ββ 07 1−− . Hence, the weight ωω αα ββ($ ,$), is defined as

the arithmetic averages of those two variates, is given by:

ωω αα ββ

αα ββ

($ ,$)

$ .

.

$ .

.

( )
==

−−⎛⎛
⎝⎝⎜⎜

⎞⎞
⎠⎠⎟⎟
++ −−⎛⎛

⎝⎝
⎜⎜⎜⎜

⎞⎞

⎠⎠
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⋅⋅

n n

n
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05

07
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2 0
   ,

where n( )••  denotes the value of a standard normal probability density function. The

guesstimator is interested in minimizing the weighted criterion function:

ϕϕ ωω αα ββ αα ββ== −− ⋅⋅ ++[ ($ ,$) ($ $)]y2
2   ,

and, at the same time, in minimizing the unweighted criterion function:

~ [ ($ $)]ϕϕ αα ββ== −− ++y2
2   .

After all, the guesstimator is still interested in obtaining such parameters which would give

him/her the best possible forecast accuracy. It is easy to check that minimisation of ~ϕϕ  leads

to the the result ~ϕϕ == 0 for any combination of $αα  and $ββ  which satisfies the restriciton

$ $αα ββ++ == 1. For ~ϕϕ == 0 a unique minimum of ϕϕ , equal to 0.00018, can be obtained for

$ .αα == 0433 and $ .ββ == 0567.

But what has this in common with the guesstimation procedure? This procedure

illustrates a simple guessing rule, where the guesstimator is willing to modify his/her initial

guess by accepting another one, but only if this would lead to a decrease in the criterion

functions. Or, in other words, if one is guessing the parameters values at random and then

computes the squared prediction error weighted by the penalty weight, it is likely that the

final result will be close to 0.433 for aa  and to 0.567 for bb . In fact a straightforward



simulation experiment of drawing 10,000 uniform random numbers from the interval (0,1),

treating them as $αα ’s , with $ββ ’s computed from the restriction, and choosing such a pair of

these numbers which minimises the criterion function gave values of 0.4329 and 0.5671

respectively. If the guesstimator is completely indifferent concerning the prior value of the

parameters he/she attempt to guess and the penalty weight is uniformly equal to unity, then

there is an infinite number of solutions minimising the criterion function. But, in a such case,

this person should not perhaps be taken seriously as an expert in prediction, since he/she

does not have any valuable knowledge on the subject.

3.Guesstim ators’ m odel and algorithm

Evidently, in practice, an experienced guesstimator applies, more or less consciously, a

more complicated process of selection than that described above. It is likely that there are

different degrees of uncertainty concerning particular parameters, Parameters might be

regarded as being more or less difficult to guess. For instance, the possible interval in which

the capital depreciation ratio is placed might be thought of as being narrower than, say, the

short-run price elasticity of imports. Also, in some cases the guesstimator might revise the

prior beliefs; if he/she realises that guesses widely apart from the expected value of the prior

are giving sensible results, in terms of minimising the criterion function, it may happen that

the person making guesses gets wiser, learns and modifies the priors. These priors can be

modified in two ways. There might be something like ‘learning eagerness’, or ‘learning

aversion’ where the researcher is increasingly eager (or reluctant) to modify the weights used

for evaluating guesses against prior beliefs. It seems to be reasonable to assume that, with

the increase in number of corrections of the priors, the researcher will increase his/her

confidence in guesses from the priors. This would result in an increase in penalty weights

with the increase in number of modifications of the priors. At the same time, it is reasonable

to assume that, with the increase in the number of such revisions, the guesstimator would

also express his/her increasing confidence by narrowing the interval from which the

parameters are to be guessed, accordingly. It is equally possible to imagine a learning-

averted guesstimator, who would decrease the weights put on the guesses and enlarging,

rather than narrowing, the interval from which the guesses are made.



It is possible that the mean of the interval from which the parameters are drawn may

also change in the process. Initially the guesstimator may draw a set of parameters from the

interval he/she believes, at that stage, is the most likely to include the ‘best’ values of

parameters and check the criterion function. Then, if an improvement has been made, he/she

might revise the priors (that is, move the mean of the prior distribution to the point for which

the improvement took place) and draw again. If there was no improvement, the drawing

continues using the initial values of parameters (or values for which the criterion function

previously reached its desired extremum) until the large number of unsuccessful drawings

confirms that there is no room for improvement.

W ith these points in mind, the following guesstimators’ model is proposed:

y f y xt t t t== ( , , ; )εε θθ , (2)

where yt , t= 1, 2,..., n, is the vector of current, observed, endogenous variables, xt

contains all other relevant and observable variables (at least weakly exogenous) and lagged

endogenous variables and qq  is the vector of K parameters which are to be guessed. Unlike

as in a traditional econometric model, there is no identification restrictions and, in particular,

the number of observations can be smaller than the number of unknown parameters. If (2) is

a static model where all xt variables are strongly exogenous, the minimal number of

observations is one. If there are endogenous variables lagged by one included in xt, then

two observations are needed, etc.. Generally, the parameters qq  are allowed to vary in time

but, if the criterion is the minimisation of one (or more) step ahead forecast errors, they are

supposed to be invariant intertemporarily (this creates a time consistency problem, not

discussed in this paper). Finally, eet is the random and unpredictable (in mean) process.

The model is completed by the guesstimator’s prior (initial) beliefs concerning the

parameters (the priors). The prior beliefs (also called the priors herein) are defined as a

vector of K intervals, ΘΘ 0, which are proportional to the intervals the guesstimator initially

assumes the parameters are included in. These intervals are in turn defined by their mean

values,qq( )0 , and length, 
t
ΘΘ0 The mean is essentially the guesstimator’s prior best guess and

the length of each interval corresponds to the uncertainty the guesstimator attributes to

his/her knowledge concerning each parameter. Also, the model may include a number of

maximal ‘drift changes’, that is the maximum number of times the guesstimator is prepared



to revise the mean of his/her priors. This is denoted below as N d . Before the first step of the

algorithm, it is necessary to derive the initial values of the criterion function. This can be

done by using the initial values of the parameters, qq( )0 , equal to the mean of initial intervals

for solving the model (2) for yt given εε t == 0. Since this solution depends on qq
( )0 , let us

denote it as: y f xt t
( ) ( )( ; )0 1 0== −− θθ . This solution is needed in order to make an h-step ahead

forecast for yt , that is, finding $ ($ ; )( ) ( ) ( )y f xt h t h++
−−

++==0 1 0 0θθ  , h== 1 2, ,L, where $ ( )xt h++
0  is a

forecast for xt h++  (the vector xt may contain lagged y’s and weakly exogenous variables; in

the simplest case, where xt is a vector of strongly exogenous variables, their future values

must be known and $ ( )x xt h t h++ ++==0 ). Compare the predictions $ ( )yt h++
0  with the observed

realisations of yt h++  by computing an initial value of the unweighted criterion function

(UCF):

~ ~ ( ,$ )( ) ( ) ( )ϕϕ ϕϕ0 0 0== y yh h   ,

where y y yh t t== ++ ++{ , , }1 2 L  , $ {$ ,$ , }( ) ( ) ( )y y yh t t
0

1
0

2
0== ++ ++ L . A simple example of such an UCF is

the sum of squares of one-step ahead prediction errors:

~ ( $ )( ) ( )ϕϕ 0
1 1

0 2

1

1

1

== −−++ ++
==

−−

++

∑∑∑∑ y yt t
yt

T

t

 ,

where the symbol ( )••
++

∑∑
yt 1

 m eans the summation of all elements of vector yt++1 (that is, for all

endogenous variables of the model). W ith these initial values, the algorithm of repetitive

guessings (called herein the Repetitive Stochastic Guesstimation, the RSG) is the following:

1)In every iteration j (where ‘iteration’ relates to achieving an improvement in the criterion

function) the previously obtained (or initial) set of admissible parameters intervals is

modified through an application of the learning function ll ΘΘ( )j :

ΘΘ ΘΘ ΘΘ
( ) ( ) ( ) ( )j j j j== ±±−− −−θθ λλ1 1

2

1
t

   .

2)From the set ΘΘ( )j  draw (that is, guess or randomly generate) a sample of K parameters,

qqi
j( ) and for these parameters compute model solutions:

y f xit
j

t t i
j

,
( ) ( )( ; )== −−1 θθ   ,



forecasts $
,
( )yih
j  (analogously to $ ( )yh

0 ) and unweighted and weighted criterion functions,

defined respectively as:

~ ~ ( ,$ )( ) ( )
,
( )ϕϕ ϕϕi

j
i
j

h ih
jy y==    ,

and:

ϕϕ ϕϕ ωω θθ λλϕϕi
j

i
j

h ih
j

i
jy y j( ) ( )

,
( ) ( )[ ,$ , ( , ( ))]==    ,

where $ {$ ,$ , },
( )

,
( )

,
( )y y yih

j
it
j

it
j== ++ ++1 2 L , and λλϕϕ( )j  is the learning function analogous to ll ΘΘ( )j ,

and is an argument of the penalty weight function ωω( )•• . By analogy to the initial UCF,

the exemplary weighted criterion function, W CF, can be defined as one-step ahead

prediction error:

(( ))ϕϕ ωω θθ λλϕϕi
j

t i
j

it
j

yt

T

y j y
t

( ) ( )
,
( )[ ( )]$== −−++ ++

==

−−

++

∑∑∑∑ 1 1

2

1

1

1

, (3)

and ~( )ϕϕi
j  is analogous to ~( )ϕϕi

0 , that is:

~ ( )( )
,
( )ϕϕ i

j
t it

j

yt

T

y y
t

== −−++ ++
==

−−

++

∑∑∑∑ 1 1
2

1

1

1

  . (4)

For linear models with negative degrees of freedom (that is, not identified), the limit value

for such defined ~( )ϕϕi
j  is obviously zero. Furtheron the random drawing of parameters

within an iteration, identified by subscript i, is reffered to as replication.

3)In each replication the value of the function ϕϕi
j( ) is compared with that obtained in the

previous iteration ϕϕ( )j−−1  and the value of the function ~( )ϕϕ i
j  is compared with ϕϕ( )j−−1 . It is

often convenient to use ϕϕ ϕϕ( ) ( )~0 0==  as the initial value. Suppose that we are interested in

minimisation of the criterion functions. If ϕϕ ϕϕi
j j( ) ( )<< −−1  and ~ ~( ) ( )ϕϕ ϕϕi

j j≤≤ −−1 , then the

algorithm moves to next iteration (j= j+ 1) and steps 1) -3) are repeated starting from i

= 1. W hile repeating step 1) the priors can be modified in two ways: i) by setting

λλ λλΘΘ ΘΘ( ) ( )j j≠≠ −− 1  and, additionally ii) by imposing qq qq( ) ( )j
i
j== . If only modification i) is

imposed and θθ θθ( ) ( )j == 0  for all j, the algorithm is called the constant mean RSG;

otherwise we are dealing with the non-constant mean RSG. Also, the weights in the

weighted criterion may change, if λλ λλϕϕ ϕϕ( ) ( )j j≠≠ −− 1 . If ϕϕ ϕϕi
j j( ) ( )>> −−1 , or if ϕϕ ϕϕi

j j( ) ( )<< −−1



but ~ ~( ) ( )ϕϕ ϕϕi
j j>> −−1 , then the admissible intervals do not change and steps 2) - 3) are

repeated for unchanged j and i = i + 1; the algorithm moves to the next replication within

the same iteration. A new set of potential parameters is drawn from the same intervals as

before and this is repeated until there is an improvement on the objective function, or the

stopping rule is fulfilled.

An important question is how to define the learning functions. A simple proposition for

the learning function is:

ll ll
llΘΘ ΘΘ ΘΘ( )j d

j

N
== ++ −−

1
1
   ,

where ll ΘΘ  is a constant which reflects the impact of the learning process on the penalty

weights,N ll  is a constant which is inversely proportional to the learning speed and dΘΘ  is a

constant positive or negative value, depending whether the guesstimator expresses ‘learning

aversion’ or ‘learning eagerness’. The other learning function, λλ ϕϕ( )j , is defined

analogously.

Given λλ ϕϕ( )j , the penalty weights for the criterion function are said to be normally

distributed according to the difference between the actually guessed and the previous best

guess (that is, the middle of the admissible interval):

ωω θθ λλ
λλ ψψ

θθ θθ
θθ

ϕϕ

ϕϕ

( ( ))

( )

( )
( )

,
( ) ( )

( )

i
j

k
k i
j

k
j

k
j

k

K

j

n j

K n
==

⋅⋅ ⋅⋅
−−⎛⎛

⎝⎝
⎜⎜

⎞⎞

⎠⎠
⎟⎟

⋅⋅
==
∑∑

1

0
   ,

where θθ k i
j
,

( ) denotes the k-th parameter drawn in the j-th iteration and, within it, in the i-th

drawing (replication) and qqk
j( ) is such a value of the k-th parameter which ended the j-1

iteration (in another words, qqk
j( ) is equal to the k-th element of qq( )j−−1 ) and yy k is the scaling

factor for the k-th parameter. If the guesstimator is putting equal ‘faith’ into a guess of any

parameter, regardless of its scale than yy k K== 1/  for all k. Otherwise it varies and it might

be reasonably assumed that values of yy k are inversely proportional to the size (absolute

value) of a corresponding k-th parameter. There are obviously numerous other ways for the

penalty weights and learning function to be formulated, but those given above are simple to

compute and intuitively appealing. For instance, the penalty weight function has a maximum



equal to unity for θθ θθk i
j

k
j

,
( ) ( )== , that is where the guessed parameter is equal to the best one

(so far).

Technically, there is nothing new in the above algorithm. The question of finding a

solution in an undersized optimisation problem has been discussed for a long time in the

literature of stochastic optimal control of an econometric model, (see e.g. Hughes Hallet and

Rees (1983) for a thorough description of early economic applications, Arkin and

Evstigneev (1987), Holly and Hughes Hallett (1989) for a more sophisticated approach and

Cividini (1992) for a comparison with alternative methods). The algorithm is also similar to

that of ‘training’ the weights in the simple two-layer stochastic neural network, with the

squashing function given by the UCF and W CF (see e.g. Hornik et al. (1990); for a simple

introduction see Fausett (1994, p. 329); for its analogy to the multivariate least squares and

the generalised least squares method see e.g. Angus (1989); for a general overview see

Barndorff-Nielsen, Jensen and Kendall (1993)). The principal difference with the theory of

neural network training is in the fact that in the guesstimation algorithm, the outputs are not

normalised within the interval (0,1) - see W asserman (1989, pp. 45). Conceptually, the

guesstimation seems to be close to ‘calibration’ of parameters of general equilibrium models

as suggested by Kydland and Prescott (1982), (1991); see also Kydland (1992) and for

details of the computational algorithm and description of software, Greenawayetal. (1993).

The reader must be on the alert here, since the concept of ‘calibration’ used in the literature

has various, sometimes quite confusing, meanings. The philosophical underlings of both the

Kydland and Prescott ‘calibrator’ and the guesstimator, are indeed very close: both are

inventing their parameters up to the best of their prior knowledge, both are verifying a

criterion function and then attempting to revise the priors, if the result is not up to their

liking. The principal difference is that the guesstimator’s action does not depend so heavily

on microeconomic assumptions and constraints. Instead, he/she repeats the process of

selection of the parameters more often and is prepared to learn, that is to modify his/her

prior (that is, also microeconomic) knowledge. If one does not like the notion of

‘guesstimation’, one might use that of ‘repetitive stochastic calibration’ instead. It seems,

nevertheless, that despite the fact that prior beliefs concerning the parameters are widely

used, the guesstimation is not a Bayesian analysis, at least not in the traditional sense. The

posterior distribution is not computed, neither directly nor indirectly. In particular, Bayesian

analysis requires a full-sized sample (the degrees of freedom constraint). This is not required



forguesstimation. In its extreme case, with only two pieces of information available, the

guesstimation is (nearly) a fully subjective enterprise; one might note that in the example

given in Section 2, the final result would always change with the revision of the priors.

An interesting attempt of combining the RSG with the genetic evaluation strategies has

been made by Plata-Przechlewski (1997). He analysed a number of different genetic

algorithms, with the results pointing out at the usefulness of the defining of the drawing

process of θθi
j( ) as:

θθ θθ σσθθi
j j jN( ) ( ) ( )( , )= +−1 0    ,

where  is N j( , )( )0 σσθθ  is a random variate generated from a normal distribution with a zero

mean and standard deviation σσθθ
( )j , evaluated according to the 1/5 success rule (see

Rachtenberg (1973)).It has been shown that, in some instances, drawing of parameters

according to the rules of the genetic evaluation strategies gives reultssuperiour to that of the

originalRSG. Detailed analysis of the genetic algorithms is, however, beyond the scope of

this paper.

Particular variations of the general RSG algorithm can be illustrated by surface plots

representing the guesstimates of the parameters αα  and ββ  of model (1) together with the

corresponding values of the W CF. Strictly speaking, the surface plots correspond to about

10,000 three-dimensional points: αα i
j( ) , ββi

j( ) and ϕϕi
j( ). Figures 1-4 show such surfaces for

the constant and non-constant RSG’s, with and without weighted scaling. The surfaces for

the constant mean RSG (Figures 1 and 2) are bimodal, with the minimum of the criterion

function being in the ‘valley’ between the hills. These hills are clearly visible for the case with

uniform scaling of priors; where weighted scaling is used, the lower (forward) hill can hardly

be noticed. The plots suggest that the non-weighted algorithm ‘wasted’ a lot of replications,

at the early stages of computations, searching for the minimum well away from its actual

point. The algorithm with the weighted scaling of priors, with a steeper slide towards the

minimum, can be regarded, in the analysed model, as computationally more efficient. Even

more efficient seem to be the algorithms with non-constant means (Figures 3 and 4). It has

to be stressed, however, that the entire reason for using non-constant rather than constant



mean algorithms is of subjective nature; whether or not the guesstimator is prepared to

revise his/her beliefs regarding the mean of the priors has to be decided prior to

guesstimation, on the grounds of some external information. A mistake in this respect can

have rather dire consequences since, as in the example (1) above, every revision of the mean

of the prior leads to a different minimum of the W CF.

Surface plots of drawings in M odel 1:

Fig. 1: constant- m ean RSG, uniform  scaling of priors
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Fig. 2:Constant-m ean RSG, weighted scaling of priors
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Fig. 3: Non-constant-m ean RSG, no scaling of priors
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Fig. 4:Non-constant-m ean RSG, weighted scaling of priors
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4. Som e M onte Carlo exam ples

4.1. Linear single equation m odel

An evident question asked by an empirical analyst is: is there any empirical, or pseudo-

empirical parameters’ evaluation procedure; estimation, guesstimation, calibration, etc.

which may allow for any improvement over the parameters values the investigator initially

believes in? If answer to this question is positive, then it can be argued that the procedure is,

in some sense, efficient, since it leads to better (more accurate) evaluation of parameters,

than simple guesses. Obviously, if more than one method is compared, then this one can be



regarded as better (more efficient), which either produces such an improvement more

frequently, and/or approximates the true value of the parameter with better accuracy. The

problem simplifies in the case where the number of degrees of freedom is negative that is,

where the number of observations is smaller than the number of parameters. In such a case,

‘proper’ econometric methods cannot be applied, and the investigator is left with two

options: to believe in his/her initial guess, or to apply the RSG. Therefore, it can be asserted

that the RSG, makes sense (is, in some sense, superior to the initial guess) if, on average, it

does give an improvement in the accuracy of approximation of the true parameter, relatively

to the initial guess, more often than does not. If, for instance, the true value of the parameter

is one, the initial guess is 0.5, and the RSG produces the number of 1.2 then, in this

particular case, the RSG scores a point against the initial guess, since 1.2 is closer to one

than 0.5. If such a situation happens more often than the opposite, then one might regard the

RSG as being efficient relatively to the initial guess.

In order to evaluate the efficiency of the RSG in relation to initial guesses and, in the

case of positive degrees of freedom, in relation to some alternative methods, M onte Carlo

experiments have been performed on data generated by the following data generating

process (DGP):

y xt k
k

K

k t t== ++
==
∑∑αα εε

1
,    ; t== 1 2 10, ,L   ,

where εεt is generated from standard normal distribution and values of xk t,  are fixed in

repetitive samples. In individual experiments the number of explanatory variables, K,  is

altered from 1 to 20. Since the sample size remains unchanged at the level of 10, the number

of degrees of freedom changes, in individual experiments, from 9 (K = 1) to -10 (K = 20).

The parameters values αα k  are fixed (that is, drawn once from a uniform [1,10] distribution).

It is also assumed that, in each case, the investigator possesses prior knowledge

regarding the parameters. This knowledge is, however, imperfect and he/she errs regularly

by a given ratio. Hence, it is assumed that the initial values of the investigator differs,

randomly, from the true parameters values by 0.25%  50%  and 75%  respectively. These all,

for the RSG, gives the total number of experiments as equal to 60 (20 DGP’s with 1 to 20

parameters times 3 different initial guess error ratios). The number of parameter evaluations

(M onte Carlo replications) for each experiment is 500. In each evaluation, the constant-mean



RSG has been applied, with maximum number of RSG iterations (that is, changes in learning

functions and priors intervals length) equal to 150 and the maximum number of replications

within each iteration equal to 500.

W here the number of degrees of freedom is positive (that is, for k = 1, 2, ..., 9) it is

possible to compute, for the sake of a comparison, an econometric alternative to the RSG.

Two such alternatives have been used: the ordinary least squares method (OLS) and a simple

Bayesian estimator, with the prior distribution for parameters given by the multivariate

normal distribution with diagonal covariance matrix (see e.g. Judge et al. (1988), pp. 284-

287). W hile the OLS is an example of the method where no prior knowledge of the

investigator is used (initial values of the parameters are ignored), the Bayesian estimates can

be seen as a logical alternative to the RSG, where the investigator’s prior knowledge is

explicitly applied. Consistently with the assumptions used for the RSG, for Bayesian

estimation it has been assumed that means of the prior distributions for the parameters are

equal to those initially guessed by the investigator, that is they differ by, respectively, 25% ,

50%  and 75 %  form the true parameters’ values. For computational simplicity is also

assumed that the standard deviation of the error term is known and equal to unity.

Figures 5-7 show the proportions of average improvements, across K evaluated parameters,

over the initial values given by the particular methods applied. For the case of positive

number of the degrees of freedom, where both the OLS and Bayesian methods are applied,

the results suggest superiority of the RSG over these two methods in the case where the

initial guesses are relatively close to the true values of parameters. W ith the increase of

distance of the initial guesses from the true values (that is, where the guesses are becoming

worse), the OLS , which does not require any priors at all, gains relatively to the RSG. The

Bayesian method is losing dramatically with the decrease in the accuracy of the initial guess.

In fact, the entire experiment can be regarded as being set unfairly against the Bayesian

method, since it is claimed that the Bayesian estimation of a linear model is efficient if the

true parameters is equal to the expected value of the prior distribution.



W here the number of the degrees of freedom is negative and the only alternative to the RSG

is the initial guess, the RSG shows its efficiency by producing the proportion of cases where

there has been an improvement over the initial guess consistently at a level exceeding 0.5. It

should also be observed that this proportion rises with the increase of the initial guess

inaccuracy. At the same time, as shown by Figure 8, the average (across the parameters)

root mean square errors (RM SE’s) of the parameters’ evaluations obtained with the use of

theRSG, have a tendency to decrease with the increase of the accuracy of the initial guesses.

For larger initial guess errors, there is also visible a slight tendency of the average RM SE to

decrease with the decrease in the degrees of freedom. This, apparently absurd, situation, can

be intuitively explained by the fact that, where the number M onte Carlo analysis of the linear

model:Proportion of average improvements over initial guesses of degrees of freedom is

decreasing, the amount of prior information is increasing with the increase in number of

parameters.

Fig. 5: Initial guess error ratio: 25%
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Fig. 6: Initial guess error ratio: 50%
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Fig. 7: Initial guess error ratio: 75%
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Fig. 8: Average RM SE for the RSG in the linear m odel
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4.2 A non-linear m odel: dynam ic canonical disequilibrium  m odel

The next model to be considered is also an artificial one, although of a more

complicated,nonlinear structure. Suppose that there is a market in disequilibrium described

by the following dynamic model:

D D xt t t t== ++ ++−−θθ θθ εε1 1 2 1 1,    ,

S xt t t== ++θθ εε3 2 2,    ,

Q D St t t== m in( , )   .

Here Dt denotes demand, St is supply and Q t is the quantity transacted. It is assumed that

demand and supply are not directly observable, in that they are not equal to the quantity

transacted. Such a model is called a dynamic canonical model, and is regarded as being

particularly difficult to estimate, due to the presence of the lagged unobservable variable

Dt−−1 (see e.g. Quandt (1988), pp. 132-140). The method recently proposed for estimation of

such a model is the simulated pseudo-maximum likelihood (SPM L) method by Laroque and



Salanié (1995); for further development see Lee (1997a,b). The method, which allows for a

very general specification of the model, consists in simulating first and second order

moments of the endogenous variables in h independent drawings and then averaging the

results.

The canonical disequilibrium model can easily be evaluated with the use of the RSG. If

the criterion functions are given by (3) and (4), that is set to minimise the one-step ahead

forecast errors, the one-step ahead prediction can be computed as:

Q D x xit
j

i
j

it
j

i
j

t i
j

t,
( )

,
( )

, ,
( )

, ,
( )

,m in( , )++ ++ ++== ++1 1 2 1 1 3 2 1θθ θθ θθ

with Dit
j
,
( ) computed recursively in each replication and θθ1,

( )
i
j  , θθ 2,

( )
i
j  , θθ 3,

( )
i
j  are drawings of

parameters obtained in particular iteration and replication.

In order to compare the performance of the SPM L and RSG, a series of M onte Carlo

experiments were performed. The DGP is essentially that used by Laroque and Salanié

(1995), that is whereθθ1 05== .  , θθ θθ2 3 1== == , standard errors of εε1t and εε2t are equal to

unity, x t2,  is a unitary variable with all its values equal to 5, x t1,  is defined as

x nt t1 11 5 0 1, ( ) [ ( , )]== −− ⋅⋅ ⋅⋅θθ , where nt( , )0 1  stands for a simulated pseudo-random standard

normalvariate, and the initial value for Dt−−1 is given as:

D
n

0 2
0

2
2
2

2
2

1
2

5
0 1 1 5 1

1
== ⋅⋅ ++

⋅⋅ ++ −−

−−
θθ

θθ θθ

θθ

( , ) ( )

As before, it is assumed that the investigator is making errors in his/her initial guesses

regarding the parameters, respectively by 25% , 50%  and 75%  of their true values. These

initial guesses are used as means of initial drawing intervals in the RSG and as the starting

values in the optimisation routine of the SPM L. The initial standard deviations for

parameters (in case of the RSG, for the initial intervals for priors) have been assumed, for

both methods, as being equal to their true values. For each method, one hundred replications

were made for sample sizes of N = 3 (RSG only), 10 and 100, with the first observation

discarded for lags. The number of degrees of freedom is equal to -1, 6 and 96 respectively.

TheRSG applied was the constant-mean algorithm, with the maximum number of learning



function changes (iterations) equal to 150 and the maximum number of replications within

each iteration equal to 3,000. For comparison, for sample size equal to 100, the results of

the non-constant mean algorithm are also shown (for sample size equal to 10 the results

obtained for the non-constant mean RSG are clearly inferior and, for sample size of 2,

nonsensical). The SPM L method has a limit of 150 optimisation iterations and the number of

SPM L drawings h is equal to 20. The idea of these settings was to make the computing time

used by both methods in one M onte Carlo replication as being of a similar magnitude. In

practice, however, the SPM L method turned out to be about four times more expensive (in

terms of computing time) than the RSG, for the same sample size. There has been also some

cheating imposed in computations in favour of the SPM L. It was found out that, for a sample

size of 10 (and, in one case for a sample size of 100), the SM PL diverge, in iterations, from

the true parameters, leading the estimated parameters astray. Hence, where such a diversion

was noticed, the particular M onte Carlo replication was repeated.

Table 1 summarises the results. For a sample size of 100 the SPM L is clearly superior to the

constant-mean RSG, both in terms of average RM SE and average frequencies of

improvements over initial guesses. The RSG, however, increases its efficiency faster than the

SPM L with an increase in the initial guess accuracy. However, the non-constant mean RSG

results seem to be nearly as accurate (and, for the initial error ratio of 0.25, more accurate)

as the SPM L computations. For a sample size of 10, the RSG performs better for ‘close’

initial guesses and similar to the SPM L for ‘average’ and ‘bad’ initial guesses. It is worth

noting, however, that in about 10%  cases the SPM L gave totally unreliable (divergent)

results, discarded for calculation of the RM SE and average frequencies of improvements and

that it is also about 4 times computationally less expensive. For a sample size of 3, the

M onte Carlo characteristics worsened only slightly in comparison with those obtained for N

= 10.



Table 1: M onte Carlo com parison of the SPM L and RSG m ethods

Initial error ratio: 0.25 Initial error ratio: 0.50 Initial error ratio: 0.75

N SPM L RSG SPM L RSG SPM L RSG

3 N/A 0.216 N/A 0.337 N/A 0.509

Av. RM SE 10 0.257 0.198 0267 0.274 0.397 0.489

100 0.068
0.202
  0.071*

0.067
0.268
  0.076*

0.101
0.489
  0.071*

2 N/A 0.620 N/A 0.640 N/A 0.643

Av.Im pr. 10 0.627 0.710 0.877 0.677 0.663 0.689

100 0.977
0.757
  0.980*

1.000
0.717
  0.997*

0.997
0.700
  1.000*

No. of 10 6 0 12 0 10 0

diversions
100 0 0 1 0 0 0

Results marked by * are for the non-constant mean RSG algorithm . All other RSG results are for the

constant-m ean algorithm .

6. Sum m ary and conclusions

It seems that guesstimation, in the sense discussed above may, in some situations, be not

a totally idiotic idea. If a guesstimator has either the patience or a lot of time, or an access to

a decent computer so that he/she can repeat the process and learn on the way, the result

might be of some practical importance. In particular, he/she might improve on the initial

guess, might discover parameter values which have some interesting forecasting properties,

and may not bother with identification, short samples and time-varying parameters. Often

and sometimes unknowingly, he/she might solve an optimal control problem on the way, do

a ‘calibration’ or train a neural network. W hat is equally important, models on which the

guesstimation is performed might be highly nonlinear, truncated and even formulated in a

‘fuzzy’ fashion. In other words, they might be closer to the underlying economic theory than

typical econometric models which, for estimation purposes, are often nearly linear or



linearised. Even more relevant is the fact that equations in the guesstimated models might be

incomplete, and subject to misspecification errors.

In fact the RSG algorithm has also been used for estimation a real-life nonlinear

forecasting models, giving decent forecasting properties. In particular, the parameters of a

series of quarterly models ofr East European economies (where some of the economies, like

the Baltic States and the Czech and Slovak Republics are only a few years old and the data

series cannot be long) have been systemmaticaly ‘guesstimated’ and used for short and

medium term forecasting (for the description of the models see Charemza (1994), the RSG

algorithm see Blangiewicz and Charemza (1994) and for the independent comparison of

various forecasts including those made with the use of ‘guesstimated’ models see

M aciejewski (1997).

The described algorithm of guessing the parameters is far from being ideal. It depends

heavily on the choice of initial values and on other assumptions concerning the process of

learning, impact of weights on the criterion function and indeed on the choice of the

distribution which is supposed to represent the drawing process. One might say, not without

justification, that so many assumptions creates a conducive environment to ‘torturing the

data until nature confesses’, that is, a researcher might change the assumptions as until a

desired result is obtained. This is undoubtedly true, but is also true for traditional

econometric models. If the proposed procedure represents a ‘back to basics’ empirical

methodology rather than a joke, then it is likely that further steps in its development will

concern about the proper (optimal) choice of penalty weights, constants in the learning

formulae and an evaluation of the number of times the guesstimator is willing to correct the

priors. If the whole idea of the repetitive stochastic guesstimation is ridiculed, I do hope that

somebody will point out to better alternative, or will explain why doing nothing and

complaining that ‘bad’ data do not fit ‘good’ econometrics is superior to doing something.
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