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Abstract

Evidence shows that (i) people overweight low probabilities and underweight

high probabilities, but (ii) ignore events of extremely low probability and treat ex-

tremely high probability events as certain. Decision models, such as rank dependent

utility (RDU) and cumulative prospect theory (CP), use probability weighting func-

tions. Existing probability weighting functions incorporate (i) but not (ii). Our

contribution is threefold. First, we show that this would lead people, even in the

presence of fixed costs and actuarially unfair premiums, to insure fully against losses

of sufficiently low probability. This is contrary to the evidence. Second, we intro-

duce a new class of probability weighting functions, which we call higher order Prelec

probability weighting functions, that incorporate (i) and (ii). Third, we show that

if RDU or CP are combined with our new probability weighting function, then a

decision maker will not buy insurance against a loss of sufficiently low probability;

in agreement with the evidence. We also show that our weighting function solves the

St. Petersburg paradox that reemerges under RDU and CP.
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1. Introduction

The explanation of insurance is, rightly, regarded as one of the triumphs of Expected
Utility Theory (EU). For example, it is a standard theorem of EU that people will insure
fully if, and only if, they face actuarially fair premiums. Since insurance firms have to at
least cover their costs, market premiums have to be above the actuarially fair ones. Thus
EU provides a completely rational explanation of the widely observed phenomenon of
under-insurance. This has the policy implication that if full-insurance is deemed necessary
(because of strong externalities for example), then it has to be encouraged through subsidy
or stipulated by law.
However, problems remain. The following are three well known examples. First, it is

difficult for EU to explain the fact that many people simultaneously gamble and insure;
see, for example, Peel, Cain and Law (2005). The gambling and insurance industries
are too large and important for such behavior to be dismissed as quirky. Second, EU
predicts that a risk averse decision maker will always buy some positive level of insurance,
even when premiums are unfair. What is observed is that many people do not buy any
insurance, even when available. Indeed for several types of risk, the government has to
legislate the mandatory purchase of insurance. Third, when faced with an actuarially unfair
premium, EU predicts that a decision maker, who is indifferent between full-insurance
and not insuring, would strictly prefer probabilistic insurance to either. However, the
experimental evidence is the reverse; see Kahneman and Tversky (1979, pp269-271).
These and other anomalies have motivated a number of alternatives to EU. The most

important of these are rank dependent utility theory (RDU), see Quiggin (1982, 1993), and
cumulative prospect theory (CP), see Tversky and Kahneman (1992). Both RDU and CP
use probability weighting functions to overweight low probabilities and underweight high
probabilities. However, the standard probability weighting functions infinitely overweight
infinitesimal probabilities, in the sense that the ratio between the weight and the probabil-
ity goes to infinity, as the probability goes to zero. Our first contribution is to show that
this would lead people, when faced with an expected loss, to insure fully against that loss
if it is of sufficiently low probability. This result holds even when premiums are actuarially
unfair and there are fixed costs of insurance, provided a participation constraint is satis-
fied. Simulations suggest that this participation constraint is quite mild. This behavior is
contrary to evidence, as we shall now see.
Two particularly striking examples are given in the seminal work of Kunreuther et

al. (1978). These are the unpopularity of flood and earthquake insurance, despite heavy
government subsidy to overcome transaction costs, reduce premiums to below their actu-
arially fair rates, to provide reinsurance for firms and provide relevant information. This
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not only contradicts the prediction of EU1, it also contradicts the predictions of RDU and
CP when standard probability weighting functions are used.
While there is considerable evidence that people overweight low probabilities and un-

derweight high probabilities, it is also a common observation that they ignore events of
extremely low probability and treat extremely high probability events as certain. We could
follow Kahneman and Tversky (1979) and rely on an initial editing phase, where the de-
cision maker chooses which improbable events to treat as impossible and which probable
events to treat as certain. No doubt such editing does occur. However, as yet, there is no
general theory of the editing phase. Instead, in our second contribution, we propose a new
class of probability weighting functions that combine the editing phase with the probability
weighting phase. While our proposed functions overweight low probabilities and under-
weight high probabilities, they also have the feature that the ratio between the weight and
the probability goes to zero as the probability goes to zero. We call these higher order
Prelec probability weighting functions because they are generalizations of Prelec’s (1998)
probability weighting function.
Our third contribution is to show that when RDU or CP is combined with any one of

these new probability weighting functions, then a decision maker will not buy insurance
against an expected loss of sufficiently low probability; in agreement with the evidence.
To quote from Kunreuther et al. (1978, p248) “This brings us to the key finding of our
study. The principal reason for a failure of the market is that most individuals do not use
insurance as a means of transferring risk from themselves to others. This behavior is caused
by people’s refusal to worry about losses whose probability is below some threshold.”2

Blavatskyy (2004) and Rieger and Wang (2006) show that the St. Petersburg paradox
reemerges under CP, even with a strictly concave value function. Rieger and Wang (2006)
derive a new probability weighting function that solves this paradox. We show that the
higher order Prelec probability weighting functions also resolve this paradox.
The paper is structured as follows. In Section 2, we define the concepts of infinite-

overweighting and zero-underweighting. In Section 3 we derive some properties of the
Prelec weighting function. In Section 4, we present our proposed weighting function and
derive its properties. Sections 5 and 6 derive the implications of the probability weighting
functions for insurance when an individual uses, respectively, RDU and CP. Section 7

1To quote from Kunreuther et al. (1978, p240) “... a substantial number of those who have sufficient
information for making decisions on the basis of the expected utility model frequently behave in a manner
inconsistent with what would be predicted by the theory.” Other studies that reach a similar conclusion,
reviewed by Kunreuther et al. (1978, section 1.4), cover the decisions to wear seat belts, to obtain
breast examinations, to stop smoking, to purchase subsidized crime insurance and to purchase flight
insurance. The last of these, however, shows that people purchase too much flight insurance, compared
to the prediction of EU.

2Kunreuther et al. (1978) is a major study, involving samples of thousands, survey data, econometric
analysis and experimental evidence. All three methodologies give this same conclusion.
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briefly considers the St. Petersburg paradox. Section 8 gives the conclusions.

2. Weighting of probabilities

In this section, we introduce the concepts of infinite-overweighting and zero-underweighting
of infinitesimal probabilities. These will be crucial for the rest of the paper.

Definition 1 : By a probability weighting function we mean a strictly increasing function
w : [0, 1]→ [0, 1] , w (0) = 0, w (1) = 1.

Definition 2 :We say that the probability weighting function, w, infinitely-overweights
infinitesimal probabilities, if (a) lim

p→0
w(p)
p
=∞ and (b) lim

p→1
1−w(p)
1−p =∞.

Definition 3 : We say that the probability weighting function, w, zero-underweights
infinitesimal probabilities, if (a) lim

p→0
w(p)
p
= 0 and (b) lim

p→1
1−w(p)
1−p = 0.3

3. Prelec’s probability weighting function

The Prelec (1998) probability weighting function has the attraction that it is parsimonious
and is consistent with much of the available empirical evidence4. Therefore, we chose it as
our starting point.

Definition 4 : (Prelec, 1998). By the Prelec function we mean the probability weighting
function w : [0, 1]→ [0, 1] given by

w (0) = 0 (3.1)

w (p) = e−β(− ln p)
α

; 0 < p ≤ 1, 0 < α < 1, β > 0 (3.2)

We produce below, a graph of the Prelec function for α = 0.35, β = 1.

3We could introduce the further concepts, finite-overweighting : lim
p→0

w(p)
p , lim

p→1
1−w(p)
1−p ∈ (1,∞) and

finite-underweighting : lim
p→0

w(p)
p , lim

p→1
1−w(p)
1−p ∈ (0, 1). But we will not use these in this paper.

4Prelec (1998) gives a derivation based on ‘compound invariance’, Luce (2001) gives a derivation based
on ‘reduction invariance’ and al-Nowaihi and Dhami (2005) give a derivation based on ‘power invariance’.
Since the Prelec function satisfies all three, ‘compound invariance’, ‘reduction invariance’ and ‘power
invariance’ are all equivalent.
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Proposition 1 : (Prelec, 1998, p505). For Prelec’s function (Definition 2): lim
p→0

w(p)
p
=∞

and lim
p→1

1−w(p)
1−p =∞, i.e., w, infinitely-overweights infinitesimal probabilities.5

Proof: For 0 < p < 1, (3.2) gives ln w(p)
p
= lnw (p) − ln p = −β (− ln p)α − ln p =

(− ln p)α ¡(− ln p)1−α − β
¢
and since 0 < α < 1, we get lim

p→0
ln w(p)

p
=∞. Hence, lim

p→0
w(p)
p
=

∞. This proves the first part. To prove the second part, note that, as p→ 1, 1−w (p)→ 0

and 1−p→ 0. Hence, we evaluate lim
p→1

1−w(p)
1−p using L’Hopital’s rule. This gives lim

p→1
1−w(p)
1−p =

lim
p→1

d(1−w(p))
dp

/lim
p→1

d(1−p)
dp

= lim
p→1

dw(p)
dp

= lim
p→1

αβw(p)

p(− ln p)1−α =∞.¥
According to Prelec (1998, p505), these infinite limits capture the qualitative change

as we move from certainty to probability and from impossibility to improbability. On
the other hand, they contradict the observed behavior that people ignore events of very
low probability and treat very high probability events as certain. In sections 5 and 6,
below, we show that this leads to people fully insuring against all losses of sufficiently low
probability, even with actuarially unfair premiums and fixed costs to insurance. This is

5Tversky and Kahneman (1992) propose the following probability weighting function, where the lower
bound on γ comes from Rieger and Wang (2006),

w (p) =
pγ

[pγ + (1− p)γ]
1
γ

, 0.5 ≤ γ < 1

Clearly, this function also has the property lim
p→0

w(p)
p =∞. It can be shown that other probability weighting

functions that have been proposed, for example, Gonzalez and Wu (1999) and Lattimore, Baker and Witte
(1992), also have this feature. A notable exception is the probability weighting function of Rieger and
Wang (2006).
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contrary to observation. See, for example, Kunreuther et al. (1978). Following Kahneman
and Tversky (1979), we could rely on an initial editing phase, where the decision maker
chooses which improbable events to treat as impossible and which probable events to treat
as certain. While we are persuaded by this choice heuristic, as yet, there is no general
theory of the editing phase. In the next section, we propose a class of probability weighting
functions that combine the editing phase with the probability weighting phase.

4. Higher order Prelec probability weighting functions

Lemma 1 : (Prelec, 1998, p507, footnote). Prelec’s function (Definition 2) can be written
as

w (0) = 0, w (1) = 1 (4.1)

− ln (− lnw) = (− ln β) + α (− ln (− ln p)) , 0 < p < 1 (4.2)

Lemma 1 motivates the following development. Assume that − ln (− lnw) can be
expanded as a power series in − ln (− ln p), i.e.,

− ln (− lnw) =
∞P
k=0

ak (− ln (− ln p))k , 0 < p < 1 (4.3)

Lemma 2 : If
∞P
k=0

ak (− ln (− ln p))k is convergent, then (4.3) defines a functionw : (0, 1)→
(0, 1) .

Proof: The result follows from the fact that (4.3) is equivalent to

w (p) = exp

µ
− exp

µ
−

∞P
k=0

ak (− ln (− ln p))k
¶¶

, 0 < p < 1 (4.4)

Definition 5 : By a higher order Prelec probability weighting function, we mean a prob-
ability weighting function (Definition 1) given by (4.1) and (4.4).

Note that a Prelec function (Definition 4) is a higher order Prelec probability weighting
function. Hence, the class of functions defined by Definition 5 is not empty. In what follows,
we will show that it is a rich class with interesting members.
Suppose that an 6= 0 but ak = 0, for all k > n. Hence, (4.3) becomes

− ln (− lnw) =
nP

k=0

ak (− ln (− ln p))k , 0 < p < 1, an 6= 0 (4.5)

Definition 6 : Let w be a probability weighting function that satisfies (4.1) and (4.5).
We call w a Prelec probability weighting function of order n.
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Clearly, a Prelec function is a Prelec probability weighting function of order 1. We
produce some graphs below. First we plot a third order Prelec function (i) over the entire
probability range and (ii) for low probabilities; we use the following parameter values:
a1 = 0.35, a3 = 0.25, a0 = a2 = 0. Then we plot a fifth order Prelec function using the
values: a1 = 0.35, a3 = 0.25, a5 = 0.20, a0 = a2 = a4 = 0.
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The following lemma states, without proof, a few useful mathematical facts.

Lemma 3 : Let y (x) = − ln (− ln x) , x ∈ (0, 1) .Then
(i) y : (0, 1) onto→ (−∞,∞)
(ii) y is a strictly increasing function of x.
(iii) y (e−1) = 0,
(iv) y (x) < 0⇔ x ∈ (0, e−1) ,
(v) y (x) > 0⇔ x ∈ (e−1, 1) .
(vi) y (x)→ −∞⇔ x→ 0.

(vii) y (x)→∞⇔ x→ 1.

Lemma 4 : Let w (p) be given by (4.5). Then, for p near 0 and p near 1, the behavior
of w (p) is dominated by the behavior of the leading term, an (− ln (− ln p))n. Specifically,
− ln (− lnw)→ an (− ln (− ln p))n, as p→ 0 or as p→ 1.

Proof: (4.5) can be written as follows

− ln (− lnw) = an (− ln (− ln p))n
∙
1 +

n−1P
k=0

ak
an
(− ln (− ln p))−(n−k)

¸
, 0 < p < 1, an 6= 0

(4.6)
Let p → 1. By Lemma 3 (vii), − ln (− ln p) → ∞. Hence, (− ln (− ln p))−(n−k) → 0

for k < n. It follows, from (4.6), that − ln (− lnw) → an (− ln (− ln p))n. Let p → 0. By
Lemma 3 (vi) − ln (− ln p)→ −∞. Hence, (− ln (− ln p))−(n−k) → 0 for k < n. It follows,
from (4.6), that − ln (− lnw)→ an (− ln (− ln p))n. ¥
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Proposition 2 : The following defines a Prelec probability weighting function of order
2n+ 1:

w (0) = 0, w (1) = 1 (4.7)

− ln (− lnw) = a0 +
nP

k=0

a2k+1 (− ln (− ln p))2k+1 , 0 < p < 1, a2k+1 ≥ 0, a2n+1 > 0 (4.8)

Proof: Since − ln (− ln p) is a strictly increasing function of p, 2k + 1 is odd, a2k+1 ≥
0, a2n+1 > 0, it follows that

nP
k=0

a2k+1 (− ln (− ln p))2k+1 is a strictly increasing function
of p. Hence, from (4.8), − ln (− lnw) is a strictly increasing function of p. Hence, w
is a strictly increasing function of p. Therefore, (4.7), (4.8) define a Prelec probability
weighting function of order 2n+ 1. ¥
Proposition 2 gives sufficient, but not necessary, conditions for (4.5) to represent a

Prelec function of order n. On the other hand, Proposition 3 (a), below, gives necessary,
but not sufficient, conditions.

Proposition 3 : Let w (p) be a Prelec function of order n (Definition 6). Then
(a) n is odd and an > 0.
(b) lim

p→0
w (p) = 0 and lim

p→1
w (p) = 1, i.e., w(p) is continuous at zero and at one.

(c) If n > 1, then lim
p→0

w(p)
p
= 0 and lim

p→1
1−w(p)
1−p = 0, i.e., w, zero-underweights infinitesimal

probabilities.

Proof: Since an 6= 0,we have either an > 0 or an < 0. Suppose an < 0. By
Lemma 3 (ii), (v), − ln (− ln p) is a positive and strictly increasing function of p ∈
(e−1, 1). Hence, (− ln (− ln p))n is also a strictly increasing function for p ∈ (e−1, 1).
Thus, an (− ln (− ln p))n is a strictly decreasing function for p ∈ (e−1, 1). From Lemma 4,
it then follows that − ln (− lnw), and hence w, is a strictly decreasing function for p suffi-
ciently close to 1. But this cannot be, because a probability weighting function is strictly
increasing. Hence, an > 0. Suppose n is even. By Lemma 3 (ii), (iv), − ln (− ln p) is a
negative and strictly increasing function of p ∈ (0, e−1). Then (− ln (− ln p))n, and hence
also an (− ln (− ln p))n, is a strictly decreasing function for p ∈ (0, e−1). From Lemma 4,
it then follows that − ln (− lnw), and hence w, is a strictly decreasing function for p suffi-
ciently close to 0. But this cannot be, because a probability weighting function is strictly
increasing. Hence, n is odd. This proves part (a).
From part (a), Lemma 3 (vi) and (vii), and Lemma 4 we get p→ 1⇒ − ln (− lnw)→

an (− ln (− ln p))n →∞⇒ w→ 1. We also get p→ 0⇒ − ln (− lnw)→ an (− ln (− ln p))n →
−∞⇒ w→ 0. This proves part (b).
To prove the first part of (c), write (4.6) as

lnw = −e
−an(− ln(− ln p))n

⎡⎣1+n−1P
k=0

ak
an
(− ln(− ln p))−(n−k)

⎤⎦
, 0 < p < 1, an > 0, n > 1, n odd (4.9)
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Since ln w
p
= lnw − ln p = lnw + eln(− ln p), (4.9) gives for 0 < p < 1, an > 0, n > 1, n

odd:

ln
w

p
= eln(− ln p)

⎡⎢⎣1− e
− ln(− ln p)

⎡⎣1−an(− ln(− ln p))n−1
⎡⎣1+n−1P

k=0

ak
an
(− ln(− ln p))−(n−k)

⎤⎦⎤⎦⎤⎥⎦ (4.10)

Let p→ 0. By Lemma 3 (vi) − ln (− ln p)→ −∞. Hence, (− ln (− ln p))−(n−k) → 0 for
k < n. Furthermore, since n − 1 is a positive even number, and an > 0, it follows that
an (− ln (− ln p))n−1 → ∞. In the light of these facts, (4.10) gives ln w

p
→ −∞,as p → 0.

Hence, w(p)
p
→ 0,as p → 0. This proves the first part of (c). To prove the second part of

(c), write (4.5) as

lnw = −e
−

nP
k=0

ak(− ln(− ln p))k
, 0 < p < 1, an > 0, n > 1, n odd (4.11)

In the light of part (b), we use L’Hopital’s rule to evaluate lim
p→1

1−w(p)
1−p . This gives

lim
p→1

1−w(p)
1−p = lim

p→1
d(1−w(p))

dp
/lim
p→1

d(1−p)
dp

= lim
p→1

dw(p)
dp

= lim
p→1

w (p) d lnw(p)
dp

= lim
p→1

w (p) lim
p→1

d lnw(p)
dp

=

lim
p→1

d lnw(p)
dp

.

From this, the fact that ln p = −e−[− ln(− ln p)], from (4.11), and since n > 1, we get

lim
p→1

1− w (p)

1− p

= nlim
p→1

an (− ln (− ln p))n−1
∙
1 +

n−1P
k=1

kak
nan
(− ln (− ln p))−(n−k)

¸
p exp

µ
an (− ln (− ln p))n

∙
1− 1

an
(− ln (− ln p))−(n−1) +

n−1P
k=0

ak
an
(− ln (− ln p))−(n−k)

¸¶
= nlim

p→1
an (− ln (− ln p))n−1

ean(− ln(− ln p))n
= n(an)

1
n lim
x→∞

xn

xexn
= 0,

where x = (an)
1
n (− ln (− ln p)). ¥

Note that it follows from Definition 6 and Proposition 3(b), that a Prelec function of
order n is continuous.
Proposition 3(c) formalizes the exact sense in which improbable events are ignored and

probable events are treated as certain. Of course, how probable or improbable, depends
on the parameters ak.
Comparing the graphs of the (1st order) Prelec function with the 3rd and 5rd order Pr-

elec functions, we see that they are similar for probabilities in the middle range. However,
the higher order functions allow improbable events to be ignored and probable events to
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be treated as certain. In principle, the order, n, and the parameters, ak, can be chosen to
fit the data.
We now give an example of an infinite order Prelec function. Taking a1 = a > 0 and,

for k ≥ 1, a2k = 0, a2k+1 ≥ 0, we get that (4.1) and (4.3) define a strictly increasing
function, provided the series is convergent. An easy way to guarantee convergence is to
take a2k+1 =

a
(2k+1)!

. Then, for any p ∈ (0, 1), the series in (4.3) converges (absolutely
and uniformly) to a0 + 1

2
a
¡
e− ln(− ln p) − eln(− ln p)

¢
= a0 + a sinh (− ln (− ln p)).6 To get the

‘right shape’, we take a ∈ (0, 1). For probabilities in the middle range, sinh (− ln (− ln p)) '
− ln (− ln p), hence this function is a good approximation to the (first order) Prelec function
for such probabilities. Using arguments similar to those in the proof of Proposition 3, it
is straightforward to prove:

Proposition 4 : Let w (p) be defined by:

w (0) = 0, w (1) = 1 (4.12)

− ln (− lnw) = a0 + a sinh (− ln (− ln p)) , 0 < p < 1, 0 < a < 1 (4.13)

Then
(a) w : [0, 1]→ [0, 1] is continuous and strictly increasing; w is C∞ on (0, 1).
(b) lim

p→0
w(p)
p
= 0 and lim

p→1
1−w(p)
1−p = 0, i.e., w, zero-underweights infinitesimal probabilities.

Definition 7 : By the hyperbolic Prelec function (HP), we mean the probability weighting
function defined by (4.12) and (4.13).

Note that (4.12) and (4.13) define a two-parameter family of functions. Hence a hyper-
bolic Prelec function is just as parsimonious as the (1st order) Prelec function (Definition
4). The following is a graph of (4.12) and (4.13) for a0 = 0 and a = 1

2
:

In the next two sections we compare the behavior of the decision maker when she uses,
respectively, a probability weighting function of order 1 (which is just the standard Prelec
function) and of order greater than one. We show that her behavior differs significantly
between the two cases.

5. Rank dependent utility theory and insurance

In this section, we model the behavior of an individual using rank dependent utility theory
(RDU), which we may regard as a conservative extension of expected utility theory (EU) to

6The hyperbolic sin function is defined as

sinhx =
1

2

¡
ex − e−x

¢
.
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the case where probabilities are transformed. In the next section, we consider cumulative
prospect theory (CP), which is a more radical departure from expected utility theory.
Consider a decision maker with initial wealth, W , probability weighting function, w, and
utility function, u, where u is strictly concave, differentiable, u0 > 0 and u0 is bounded
above7 by (say) u0. Assume that she faces the lottery: win x1 with probability p1 or x2
with probability p2, x1 ≤ x2, 0 ≤ pi ≤ 1, p1 + p2 = 1 (if xi < 0, then xi is, in fact, a loss).
According to rank dependent utility theory, her expected utility will be U = w (p2)u (x2)+

[1− w (p2)] u (x1). For w (p) = p, rank dependent utility theory reduces to standard ex-
pected utility theory. Note that the higher outcome, x2, receives weight w (p2), while the
lower outcome, x1, receives weight w (p1 + p2)− w (p2) = w (1)− w (p2) = 1− w (p2); see
Quiggin (1982, 1993) for the details.
Suppose a decision maker can suffer the loss, L > 0, with probability p. She can buy

coverage, C, at the cost rC + f , where 0 ≤ C ≤ L, 0 < p < 1, 0 < r < 1, f ≥ 0 and f is a
fixed cost. We allow departures from the actuarially fair condition. We do so in a simple
way by setting the insurance premium rate r = (1 + θ) p. Thus, θ = 0 corresponds to
the actuarially fair condition, θ > 0 to the actuarially unfair and θ < 0 to the actuarially
‘over-fair’ condition. With probability 1− p, her wealth will become W − rC − f . With
probability p, her wealth will become W − rC − f − L + C ≤ W − rC − f . If she buys
insurance, her expected utility under RDU will then be:

UI (C) = w (1− p) u (W − rC − f) + [1− w (1− p)] u (W − rC − f − L+ C) (5.1)

Since UI (C) is a continuous function on the non-empty compact interval [0, L], an optimal
level of coverage, C∗, exists.
For full insurance, C = L, (5.1) gives:

UI (L) = u (W − rL− f) (5.2)

On the other hand, if she does not buy insurance, her expected utility will be:

UNI = w (1− p)u (W ) + [1− w (1− p)] u (W − L) (5.3)

For the decision maker to buy insurance, the following participation constraint must be
satisfied:

UNI ≤ UI (C
∗) (5.4)

7The boundedness of u0 is needed for part (b) of Proposition 5. This seems feasible on empirical
grounds, since people do undertake activities with a non-zero probability of complete ruin, e.g., using the
road, undertaking dangerous sports, etc. However, the boundedness of u0 excludes such tractable utility
functions as lnx and xγ, 0 < γ < 1. By contrast, the boundedness of u0 is not a requirement in CP, as we
shall see.
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Proposition 5 : Under RDU,
(a) If a probability weighting function infinitely-overweights infinitesimal probabilities

(Definition 2) then, for a given expected loss, the decision maker will insure fully for all
sufficiently small probabilities.
(b) If a probability weighting function zero-underweights infinitesimal probabilities

(Definition 3) then, for a given expected loss, a decision maker will not insure, for all
sufficiently small probabilities.

Proof: Consider an expected loss
L = pL (5.5)

Differentiate (5.1) with respect to C to get

U 0
I (C) = −rw (1− p) u0 (W − rC − f) (5.6)

+(1− r) (1− w (1− p))u0 (W + (1− r)C − f − L) (5.7)

Since u is (strictly) concave, u0 > 0 and 0 < r < 1, it follows, from (5.6) that U 0
I (C) is

a decreasing function of C. Hence,

U 0
I (L) ≤ U 0

I (C) ≤ U 0I (0) for all C ∈ [0, L] (5.8)

Replace r by (1 + θ) p in (5.6), then divide both sides by p, to get

U 0
I (C)

p
= − (1 + θ)w (1− p)u0 (W − (1 + θ) pC − f)

+ (1− (1 + θ) p)
1− w (1− p)

p
u0 (W − (1 + θ) pC − f − L+ C) (5.9)

For C = 0 and C = L, (5.9) gives (using (5.5)):

U 0
I (0)

p
= [1− (1 + θ) p]

1− w (1− p)

p
u0
µ
W − f − L

p

¶
− (1 + θ)w (1− p)u0 (W − f)

(5.10)
U 0
I (L)

p
=

∙
1− w (1− p)

p
− (1 + θ)

¸
u0
¡
W − (1 + θ)L− f

¢
(5.11)

Since 0 < (1 + θ) p < 1, 0 < p < 1, 0 < w (1− p) < 1, 0 < u0 < u0 we get, from (5.10),

U 0
I (0)

p
<
1− w (1− p)

p
u0 − (1 + θ)w (1− p) u0 (W − f) (5.12)

Let

F (p) =
1− w (1− p)

p
− (1 + θ) (5.13)
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From (5.11) and (5.13) we get,

U 0
I (L)

p
= F (p)u0

¡
W − (1 + θ)L− f

¢
(5.14)

From (5.14) we see that
U 0
I (L) > 0⇔ F (p) > 0 (5.15)

From (5.2), (5.3), (5.5), (5.13) and the facts that u is strictly increasing and strictly
concave, simple algebra leads to

f < LF (p)⇒ UNI < UI (L) (5.16)

Put
q = 1− p (5.17)

(a) Suppose w (p) infinitely-overweights infinitesimal probabilities. Then, from (5.17) and
Definition 2, lim

p→0
1−w(1−p)

p
= lim

q→1
1−w(q)
1−q = ∞. Hence, from (5.13), for given expected loss,

L, we can find a p1 ∈ (0, 1) such that, for all p ∈ (0, p1), we get f < LF (p). From
(5.16) it follows that the participation constraint (5.4) is satisfied for all p ∈ (0, p1). From
f < LF (p) we get that F (p) > 0 for all p ∈ (0, p1). From (5.15) it follows that U 0

I (L) > 0

for all such p. From (5.8) it follows that U 0I (C) > 0 for all such p and, hence, the decision
maker insures fully for all p ∈ (0, p1).
(b) Suppose w (p) zero-underweights infinitesimal probabilities. Then, from (5.17) and

Definition 3, lim
p→0

1−w(1−p)
p

= lim
q→1

1−w(q)
1−q = 0. Hence, from (5.12), there exists p2 ∈ (0, 1) such

that for all p ∈ (0, p2), U 0
I (0) < 0. Hence, from (5.8), U 0I (C) < 0 for all C ∈ [0, L]. Hence

the optimal level of coverage is 0. ¥
From Proposition 1 and Proposition 5(a), a decision maker using a Prelec probability

weighting function (Definition 4), will fully insure against all losses of sufficiently small
probability, provided the participation constraint (5.4) is satisfied. It is of interest to get
a feel for how restrictive this participation constraint is. Example (1), below, suggests it
is a weak restriction.

Example 1 : The the first row of the following table gives losses from 10 (Dollars, say)
to 10, 000, 000, with corresponding probabilities (row 2) ranging from 0.1 to 0.000, 000, 1;
so that the expected loss in each case is L = 1. In row 3 are the corresponding values of
1−w(1−p)

p
for the Prelec function w (p) = e−(− ln p)

0.65

, where the values α = 0.65 and β = 1

are suggested by Prelec (1998).

loss 10 100 1000 10,000 100,000 1,000,000 10,000,000
probability of loss 0.1 0.01 0.001 0.000,1 0.000,01 0.000,001 0.000,000,1
1−w(1−p)

p
2. 067 4 4. 903 9 11. 161 25. 088 56. 219 125. 88 281. 83
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From (5.16) we saw that the participation constrain (5.4) is satisfied if the fixed cost,
f , is less than LF (p), where F (p) is given by (5.13) and, in Example 1, L = 1. Even for
the high profit rate of 100% (θ = 1), so that F (p) = 1−w(1−p)

p
− 2, we see, from the above

table, that the upper bound on the fixed component of the cost of ensuring against an
expected loss of one unit (e.g. one Dollar), so that the participation constraint is satisfied,
is hardly restrictive for low probabilities. Thus, from Proposition 5(a), we see that using
RDU in combination with the Prelec function of order 1, is likely to lead to misleading
results, in that it would predict too much insurance.
On the other hand, from Propositions 3(c), 4(b) and 5(b), a decision maker using a

Prelec probability weighting function of order n > 1 (Definitions 6 and 7) will not insure
against any loss of sufficiently small probability, in agreement with observation.

6. Cumulative prospect theory and insurance

Several anomalies, among them the ones mentioned in the introduction, motivated the
development of prospect theory (Kahneman and Tversky (1979), Tversky and Kahneman
(1992)). In prospect theory, the carriers of utility are not levels of wealth, assets or goods,
but differences between these and a reference point (reference dependence). The reference
point is usually (but not necessarily) taken to be the status quo. The value function,
as the utility function is called in prospect theory, is concave for gains but convex for
losses (declining sensitivity). The disutility of a loss is greater than the utility of a gain
of the same magnitude (loss aversion)8. Probabilities are transformed, so that small
probabilities are overweighted but high probabilities are underweighted. A commonly
used value function in prospect theory is

v (x) = xγ, 0 < γ < 1 (6.1)

Consider a decision maker whose behavior is described by cumulative prospect theory
(CP, Tversky and Kahneman, 1992). Let her initial wealth be W . Suppose she can suffer
the loss, L > 0, with probability p. She can buy coverage, C, at the cost rC + f , where
0 ≤ C ≤ L, 0 < p < 1, 0 < r < 1, f ≥ 0 and f is a fixed cost. As in Section 5,
r = (1 + θ) p. Take her current wealth, W , to be her reference point. With probability
1− p, her wealth will become W − rC − f ; which she codes as the loss rC + f , relative to
her reference wealth, W . With probability p, her wealth will becomeW − rC−f −L+C;
which she codes as the loss L−C + rC + f ≥ rC, relative to her reference wealth W . Let
−v be her value function for the domain of losses, v : [0,∞) → [0,∞) where v is strictly

8Loss aversion is very important when the decision maker is in the domain of gains in one state of the
world but in the domain of losses for another. However, loss aversion will not be important here because,
as we shall see, the decision maker will always be in the domain of losses.
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concave, v (0) = 0, v is differentiable on (0,∞) with v0 > 0.9 Her utility function under
cumulative prospect theory will then be:

VI (C) = −w (p) v (L− C + rC + f)− (1− w (p)) v (rC + f) (6.2)

Since VI (C) is a continuous function on the non-empty compact interval [0, L], an optimal
level of coverage, C∗, exists.
For full insurance, C = L, (6.2) gives:

VI (L) = −v (rL+ f) (6.3)

On the other hand, if she does not buy insurance, her expected utility will be (recall that
v (0) = 0):

VNI = −w (p) v (L) (6.4)

For the decision maker to buy insurance, the following participation constraint (the ana-
logue here of (5.4)) must be satisfied:

VNI ≤ VI (C
∗) (6.5)

Proposition 6 : Under CP,
(a) A decision maker will insure fully against any loss, provided the participation

constraint is satisfied.
(b) For Prelec’s probability weighting function (Definition 4), for the value function

(6.1) and for a given expected loss, the participation constraint (6.5) is satisfied for all
sufficiently small probabilities.
(c) If a probability weighting function zero-underweights infinitesimal probabilities (De-

finition 3) then, for a given expected loss, a decision maker will not insure against any loss
of sufficiently small probability.

Proof: (a) Since v is strictly concave, −v is strictly convex. Hence, from (6.2), it follows
that VI is strictly convex. Since 0 ≤ C ≤ L, it follows that VI (C) is maximized either at
C = 0 or at C = L. Hence, if the participation constraint is satisfied, then the decision
maker will fully insure against the loss.
(b) Consider the Prelec function (3.2) and the value function (6.1). Let

F (p) =
e−

β
γ
(− ln p)α

p
− (1 + θ) , (recall 0 < α < 1, β > 0, γ > 0) (6.6)

Consider an expected loss
L = pL (6.7)

9These assumptions are satisfied by, for example, v (x) = 1− e−x and v (x) = xγ , 0 < γ < 1. But they
are not satisfied by v (x) = lnx, since ln 0 is not defined.
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From (3.2), (6.1), (6.3), (6.4), (6.6) and (6.7), simple algebra leads to

f < LF (p)⇒ VNI < VI (L) (6.8)

From (6.6) and Proposition 1, lim
p→0

F (p) = ∞. Hence, for given expected loss, L, we

get f < LF (p), for all sufficiently small p. From (6.8) it follows that the participation
constraint is satisfied for all such small p.
(c) From (6.3) and (6.4) we get the following

VI (L)− VNI

p
= v (L)

w (p)

p
− v

¡
(1 + θ)L+ f

¢ 1
p

(6.9)

lim
p→0

VI (L)− VNI

p
= v (L) lim

p→0
w (p)

p
− v

¡
(1 + θ)L+ f

¢
lim
p→0

1

p
(6.10)

Suppose w (p) zero-underweights infinitesimal probabilities. Then, from Definition 3,
lim
p→0

w(p)
p
= 0. Hence, the first term in (6.10) goes to 0 as p goes to 0. The second term in

(6.10), however, goes to −∞ as p goes to 0. Hence, there exists p2 ∈ (0, 1) such that for
all p ∈ (0, p2) , VNI > VI (L). ¥
By Proposition 6(a), a decision maker will insure fully against any loss, provided the

participation constraint (6.5) is satisfied. By Proposition 6(b), for Prelec’s probability
weighting function (Definition 4), for the value function (6.1) and for a given expected
loss, the participation constraint (6.5) is satisfied for all sufficiently small probabilities. It
is of interest to get a feel for how restrictive this participation constraint is. Example (2),
below, suggests it is a weak restriction.

Example 2 : The the first row of the following table gives losses from 10 (Dollars, say)
to 10, 000, 000, with corresponding probabilities (row 2) ranging from 0.1 to 0.000, 000, 1;
so that the expected loss in each case is L = 1. In row 3 are the corresponding values

of e
−β
γ (− ln p)α

p
, where the values α = 0.65 and β = 1 are suggested by Prelec (1998) and

γ = 0.88 is suggested by Tversky and Kahneman (1992).

loss 10 100 1000 10,000 100,000 1,000,000 10,000,000
probability of loss 0.1 0.01 0.001 0.000,1 0.000,01 0.000,001 0.000,000,1
e−

1
0.88 (− ln p)0.65

p
1. 416 9 4. 658 9 18. 48 81. 342 383. 83 1906. 3 9852. 3

From (6.8) we saw that the participation constrain (6.5) is satisfied if the fixed cost, f ,
is less than LF (p), where F (p) is given by (6.6) and, in Example 2, L = 1. Even for the

high profit rate of 100% (θ = 1), so that F (p) = e
−β
γ (− ln p)α

p
− 2, we see, from the above

table, that the upper bound on the fixed component of the cost of ensuring against an
expected loss of one unit (e.g. one Dollar), so that the participation constraint is satisfied,
is hardly restrictive for low probabilities. Thus, from Proposition 6(a) and (b), we see that
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using CP in combination with the Prelec function of order 1, is likely to lead to misleading
results, in that it would predict too much insurance.
On the other hand, from Propositions 3(c),4(b) and 6(c), a decision maker using a

Prelec probability weighting function of order n > 1 (Definition 6 and 7) will not insure
against any loss of sufficiently small probability, in agreement with observation. However,
by Proposition 6(a), CP predicts that, if a decision maker decides to insure, she will insure
fully, even with a fixed cost of entry and an actuarially unfair premium.

7. St. Petersburg paradox

The St. Petersburg paradox occupies an important place in the history of economic
thought, as it motivated von Neumann and Morgenstern (1947) to introduce expected
utility into economics. Expected utility has remained ever since the main tool for ana-
lyzing decision making under risk. A simple version of the paradox runs as follows. If
the first realization of ‘heads’ in a sequence of random throws of a fair coin occurs on
the n-th throw, then the game ends and the recipient receives a payoff of 2n monetary
units. This game has an infinite expected payoff, yet experimental evidence suggests that
subjects will pay only a modest finite sum to play this game. Bernoulli (1738) suggested
that a decision maker maximized the expected utility of a lottery rather than the expected
monetary value. Blavatskyy (2004) and Rieger and Wang (2006)10 have shown that this
paradox reemerges under CP. They prove that, even with a strictly concave value function,
the Bernoulli lottery will have an infinite expected utility. Rieger and Wang (2006) go on
to show that the probability weighting function11:

w (p) = p+
3 (1− b)

1− a+ a2
£
ap− (1 + a) p2 + p3

¤
, a ∈

µ
2

9
, 1

¶
, b ∈ (0, 1) (7.1)

solves the paradox by generating a finite expected utility under CP.12

By direct calculation, or by applying Theorem 1 of Rieger and Wang (2006), it is
straightforward to show that any of the generalized Prelec probability weighting functions
(of order n > 1), will also generate a finite expected utility for the St. Petersburg para-
dox. Thus, the generalized Prelec functions solve both the insurance paradox and the St.
Petersburg paradox.
10We cannot do justice to Rieger and Wang (2006) in this brief section. The reader is urged to read

their paper.
11Rieger and Wang state, incorrectly, that a ∈ (0, 1). For sufficiently low a and p ' 1

3 , w (p), as given
by (7.1), is decreasing in p. The lower bound of 29 on a is sufficient, but not necessary, for w (p) to be
strictly increasing.
12From (7.1): lim

p→0
w(p)
p ∈ (1,∞) and lim

p→1
1−w(p)
1−p ∈ (1,∞). Hence, these functions finitely-overweight

infinitesimal probabilities, in the sense of footnote 3. Hence, unlike the higher order Prelec functions, they
do not capture the empirical fact that people ignore extremely low probabilities and code extremely likely
events as certain.
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8. Conclusion

Decision models that rely on non-linear transformations of probabilities, for instance, rank
dependent utility (RDU) and cumulative prospect theory (CP) require using a probability
weighting function. However, the standard probability weighting functions infinitely over-
weight infinitesimal probabilities, in the sense that the ratio between the weight and the
probability goes to infinity, as the probability goes to zero. In actual practice, individuals
code very small probabilities as zero and very large ones as one. Given that many im-
portant decisions under uncertainty involve small probabilities, we show that the ‘infinite
overweighting of small probabilities’ feature of existing probability weighting functions
leads to predictions that contradict observed behavior.
Thus, individuals should insure fully even for ridiculously low probability natural haz-

ards. This is at odds with the evidence. Indeed, governments often have to legislate
compulsory insurance of several kinds and mortgage lenders have mandatory building and
contents insurance requirements as a pre-condition to their lending.
Kahneman and Tversky (1979) proposed a two-step heuristic procedure to deal with

these sorts of problems. In the first step, events associated with probabilities coded as zero
are ignored. In the second step, a probability weighting function is used to make a choice
from the surviving alternatives. We propose a class of probability weighting functions- the
higher order Prelec probability weighting functions- that allow us to combine the two-step
heuristic choice process of Kahneman and Tversky into one.
Furthermore, while our proposed functions overweight low probabilities and under-

weight high probabilities, they also have the feature that the ratio between the weight and
the probability goes to zero as the probability goes to zero. This enables us to show that
when RDU or CP is combined with any one of these new probability weighting functions,
then a decision maker would not buy insurance against an expected loss of sufficiently low
probability; in agreement with the evidence.
One attractive feature of the Prelec (1998) probability weighting function is that it

has an axiomatic derivation. An interesting question, that lies beyond the scope of this
paper, is what behavioral assumptions lead to the higher order Prelec probability weighting
functions? This could be a fruitful line of inquiry. Another topic for future research could
be to try to fit the proposed weighting function to data and estimate its parameters. This
could potentially reveal important information about individual choice under uncertainty.
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