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Abstract

This paper introduces the concept of ordient for binary relations (pref-

erences), a relative of the concept of gradient for functions (utilities). The

main motivation for this study is to replace the binary relation at the center

stage of economic analysis, rather than its representation (whenever it exists).

Moreover, ordients have a natural economic interpretation as marginal rates of

substitution. Some examples of ordientable binary relations include the lexi-

cographic order, binary relations resulting from the sequential applications of

multiple rationales or binary relations with differentiable representations. We

characterize the constrained maxima of binary relations through ordients and

provide an implicit function theorem and an envelope theorem.
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1 Introduction

This paper introduces the concept of ordient for binary relations (preferences), a

relative of the concept of gradient for functions (utilities). Ordients have a natural

economic interpretation as marginal rates of substitution between alternatives. If a

binary relation has an ordient at a given alternative (e.g., a bundle of goods, a pro-

file of strategies, or an act), the ordient characterizes the possible trade-offs between

alternatives that locally lead to strictly preferred and strictly worse alternatives. In

other words, an increasing (respectively, decreasing) ordient of a binary relation at a

given alternative characterizes the improvement (respectively, worsening) directions,

and the binary relation is ordientable at the given alternative if it has both an in-

creasing and decreasing ordient at that alternative. Importantly, the characterization

of these local trade-offs does not necessitate the existence of a representation and,

even less so, of a differentiable representation. The main motivation for this study is

indeed to replace the binary relation at the center stage of economic analysis rather

than its cardinal representation (if it exists). Our objective is to uncover what type of

results can be generated with the minimal structure of ordientable binary relations.

Although the concept of ordient has not yet been formally defined, we next present

important examples of ordientable binary relations so as to delineate the applicability

of our concept.

Example 1: Multiple rationales. Suppose that the set of alternatives X is a

subset of R
nm, and let < be a binary relation on X. For instance, an alternative x

might represent the consumption bundles of n individuals over m goods or a strategy

profile in a n-player game. An important class of preferences is the class of preferences

resulting from the sequential applications of K rationales (<1, . . . , <K) such that x ≻

y if and only if x ≻1 y or there exists k∗ with x ∼k y for all k < k∗ and x ≻∗
k y. A first

example of such a binary relation is the classic lexicographic order. This corresponds

to the case n = 1 and ≻k=>, the “greater than” binary relation, for all k. Driffill and

Rotondi (2004) argue that the preferences of the European Central Bank with respect

to output gap and inflation is lexicographic, with inflation being the primary target.

Another example is the efficiency-first relation of Tadenuma (2002), which results

from the application of the Pareto rationale first and the “envy” rationale second.

More precisely, suppose that each of the n individuals has a preference relation <∗
i

on R
m
+ and define the Pareto rationale <1 as x ≻1 y if and only if x <∗

i y for all i and

x ≻∗
i y for some i. The second rationale <2 Tadenuma considers is the envy relation.
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For any allocation x = (x1, . . . , xn), define the envy set as H(x) := {(i, j) : xj ≻
∗
i xi}:

if (i, j) ∈ H(x), individual i is envious of individual j’s allocation at x. The envy

relation <2 is then defined as follows: x <2 y if and only if the cardinality of H(x) is

smaller than the cardinality of H(y). The allocation x is preferred to the allocation y

(according to <2) if the society is less envious at x than at y. Alternatively, the equity-

first relation of Tadenuma results from the application of the envy rationale first and

the Pareto rationale second. Yet, another example is given by the preferences of

schools over students in schooling problems. Schools’ preferences over students often

result from the sequential application of several rationales (priorities) e.g., pupils in

public care, catchment areas, number of siblings in the school, distance to the schools.

For further examples, see among others, Apesteguia and Ballester (2008), Houy and

Tadenuma (2009), Mariotti and Manzini (2007), Tadenuma (2005). Such binary

relations often do not have representations and yet they might be ordientable. The

lexicographic order is ordientable everywhere with the vector (1, 0, . . . , 0) as ordient.

Similarly, the efficiency-first relation of Tadenuma, albeit incomplete, is ordientable

everywhere provided that each individual preference relation is. Naturally, classic

preferences are a special case: a single rational is needed.

Example 2: Decision under uncertainty. Let S be a finite set of states of the

world and define X = R
|S|
+ as the set of all Savage acts over monetary prizes. If an

individual’s binary relation < over acts is complete, transitive, monotone and convex,

then the binary relation < has a decreasing ordient everywhere (although the binary

relation might have a representation with points of non-differentiability). Important

examples include maxmin expected utility, minimax regret, Choquet expected util-

ity, and variational preferences, among others. See Rigotti et al. (2008) for more

examples. Moreover, the set of decreasing ordients at an act f coincides with the

set of subjective beliefs at that act f and, thus, with the set of beliefs revealed by

willingness and unwillingness to trade at f (Rigotti et al. (2008)).

Example 3: Differentiable utility functions. If a binary relation has a dif-

ferentiable representation, the gradient of the representation at a non critical point is

an ordient and the local trade-offs induced by any ordient coincide with the classical

marginal rate of substitutions.

The core contributions of the paper are two-fold. Firstly, we derive necessary and

sufficient conditions for constrained maximization problems. Again, it is not neces-

sary to assume the existence of a representation and even less so of a differentiable
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representation. In particular, we provide two alternative characterizations: one char-

acterization with increasing ordients and another one with decreasing ordients. These

two characterizations parallel two equivalent formulations of the statement “x∗ max-

imizes < on X.” The first formulation states that x∗ maximizes < on X if the strict

upper contour set of < at x∗ does not intersect X, while the second formulation states

that the lower contour set of < at x∗ is a superset of X. Naturally, the first formula-

tion involves improvement directions and, thus, increasing ordients, while the second

involves worsening directions and, thus, decreasing ordients. For instance, the second

characterization is particularly important whenever preferences are assumed to be

convex and monotone (since they have decreasing ordients everywhere). Secondly, we

present ordinal versions of the envelope theorem and implicit function theorem; two

important tools for comparative statics.

Our results have natural applications in economics. For instance, consider the

classic problem of maximizing individual preferences over the budget set. At an

interior maximum, the increasing (or decreasing) ordient of the preferences is collinear

to the vector of prices. Moreover, the indirect preferences are ordientable with the

vector composed of the Walrasian demand and the unit vector as an ordient. In turn,

this result implies the celebrated Roy’s identity. Again, since our approach only rests

on the ordering of alternatives, it is more natural than the traditional (differential)

approach. Moreover, our approach remains applicable even in situations where the

traditional approach fails. As another example, consider an all-pay auction. For each

profile of bids of a player’s opponents, the payoff’s function is discontinuous. Yet,

the binary relation induced by the payoff function is ordientable. We can then apply

our results to characterize the best-reply maps and, ultimately, the equilibria. Yet,

another application is the maximization of incomplete preferences. For instance, Ok

(2002) considers choice problems where an individual applies several binary relations

to make his choice, and prove the existence of a multi-valued representation. Again,

if the preferences are ordientable, our results make it possible to characterize the

maxima without requiring the existence of a multi-valued representation. In sum, this

paper provides tools for the optimization of binary relations, which dot not have to be

representable, and thus makes it possible to study economic problems involving such

binary relations. Naturally, if a binary relation has a differentiable representation,

our characterizations coincide with the classical first-order necessary and sufficient

conditions.
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Rubinstein (2005) is an inspiration to this paper. Rubinstein introduces the con-

cept of “differentiable” binary relations for continuous, convex and monotone binary

relations. Unlike Rubinstein, we do not restrict our attention to continuous, convex

and monotone binary relations. We consider general binary relations. However, our

concept of ordientability coincides with Rubinstein’s concept whenever the binary

relation is continuous, convex and monotone.

Before presenting formal definitions, a caveat is in order. The term “ordient” is

a contraction of the terms “order” and “gradient.” This deliberate choice of non-

standard terminology is an attempt to steer the reader away from the differential

approach to economic theory. In fact, we initially used the term “ordinal gradient.”

Informal discussions with colleagues quickly taught us that the term “gradient” was

inextricably associated with the concepts of functions, derivatives and their implica-

tions. The main message of this paper is that there is no impetuous need for utility

functions and even less so for differential utility functions. In that respect, we fully

concur with Rubinstein.

2 Ordients

This section defines the concept of ordient for binary relations, a relative to the

concept of gradient for maps. Let (X, <) be a totally pre-ordered set (i.e., < is

complete, reflexive and transitive) with X an open and convex subset of R
n.1 In

Section 6, we discuss how the concept of ordient generalizes if < is neither complete

nor transitive. We denote by ≻ and ∼ the asymmetric and symmetric parts of <.

Let x := (x1, . . . , xi, . . . , xn) be a vector in R
n. We write x ≥ 0 if xi ≥ 0 for all

i ∈ {1, . . . , n}, x >> 0 if xi > 0 for all i ∈ {1, . . . , n} and x 6= 0 if xi 6= 0 for some

i ∈ {1, . . . , n}. For two vectors x and y, x·y denotes the inner product of x and y. For

a set X ⊆ X, we denote by intX its interior, clX its closure, and let ∂X := X \ intX.2

For a vector x, we denote ||x|| its Euclidean norm. For concepts such as convex or

locally non-satiated binary relations, we refer the reader to Mas-Colell et al. (1995)

or Rubinstein (2005).

Directions. A direction d is a vector in R
n. A direction d is an improvement

direction of < at x0 ∈ X if there exists ε∗ > 0 such that any ε ∈ (0, ε∗) with

1More generally, X might be an open and convex subset of a linear (vector) space endowed with

a inner product.
2Note that ∂X does not denote the boundary of X . The boundary bdX of X is clX \ intX .
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x0 + εd ∈ X implies x0 + εd ≻ x0. A direction d is a worsening direction of < at

x0 ∈ X if there exists ε∗ > 0 such that any ε ∈ (0, ε∗) with x0 + εd ∈ X implies

x0 + εd ≺ x0.

Ordients. A vector g in R
n\ {0} is an increasing ordient of < at x0 ∈ X if

d · g > 0 implies that d is an improvement direction of < at x0. A vector g in R
n\ {0}

is a decreasing ordient of < at x0 ∈ X if d · g < 0 implies that d is a worsening

direction of < at x0.

Definition 1 (Ordient) A vector g in R
n\ {0} is an ordient of < at x0 ∈ X if g is

an increasing and decreasing ordient of < at x0. The binary relation < is ordientable

if it has an ordient at each vector x ∈ X.

Three preliminary remarks are worth making. Firstly, if there is an improvement

direction of < at each x0 ∈ X, then < is locally non-satiated. In turn, this im-

plies that if the binary relation < is ordientable, then it is locally non-satiated. To

accommodate local satiation (i.e., “thick” indifference curves), a weaker concept of

ordientability is needed. Section 6 introduces such a concept. Secondly, assume that

g is an ordient of < at x ∈ X1 × · · · × Xn and fix the first m < n components of x.

If the vector (gm+1, . . . , gn) is different from zero, then (gm+1, . . . , gn) is an ordient

of the restriction of < to Xm+1 × · · · × Xn at (xm+1, . . . , xn). Moreover, whenever

the vector (gm+1, . . . , gn) is equal to zero, the subspace Xm+1 × · · · × Xn is “less

consequential” than the subspace X1 × · · · × Xm in determining the improvement

and worsening directions. Indeed, for any direction d = (0, . . . , 0, dm+1, . . . , dn), we

have g · d = 0 and, thus, d does neither have to be an improvement direction nor a

worsening direction. Thirdly, ordients are uniquely defined up to multiplication by

a positive scalar: g and g′ are ordients of < at x0 if and only if g = λg′ for some

λ > 0. In other words, g and g′ are collinear. However, two increasing/decreasing

ordients need not be collinear. The set of increasing/decreasing ordients is convex.

Furthermore, if < has an increasing ordient g at x0 and a decreasing ordient g′ at x0,

then g and g′ must be collinear and, consequently, are ordients of < at x0.

We now provide an economic interpretation of the concept of ordients. In con-

sumer theory, ordients have a natural interpretation as marginal rates of substitution

between goods. First of all, we need to define the marginal rate of substitution of

good l for good k at x0 without imposing unnecessary assumptions on the prefer-

ences and indifference sets. In particular, indifference sets might be singletons (e.g.,

lexicographic order) or non-differentiable manifolds (e.g., maxmin or minimax regret
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expected utility). We say that MRSlk is the marginal rate of substitution of good l

for good k at x0 if for all dk and d′
k with dk > MRSlk > d′

k, there exists ε∗ > 0 such

that x0 + ε(0, . . . ,−1, . . . , dk, . . . , 0) ≻ x0 ≻ x0 + ε(0, . . . ,−1, . . . , d′
k, . . . , 0) for all

ε < ε∗ (with −1 in the l-th component). In words, if we reduce the consumption of

good l by a marginal unit, a marginal increase of good k makes the consumer strictly

better off (resp., worse off) if dk > MRSlk (resp., d′
k < MRSlk). If the preference

relation < is ordientable at x0, then MRSlk = gl/gk provided that gk 6= 0 since

the direction (0, . . . ,−1, . . . , dk, . . . , 0) is an improvement (resp., worsening) direction

whenever −gl + gkdk > 0 (resp., −gl + gkdk < 0). Naturally, if the preference < has a

differentiable representation, this definition coincides with the textbook definition of

marginal rates of substitution as ratio of marginal utilities.

This interpretation goes beyond consumer theory. For instance, in continuous

games, an ordient captures the impact on a player’s welfare of a marginal change of

actions by some or all players. Similarly, if X is the set of Savage acts a : S → R from

a finite set of states of nature to monetary prizes, then an ordient of < represents

the marginal rates of substitution between money in one state and money in another

state.

We now present several examples. Our first example of an ordientable binary

relation is the lexicographic order < on R
2 where x ≻ x′ if and only if x1 > x′

1 or

both x1 = x′
1 and x2 > x′

2. At each vector x, the vector (1, 0) is an ordient of < at

x. To see this, consider the point x∗ in Figure 1 and the vector (1, 0). Clearly, for

all directions in the half plane on the right of x∗ (vertical dashed lines), the inner

product is strictly positive, while it is negative for all directions in the half plane

on the left of x∗ (horizontal dotted lines). Furthermore, the half plane on the right

(resp., left) of x∗ is included in the strict upper (resp., lower) contour set of < at

x∗, as required. Therefore, and most importantly, the concept of ordientable binary

relations does not imply the existence of representations. Moreover, this example

illustrates the fact that marginal rates of substitution are not confined to the realm

of differentiable representations. A binary relation might not be representable and

yet we can meaningfully speak about marginal rates of substitution, provided that

the binary relation is ordientable.

More generally, suppose that < results from the applications of K binary relations

(<1, . . . , <K) such that x ≻ y if and only if either x ≻1 y or there exists k∗ ≤ K

such x ∼k y for all k < k∗ and x ≻k∗ y. Manzini and Mariotti (2007) call the

choice correspondence resulting from the sequential application of binary relations
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g = (1, 0)x∗

{x : x ≺ x∗}

{x : x ≻ x∗}

Figure 1: Lexicographic order

a sequentially rationalizable choice correspondence.3 If <1 is ordientable, then < is

ordientable: the ordient of <1 is an ordient of <. For an example, consider the

following binary relation on R++: x ≻ x′ if and only if x1x2 > x′
1x

′
2 or both x1x2 =

x′
1x

′
2 and x2 > x′

2. The function x 7→ f(x) := x1x2 represents the first rationale <1

and is ordientable: the vector (x2, x1) is an ordient of <1 at each point (x1, x2) and,

consequently, is an ordient of <.

The next series of examples deal with representable binary relations. A binary

relation < on X is representable if there exists a real-valued function f : X → R

such that x < x′ if and only if f(x) ≥ f(x′) for any pair (x, x′). Note that for any

real-valued function f , there exists a binary relation < such that f represents <.

The following example shows that a binary relation might be representable and

yet it can fail to have an ordient at some points. Consider the Leontieff preferences

represented by the function f : R
2
+ → R+ with f(x) = min {x1, x2}. These preferences

are not ordientable at points x with x1 = x2. Any g 6= 0 with g ≥ 0 is a decreasing

ordient, but there is no increasing ordient as improvement directions are within π/2

radian of each others. Note, however, that they are ordientable at any point with

x1 6= x2. For instance, if x1 > x2, then (0, 1) is an ordient.

The next example shows that a binary relation might be ordientable and yet fail to

have a representation that is differentiable everywhere. Consider the binary relation

< on (0, 3) induced by the function f with f(x) = x if x ≤ 1 and f(x) = 3 − x if

x > 1. The binary relation < is ordientable everywhere with ordient g(x) = 1 if x ≤ 1

and g(x) = −1 if x > 1. Clearly, the binary relation < does not admit a differentiable

representation at x = 1. Another example is given by the payoff function of an all-pay

3Note that Manzini and Mariotti do not assume the completeness and transitivity of each binary

relation. See Section 6 for more on this.
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auction.4

Finally, if a binary relation is representable by a differentiable function, then the

gradient of the function is an ordient. The next proposition formally states this result.

Proposition 1 Let f be a representation of <. If f is differentiable at x with non-

null derivative, then the gradient ∇f(x) of f at x is an ordient of < at x. Moreover,

any ordient of < at x is collinear to ∇f(x).

Proof Consider d ∈ R
n. Since f is differentiable at x, the directional derivative

limε→0
f(x+εd)−f(x)

ε
exists and is equal to d · ∇f(x). If d · ∇f(x) > 0, then there exists

ε∗ > 0 such that f(x+εd) > f(x) for all ε ∈ (0, ε∗). Therefore, ∇f(x) is an increasing

ordient of < at x. A similar argument shows that ∇f(x) is a decreasing ordient of <

at x and, consequently, ∇f(x) is an ordient of < at x. The second statement follows

from the fact that g and g′ are ordients of < at x if and only if they are collinear. �

The requirement of a non-null derivative (no critical points) cannot be dispensed

with. For instance, consider the function x 7→ x− x2 on (0, 1). At the point x = 1/2,

the derivative is zero and no increasing ordient exists. However, any g 6= 0 is a

decreasing ordient at x = 1/2. More generally, we have that x∗ is a strict local

maximum of < if and only if any g 6= 0 is a decreasing ordient at x∗. Section 6 contains

a more detailled discussion of the relationship between ordients and unconstrained

maxima. Furthermore, we like to stress that ordients and gradients are conceptually

different. To see this, consider the function f on R with f(x) = x3 and let <f be the

binary relation induced by f . The binary relation <f is ordientable everywhere with

+1 as an ordient, while 0 is a critical point of f . The gradient of f at 0 characterizes

the best linear approximation of the function f at 0, while the ordient captures the

improvement and worsening directions of <f . Naturally, the function f is only one

out of the many possible representations of <f . In particular, the identity function

is a representation of <f for which the gradient coincides with the ordient.

We now provide further insights about ordients. The first insight is geometrical

and links increasing (resp., decreasing) ordients to closest points to lower (resp.,

upper) contour sets. For any x0 ∈ X, denote U(x0) := {x : x < x0} the upper

contour set of < at x0 and L(x0) := {x : x0 < x} the lower contour set of < at x0.

4Let b−i be a profile of bids of player i’s opponents and vi player i’s valuation. Assume that

max {bj : j 6= i} < vi. Then −1 is an ordient if bi 6= max {bj : j 6= i} and 1 is an ordient if bi =

max {bj : j 6= i}.
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For any set X and x /∈ X, denote cX(x) the set of closest points in X to x. If X is

closed, then cX(x) is non-empty.

Proposition 2 Let x0 ∈ X and choose any x1 /∈ U(x0) and x2 /∈ L(x0). (i) For each

x ∈ cU(x0)(x1), the vector (x − x1) is a decreasing ordient of < at x̄. (ii) For each

x ∈ cL(x0)(x2), the vector (x2 − x) is an increasing ordient of < at x.

Proof (i) Let x ∈ cU(x0)(x1). Since x minimizes the distance between x1 and

U(x0), we have that ||x − x1||
2 ≥ ||x − x1||

2 for all x ∈ U(x0). Choose d such that

d · (x − x1) < 0. For ε > 0, we have that

0 > 2εd · (x − x1) = ||x − x1 + εd||2 − ||x − x1||
2 − ε2||d||2.

If ||x + εd − x1||
2 ≥ ||x − x1||

2, it follows that

0 > 2d · (x − x1) ≥ −ε||d||2,

which cannot hold for all arbitrarily small ε > 0. Hence, there exists ε∗ > 0 such

that ε ∈ (0, ε∗) implies ||x + εd− x1||
2 < ||x− x1||

2. This implies that x + εd ≺ x for

ε ∈ (0, ε∗), which concludes the proof.

(ii) As part (i). �

As an illustration of Proposition 2, consider the Leontieff preferences on R
2
+. We

have already argued that the Leontieff preferences have no increasing ordient on the

45◦ line. This is an immediate consequence of part (ii) of Proposition 2: For any x0

on the 45◦ line, there is no x in the strict upper contour set of < at x0 such that

x0 is the closest point to x. More generally, a locally non-satiated binary relation <

has an increasing ordient at x0 if there exists x in the strict upper contour set of <

at x0 such that x0 is the closest point in the lower contour set of < at x0 to x. A

similar argument holds for decreasing ordients. This last observation is reminiscent

of the concept of proximal normals in non-smooth analysis (see Clarke et al. (1998,

Chapter 1)). Indeed, the vector (x2 − x) of Proposition 2(ii) is nothing else than a

perpendicular to U(x0) at x (in the terminology of Clarke et al. (1998)). In turn,

a proximal normal to U(x0) at x is any non-negative multiple of a perpendicular to

U(x0) at x. This implies the following relationship between proximal normal cones

and ordients: If ζ 6= 0 belongs to the proximal normal cone of L(x0) (resp., U(x0)) at

x0, then ζ (resp., −ζ) is an increasing (resp., decreasing) ordient of < at x0. However,

the converse is not true. For a counter-example, let X = R
2 and suppose that the
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function |x1|
3/2 +x2 represents <. At the point (0, 0), (0, 1) is a decreasing ordient of

the binary relation <. Yet, the point (0, 0) is clearly not the closest point in U((0, 0))

to (0,−1). In fact, (0, 0) is the unique proximal normal to U((0, 0)) at (0, 0).5

The next insights we present regard convex binary relations, a common assumption

in economics. In particular, we show that if a binary relation is convex, then it has a

decreasing ordient at each boundary point of any upper contour set. Furthermore, we

show that if a binary relation is continuous, convex and ordientable, then indifference

sets are C1-manifolds.

Proposition 3 Let x0 ∈ ∂U(x0) and assume that U(x0) is convex.

(i) The binary relation < has a decreasing ordient at x0.

(ii) Let g be a decreasing ordient of < at x0. If < is continuous, then for any

improvement direction d of < at x0, we have g · d > 0.

(iii) If any two decreasing ordients of < at x0 are collinear and {x : x ∼ x0} ⊆

∂U(x0), then < is ordientable at x0.

(iv) If < is ordientable on ∂U(x0), then ∂U(x0) is a C1-manifold.

Proof Part (i). Since U(x0) is convex, it follows from the supporting hyperplane

theorem (see Theorem 5.3 in Aliprantis and Border (1999) p. 202) that there exists

a half-space H+ at x0 supporting U(x0) at x0 i.e., U(x0) ⊆ H+. Therefore, the

complement H− of H+ is included in the strict lower contour set of < at x0. The

normal of the supporting hyperplane at x0 in the direction of H+ is thus a decreasing

ordient of < at x0.

Part (ii). From part (i), we know that there exists a decreasing ordient g of < at

x0. Consider an improvement direction d of < at x0, i.e., there exists ε∗ > 0 such

that x0 + εd ≻ x0 for all 0 < ε < ε∗. Since g is a decreasing ordient, we must have

g · d ≥ 0. Assume that g · d = 0. From the continuity of <, for any ε ∈ (0, ε∗), there

exists ε′ such that x0 + εd− ε′g ≻ x0. However, g · (x0 + εd− ε′g−x0) = −ε′g · g < 0,

a contradiction.

Part (iii). Since any two decreasing ordients of < at x0 are collinear, it follows from

part (i) that there exists a unique hyperplane supporting clU(x0) at x0. Around x0,

the convex set clU(x0) can be expressed locally as the epigraph of a convex function

F . Since there exists a unique hyperplane supporting clU(x0) at x0, it follows that

there is a unique subgradient g0 of F at x0 (see Rockafellar (1970) for the definition

5Note that if the lower (resp., upper) contour sets are closed, then the set of x such that < has

an increasing (resp., decreasing) ordient is dense. (See Corally 6.2 p. 49 of Clarke et al. (1998).)
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of subgradient). From Propositions 1.2 and 1.13 in Clarke (1975), it follows that F

is differentiable at x0 (with ∇F (x0) = g0). Hence g0 · d > 0 implies that x0 + εd ∈

intU (x0) for ε sufficiently small. Lastly, since {x : x ∼ x0} ⊆ ∂U(x0) ⊂ bdU(x0), we

have that x ≻ x0 whenever x ∈ intU(x0) and, therefore, g0 is an increasing ordient of

< at x0. From part (i), g0 is a decreasing ordient and, therefore, g0 is an ordient.

Part (iv). First, we show that ∂U(x0) = {x : x ∼ x0}. Clearly, {x : x ∼ x0} ⊆

U(x0). Consider x′ ∈ {x : x ∼ x0} and assume that x′ ∈ intU(x0). Since < is

ordientable, there exists x′′ ∈ intU(x0) such that x′′ ≺ x0, a contradiction. Second,

since < is ordientable at x0, all decreasing ordients at x0 are collinear. From part

(iii) and Proposition 1.13 of Clarke (1975), it then follows that {x : x ∼ x0} is a

C1-manifold. �

Proposition 3(i) states that convex binary relations have decreasing ordients at

each point x0 such that x0 is a boundary point of the upper contour set at x0. In

particular, if the binary relation is in addition continuous and monotone, then it

has a decreasing ordient everywhere. This result follows from standard separating

arguments (each decreasing ordient defines a supporting hyperplane) and relates to

Rigotti et al. (2008). Rigotti et al. consider individuals with continuous, convex, and

monotone preferences over acts and identify the set of subjective beliefs at an act x0

with the set of hyperplanes that support the upper contour set of the binary relation

at x0. In turn, they show that the set of subjective beliefs at an act x0 coincides with

the set of beliefs revealed by willingness and unwillingness to trade at x0. Since the

set of subjective beliefs at an act x0 coincides with the set of decreasing ordients at

x0, their results provide further interpretations of the concept of decreasing ordients

in the context of decision making under uncertainty.

Proposition 3(iv) relates to Proposition 2.3.9 of Mas-Colell (1985, p. 64). Fol-

lowing Debreu (1972), Mas-Colell considers locally non-satiated binary relations with

connected indifference sets. Mas-Colell’s Proposition 2.3.9 then states that the binary

relation admits a Ck representation with no critical points if and only if the boundary

of the binary relation is a Ck-manifold. Furthermore, if the boundary of the binary

relation is a Ck manifold, then each indifference set is a Ck manifold (Proposition

2.3.10). In contrast with Mas-Colell, our result does not rest on the boundary of the

binary relation to be a C1 manifold. Instead, we use arguments from convex anal-

ysis (e.g., Rockafellar (1970)). Moreover, Proposition 3(iv) together with Theorem

4 below implies that the ordient of < at x0 gives the marginal rate of substitutions.
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This result parallels Neilson (1991), who shows that if a binary relation is continuous

and monotone and has smooth indifference sets (i.e., Ck manifolds), then marginal

rate of substitutions are well-defined. Proposition 3(iv) also explains the failure of

the Leontieff preferences to be ordientable everywhere: the indifference curves of the

Leontieff preferences have kinks on the 45 degree line. The same argument applies to

the maxmin and minimax regret criteria for decision making under uncertainty (since

these preferences exhibit kinks on the certainty line) and the preferences of Fehr and

Schmidt (1999). Yet, part (i) implies that these convex preferences have decreasing

ordients everywhere. As we will see, this will make it possible to characterize the

maxima of < on a set.

Let us now contrast our definition with Rubinstein’s (2005) definition. First of

all, Rubinstein confines his attention to continuous, convex and monotone binary re-

lations. Secondly, according to his definition, a binary relation is differentiable at x0

if there exists a vector g ≥ 0 such that d · g > 0 if and only if d is an improvement

direction of < at x0. From Proposition 3 (ii), the notions of ordientability and differ-

entiability (à la Rubinstein) coincide with continuous, convex and monotone binary

relations.

For convex binary relations, however, differentiability is stronger than ordientabil-

ity. Clearly, if a binary relation is differentiable at x0, then it has an increasing ordient

g at x0. Furthermore, it follows from Proposition 3(i) that if a convex binary rela-

tion < has an increasing ordient at x0, then it is ordientable. So, if a convex binary

relation is “differentiable” in the sense of Rubinstein, it is ordientable. The converse

is not true. For instance, the lexicographic order on R
2 is convex and ordientable,

while it is not “differentiable”. With the lexicographic order, (0, 1) is an improvement

direction at each x0 but the inner product of the direction (0, 1) and the ordient (1, 0)

is zero, a violation of Rubinstein’s requirement. (See Figure 1.) Thus, for convex bi-

nary relations, the concept of ordientable binary relations is weaker than the concept

of differentiable binary relations.

3 Optimality

This section characterizes the maximal elements of a set X ⊂ X according to the

binary relation <. Denote by max< X the set of maximal elements, i.e., max< X :=

{x ∈ X : x < x′ for all x′ ∈ X}.
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A simple observation helps to organize our results. There are two equivalent for-

mulations of the statement “x∗ maximizes < on X. The first formulation states that

the strict upper contour set of < at x∗ does not intersect X, while the second states

that the lower contour set of < at x∗ is a superset of X. Clearly, the first formulation

relates to improvement directions and increasing ordients, while the second relates

to worsening directions and decreasing ordients. In turn, this simple observation

suggests two alternative, but equivalent, characterizations of maxima: a characteri-

zation with increasing ordients and another with decreasing ordients. Theorem 1 and

Theorem 2 offer two such alternative characterizations.

Before presenting our main results, note that for any non-empty set X with ∂X 6=

∅, there exists a complete and transitive binary relation <X such that X = {x ∈ X :

x0 <X x} with x0 ∈ ∂X. To see this, we construct the binary relation <X as follows:

we let x′ ≻X x if (x, x′) ∈ ∂X ×X \X or (x, x′) ∈ intX × ∂X, and x ∼X x′ if neither

x ≻X x′ nor x′ ≻X x. Therefore, if g is an increasing ordient of <X at x0 ∈ ∂X, there

exists ε∗ > 0 such that d · g > 0 implies x0 + εd /∈ X for all ε ∈ (0, ε∗): we leave the

set by moving in direction d. Similarly, if g is a decreasing ordient of <X at x0 ∈ ∂X

and g · d < 0, then we enter the interior of the set by moving in direction d. Again,

it is worth emphasizing that no reference to functions is needed.

Theorem 1 (i) If x∗ ∈ max< X and g is an increasing ordient of < at x∗, then

x∗ ∈ ∂X and g is an increasing ordient of <X at x∗.

(ii) Assume that x∗ ∈ ∂X, that X and {x : x < x∗} are convex sets, and let g

be an increasing ordient of both < and <X at x∗. (a) If either X or {x : x < x∗} is

strictly convex, then {x∗} = max< X. (b) If < is continuous, then x∗ ∈ max< X.

To illustrate Theorem 1, consider the case of lexicographic preferences < on R
2
+

and the sets X and X ′ in Figure 2. Part (i) of Theorem 1 simply states that the

increasing ordients of < and <X are collinear at a maximum. This condition resembles

the classic first-order conditions and is illustrated in panel (i), where the point x∗

maximizes < on X. We already know that (1, 0) is an ordient of <. Moreover, it is

easy to check that (1, 0) is an increasing ordient of X at x∗: for any direction d such

that (1, 0) · d > 0, x + εd /∈ X. Part (ii) of Theorem 1 provides sufficient conditions.

As illustrated on panel (ii), the assumption of strict convexity cannot be dispensed

with. The point x does not maximize < on X ′ and yet g is both an increasing ordient

of < and <X′ at x.6

6Note that the convexity of {x : x < x∗} in part (ii) implies that the increasing ordient g of < at
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g = (1, 0)

x∗

X

g = (1, 0)x

X ′

(i) (ii)

Figure 2: Lexicographic preferences and maxima

Proof (i) Let x∗ ∈ max< X and suppose that x∗ /∈ ∂X. Since g is an increasing

ordient of < at x∗ and x∗ is interior, there exists an improving direction d and ε > 0

such that x∗ + εd ∈ X and x∗ + εd ≻ x, a contradiction with the maximality of x∗.

Assume now that g is not an increasing ordient of <X at x∗. Hence, for every

ε′ > 0, there exists d and ε < ε′ such that d · g > 0 and x∗ + εd ∈ X. Since g is an

increasing ordient of < in x∗, it follows that x∗ + εd ≻ x∗ for sufficiently small ε, a

contradiction.

(ii) We show that the increasing ordient g at x∗ defines a hyperplane {x : g · (x−

x∗) = 0} that separates X from {x : x < x∗}. Since g is an increasing ordient of

<X at x∗ ∈ ∂X and X convex, we have that g · (x − x∗) > 0 implies that x /∈ X.

Therefore, {x : g · (x − x∗) > 0} ∩ X = ∅. It follows that X ⊆ {x : g · (x − x∗) ≤ 0}.

Since {x : x < x∗} is convex, it follows from the above arguments that {x : x <

x∗} ⊆ {x : g · (x − x∗) ≥ 0}.

Assume that there exists x′ ∈ X ∩ {x : x < x∗}, with x′ 6= x∗. It follows from the

above that g · (x′ − x∗) = 0.

(a) Suppose that X is strictly convex and consider z = 1
2
x′ + 1

2
x∗. Clearly, g · (z−

x∗) = 0 and z is an interior of point of X. From the continuity of the inner product,

it follows that there exists x′′ ∈ X with g · (x′′ − x∗) > 0, a contradiction. It follows

that x∗ is the unique maximizer of < on X.

If {x : x < x∗} is strictly convex, a similar reasoning applies.

(b) Assume that < is continuous and that x′ ≻ x∗. There exists an open ball Bδ(x
′)

around x′ of radius δ such that x ≻ x∗ for all x ∈ Bδ(x
′), therefore g · (x−x∗) ≥ 0 for

all x ∈ Bδ(x
′). Furthermore, g·(x′ − x∗) = 0, together with the bilinearity of the inner

x∗ is in fact an ordient of < at x∗. See Proposition 3(i).
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product, implies that there exists x̂ ∈ Bδ(x
′) with g · (x̂−x∗) < 0, a contradiction. �

For an application of Theorem 1, consider the classic problem of maximizing a

preference relation < over the budget set B(p, w) := {x ∈ R
n
+ : p · x ≤ w} where

p >> 0 is the vector of prices and w > 0 the income. Let x∗ ∈ max< B(p, w). If

< has an increasing ordient g(x∗) at x∗, then Theorem 1(i) implies that g(x∗) is an

increasing ordient of B(p, w) at x∗. Moreover, if x∗ >> 0, all increasing ordients of

B(p, w) (more precisely of <B(p,w)) are collinear to p. So, there exists λ > 0 such

that g(x∗) = λp. This “corresponds” to the classic first-order necessary conditions.

Alternatively, consider x∗ >> 0 with p · x∗ = w and assume that < is convex. If p is

an increasing ordient of < at x∗ and either < is continuous or {x : x < x∗} is strictly

convex, then Theorem 1(ii) implies that x∗ ∈ max< B (p, w). This “corresponds”

to the classic first-order sufficient conditions. This observation was originally made

by Rubinstein (2005) for continuous, convex, monotone and “differentiable” binary

relations.

For another application, consider a production economy with m agents and k firms.

Agent i has preference <i on R
n, the set of commodities, and firm j production set

is Yj ⊆ R
n. For any xi ∈ R

n, denote x =
∑

i x
i the total consumption vector and

y =
∑

j yj the total production, so that z = x + y is the total net consumption of

the economy. Assuming closed and convex upper contour sets and production sets,

Debreu (1951) shows that if an allocation z̄ is efficient, then there exists a vector of

“prices” p̄ ∈ R
n
++ such that x̄i <i xi for all xi with p̄ · xi ≤ p̄ · x̄i, for all i, and p̄ · ȳj ≤

p̄ · yj for all yj ∈ Yj, for all j. In words, agents maximize their preferences subject

to budget constraint and firms maximize profits subject to production constraints.

Most importantly, Debreu does not assume the existence of a representation ui of

<i. In fact, he does argue against such a route. He wrote (p. 277): “First of all,

such a correspondence [representation] need not exist, but even more important is the

fact that the numerical value of this function has never any role to play, that only

the ordering itself matters. The advisability of introducing such a function (always

accompanied by the mention “defined but for an arbitrary monotonically increasing

function”), which is useless and moreover might not exist at all, may be questionable.”

However, what is the significance of the price vector p̄ if no representation exists?

Theorem 1 gives an answer. If <i has an increasing ordient at x̄i for all i, then p̄ is

an ordient of <i at x̄i.7 The price vector p̄ has thus a concrete significance in terms

7This follows from the convexity of <i. Moreover, since upper contour sets are closed and convex,
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of marginal rates of substitution.8 An important message of this paper is that we can

perfectly speak of marginal rates of substitutions or characterize constrained maxima

without requiring the existence of a representation, provided that the preferences are

ordientable.

The next result provides an alternative characterization of max< X in terms of

decreasing ordients of <. This result is particularly useful in economic applications

with convex binary relations.9

Theorem 2 Assume that X and {x : x < x∗} are convex sets.

(i) If < is locally non-satiated and x∗ ∈ max< X, then there exists g that is both

an increasing ordient of <X at x∗ and a decreasing ordient of < at x∗.

(ii) Assume that x∗ ∈ ∂X and let g be an decreasing ordient of < and an increasing

ordient of <X at x∗. (a) If either X or {x : x < x∗} is strictly convex, then {x∗} =

max< X. (b) If < is continuous, then x∗ ∈ max< X.

Proof Part (i). Assume that x∗ ∈ max< X, so that X ∩ {x : x ≻ x∗} = ∅. By our

assumptions of convexity and a version of the separating hyperplane theorem (e.g.

see Frenk and Kassay, Theorem 1.3), there exists g ∈ R
n\ {0} and y ∈ ∂X such that

x∗ + εd ≻ x∗ implies g · (x∗ + εd) ≥ g · y and x∗ + εd ∈ X implies g · (x∗ + εd) ≤ g · y.

Since x∗ ∈ X, it follows that g · x∗ ≤ g · y. Local non-satiation of < implies that

x∗ ∈ cl {x : x ≻ x∗} and, hence, that g · x∗ ≥ g · y. Together, this means that

g ·x∗ = g · y. Hence, if g · d > 0, then x∗ + εd /∈ X, and if g · d < 0, then x∗ + εd ≺ x∗,

which completes this part of the proof.

Part (ii). As in the proof of part (ii) of Theorem 1. �

To summarize, Theorems 1 and 2 provide two alternative but equivalent char-

acterizations of constrained maxima. The characterization with increasing ordients

might prove more useful in some applications, while other applications might require

the characterization with decreasing ordients. In the sequel, we provide additional

characterizations in terms of the increasing/decreasing ordients of the constraint set.

it follows from Proposition 3(i) that <i has a decreasing ordient everywhere. From Theorem 2 below,

it then follows that p̄ is a decreasing ordient of <i.
8Moreover, even if the preferences have no increasing ordients at x̄, it follows from Proposition 6

below that p̄ is a decreasing ordient. Thus, it characterizes the relative prices that make consumers

strictly worse off.
9Since they have decreasing ordients at each point x0 such that x0 is on the boundary of the upper

contour set of < at x0. If, in addition, < is monotone, then it has a decreasing ordient everywhere.
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In Economics, the set X is often taken to be the intersection of several sets,

e.g., budget constraints, technological constraints, positivity constraints, so that X =

∩m
j=1Xj with Xj ⊆ R

n for all j. For instance, the budget set B(p, w) corresponds to

∩n+1
j=1 Xj with Xj = {x ∈ R

n : xj ≥ 0} for j = 1, ..., n (non-negative consumption) and

Xn+1 = {x ∈ R
n : p · x ≤ w}. The following proposition characterizes the increasing

ordients of <X as a function of the decreasing/increasing ordients of each <Xj
.

Proposition 4 Let X = ∩m
j=1Xj with Xj ⊆ Rn for all j ∈ {1, . . . , m}.

(i) Assume that g is an increasing ordient of <X at x∗ ∈ ∂X, hj is a decreasing

ordient of <Xj
at x∗ for j ∈ {1, .., m} and ∩m

j=1{x : hj · (x − x∗) < 0} 6= ∅. There

exists λ ∈ R
m
+ \ {0} such that

g =
∑

j:x∗∈∂Xj

λjh
j . (1)

(ii) If hj is an increasing ordient of <Xj
at x∗ ∈ ∂X for j ∈ {1, ..., m} and there

exists λ ∈ R
m
+ such that Equation (1) holds, then g is an increasing ordient of <X at

x∗.

Proof (i) Let x∗ ∈ ∂X. We show that x∗ is maximizer of g · x subject to x ∈

∩m
j=1{x : hj · (x − x∗) ≤ 0}.

To the contrary, suppose that there exists x′ ∈ ∩m
j=1{x : hj · (x − x∗) ≤ 0}

such that g · x′ > g · x∗. From the bilinearity of the inner product, there exists

x
′′

∈ ∩m
j=1{x : hj · (x − x∗) < 0} such that g · x

′′

> g · x∗. Let d = x′′ − x∗, so that

g · d > 0. Since g is an increasing ordient of <X at x∗, it follows that x∗ + εd /∈ X for

sufficiently small ε. However, since hj is a decreasing ordient of <Xj
at x∗, it follows

that x∗ + εd ∈ X for sufficiently small ε, a contradiction.

The statement then follows from the classic necessary first-order conditions for

the above linear maximization problem involving linear constraints.

(ii) Consider g =
∑

j:x∗∈∂Xj
λjh

j. Assume that g · d > 0. It follows that

(
∑

j:x∗∈∂Xj
λj · h

j) · d > 0, so that there exists j such that x∗
j ∈ ∂Xj and d · hj > 0.

This implies that x∗+εd will lie outside Xj and, hence, outside of X if ε is sufficiently

small. Therefore, g is an increasing ordient of <X at x∗. �

As an illustration, consider the budget set in Figure 2 panel (i). The consumption

bundle x∗ is in the interior of the set X1 = {x ∈ R
2 : x1 ≥ 0} and at the boundary

of the sets X2 = {x ∈ R
2 : x2 ≥ 0} and X3 = {x ∈ R

2 : p1x1 + p2x2 ≤ w} with
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p >> 0. The decreasing ordient of <X2
at x∗ is (0,−1) while the decreasing ordient

of <X3
at x∗ is (p1, p2). Above, we have argued that (1, 0) is an increasing ordient

of <B(p,w) at x∗, so that the vector λ in Proposition 4 is (0, p2/p1, 1/p1). The vec-

tor λ can be interpreted as a Kuhn-Tucker multiplier. Indeed, from Theorem 1, we

have that the increasing ordient of < is collinear to the increasing ordient of <B(p,w)

at x∗. From Proposition 4, we have that the increasing ordient of <B(p,w) is a non-

negative linear combination of the decreasing ordient of each <Xj
at x∗. Combining

both observations, we have that the increasing ordient of < at x∗ is a non-negative

linear combination of the decreasing ordient of each <Xj
. This last observation is

reminiscent of the classic Kuhn-Tucker conditions for constrained optimization. In

fact, combining Theorem 1 and Proposition 4, we obtain “first-order” necessary and

sufficient conditions for the maximization of a binary relation in terms of the increas-

ing ordients of each of the constraint sets. As with the Kuhn-Tucker conditions, if x∗

is a maximizer and x∗ is interior to Xj (i.e., the j-th constraint is not binding), then

we can set λj = 0.10

To continue our exploration of optimality conditions, the next proposition gives a

classic duality theorem between minimizing <X on {x : x < x∗} and maximizing <

on X.11

Proposition 5 (Duality) Assume that intX 6= ∅ and consider x∗ ∈ ∂X.

(i) If < is continuous, x∗ ∈ min<X
{x : x < x∗} and ∂X ⊆ cl(intX), then x∗ ∈

max< X.

(ii) If < is locally non-satiated and x∗ ∈ max< X, then x∗ ∈ min<X
{x : x < x∗}.

Proof (i) Assume that x∗ /∈ max< X, so that there exists x′ ∈ X such that x′ ≻ x∗.

If x′ ∈ intX, it follows from the definition of <X that x∗ ≻X x′, a contradiction.

If x′ ∈ ∂X, it follows that x′ is on the boundary of X (since ∂X = X \ intX ⊆

clX \ intX = bdX). Moreover, since ∂X ⊆ cl(intX), there exists an open ball Bδ(x
′)

around x′ such that Bδ(x
′) ∩ intX 6= ∅. The continuity of < then implies that there

exists x′′ ∈ Bδ(x
′) ∩ intX such that x′′ ≻ x∗ and x′′ ≻X x∗, a contradiction.

(ii) Assume that x∗ /∈ min<X
{x : x < x∗}, so that there exists x′ ∈ {x : x < x∗}

with x∗ ≻X x′. From the definition of <X , we have that x′ ∈ intX. Hence, by local

non-satiation, there exists x′′ ∈ X with x′′ ≻ x∗, a contradiction. �

10Note that we can interpret the condition ∩m
j=1{x : hj · (x − x∗) < 0} 6= ∅ as a qualification

constraint.
11For the classic duality theorem, see Proposition 3.E.1 in Mas-Colell et al. (1995).
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We can then combine Theorem 1 and Proposition 5 to obtain necessary and suf-

ficient conditions for the maximization of < on X as a function of the ordient of the

constraint set. The next proposition is useful in applications where one has more

information about the constraint set than about the binary relation.

Proposition 6 If < is locally non-satiated, x∗ ∈ max< X and g is a decreasing

ordient of <X at x∗, then x∗ ∈ ∂X and g is a decreasing ordient of < at x∗.

Proof The proof is essentially the same as the proof of Theorem 1. All we have

to do is to insure that ∂X ⊆ cl(intX) for Proposition 5 to apply. This holds true,

however, as g is a decreasing ordient of <X at x∗. �

To illustrate the scope of Proposition 6, consider again the problem of maximizing

preferences over budget sets. If < is locally non-satiated and x∗ ∈ max< B (p, w) (with

x∗ >> 0), then p is a decreasing ordient of < at x∗. In particular, these necessary con-

ditions apply to Leontieff preferences, while Theorem 1 does not apply: the Leontieff

preferences fail to have an increasing ordient everywhere. More generally, whenever

a binary relation fails to have an increasing ordient everywhere, Proposition 6 still

makes it possible to characterize the maxima, provided that the constraint set has a

decreasing ordient at any point on its boundary. As already mentioned, important

examples of binary relations failing to have an increasing ordient everywhere include

the maxmin and minimax regret criteria for decision-making under uncertainty and

the other-regarding preferences of Fehr and Schmidt (1999).12 Yet, most constraint

sets found in Economics have a decreasing ordient at any point on their boundary, so

that Proposition 6 applies.

4 Envelope Theorem

The object of this section is to study how the set max< X of maximal elements of X

changes as the “constraint” set X varies. Let T be a convex set of parameters and

{Xt}t∈T a family of closed sets with Xt ⊆ X for all t ∈ T .13

Classic envelope theorems (see Milgrom and Segal (2002)) consider problems of the

form V (t) := supx∈{x′∈X:h(x′,t)≤0} f(x, t) where f is a parameterized real-valued func-

tion (often the utility function) and h another parameterized function, and “quantify”

12Alternatively, we might apply Theorem 2 since these preferences are convex and continuous.
13The assumption of closeness is not essential: our results remain valid if we consider the closure

of each Xt and the supremun of < on X instead of the maximum.
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Figure 3: Comparison of Xt and X ′
t.

the changes in the value function V as the parameter t varies. Unlike this classical

approach, our approach does neither impose the existence of a representation of <

(the function f) nor the representation of the constraint set Xt as functional inequali-

ties. Consequently, our analysis has to be entirely casted in terms of binary relations,

directions and ordients.

We first need to impose some structure on the family of sets {Xt}t∈T . For any

x ∈ X, we define the complete and transitive binary relation <◦
x on T as follows:

t′ ≻◦
x t if and only if either x ∈ ∂Xt ∩ intXt′ (Xt′ is “locally larger” than Xt at x)

or x ∈ Xt′ \ Xt. In particular, if Xt ⊂ Xt′ , then t′ <◦
x t for all x ∈ Xt ∪ Xt′ . A

simple example helps to illustrate our definition. In Figure 3, Xt is the rectangle and

Xt′ the triangle. The point x∗ is on the boundary of Xt′ and interior to Xt, hence

t ≻◦
x∗ t′. Similarly, the points to the left of the downward-sloping line are in Xt and

exterior to X ′
t, so that t ≻◦

x t′ for all such x. For another concrete example, consider

the family of budget sets {B(p, w) = {x : p ·x ≤ w}}(p,w)∈Rn+1. If the bundle of goods

x∗ is affordable at (p1, w1) but not at (p2, w2), then we have (p1, w1) ≻◦
x∗ (p2, w2).

Similarly, if x∗ does not exhaust the budget at (p1, w1) but does exhaust the budget

at (p2, w2), we have (p1, w1) ≻
◦
x∗ (p2, w2).

Consequently, the vector d is an improvement direction of <◦
x at t if there exists

ε∗ > 0 such that ε ∈ (0, ε∗) and t+εd ∈ T imply t+εd ≻◦
x t. In particular, if x ∈ ∂Xt,

this implies that x ∈ intXt+εd for all ε < ε∗. This case is important since maxima of

locally non-satiated binary relations are on the boundary.

Indeed, suppose that < is locally non-satiated and let x∗ ∈ max< Xt. It follows

that x∗ ∈ ∂Xt. Consider an improvement direction d of <◦
x∗ at t. Therefore, for ε

sufficiently small, t′ := t + εd ≻◦
x∗ t implies that x∗ ∈ intXt′ as x∗ ∈ ∂Xt. As <

is locally non-satiated, there exists x′ ∈ Xt′ such that x′ ≻ x∗. It follows that for

all x∗∗ ∈ max< Xt′ , x∗∗ ≻ x∗. Intuitively, since < is locally non-satiated, and X ′
t
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is locally larger than Xt, we can find an element in Xt′ that is strictly preferred to

x∗. However, can we “quantify” the change as we move from Xt to Xt′? This is the

question we study next.

To answer this question, we need to introduce (yet) another binary relation <∗ on

T : the indirect binary relation. We say that t′ ≻∗ t if there exists x′ ∈ Xt′ such that

x′ ≻ x for all x ∈ Xt. The indirect binary relation is at the heart of this section as

it implies direct comparisons between the set of maxima of < on Xt and Xt′ . This is

akin to the value function of classic envelope theorems.

Theorem 3 Assume that < is locally non-satiated and let x∗ ∈ max< Xt. If g is an

increasing ordient of <◦
x∗ at t, then g is an increasing ordient of <∗ at t.

Theorem 3 states that the “first-order” effects of a change in t on the maxima are

given by the direct effect, i.e., the change in the set Xt. This is an envelope theorem.

More precisely, Theorem 3 states that max< Xt+εd ≻ max< Xt ∼ x∗ whenever g·d > 0,

i.e., whenever Xt+εd is locally larger than Xt at x∗.

To get more intuition, let us return to the classic problem of maximizing < over the

budget set B(p, w) := {x ∈ R
n
+ : p · x ≤ w}. In this example, the set T of parameters

is R
n+1
++ : the set of prices p and income w. Let x∗ ∈ max< B(p, w). If < is locally

non-satiated, we have that (−x∗, 1) is an increasing ordient of <◦
x∗ , hence of <∗.14

Furthermore, if <∗ is representable by the indirect utility function (p, w) 7→ v (p, w)

with v differentiable (hence, ∇v is an ordient of the indirect preference <∗), then we

have

x∗ = −
1

∇wv(p, w)
∇pv(p, w).

This last equation is, of course, the celebrated Roy’s identity.

Rubinstein (2005, p. 77) makes a related observation. Assuming that for each

(p, w), the set max< B(p, w) is the singleton {x∗(p, w)}, he notes that the hyperplane

H := {(p, w) : (−x∗(p∗, w∗), 1) · (p, w) = 0} for some (p∗, w∗) is tangent to the

indifference sets of <∗ at (p∗, w∗).15 In other words, the vector (−x∗(p∗, w∗), 1) is

normal to H . Our result is of a different nature: it states that (−x∗(p∗, w∗), 1) is an

increasing ordient of <∗. As we will see in Section 5, this does not imply that it is

normal to the indifference curve of <∗ at (p∗, w∗).

14To see this, note that the function (p, w) 7→ w− p ·x is differentiable with gradient (−x, 1). The

result then follows since local non-satiation implies p · x∗ = w at the maximum.
15Remember that Rubinstein considers continuous, convex and monotone binary relations. In

particular, this implies that the Walras’s law holds.

22



Proof Choose any x∗ ∈ sup< Xt so there x∗ < x for all x ∈ Xt and there exists
(

xk
)

k
such that xk ∈ Xt and limk→∞ xk = x∗. Since < is locally non-satiated, we have

that x∗ ∈ ∂Xt. We first show that if d is an improvement direction of <◦
x∗ at t, then

d is an improvement direction of <∗ at t. Assume that d is an improvement direction

of <◦
x∗ at t. Therefore, there exists ε∗ > 0 such that t + εd ≻◦

x∗ t for all ε < ε∗. Since

x∗ ∈ ∂Xt, this implies that x∗ is in the interior of Xt+εd for all 0 < ε < ε∗. Fix ε < ε∗.

Since < is locally non-satiated, it follows that there is some x′ (ε) ∈ Xt+εd such that

x′ (ε) ≻ x∗. It follows that t + εd ≻∗ t: d is an improvement direction of <∗ at t.

Theorem 3 then follows directly from the definition of an increasing ordient. �

Yet, Theorem 3 does not imply that g is an ordient of <∗; it only states that

g is an increasing ordient. A simple example from consumer theory illustrates that

point. There are two perfectly substitutable goods with preferences given by the

utility function f(x) = x1 + x2. The indirect utility function v is given by v (p, w) =

w/ min {p1, p2}. The function v is differentiable in w with ∂v/∂w = 1/ min {p1, p2},

while it is not differentiable with respect to p at any p such that p1 = p2. Con-

sider x∗ = (w/2, w/2). Then, x∗ ∈ max< B((1, 1), w). Given ε > 0, we have that

v ((1 + 2ε, 1 − ε) , w) = w/ (1 − ε) > v ((1, 1) , w), so that (2,−1, 0) is an improve-

ment direction at (1, 1, w). It follows that (−x∗, 1) is not a decreasing ordient as

the inner product of (−w/2,−w/2, 1) and (2,−1, 0) is negative, while (2,−1, 0) is an

improvement direction. The next proposition provides sufficient conditions for g to

be an ordient.

We need the following definition. The vector d is a local worsening direction of

{<◦
x, x ∈ bd (Xt)} at x∗ if there exists ε∗ > 0 and δ > 0 such that ε ∈ (0, ε∗) and

‖x − x∗‖ < δ with x ∈ bd (Xt) implies that t ≻◦
x t + εd. Geometrically, this means

that Bδ (x∗) ∩ bd (Xt) ∩ Xt+εd = ∅ for all ε < ε∗. In words, for ε sufficiently small,

any point on the boundary of Xt sufficiently close to x∗ does not belong to Xt+εd.

For instance, in the example above, at (w/2, w/2), the direction (1 + 2ε, 1 − ε, w) is

a local worsening direction of {<◦
x, x ∈ {x′ : x′

1 + x′
2 = w}}. Regardless of ε > 0,

the budget line (1 − 2ε)x1 + (1 − ε)x2 = w intersects the budget line x1 + x2 = w at

(w/3, 2w/3) and, therefore, for all δ < w/6, Bδ((w/2, w/2))∩{x : x1 +x2 = w}∩{x :

(1 − 2ε)x1 + (1 − ε)x2 ≤ w} = ∅, as required.

Proposition 7 Let x∗ ∈ max< Xt. Assume that < is locally non-satiated, that Xt′

is locally path-connected for all t′ in a neighborhood of t, and that limtk→t Xtk =

Xt and x∗ ∈ limtk→t {Xtk ∩ Xt}. Assume that g is a decreasing ordient of <◦
x∗ at
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t and that any worsening direction d of <◦
x∗ at t is a local worsening direction of

{<◦
x, x ∈ bd (Xt)} at x∗. If {x∗} = cl {x : x < x∗}∩Xt, then g is a decreasing ordient

of <∗ at t.

Before presenting the proof, we briefly discuss the assumptions made in Proposi-

tion 7. Firstly, if the constraint sets are convex, then there are locally path-connected,

so that in most economic applications, this assumption is satisfied. Secondly, the as-

sumption “x∗ ∈ limk→∞ {Xtk ∩ Xt}” means that x∗ has arbitrarily close points in

Xt and Xtk for k large enough. This assumption is satisfied in our example with

two perfectly substitutable goods. Lastly, the proposition requires the existence of a

unique maximum. This assumption is not satisfied in our example with two perfectly

substitutable goods when the price of both goods is the same. This explains why

(−x∗, 1) is not an ordient of <∗, albeit an increasing ordient.

Proof Since < is locally non-satiated, we have that x∗ ∈ bd (Xt).

Consider d such that d · g < 0, i.e., d is a worsening direction of <◦
x∗ at t. Assume

that d is not a worsening direction of <∗ at t. There exist sequences (εk)k and (xk)k

with εk > 0, xk ∈ Xt+εkd and xk < x∗ for all k, and limk→∞ εk = 0.

We have that xk 6= x∗ for all k. This is because x∗ ∈ bdXt ⊂ Xt and d is a

worsening direction of <◦
x∗ at t. Note that since {x∗} = cl {x : x < x∗} ∩Xt, we have

that xk /∈ Xt for all k.

Assume without loss of generality that limk→∞ xk = x′ holds for some x′ ∈ X. So

x′ ∈ cl {x : x < x∗}. Moreover, since limk→∞ Xt+εkd = Xt, it follows that x′ ∈ Xt.

Hence, x′ ∈ cl {x : x < x∗} ∩ Xt.

We now show that x′ 6= x∗. This will contradict the assumption that {x∗} =

cl {x : x < x∗} ∩ Xt and, hence, proves that d is in fact a worsening direction of <∗

at t.

Assume that x′ = x∗, so that xk is arbitrarily close to x∗for k large enough. To

derive a contradiction, consider a sequence (zk)k in Xt∩Xt+εkd such that limk→∞ zk =

x∗. Such a sequence exists as x∗ ∈ limk→∞ {Xt+εkd ∩ Xt}.

Connect zk to xk with a continuous function with range in Xt+εkd. This function

exists by local path-connectedness of Xt+εkd. So, there exists hk : [0, 1] → R
n such

that hk is continuous, hk (0) = zk, hk (1) = xk and hk (λ) ∈ Xt+εkd for all λ ∈ [0, 1].

Moreover, there exists δ∗ > 0 such that for each δ ∈ (0, δ∗), there exists k∗ such

that for all k > k∗, we have that hk (λ) ∈ Bδ (x∗) for all λ ∈ [0, 1].

As zk ∈ Xt, xk /∈ Xt and hk is continuous, there exists λ̄ such that h
(

λ̄
)

∈
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Xt+εkd ∩ bdXt. Hence, Bδ (x∗) ∩ bd (Xt) ∩ Xt+εd 6= ∅. This contradicts the fact that

d is a local worsening ordient of {<◦
x, x ∈ bd (Xt)} at x∗. �

As already suggested, an immediate corollary of Theorem 3 and Proposition 7 is

the ordinal version of the celebrated Roy’s identity.

Corollary 1 (Roy’s Identity) Consider x∗ ∈ max< B (p, w). Then (−x∗, 1) is an

increasing ordient of <∗ at (p, w) . If < is continuous and {x∗} = arg max< B (p, w)

then (−x∗, 1) is an ordient of <∗ at (p, w) .

5 Implicit Function Theorem and Indifference Sets

This section presents an implicit function theorem for ordientable binary relations.

Assume that X can be written as X1 ×X2 × · · · ×Xn and let x∗ ∈ X. We study the

existence of two open neighborhoods U and V of (x∗
1, . . . , x

∗
n−1) and x∗

n, respectively,

and of an implicit function f : U → V such that (x1, . . . , xn−1, f(x1, . . . , xn−1)) ∈

bd{x : x < x∗} for all (x1, . . . , xn−1) ∈ U . There are two main motivations for our

formulation. Firstly, we do not want to assume either the continuity of the binary

relation or the connectedness of the indifference sets. This approach is consistent

with our definition of marginal rate of substitutions. In fact, our implicit function

theorem shows that the gradient of the implicit function exists at x∗ and gives the

marginal rate of substitutions of good n for any good i 6= n at x∗. Secondly, if the

binary relation < is continuous, our formulation coincides with the classic formulation

of the implicit function theorem, namely the existence of an implicit function f such

that (x1, . . . , xn−1, f(x1, . . . , xn−1)) ∼ x∗ for all (x1, . . . , xn−1) in a neighborhood of

x∗. Theorem 4 formally states our implicit function theorem.

Theorem 4 Let g be an ordient of < at x∗ ∈ X with gn 6= 0. There exist two open

neighborhoods U ⊂ ×n−1
i=1 Xi and V ⊂ Xn with (x∗

1, . . . , x
∗
n−1) ∈ U and x∗

n ∈ V , and a

function f : U → V that satisfies the following:

f(x∗
1, . . . , x

∗
n−1) = x∗

n,

and

(x1, . . . , xn−1, f(x1, . . . , xn−1)) ∈ bd {x : x < x∗} ,

for all (x1, . . . , xn−1) ∈ U . Moreover, f is differentiable at
(

x∗
1, . . . , x

∗
n−1

)

with gradi-

ent ∇f
(

x∗
1, . . . , x

∗
n−1

)

= (−g1/gn, . . . ,−gn−1/gn).
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Proof We present the proof for n = 2. (The case of n > 2 is analogous.) Let

g be the ordient of < at x∗ with g2 6= 0. Without loss of generality, assume that

g2 > 0. Consider d1 with |d1| = 1. We first establish the existence of f that satisfies

(x∗
1 + εd1, f (x∗

1 + εd1)) ∈ bd {x : x < x∗} for all ε sufficiently small. First of all, note

that since < is ordientable at x∗, we have that x∗ ∈ bd{x : x < x∗}. Consider

η > 0 and let d′
2 = d1 · (−g1/g2) − η/g2 and d′′

2 = d1 · (−g1/g2) + η/g2. It follows that

−η = d1g1 + d′
2g2 < 0 < d1g1 + d′′

2g2 = η, so that (d1, d
′
2) is a worsening direction and

(d1, d
′′
2) is an improvement direction of < at x∗. Hence, there exists ε∗ > 0 such that

(x∗
1 + εd1, x

∗
2 + εd′

2) ≺ x∗ ≺ (x∗
1 + εd1, x

∗
2 + εd′′

2) (2)

for all ε ∈ (0, ε∗).

We now claim that for each ε ∈ (0, ε∗), there exists f (x∗
1 + εd1) ∈ [x∗

2 + εd′
2, x

∗
2 + εd′′

2]

such that (x∗
1 + εd1, f (x∗

1 + εd1)) ∈ bd {x : x < x∗}. To see this, let Y be the set

{(x∗
1 + εd1, x2) : x2 ∈ [x∗

2 + εd′
2, x

∗
2 + εd′′

2]} , (3)

and consider the two sets A := Y ∩ {x : x < x∗} and B := Y ∩ {x : x ≺ x∗}. Note

that Y is connected. From Eq. (2), both A and B are non-empty, disjoint and their

union is Y .

By contradiction, assume that Y ∩ bd{x : x < x∗} = ∅. It follows that the

boundary of A is empty. If the boundary of B is non-empty, then there exists x

which belongs to the closure of B and the interior of A (since the closure of A is its

interior from the previous line). Since A and B are disjoint, x must be a limit point

of B. Since the interior of A is an open set, that is impossible, so that the boundary

of B is empty. It follows that A and B are both open (and closed) and, consequently,

form a separation of Y . This contradicts the fact that Y is connected.

To complete the proof, it suffices to show that

lim
ε→0

f (x∗
1 + εd1) − f (x∗

1)

ε
= −

g1

g2
· d1.

Assume not. There exists β > 0 such that
∣

∣

∣

∣

f (x∗
1 + εmd1) − f (x∗

1)

εm

−

(

−
g1

g2

· d1

)
∣

∣

∣

∣

> β,

for all converging sequences (εm) to zero. Choose some η ∈ (0, β). From the above,

we have that
f (x∗

1 + εd1) − f (x∗
1)

ε
∈ [d′

2, d
′′
2] ,
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for all ε < ε∗ and, therefore,
∣

∣

∣

∣

f (x∗
1 + εd1) − f (x∗

1)

ε
−

(

−
g1

g2
· d1

)
∣

∣

∣

∣

≤ η,

for all ε < ε∗, a contradiction. This completes the proof. �

As already alluded, the gradient of the implicit function f at x∗ gives the marginal

rate of substitutions of good n for any good i 6= n. It is also worth noting that if <

has a continuously differentiable representation, then Theorem 4 is nothing else than

the classic implicit function theorem (see Krantz and Parks (2002) for a reference

on implicit function theorems). Moreover, even if the binary relation < is contin-

uous and, hence, has a continuous representation, it does not imply the existence

of a differentiable representation. Naturally, there are versions of the implicit func-

tion theorem for non-differentiable functions. For instance, Kumagai (1980) shows

that if F : R
n−1 × R → R is continuous with F (x∗) = 0 and for each (x1, . . . , xn−1)

in a neighborhood of (x∗
1, . . . , x

∗
n−1), F ((x1, . . . , xn−1), ·) is locally one-to-one, then

xn can be uniquely expressed as a function of (x1, . . . , xn−1) in neighborhoods of

(x∗
1, . . . , x

∗
n−1) and x∗

n. Theorem 4 differs from Kumagai’s theorem in two main as-

pects. Firstly, Theorem 4 gives the gradient of the implicit function, while Ku-

magai’s theorem only gives the existence of the implicit function. Secondly, sup-

pose that F is a continuous representation of <. Kumagai’s theorem requires that

F ((x1, . . . , xn−1), ·) is locally one-to-one for each (x1, . . . , xn−1) in a neighborhood of

(x∗
1, . . . , x

∗
n−1), which is not guaranteed when < is ordientable at x∗. Furthermore,

unlike Kumagai, Theorem 4 does not guarantee the uniqueness of the implicit func-

tion. For an example, consider X = R
2 and suppose that the binary relation < is such

that I ((0, 0)) = {(x1, x2) : 0 ≤ x2 ≤ x2
1} and {x : x ≻ 0} = {(x1, x2) : x2 > x2

1}. At

x∗ = (0, 0), the binary relation is ordientable with (0, 1) as an ordient, but there are

two implicit functions: the functions x2 = x2
1 and x2 = 0. Both implicit functions are

differentiable at 0 with a zero gradient. The following proposition provides conditions

so as to guarantee the uniqueness of the implicit function.

Proposition 8 Assume that the binary relation < is continuously ordientable in a

neighborhood of x∗. There exist two open neighborhoods U ⊂ ×n−1
i=1 Xi and V ⊂ Xn

with (x∗
1, . . . , x

∗
n−1) ∈ U and x∗

n ∈ V , and a unique function f : U → V that satisfying

the properties as stated in Theorem 4.

Proof Let x∗ ∈ X. From Theorem 4, there exist two open neighborhood U ′ and

V ′ and an implicit function f : U ′ → V ′ which satisfies the above condition. We
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have to show that there exists U ⊆ U ′ such that for each (x1, . . . , xn−1) ∈ U ′, there

exists a unique xn ∈ f(U ′) with (x1, . . . , xn−1, xn) ∈ bd{x : x < x∗}. Let g(x)

be the ordient of < at x and assume that gn (x∗) > 0. Since g is continuous in a

neighborhood of x∗ and en = (0, ..., 0, 1) is an improvement direction at x∗, there

exists δ > 0 such that en is an improvement direction at any x with x ∈ Bδ (x∗). It

follows that (x1, . . . , xn−1, x
′
n) = x′ ≺ x′′ = (x1, . . . , xn−1, x

′′
n) holds whenever x′

n < x′′
n,

x′ ∈ Bδ (x∗) and x′′ ∈ Bδ (x∗). Letting U ′ = U ∩ Bδ (x∗) completes the proof. �

Theorem 4 has implications for the normality of the ordient of a continuous bi-

nary relation < at x∗ to the indifference set I(x∗). If the binary relation is contin-

uous, bd{x : x < x∗} is a subset of I(x∗). From Theorem 4, it follows that the set

{(x1, . . . , xn−1, f(x1, . . . , xn−1)) : (x1, . . . , xn−1) ∈ U} is included in I(x∗) and that

g(x∗) · (x1 − x∗
1, . . . , xn − x∗

n) ≈ 0 for all (x1, . . . , xn) ∈ U × V . Thus, the ordient of a

continuous binary relation at x∗ defines a hyperplane tangent to the indifference set

at x∗: it is normal to I(x∗). In the rest of this section, we study the relationships

between ordients and normals to indifference sets.

We say that g 6= 0 is normal to I(x∗) if for every c > 0, there exists δ > 0 such

that ‖x−x∗‖ < δ and x ∈ I(x∗) imply |g · ((x − x∗)/ ‖x−x∗‖)| ≤ c. A normal is thus

othogonal to any hyperplane tangent to the indifference set. To illustrate an extreme

case, note that any g 6= 0 is normal to I (x∗) whenever I (x∗) is a singleton (as in the

lexicographic case).

Proposition 9 If (i) g is normal to I (x∗) and < is continuous or (ii) g is normal

to bd {x : x < x∗}, then either g or −g is either an increasing or a decreasing ordient

of < at x∗.

Proof Let g be normal to I (x∗). Choose d such that ‖d‖ = 1 and g · d 6= 0. As g

is normal, given c < |g · d|, there exists δ > 0 such that |g · (x − x∗)| ≤ c‖x − x∗‖ for

all x ∈ I(x∗)∩Bδ(x
∗), with Bδ(x

∗) an open ball of radius δ around x∗. Consequently,

x∗ + εd 6∼ x∗ for all ε ∈ (0, δ). From the continuity of <, either x∗ + εd ≻ x∗ for

all ε ∈ (0, δ) or x∗ + εd ≺ x∗ for all ε ∈ (0, δ). Hence, d is either an improvement

direction at x∗ or a worsening direction at x∗.

Assume that d is an improvement direction at x∗. Consider d′ such that ‖d′‖ = 1

and (g · d) (g · d′) > 0. The above arguments show that d′ is either an improvement

direction or a worsening direction. Evoking continuity of <, it is easy to see that d′
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is in fact also an improvement direction at x∗. Hence, g is an increasing ordient of <

at x∗ if g · d > 0 and −g is an increasing ordient of < at x∗ if g · d < 0.

Assume that d is a worsening direction at x∗. Then, analogous arguments as above

show that g is a decreasing ordient of of < at x∗ if g · d < 0 and −g is an increasing

ordient of < at x∗ if g · d > 0. This completes the proof of part (i).

The proof of part (ii) is similar to the proofs of part (i) and Theorem 4. �

The converse of Proposition 9 does not hold, however. For a counter-example,

let X = R
2 and suppose that I((0, 0)) = {x : x2 = 0} ∪ {x : x2 =

√

|x1|, x1 6= 0},

{x : x ≻ 0} = {x : x1 = 0, x2 > 0} ∪ {x : 0 < x2 <
√

|x1|, x1 6= 0} and {x : x ≺ 0} ⊇

{x : x2 < 0}. At the point (0, 0), (0, 1) is an ordient of the binary relation <. Yet,

the ordient (0, 1) is clearly not normal to the indifference set.16 To get normality, a

stronger notion of ordient is necessary.

Definition 2 The binary relation < has a uniform ordient g at x∗ if for any c > 0,

there exists ε∗ > 0 such that d · g ≥ c with ‖d‖ = 1 implies that x∗ + εd ≻ x∗ and

d · g ≤ −c with ‖d‖ = 1 implies that x∗ + εd ≺ x∗, for all ε < ε∗. The binary relation

< is uniformly ordientable at x∗ if it has a uniform ordient.

The concept of uniform ordient is stronger than the concept of ordient as it requires

that for any direction d with |g · d| ≥ c, there exists a unique ε∗ > 0 such that

x∗ + εd ≻ x∗ or x∗ + εd ≺ x∗ for all ε < ε∗. With the concept of ordient, the

choice of ε∗ = ε∗ (d) can depend on the direction d considered. For instance, in

the counter-example above, the ordient (0, 1) of < at (0, 0) requires that ε∗(d1, 1) in

direction (d1, 1) goes to zero as d1 goes to zero. Uniform ordientability ensures that

the indifference set is tangent to the hyperplane defined by the uniform ordient.

Proposition 10 If < is uniformly ordientable at x∗ with ordient g, then g is normal

to I (x∗).

Proof Let g be the uniform ordient of < at x∗ and consider a sequence (xn)n

converging to x∗ with xn ∈ I(x∗) for all n. Fix c > 0. By contradiction, assume that

g is not normal to I(x∗). There exists n∗ such that |g · (xn − x∗)| > c‖xn − x∗‖ for

all n ≥ n∗. For all n ≥ n∗, we can write xn as x∗ + εndn with εn = ||xn − x∗|| > 0

16Note that at (0, 0), there are two implicit functions f1 and f2: f1(x1) = 0 for all x1, and

f2(x1) =
√

|x1| if x1 6= 0 and f2(0) = 0. Only the first implicit function f1 is differentiable at 0 with

the gradient given by 0 = −g1/g2.
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and dn = (xn − x∗)/‖xn − x∗‖. It follows that either g · dn > 0 or g · dn < 0. Assume

g · dn > 0. Since g is a uniform ordient of < at x∗, dn is an improvement direction.

Consequently, there exists an ε∗ (independent of n) such that x∗ + εdn ≻ x∗ for all

ε < ε∗. If εn < ε∗, we have a contradiction with the fact that xn ∼ x∗. If εn ≥ ε∗ for

all n > n∗, we have a contradiction with the fact that εn converges to 0. Lastly, if

I(x∗) = {x∗} or if there is no sequence (xn)n converging to x∗ with xn ∈ I(x∗) for all

n, then there is nothing to prove. �

To conclude, we mention another result about normality and ordients inspired

by Mas-Colell (1985). Suppose that < is locally non-satiated on an open set with

connected indifference set I(x∗). If, furthermore, the boundary of the binary relation

< is a C1-manifold, then the normal of I(x∗) exists and is an ordient of < at x∗.

The result directly follows from Proposition 2.3.9 (p. 64) in Mas-Colell (1985) and

Proposition 1. From Proposition 2.3.9 in Mas-Colell, we have that < has a differ-

entiable representation f at x∗. Consequently, the gradient ∇f at x0 exists and is

normal to I(x∗) at x∗. From Proposition 1, it is an ordient of < at x∗. This result

follows the differential approach to economic theory. Our results suggest, yet again,

that the differential approach obscures the importance of local trade-offs. Ordients

do characterize these local trade-offs - without the need to assume the existence of

representations.

6 Extensions

The object of this section is to provide further insights into the concept of ordients

and to demonstrate that the concept of ordients is flexible enough so as to characterize

unconstrained maxima or maxima of incomplete binary relations.

6.1 Unconstrained Maxima

An important implication of assuming an ordientable binary relation is local non-

satiation. In some applications, e.g., consumer theory, this is a reasonable assumption.

Yet, in other applications such as game theory, this assumption is problematic. We

now discuss how a slight generalization of the concept of ordient can accommodate

the existence of unconstrained local maxima.

We say that d is a weak improvement (resp., worsening) direction of < at x0 if

there exists ε∗ > 0 such that for any ε ∈ (0, ε∗) with x0+εd ∈ X, we have x0+εd < x0
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(resp., x0 + εd 4 x0). Weakly increasing and weakly decreasing ordients are defined

analogously as in Section 2. If g is a weakly increasing and weakly decreasing ordient

of < at x0, then g is called a weak ordient.

Two remarks are worth making. Firstly, if the binary relation < is ordientable,

then < is weakly ordientable. The concept of weak ordientability is a slight general-

ization of the concept of ordientability. Secondly, it can accommodate the existence of

binary relations with “thick” indifference curves. For instance, suppose that < is the

binary relation on (0, 3) induced by the function f with f(x) = x if x ≤ 1, f(x) = 1

if x ∈ (1, 2) and f(x) = x − 1 if x > 2. With the binary relation <, an individual

is indifferent between any x ∈ [1, 2]. The binary relation < is not ordientable, but is

weakly ordientable.

With this generalized definition, the vector x∗ is a local maximum if and only if

the set of weakly decreasing ordients at x∗ is R
n \ {0} (since all directions are weakly

worsening directions).

6.2 Incomplete Binary Relations

While we have casted our results for complete, reflexive and transitive binary rela-

tions, we believe that the concept of ordient naturally extends to more general binary

relations. For instance, suppose that < is transitive and reflexive, but not necessar-

ily complete. A possible solution is to complete <.17 However, this solution is not

satisfactory. To see this, consider the component-wise order ≥ on R
2 i.e., x > y if

and only if xi ≥ yi for all i ∈ {1, 2} and xi > yi for some i ∈ {1, 2}. We can extend

≥ to a complete order < by letting x ∼ y whenever x and y are not comparable

under ≥. Unfortunately, the binary relation < has no ordient everywhere. A more

satisfactory solution consists in slightly modifying the definition of improvement and

worsening directions. For any x ∈ X, denote by C(x) the set of alternatives compa-

rable to x i.e., C(x) := {y ∈ X : y < x or x < y}. We say that d is an improvement

(resp., worsening) direction of < at x0 if there exists ε∗ > 0 such that ε ∈ (0, ε∗)

and x0 + εd ∈ C(x0) implies that x0 + εd ≻ x0 (resp., x0 + εd ≺ x0). Increasing

and decreasing ordients are then naturally defined as in Section 2. Of course, if < is

complete, these new definitions coincide with our original definitions.

With these new definitions, the component-wise order on R
2 is ordientable: (1, 1)

is an ordient everywhere. For another example, assume that < is represented by m

17This is possible by Szpilrajn’s Theorem (see Ok (2007, p. 17)).
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real-valued functions (f1, . . . , fm) such that x ≻ y if and only if fj(x) ≥ fj(y) for all

j ∈ {1, . . . , m} and fj(x) > fj(y) for some j ∈ {1, . . . , m}. (See Ok (2002) for a rep-

resentation theorem of incomplete preferences.) If the m functions are differentiable,

then ∇f1(x0)+ · · ·+∇fm(x0) is an ordient of < at x0 (provided it is non zero). More

generally, < might be given by m (complete) binary relations (<1, . . . , <m) such that

x ≻ y if and only if x <j y for all j ∈ {1, . . . , m} and x ≻j y for some j ∈ {1, . . . , m}.

For instance, each binary relation <j might represent the preferences of individual j

and < is the Pareto order. It then easy to show that if each <j is ordientable with

ordient gj, then g1(x0) + · · ·+ gm(x0) is an ordient of < at x0.
18

Turning to optimality conditions, we say that x∗ maximizes < on X if there does

not exist another x ∈ X such that x ≻ x∗. We write x∗ ∈ max<X. Then g is an

increasing ordient of the set X at x if for each d with g ·d > 0, there exists ε∗ > 0 such

that x + εd /∈ X or x + εd ∈ X \C(x) for all ε ∈ (0, ε∗). It is then easy to see that if

x∗ ∈ max<X and g is an increasing ordient of < at x∗ ∈ ∂X, then g is an increasing

ordient of <Xat x∗. In other words, a version of Theorem 1(i) remains valid if suitable

modifications of our definitions are made.19 For an illustration, consider the maxima

of the set {x ∈ R
2
+ : x1 + 2x2 ≤ 1} according to the component-wise order ≥. We

have that max≥{x ∈ R
2
+ : x1 +2x2 ≤ 1} = {x ∈ R

2
+ : x1 +2x2 = 1} and, clearly, (1, 1)

is both an increasing ordient of ≥ and of {x ∈ R+ : x1 + 2x2 ≤ 1} at each maximum.

In sum, we believe that most of our results can be suitably generalized to (almost)

any binary relation. This is likely to be important as recent advances in decision the-

ory, e.g., preferences with multiple rationales (among others, Mariotti and Manzini

(2007) and Apesteguia and Ballester (2008)), often relax the assumption of complete-

ness or transitivity.

7 Discussion

This paper introduces the concept of ordient for binary relations, a relative to the

concept of gradient for functions. Ordients have a natural economic interpretation

as “marginal rate of substitutions.” In effect, ordients characterize the directions of

improvement and worsening from any given alternative. Most importantly, there is

18Note that for each λ ∈ R
m
++,

∑m

j λjgj(x0) is also an ordient of < since λjgj is an ordient of

each <j. The parameter λj could be interpreted as a weight of a welfare function.
19Note that, unlike Theorem 1, x∗ ∈ max<X and g an increasing ordient of < at x∗ does not

imply that x∗ ∈ ∂X since any x∗ maximizes < on X when C (x∗) = ∅.
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no particular need for cardinal comparisons (utility functions) and even less so for

comparisons based on local linear approximations (differentiable utility functions).

The main message of this paper is that only the ordering of the alternatives and

knowledge of the local trade-off between the alternatives do matter.20

We show how the concept ordient makes it possible to characterize the maximal

elements of a set. We also derive an envelope theorem and implicit function theorem

for binary relations with ordients.

We believe that this paper paves the way for future developments in Economics,

without imposing the existence of (differentiable) representations. Recent develop-

ments in decision theory/behavioral economics seem to move away from the “repre-

sentable and differentiable” approach to Economics. Equipped with the concept of

ordient, the characterization of maxima or comparative statics exercises are possible,

even in a world without utility functions.
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