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Abstract

M acroeconom ic m odel builders atteam pting to construct forecasting m odels frequently
face constraints of data scarcity In term s of short tin e series of data, and also of param eter
non-constancy and underspecification . H ence, a realistic altemative is often to guess rather
than to estam ate param eters of such m odels. This paper concentrates on repetitive guessing
(draw Ing) param eters from  Iemtvely changing distributions, wih the staightforward
obpctive finction beng that of m Inin isation of squares of ex-post predicton enors,
w elghted by penalty w elghts and subject to a Jeaming process. The num erical M onte C arlo
exam ples are those of a regression problan and a dynam ic disequiliorim m odel.
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G uesstim ation

1. Introduction

The noun ‘guesstim ation’ has a bad press In econom etric and forecasting literature. It
Tronically emphasises the fact that som ebody, not beng able t© properly estmate an
an pirical m odel, is guessing its values, using own expertise and ntuition. Such a procedure
s generally digmissed as ‘unscientific’, sometines even unethical and defnitely not
recomm ended t© m nors. Ik is, however, widely known but rarely acknow ledged, that
guessing param eters is a w despread procedure am ong m acroeconom ic m odel builders, non-
econom etric forecasters, policy analysts etc.. Suppose that a governm ent policy advisor is
asked abouthisherprojctions conceming, say, future ndustrial output. The purist! way o
do this is to collect Jong series of data on output, prices, Jabour and capital nputs, hterest
mates ete., built a m odel, check for ntegration, contegration, heteroscedasticity, outliers,
ARIM A properties and the lke, carefully estm ate the m odel, com pute the prediction and
forecasting mtervals and then deliver the outtom e t© the governm ent. It is a sad fact that,
regrettably, such an deal procedure rarely w orks. T practice econom etricians are plagued
w ith regin e switching, unobservability of som e inportant variables and, above all, short
series of data. If two, or three quarters before the date of desired prediction a Statstical
O ffice, which publishes data conceming industrial production, decided t© redefine its ndex
of ndustrial output, the only thing an honest econom etrician can do is to wait for another
tw enty years for the tin e series t© grow Ito a sufficient length (durng this tw enty years
they will redefine it again, anyway). As far as m odellng of new Iy esabliched European

econom Jes is concemed, such as the Baltc States or the Balkan Republics, there is no
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possibility foran econom etrician w ishing to builta traditionalm odel describing the dynam ics

of these econom Jes forquite a Jong tim e to com e.

Tt is therefore no surprise that such econom etrics, w hile confronted w ith the every day
requiram ents of a policy analyst creates the desire t© cut comers. ‘If T cannot estin ate
m argal labourproductivity, w hy should not Tassum e that itis equal to, say, 0 332 A flerall,
I an a decent econom ist, w ith a Jot of practice and T feel that this should be som ew here
around 0 33’; this is som ething a Jot of us are tEm pted t© do and, perhaps, som e even do.
Egpecially that, very often, the price forbeing a purist is not to do the requested research at
all. This seam s t© be confim ed hdirectly, and perhaps hadvertently, by M C loskey and
Zilak (1996), who gave a damm ing report of ‘bad econom etric practices’ found m 182
an pirical papers published 1n the Am erican Econom ic Review . A coording o thetr findings, m
m ostof the papers there have been substantial nterpretational enors 1 em pirical regression
analyses, often perform ed w ith the use of large sam ples. Tt is difficult to believe thatauthors
w hose papers are adm ited t© such a prestgeous pumal and therr referees do not know
basic econom etrics. Presum ably the authors squeezed w hat they could out of the em pirical
data; if they had follow ed Yoest practice’ t© the letter, they would likely have finiched w ith
Iittle or no conclusions. Then, thelr referees agreed, this was the best they could do under

the lin iations of the regression tool.

Onem ay argue thata guess aboutparam eters is ndead the prerequisite of any econom ic
an pirical research. Econom etric estin ation is just one of the m ethods which delivers, m
certam situations and under certain conditions, an answ er t© the question: what is the best
guess conceming the unknow n param eters of the m odel?’ Let an applied econom ist recall,
and perthaps reconsider, the reason econom etrics was hwvented: that, for the sake of
conducting research w e musthave som e know Jedge about the param eters of the processw e
believe w e are analysing . If econom etrics cannotprovide usw ith such param etersw e have t©
do som ething m ore radical than estin ation ; guessing perhaps.

The problam this paper attam pts t© describe is the process of guessing the param eters of
a com plex, and generally Jarge, em pirically oriented m odel. Tk is assum ed thatdaa allow for
smultion (©olvg) of such a model with guessed param eters, and that there is the
possibility of checking the quality of the guess by com puting som e accuracy m easure. Such
an accuracy m easure can be, for nstance, the one-step ahead forecast enror. Letus suppose
that w e have data necessary for m aking such a forecast. Th such a case, it is possible t©



perform guesstin ation repeatedly and every tim e check the accuracy of forecastng results. IF
appropriate priors, representing the researcher’s prior belief and expertise, can be applied,
then the resultng objectve finction m ay have an econom ically sensible extrem um , either
global or Jocal. Tk is argued that the behavioural algorithm presentad in this paper represents,
generally, the way the ‘guesstim ator’ o relation to ‘estm ator’ here; a guesstim ator is a
person nvolved In guessing the param eters) acts n term s of form ulatng, applying and then

correcting hisherpriors.

The plan of the paper is as follow s. Section 2 ntroduces the problan of guesstm ation
w ith the use of an example of a Ihear fimction with an infinite num ber of solutions. T
Section 3 am ore generalm odel and algorithm describing the guesstim ator’s behaviour in the
case of repetitive guesstim ation w ith a Jearming process is developed. Tw o artificial exam ples
of repetitive stochastic guesstn ation are given in section 4. The first is a sin ple one, of an
ordinary Jeast squares problan in a Inear regression m odel and the other one is ratherm ore
com plicated, describing the guesstin ation of a canonical disequlibrim m odel w ith lagged
unobservable dependentvariables and tim e-varyng param eters.

There are no theoretical pretences in this paper. I an quire convinced that its
m athem atics is w ell known, although I have been unable alw ays t© trace proper references.
A1l this paper s tyhg t© achieve is t© show that where econom etrics fails, the best
altemative is not aways to sit down, drink beer, and com plain about data, the Statstcal
0O ffice and the heterogeneity of the universe instead.

2.A sin ple exam ple: adding tw o num bers together

To ilustate the problam , Jet us use probably the sinplest and m ost w ell-rehearsed
exampleofa ‘model’:

y.,=ax . t+bz +te  , 1)
where a and b are unknown positive constants, and e, isa loosely defined enror temm . Let
us suppose thatw e have tw o cbservations fort= 1,2, on x_ and z_, each equal to one, and

w e have one observation on vy, , fort= 2 only, equal to one. Hence, the m odel essentially

becom es:

v.=0+B+¢€,



Suppose further, that som eone’s cbjective is the evaluation of the param eters’ values of this
m odel according t© som e prior econom ic know Jedge, acknow ledging, at the sam e tin e, the
fact that forecasting of y, with the use of these param eters should be reasonably accurate.
Obviously, such a m odel’ cannotbe estim ated, due t© the Jack of dentification. There is an
nfinite num ber of pairs of real num bers from the mterval 0,1) which m Inim ises square of
prediction enorof y, to zero €g9.09and 01;08 and 02 ...). Th otherw oxds, there isno
unique m nimum of the cbjctve functon, if the cbjpctive fincton is defined sin ply as the
square of forecast enor. This trivial example represents the essence of problans
econom etricians face w ith undersized (short) sam ples.

A guesstm ator seam s t© encounter a sin ilar problem . W hatever guess he/ghe m akes
conceming one of the param eters, there is alw ays another one which can be set in such a
way that the squared forecast errorw il be zero. This is only the case if the guesstin ator is
com pletely ignorant concemmng the nvestigated econom y. Tn practice, heshe nearly alwv ays
has som e prior know Jedge about the ‘true’, an pirical or theoretical, m odel. For mstance,
he/he can strongly refectthe combinations oo = 1 and = 0 (orvice versa) as econom ically
nonsensical. Hekhe m ght be alo hclned to digniss the combmhaton o= 095 and
B =005 aleit, perhaps, Jess strongly . Tt is also possible that the guesstim atorm ightprefer,
on econom ic grounds, som e com bnations which lie outside the constraint given by non-
dentification. To illustrate this, Jetus suppose fora while that (1) is a production function,
(%, being a Jogarithm of Jabour Inputand z, a logarttm of capital npu), v, =11 mather
than y, = 1 and the guesstin ator believes that there should be constant retums to scale, that
is, that o+ B =1.0n econom ic grounds, hehe would accept that, for nstance, A0 =05
and B=05 mather than o= 055 and B= 055, even if the latter com bihation forecasts
better. Fnally, w e m ight assum e that the restriction is not known to the guesstin ator. This
Jooks strange 1n the sin ple exam ple given above, but it can be m ore plausible if w e consider
a complex, dynam ic, mulbdequaton model with a more complicated cbjpctve fincton
nstead.

Retuming to the orighalexam ple, where y, = 1, Jetus suppose thathisherpriorbeliefs
conceming a isthatitisequalto 05 and conceming b , thatitis equalto 0.7.Every other

value is also adm issble, butsubjct o a penalty w eight. Letus denote these valuesas & and



A

B respectively and call then the guesses. Tt seem s t© be reasonable to asam e that the
penalties deviate from the nitally believed values of @ and b , according to, say, m utually
dependent stendard nom al distrbutions. Since the param eters m ight vary i their
m agniude, itw ould be of advantage t© scale them by theirm eans. The low estpenalty (zero)

is associated w ith the situation where the guesses are equal to the priorbeliefs (A= 05 and

A

B=07).Every other guess carries a non-zero penalty distributed as stendard nom al w ith

A

the argum ents [& /05)—1] and [B /07)—1].Hence, the weight ® @& ,B) , is defined as

the arithm etic averages of those tw o variates, is given by:

“(&—05)+ B-07

. 05 07

@, pB)= ,
2-n(0)

where n(®) denotes the value of a sendard nom al probability density fimction. The

guesstm ator is hterested Inm nin izng the w eighted criterion function :
o=ly,-o@.p)oa+p)r ,

and, atthe sam e tim €, In m NIn izhg the unw eighted criterion fimcton :

~

¢=1[y,— @+B)7P

A fler all, the guesstim ator is still nterested n obtainng such param eters w hich would give
hin her the bestpossible forecast accuracy . Tt is easy t© check thatm inin isation of ¢ leads
to the the result § =0 for any combiation of & and ﬁ which satisfies the restriciton
&+[§=1. For ¢ =0 a unique mininum of @ , equal to 0.00018, can be obtained for

G =0433 and B= 0567 .

But what has this In common with the guesstm ation procedure? This procedure
Tustrates a sin ple guessing rule, w here the guesstim ator is w illing t© m odify hisher hitial
guess by accepting another one, but only if this would Jead t© a decrease 1 the criterion
fiinctons. O r, n otherw ords, if one is guessing the param eters values at random and then
com putes the squared prediction enror w elghted by the penalty weight, it is likely that the
final resultwill be close t© 0433 for a and to 0567 for b . Ih fact a staightforw ard



sim ulation experim ent of draw ng 10,000 uniform random numbers from the nterval 0,1),
treating them as A ‘s , w ith ﬁ 's com puted from the restriction, and choosing such a pair of
these num bers which m inin ises the criterion fimction gave values of 04329 and 05671
regpectively . If the guesstim ator is com pletely ndifferent concermning the prior value of the
param eters he/he attam pt to guess and the penalty w eight is uniform 7 equal t© unity, then
there is an mfnite num ber of solutions m nin isng the criterion fimction. But, n a such case,
this person should not perhaps be taken seriously as an expert In prediction, sice hefhe

does nothave any valuable know Jedge on the subjct.

3.G uesstim ators’ m odeland algorithm

Evidently, I practice, an experienced guesstin ator applies, m ore or less consciously, a
m ore com plicated process of selection than that described above. Ik is likely that there are
different degrees of uncertainty conceming particular param eters, Param eters m ight be
regarded as being m ore or Jess difficult to guess. For Instance, the possible nterval n which
the capital depreciation rato is placed m ightbe thought of as being narow er than, say, the
shortrun price elastcity of Inports. A I1so, In som e cases the guesstim ator m ght revise the
prior beliefs; if he/&he realises that guesses w dely gpart from  the expected value of the prior
are giving sensble results, In tem s of m nim ising the criterion finction, itm ay happen that
the person m aking guesses gets w iser, Jeams and m odifies the priors. These priors can be
modified In two ways. There m Ight be som ething lke ‘leaming eagemess’, or ‘leaming
aversion’ w here the researcher is mcreasingly eager (or reluctant) t© m odify the w eights used
for evaluating guesses against prior beliefs. Tt sean s t© be reasonable t© assum e that, w ith
the mcrease 1 num ber of conrections of the priors, the researcher w il ncrease hisher
confidence In guesses from  the priors. This would result In an ncrease 1 penalty w eights
w ith the Increase 1 num ber of m odifications of the priors. A tthe sam e tin e, it is reasonable
o assum e that, w ith the ncrease In the num ber of such revisions, the guesstim ator w ould
alo express hisher hcreasing confidence by nanow g the nterval from which the
param eters are to be guessed, accordingly. Tk is equally possible t maghe a leaming-
averted guesstim ator, who would decrease the welghts put on the guesses and enlarging,
mather than narnow g, the nterval from w hich the guesses arem ade.



Tt is possible that the m ean of the nterval from which the param eters are drawn m ay
also change 1n the process. hitially the guesstm atorm ay draw a set of param eters from  the
nterval hekhe believes, at that stage, is the most likely t© nclude the Yoest! values of
param eters and check the criterion finction. Then, if an In provem enthas been m ade, he/fshe
m ghtrevise the priors (that is, m ove the m ean of the prior distribution t© the ponnt forwhich
the I provem ent took place) and draw agamn. If there was no In provem ent, the draw ing
continues using the nital values of param eters (or values for which the criterion finction
previously reached its desired extram um ) untl the Jarge num ber of unsuccessfiil draw ngs

confimm s that there iIsno room for in provan ent.

W ith these pomnts nm nd, the follow Ing guesstim ators’ m odel is proposed :

v.= £y, . x. ,€.:0) @)

where y, , t= 1, 2,..., n, is the vector of current, cbserved, endogenous variables, x,

contains all other relevant and observable variables (@t Jeastw eakly exogenous) and lagged
endogenous variables and g is the vector of K param eters w hich are t© be guessed. Unlike
as I a traditonal econom etric m odel, there is no dentification restrictions and, in particular,
the num ber of cbservations can be an aller than the num ber of unknow n param eters. If Q) is
a static model where all x, variables are strongly exogenous, the m nimal number of
observations is one. If there are endogenous variables lagged by one included in x,_, then
tw o cbservations are needed, etc.. G enerally, the param eters g are allowed to vary In tine
but, if the criterion is the m Inin isation of one (orm ore) step ahead forecast enrors, they are
supposad t© be Invariant ntertem porarily (this creates a tine consistency problan , not

discussed 1 thispeper) . Finally, e, is the random and unpredictable (in m ean) process.

The model is completed by the guesstm ator’s prior (nital) beliefs conceming the
param eters  (the priors). The prior beliefs @lso called the priors herein) are defined as a
vector of K tntervals, ©° , which are proportional to the htervals the guesstin ator hitbally
assum es the param eters are cluded . These ntervals are I twm defned by thelr m ean
values, ¢, and Jength, ©° Them emn is essentially the guesstin ator's prior best guess and
the Jength of each mnterval corresponds o the unceranty the guesstm ator attributes t©
hisher know Jedge conceming each param eter. A 1o, the m odel m ay mclide a number of
m axin al ‘drift changes’, that is the m axin um num ber of tim es the guesstin ator is prepared



to revise them ean of hisherpriors. This is denoted below as N ¢ . Before the first step of the
algorittm , it is necessary t© derive the inital values of the criterion fumcton. This can be
done by usihg the titial values of the param eters, g’ , equal to the m ean of hital htervals

for solving themodel @) for y, given €,= 0 . Shce this solution depends on g, ketus

denote itas: v = £ (x, ;0).This solution isneeded in order to m ake an h-step ahead

forecast for y, , that is, finding yt+h T & 0y  h=1,2,-, where %9 ia

t+h 4 t+h

forecast for x

t+h

(the vector x,_ may contain Jagged y’s and w eakly exogenous variables; n
the sin plest case, where x_ is a vector of strongly exogenous variables, their future values

must be known and %° =

~ (0) '
on = X,y ). Compare the predictions vy, wih the observed
reglisations of v,,, by computing an Inital value of the unweighted criterion fimction

UCF):

where v ={y,, /Yy, "1 = {yJrl ,yt+2 ;- 1. A sinple exampl of such an UCF iIs

the sum of squares of onestep ahead prediction ernors:

ZZmlm :

=1 Y

w here the symbolZ (®) means the simm ation of all elam ents of vector y,,, (thatis, forall

Yer1

endogenous varidbles of the model). W ith these mitial values, the algorithm of repetitive

guessings (called herein the Repetitive Stochastic G uesstim ation, the RSG ) is the follow Ing:

1) In every iteration j fwhere ‘teration’ relates t© achieving an In provan ent In the criterion
finction) the previously cbtahned (Oor mital) set of adm issible param eters htervals is
m odified through an gpplication of the Jeaming fincton 14 (J) :

Q=" i%(:) (j—l)}\’e ()

2) From the et @ draw (that is, guess or random 1y generate) a sam ple of K param eters,

q.? and for these param eters com pute m odel solutions:

vii=f"x 07 ,



forecasts v} (@nalogously o ) and wnweighted and weighted criterion fimctions,
defined respectively as:

07 =07 (v, ¥

and:

07 =07y, v 0@ A, (N,

w here ifl‘ = {y "l ,ylt+2 ;o0 ), and }»(p (J) is the Jeaming fimcton analogous © 14 ( J),
and is an argum ent of the penalty weight fimction ® @) . By analogy t© the mitial UCF,

the examplary weighted criterion fimction, WCF, can be defined as onestep ahead

prediction error:

ZZ(Yt+1—m[0” v 3)

=1 Y

and ¢ isanalogousto ¢, thatis:

22 Var— Vi) . @)

=1 Y

For Inearm odels w ith negative degrees of freedom  (that is, not dentified), the 1im it value
for such defined @.” is obviously zem. Furtheron the mndom draw ing of param eters
w ithin an iteration, bentified by subscript i, is reffered t© as replication.

3) T each replication the value of the finction @7 is com pared w ith that obtained 1 the

previous iteration @ 7Y and the value of the fimction @7 iscompared with @ 7" . tis
often convenientto use @' = ¢ as the initial value. Suppose thatw e are Iterested in
m nin isation of the criterion fimctons. I @7 <@ "™ and @ <@V, then the
algorithm m oves to nextiteration G= j+ 1) and steps 1) 3) are repeated starting from 1
= 1. W hile repeating step 1) the priors can be modified In two ways: 1) by settng
Ao () #Ag (3—1) and, additionally ii) by imposing g = g!” . Ff only m odification 1) is
mposed and 09 =09 for all j, the algorittm is called the constant mean RSG ;
otherw ise we are dealing w ith the non-consant mean RSG . A 1o, the welghts In the

w eighted criterion may change, i A, () # A, (3-1) .IE @7 >0 7" ,orif @” <@ ™"
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out @ > @7, then the adm issble intervals do not change and steps 2) - 3) are

repeated forunchanged jand i= i+ 1; the algorithm m oves t© the nextreplication w ithin
the sam e iteration. A new setof potential param eters is drawn from the sam e ntervals as
before and this is repeated untl there is an in provem enton the cbjective fincton, or the
stoppng rule is fulfilled.

An Inporantquestion ishow t© defne the Jeaming finctons. A sin ple proposition for
the Jeaming function is:

N j-1
1o (3)= 1o4|1+dq el

w here EG is a consent which reflects the in pact of the Jeaming process on the penaltyy

weights, N ! isa constantwhich is inversely proportional to the Jeaming speed and dg isa
constantpositive or negative valie, depending w hether the guesstin ator expresses ‘leaming
aversion’ or ‘leamng eagemess’. The other leaming functon, }»(p (7), is defined
analogously .

Given A, (J), the penalty weights for the criterion fimction are said to be nom ally

distrbuted according t© the difference betw een the actually guessed and the previous best
guess (thatis, them iddle of the adm issble nterval):

K e(j?_e(j)
2 }”q’(j)'wk'k'l(j)kJ
(D(e(j)}\, ( -))=k=1 ek
et K-n() '

where 07 denotes the k-th param eter drawn in the Fh iteration and, w ithin it, & the i+h
draw ing eplication) and g,” is such a value of the k-th param eter which ended the F1
iteration (n anotherwords, g!” isequalto thek+th elementof g7 ) and y , is the scaling
factor for the k-th param eter. If the guesstin ator is puttng equal ‘faith’ nto a guess of ary
param eter, regardless of its scale than y, =1 /K forallk. O thenw ise itvaries and itm ight
be reasonably assum ed that values of y |, are nversely proportional to the size @bsolute

value) of a corregponding k-th param eter. There are cbviously num erous otherw ays for the
penalty w eights and Jeaming function to be form ulated, but those given above are sinple t©
com pute and ntuitively appealing . For nstance, the penalty w eight fimction has a m axin um
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equal o unity for 6,°] =07, that is where the guessed param efer is equal © the best one
(o far).

Technically, there is nothing new In the above algorittmm . The question of finding a
solution In an undersized optm isation problan has been discussed for a ong tine 1 the
literature of stochastic optim al control of an econom etricm odel, (see eg.HughesH alletand
Rees (1983) for a thorough description of early econom ic applications, Arkin and
Evstigneev (1987), Holly and Hughes H allett (1989) for a m ore sophisticated approach and
Civdini (1992) fora com parison w ith alternative m ethods) . The algorittm is also sin ilbar to
that of ‘raining’ the welghts n the smple two-hyer stochastc neural netw ork, w ith the
squashing fimction given by the UCF and WCF (see eg.Homik etal. (1990); fora smple
ntroduction see Fausett (1994, p. 329); for its analogy t© the m ulbvarate Jeast squares and
the generalised Jeast squares m ethod see eg. Angus (1989); for a general overview see
BamdorffN jelsen, Jensen and K endall (1993)). The principal difference w ith the theory of
neural netw ork raning is I the fact that n the guesstim ation algorithm , the outputs are not
nomm alised w ithin the nterval 0,1) - see W asserman (1989, pp. 45). Conceptually, the
guesstm ation seam s t© be close t© ‘calibration’ of param eters of general equilibbriim m odels
as suggested by Kydlnd and Prescott (1982), (1991); see also Kydland (1992) and for
details of the com putational algorittm and description of softw are, G reenaw ay etal. (1993).
The readerm ustbe on the alerthere, shce the conceptof ‘calibration’ used in the literature
has various, som etim es quite confusing, m eanings. The philosophical underlings of both the
Kydlnd and Prescott ‘calibrator’ and the guesstim ator, are indeed very close: both are
nventing thelr param eters up t© the best of their prior know ledge, both are verifying a
criterion finction and then attem pting to revise the priors, if the result is not up t© their
Iiking . The principal difference is that the guesstim ator’s action does not depend so heavily
on m icroeconom ic assum ptions and constraints. Instead, heghe repeats the process of
selection of the param eters m ore offten and is prepared o leam, that is t m odify hisher
prior (that is, also m icroeconom ic) know Jedge. If one does not like the notion of
‘guesstim ation’, one m Ight use that of ‘repetitive stochastic calibbration’ nstead. Tk sean s,
nevertheless, that despite the fact that prior beliefs conceming the param eters are w dely
used, the guesstim ation is nota Bayesian analysis, at Jeast not In the traditional sense. The
posterior distribution is not com puted, neither directly nor indirectly . n particular, B ayesian
analysis requires a full-sized sam ple (the degrees of freedom constramt) . This is not required
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for guesstim ation. Tn its extram e case, w ith only two pieces of mfom ation avaikbble, the
guesstin ation is early) a fully subjpctve enterprise; one m ght note that n the example

given In Section 2, the final resultw ould alw ays change w ith the revision of the priors.

An nteresting attem ptof com bining the RSG w ith the genetic evaluation strategies has
been made by PltePrzechlewski (1997). He analysed a number of different genetic
algorittm s, w ith the results ponting out at the usefulness of the defining of the draw ng

processof 07 as:
ei(j):e('rl)_l_N o) /Ge()j)) ,

where is N (0,0,”) isamndom varate generated from a nom al distrbution w ith a zem
memn and stendard deviation o6, , evaluated according o the 15 success mile (see

Rachtenberg (1973)). It has been shown that, n som e hstences, draw Ing of param eters
according to the miles of the genetic evaluation strategies gives reults superiour to thatof the
orignal RSG . D etailed analysis of the genetic algorithm s is, how ever, beyond the scope of

this paper.

Particular variations of the general RSG algorithm can be illustated by surface plots
representing the guesstin ates of the param eters o0 and B of model (1) together w ith the
corresponding values of the W CF . Strictly speaking, the surface plots cornrespond to about
10,000 three-dim ensional points: o' , B and @7 . Figures 14 show such surfaces for
the constant and non-constant RSG ‘s, w ith and w ithout w eighted scaling. The surfaces for
the constentm ean RSG Figures 1 and 2) are bim odal, w ith the m ininum of the criterion
finction being In the walley’ betw een the hills. These hills are clearly visble for the casew ith
uniform scaling of priors; w here w eighted scaling is used, the Jow er (forw ard) hill can hardly
be noticed . The plots suggest that the non-w eighted algorittin  wasted’ a Jotof replications,
at the early stages of com putations, searching for the m nmmum well away from its actual
point. The algorittm w ith the weighted scaling of priors, w ith a steeper slide tow ards the
m Ininum , can be regarded, I the analysed m odel, as com putationally m ore efficient. Even
m ore efficient seam t© be the algorithm s w ith non-constentm eans Figures 3 and 4). kthas

o be stressed, how ever, that the entire reason for using non-constant rather than constant



m ean alorithm s is of subjctive nature; w hether or not the guesstm ator is prepared t©

revise hisher beliefs regarding the mean of the priors has t© be decided prior to

guesstm ation, on the grounds of som e extermal nform ation. A m isteke In this respect can

as In the exam ple (1) above, every revision of them ean

have rather dire consequences snce

I

of the prior Jeads to a differentm ninum oftheW CF.

Surface plotsofdraw ings M odell:

Fig.l: constant-m ean RSG

uniform scalng ofpriors

7

w elghted scaling of priors

7

Fig.2:Const@antm ean RSG
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Fi.3:Non-constantm ean RSG , no scaling of priors

02 02

Fi.4:Non-constantm ean RSG ,welghted scaling of priors

4.Som eM onteC arlo exam ples

41 .L near shgle equation m odel

An evidentquestion asked by an em pirical analyst is: is there ary en pirical, or pseudo-
an pirical param eters’ evaluation procedure; estin ation, guesstm ation, calbraton, etc.
which may allow for any In provemn ent over the param eters values the Investigator nitally
believes n? If answ er to this question is positive, then itcan be argued that the procedure is,
n som e sense, efficient, snece it Jeads t© better M ore accurate) evaluation of param eters,
than sin ple guesses. O bviously, if m ore than one m ethod is com pared, then this one can be
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regarded as better (more efficient), which either produces such an In provem ent m ore
frequently, and or approxin ates the true value of the param eter w ith better accuracy . The
problam sin plifies I the case where the num ber of degrees of freedom  is negative that is,
w here the num ber of cbsarvations is an aller than the num ber of param eters. n such a case,
‘proper’ econom etric m ethods cannot be gpplied, and the Tvestigator is left wih two
options: t© believe M hisher nitial guess, or o apply the RSG . Therefore, it can be asserted
that the RSG , m akes sense (Is, I som e sense, superior o the mnital guess) if, on average, it
does give an in provem ent in the accuracy of approxin ation of the true param eter, relatvely
o the Inital guess, m ore often than does not. If, for nstance, the tue value of the param eter
is one, the nitdal guess is 05, and the RSG produces the number of 12 then, m this
particular case, the RSG scores a point against the nitial guess, shce 12 is closer to one
than 0 5. If such a situation happensm ore often than the opposite, then onem ightregard the
RSG asbeing efficientrelbtively o the nibal guess.

I order to evaluate the efficiency of the RSG m relation t© nital guesses and, In the
case of positive degrees of freedom , In relation t© som e altemative m ethods, M onte C arlo
experin ents have been performed on data generated by the follow hg data generating

process ODGP):
K
Vo= 0% +€ ; t=1,2,-10 ,
k=1

where € _ is generated from stendard nom al distrbution and values of x,  are fixed

repetitive sam ples. Th ndividual experin ents the num ber of explnatory variables, K, is
altered from 1 t© 20. Since the sam ple size ran ains unchanged at the Jevel of 10, the num ber
of degrees of freedom changes, In ndividual experments, from 9 K = 1) © -10 K = 20).
The param eters values o, are fixed (thatis, drewn once from auniform [1,10] distrbution).

It is al®o assumed that, n each case, the Investgator possesses prior know ledge
regarding the param eters. This know Jedge s, how ever, in perfect and he/fhe enrs regularty
by a given rato. Hence, it is assum ed that the mital values of the hvestgator differs,
r=ndom Iy, from the true param eters values by 0 25% 50% and 75% regpoectively. These all,
for the RSG , gives the total num ber of experim ents as equal to 60 20 DGP'swith 1 t© 20
param eters tin es 3 different initial guess error ratios) . The num ber of param eter evaluations
M onte C arlo replications) for each experim entis 500 . n each evaluation, the constantm ean
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RSG has been applied, w ith m axin um numberof RSG iterations (that is, changes n Jeaming
fiinctions and priors ntervals length) equal t© 150 and the m axin um num ber of replications
w ithin each iteration equal to 500!

W here the num ber of degrees of freedom  Is positive (that is, fork = 1, 2, ..., 9) it is
possible to com pute, for the sake of a com parison, an econom etric altemative t© the RSG .
Tw o such alteratives have been used: the ordinary Jeast squaresm ethod O LS) and a sin ple
Bayesian estin ator, w ith the prior distribution for param eters given by the multvariate
nom al distribution w ith diagonal covariance m atrix (see eg. Judge etal. (1988), pp. 284-
287). W hile the OLS is an example of the method where no prior know Jedge of the
Ivestgator isused (nital values of the param eters are ignored), the Bayesian estin ates can
be seen as a logical altermative t© the RSG , where the mvestigator’s prior know ledge is
explicitly applied. Consistently wih the assumptions used for the RSG, for Bayesin
estim ation it has been assum ed thatm eans of the prior distributions for the param eters are
equal o those nitally guessed by the nvestigator, that is they differ by, regpectively, 25% ,
50% and 75 % fom the tme param eters’ values. For com putational sinplicity is also
assum ed that the standard deviation of the errorterm  is known and equal to unity.

Figures 5-7 show the proportions of average In provam ents, across K evaluated param eters,
over the mital values given by the particular m ethods applied. For the case of positive
num ber of the degrees of freedom , where both the O LS and Bayesian m ethods are applied,
the results suggest superiority of the RSG over these two m ethods in the case where the
nital guesses are rebtively close to the true values of param eters. W ith the ncrease of
distance of the mitbal guesses from the tue values (that is, w here the guesses are becom ng
worse), the OLS , which does not require any priors atall, gains rebtively t© the RSG . The
Bayesian m ethod is Josing dram atically w ith the decrease In the accuracy of the mital guess.
T fact, the entire experin ent can be regarded as belng set unfairly against the Bayesian
m ethod, snece it is clain ed that the Bayesian estin ation of a Inearm odel is efficient if the
true param eters is equal o the expectaed value of the prior distribution.

f ﬂawwmwwmmmmmmwmwmm/fﬂgjﬁ WWW»&}MMW



W here the num ber of the degrees of freedom  Is negative and the only altemative t© the RSG

is the Initial guess, the RSG show s its efficiency by producing the proportion of cases w here
there has been an in provan ent over the mital guess consistently ata Jevel exceeding 05. &
should also be cbserved that this proportion rises with the increase of the mnital guess
Thaccuracy . At the sam e tim e, as shown by Figure 8, the average (across the param eters)
rootm ean square errors (RM SE ‘s) of the param eters’ evaluations obtaned w ith the use of
the RSG , have a tendency to decrease w ith the Increase of the accuracy of the mital guesses.
For Jarger nital guess enors, there is also visible a slight tendency of the average RM SE t©
decrease w ith the decrease 1n the degrees of freedom . This, apparently absurd, situation, can
be htuitvely explaned by the fact that, w here the num berM onte C arlo analysis of the Inear
m odel:Proportion of average In provean ents over nitial guesses of degrees of freedom Is
decreasing, the am ount of prior nform ation is ncreasing w ith the ncrease N num ber of

param eters.

Fig.5: Inidalguess error ratio: 25%
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Fig.7: Inidalguess error ratio: 75%

=
!ll

e ==V —

s 7 6 s 4 3 2 1 o

DOFs

Fig.8:AverageRM SE for theRSG in the Inearm odel

AV.RMSE

4 2 A non-lnearm odel: dynam ic canonicaldisequilibrium m odel

The next model t© be consderad is also an artficial one, although of a more
com plicated, nonlnear structure. Suppose that there is a m arket in disequilbrim described
by the follow g dynam icm odel:

D.=0,D_,+0,x +e, ,
St=e3xz,t+82t ’
Q. =m:(D_,S,)

Here D, denotesdanand, S, issupply and Q. is the quantity transacted. Tt is assum ed that

dem and and supply are not directly observable, In that they are not equal t© the quantty
transacted. Such a model is called a dynam ic canonical m odel, and is regarded as being
particularly difficult to estin ate, due to the presence of the Jagged unobservable variable

D (seeeg.Quandt (1988),pp.132-140). Them ethod recently proposad for estin ation of

=1

such am odel is the sin ulated pseudo-m axinum  likelihood (SPM L) m ethod by Laroque and
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Salanié (1995); for further developm ent see Lee (1997ab). Them ethod, which allow s fora
very general specification of the model, consists 1 smubtng first and second order
m am ents of the endogenous variables n h ndependent draw Ings and then averaging the

results.

The canonical disequilibriim m odel can easily be evaluated w ith the use of the RSG . If
the criterion fimctons are given by (3) and @), that is set to m Inin ise the one-step ahead
forecasterrors, the one-step ahead prediction can be com puted as:

(3) _— . (3~ 3 (3) (3)
Qi =mm (el,iDi,t+ 62,i><1,t+1 ’63,iX2,t+1 )

wih D/ computed recursively n each replication and 0,7 , 0 , 0.7 are draw ings of
param eters obtaned I particular iteration and replication.

I order to com pare the perform ance of the SPM L and RSG , a series of M onte Carlo
experin ents w ere perform ed. The DGP is essentially that used by Laroque and Salknié
(1995), that iswhere0, =05 , 0,=0,=1, stendard enors of €,, and €, are equal o
unity, X,, IS a unimry varieble wih all is valies equal © 5, %, is defined as
%,.=(1-0,)5-n(0,1)],wheren (0,1) stands fora sin ulated pseudo-random standard

nom alvariate, and the mitialvalue for D, isgiven as?

o 1, (0,1)4/145%7 1-67)
0 2 \/1_6i

A s before, it is assum ed that the Investigator is m aking errors In hisher mital guesses

regarding the param eters, respectively by 25% , 50% and 75% of their true values. These
nital guesses are usad as m eans of mnitial draw g ntervals n the RSG and as the starting
values In the optm isation routihe of the SPM L. The mital sendard deviations for
param eters (n case of the RSG, for the nitbal ntervals for priors) have been assum ed, for
both m ethods, asbeing equal o therr true values. For each m ethod, one hundred replications
were made for ssmple sizes of N = 3 RSG only), 10 and 100, w ith the first cbservation
discarded for Jags. The num ber of degrees of freedom is equal to -1, 6 and 96 respectively.
The RSG applied was the constantm ean algorittm , w ith the m axinum num ber of Jeaming

2) 3 it s my thans to My Javoqun and Bnasss bolori. fo llwing o b ws hive & o U S S S P J0 L progpam
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fiinction changes (iterations) egqual t© 150 and the m axinum num ber of replications w ithn
each iteration equal t© 3,000. For com parison, for sam ple size equal t© 100, the results of
the non-constant m ean algorithm are also shown (for sample size equal © 10 the results
obtained for the non-constent mean RSG are clearly nferior and, for sample size of 2,
nonsensical) . The SPM L m ethod has a 1in itof 150 optin isation iterations and the num ber of
SPM L draw Ings h is equal to 20. The idea of these settings w as t© m ake the com puting tim e
used by both m ethods 1 one M onte Carlo replication as being of a sim ilar m agniude.
practce, how ever, the SPM L m ethod tumed out to be about four tin es m ore expensive (in
term s of com puting tin e) than the RSG , for the sam e sam ple size. There has been also som e
cheating in posad In com putations n favourof the SPM L. Tkw as found out that, fora sam ple
size of 10 @End, In one case fora sam ple size o£ 100), the SM PL diverge, In iteratons, from

the true param eters, Jeading the estim ated param eters astray . H ence, w here such a diversion
w as noticed, the particularM onte C arlo replication w as repeated.

Table 1 summ arises the results. Fora sam ple size of 100 the SPM L is clearly superior to the
constentmean RSG, both In terms of average RM SE and average frequencies of

In provan ents over nitbal guesses. The RSG |, how ever, ncreases its efficiency faster than the

SPM L w ith an increase n the mibal guess accuracy . H ow ever, the non-constantm ean RSG
results seam t© be nearly as accurate @nd, for the nital enror rato of 0 25, m ore accurate)
as the SPM L com putations. For a sam ple size of 10, the RSG perfom s better for ‘close’
nital guesses and sin ibr t© the SPM L for ‘average’ and ‘bad’ nitial guesses. Tk is worth
notng, how ever, that I about 10% cases the SPM L gave towlly unrelisble divergent)
results, discarded for calculation of the RM SE and average frequencies of in provem ents and
that it is also about 4 tin es com putationally Jless expensive. For a sample size of 3, the
M onte Carlo characteristics w orsened only slightly in com parison w ith those obtained forN

=10.



Table1l:M onteC arlo com parison of the SPM L and RSG m ethods
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hitalerror ratio: 0 25 Thitalerror ratio: 0 50 Thitalerror ratio: 0.75
N SPM L RSG SPM L RSG SPM L RSG
3 N A 0216 N A 0337 N A 0509
Av.RM SE 10 0257 0198 0267 0274 0397 0489
100 0.068 gigi* 0.067 8?)32* 0101 8 ési*
2 N A 0620 N A 0.640 N A 0643
Av.Impr. 10 0627 0.710 0877 0677 0663 0.689
100 0977 8';‘23* 1.000 8';;* 0997 %88*
No.of 10 6 0 12 0 10 0
dversions 0 0 1 0 0 0

Results m arked by * are for the non-constantm ean RSG algorithm . A 11 other RSG results are for the

constantm ean algorithm .

6.Summ ary and conclusions

Ttseam s thatguesstim ation, In the sense discussed abovem ay, I som e situations, be not
a totally diotic dea. If a guesstim ator has either the patience ora lotof tin e, oran access to
a decent com puter so that he/she can repeat the process and leam on the way, the result
m ght be of som e practical i portence. Th particular, heshe m ight In prove on the nital
guess, m ght discover param eter values w hich have som e hteresting forecasting properties,
and m ay not bother w ith dentification, short sam ples and tin evaryhg param eters. O flen
and som etin es unknow ngly, heghe m ight solve an optin al control problen on the way, do
a ‘calibration’ or tramn a neural netw ork. W hat is equally in portant, m odels on which the
guesstin ation is perform ed m ght be highly nonlnear, tuncated and even fomulated I a
\fuzzy’ fashion. Tn otherw ords, they m ightbe closer to the underlying econom ic theory than
typical econom etric m odels which, for estin ation purposes, are often nearly lnear or
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Inearised . Even m ore relevant is the fact thatequations in the guesstin ated m odelsm ghtbe

ncom plete, and subjpctto m isgecification enrors.

I fact the RSG alkjorittm has also been used for estin ation a reallife nonlnear
forecasting m odels, giving decent forecasting properties. In particular, the param eters of a
series of quarterly m odels ofr East European econom les (where som e of the econom des, like
the Baltc States and the C zech and Slovak R epublics are only a few years old and the data
series cannot be Jong) have been systamm aticaly ‘guesstm ated’ and used for short and
medim tem forecasting (for the description of the m odels see Charam za (1994), the RSG
algorittm see Blangiew icz and Charam za (1994) and for the independent com parison of
various forecasts ncluding those made with the use of ‘guesstmated’ models see
M aciefw ki (1997).

The described algorithm of guessing the param eters is far from being deal. Tt depends
heavily on the choice of mital values and on other assum ptions conceming the process of
leammng, Inpact of welghts on the criterion fimction and desd on the choice of the
distribution w hich is supposed t© represent the draw Ing process. O nem ight say, notw ithout
Justification, that so m any assum ptons creates a conducive environm ent o ‘torturng the
data untl nature confesses’, that is, a researcher m ight change the assum ptions as untl a
desired result is obtained. This is undoubtedly true, but is alo twe for taditonal
econom etric m odels. If the proposed procedure represents a Yack to© basics’ an pirical
m ethodology rather than a pke, then it is Iikely that further steps I s developm ent w i1l
concem about the proper (optim al) choice of penalty welghts, constants I the Jeaming
form ulae and an evaluation of the num ber of tim es the guesstim ator is w illing to correct the
priors. If the w hole idea of the repetitive stochastic guesstm ation is ridiculed, I do hope that
som ebody w ill polnt out t© better alemative, or will explain why doing nothing and
com planing that bad’ daa do not fit ‘good’ econom etrics is superior to doing som ething.
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