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Abstract

On several occasions, the question has been asked whether (C,E, P )–
algebras as introduced by Marti (1999), go beyond the framework of
asymptotic algebras as defined by Delcroix and Scarpalezos (1998). This
note summarizes the constructions and clarifies the relation between the
corresponding algebras.

1 Introduction

In 1998, Delcroix and Scarpalezos have formulated the following interesting
generalization of Colombeau’s (simplified) “New generalized functions”:

Definition 1 The asymptotic algebra based on the semi-normed space (E,P )
and the asymptotic scale a on Λ, is the factor space

Aa(E,P ) = Fa(E,P )
/
Ja(E,P ) (1)

where1

Fa(E,P ) = {f ∈ EΛ | ∀p ∈ P ∃m ∈ Z : p(f) = O(am)} (2)

Ja(E,P ) = {f ∈ EΛ | ∀p ∈ P ∀m ∈ Z : p(f) = O(am)} (3)

where p(f) = (p(fλ))λ∈Λ ⊂ R+
Λ ⊂ KΛ, K = R or C.

We recall the standard

Definition 2 An asymptotic scale on a (filtered) set Λ is a family of func-
tions a = (am : Λ → R∗

+)m∈Z with values in R∗
+ = ]0,∞[ such that

∀m ∈ Z : am+1 = o(am) , a−m = 1/am , ∃M ∈ Z : aM = O(a2m)

Example 3 One recovers Colombeau’s New Generalized Functions on Ω ⊂ Rd

for am = (εm)ε∈Λ=]0,1], E = C∞(Ω) and P =
{
pK,α = ‖∂α·‖L∞(K)

}

K!Ω,α∈Nd
.

1Given the properties of a, one could replace O(am) by o(am) in the definition of J , which
may be a little more convenient in some proofs.
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Example 4 Delcroix and Scarpalezos have introduced the “exponential algebra”
of generalized functions stable under exponentiation, based on the scale with
a−m−1 = exp ◦ a−m for m ∈ N∗, a−1 = (e1/ε)ε. Obviously this scale (and thus
generalized algebra) is not of “Colombeau type” in the sense that one does not
have am = (a1)m and there is no equivalence with an algebra of such type, where
the scale is given by powers of one or a finite number of given elements.

Remark 5 When (E,P ) is a presheaf of topological K–algebras or vector spaces,
then Aa(E,P ) is again a presheaf of topological algebras or modules over the
ring of generalized numbers Ka = Aa(K, |·|).

On the other hand, Marti’s (C,E, P )–algebras are defined in terms of a semi-
normed space (E,P ) and a ring (of “generalized numbers”) C = A/I, where I
is an ideal of the subring A ⊂ KΛ, both being solid:

Definition 6 We say that A ⊂ KΛ is solid, iff for all x ∈ KΛ and a ∈ A,
|x| ≤| a| implies x ∈ A (where x ≤ y ⇐⇒ ∀λ ∈ Λ : xλ ≤ yλ).

Definition 7 The (C,E, P )–algebra associated to the ring of generalized num-
bers C = A/I (I ⊂ A ⊂ KΛ both solid) and the semi-normed space (E,P ) is
the factor space

AC,E,P = HA,E,P

/
HI,E,P , HX,E,P = {f ∈ EΛ | ∀p ∈ P p(f) ∈ X} . (4)

Remark 8 Apart from the very concise way of writing, this definition yields the
nice property that HX,K,|.| = X for any solid X ⊂ KΛ and therefore AC,K,|.| = C.
This would not necessarily hold if the definition would involve an “asymptotic
relation” ( e.g., “for λ small enough”).
In practical applications, however, one usually does not want the values for “big
λ” to matter. Therefore, already A and I should contain all sequences that
are zero for “λ small enough” (and thus, using stability under +, all sequences
that differ from a sequence in A only for “large λ”). This can be obtained by
requiring a stronger type of (“asymptotic”) solidness:

Definition 9 We say that A ⊂ KΛ is (asymptotically) solid, iff for all a ∈ A
and x ∈ KΛ, x = O(a) implies x ∈ A.

But the main interest, in practice, is not in arbitrary (C,E, P )–algebras, but
those generated by a set of sequences, as defined below, which will automatically
satisfy this property.

2 B–generated (C,E, P )–algebras.

Definition 10 Let B ⊂ (R∗
+)

Λ be a set of strictly positive valued families. Then
we denote by 〈B〉 the smallest subset of KΛ containing B and stable under
addition, multiplication and taking the inverse. It is easy to see that 〈B〉 is
the set of all rational fractions whose numerator and denominator are linear
combinations of products (or powers) of elements of B, with positive integer (or
equivalently rational) coefficients,

〈B〉 =
{( ∑

b∈Bn

αb b1 · · · bn
)/ ∑

b′∈Bm

βb′ b′1 · · · b′m ; n,m ∈ N∗, αb,βb′ ∈ N
}

,
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where the sums are finite ( i.e., αb = βb′ = 0 except for a finite number of b,b′)
but always have at least one nonzero term.

Definition 11 Given a subset B ⊂ (R∗
+)

Λ, we let

AB =
{
x ∈ KΛ | ∃b ∈ 〈B〉 : x = O(b)

}
, (5)

I(B) =
{
x ∈ KΛ | ∀b ∈ 〈B〉 : x = O(b)

}
. (6)

Lemma 12 With the above definitions, AB is a solid subring of KΛ and I(B)

is a solid ideal of AB.

Proof. It is easy to see from the very definition that the sets AB and I(B) are
solid, using transitivity of the O(·) relation.
Stability of AB under addition and multiplication follows from the construction
of 〈B〉 which is also closed under these operations. Concerning stability of I(B)

under addition, for x, y ∈ I(B) and b ∈ 〈B〉, we have x + y = O(b) because
1
2 b ∈ 〈B〉 and x = O( 12b), y = O( 12b).
To show that the product of y ∈ I(B) and x ∈ AB is again in I(B), let be given
an arbitrary b ∈ 〈B〉, and b′ ∈ 〈B〉 such that x = O(b′). But then b/b′ is again
in 〈B〉, thus y = O(b/b′) and x · y = O(b′ · b/b′) = O(b). !

Remark 13 Having shown that AB is a subring, it is easy to see that it is the
smallest solid subring to contain 〈B〉, AB = ssr(〈B〉). We observe that this may
be larger than the smallest solid rubring which contains B, AB ⊃ ssr(B), due to
the fact that 〈B〉 also contains the inverse of the elements of B.

Lemma 14 (and Definition.) To any solid subring A ⊂ KΛ (with unit), we
canonically associate the (solid) ideal

IA =
{
x ∈ KΛ | ∀a ∈ A∗ : x = O(a)

}
, (7)

where A∗ denotes the invertible elements of A ( i.e., having an inverse in A).

Proof. If a, b are invertible in A, then so is |a| + |b|, which yields stability of
IA under −. If x ∈ A, y ∈ IA, a ∈ A∗, then x = O(b) with b = |x| + 1 ∈ A∗,
and y = O(a/b) yields x · y = O(b · a/b) = O(a). !

Lemma 15 For A = AB defined in (5), the ideal IA defined by (7), equals I(B)

defined in (6).

Proof. This follows from the fact that for all b ∈ 〈B〉, we have b−1 ∈ 〈B〉,
i.e., 〈B〉 ⊂ A∗ which entails IA ⊂ I(B). On the other hand, if a ∈ A∗, then
a−1 ∈ A∗ ⊂ AB is dominated by some b ∈ 〈B〉, a−1 = O(b), and x = O(b−1) for
any x ∈ I(B) since b

−1 ∈ 〈B〉, so x = x · a−1 · a = O(b−1)O(b) a = O(a), whence
I(B) ⊂ IA. !

Remark 16 It is easy to see that I(B) = I〈B〉 as defined by equation (7), but of
course 〈B〉 = 〈B〉∗ is neither solid nor a ring.
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3 Relation between aymptotic and B–generated
(C,E, P )–algebras.

Now we will establish a relation between aymptotic algebras and B–generated
(C,E, P )–algebras, defined as follows:

Definition 17 For B ⊂ (R∗
+)

Λ, we call B–generated any (C,E, P )–algebra
associated to C = AB/I(B).

Example 18 For B =
{
(ε)ε∈]0,1]

}
we get Colombeau’s algebras, which are the

asymptotic algebras corresponding to the scale (am = (εm)ε)m∈Z.

Remark 19 Although 〈B〉 is not an asymptotic scale, we obviously have, for
C = AB/I(B), that AC,E,P = A〈B〉(E,P ) as defined in equation (1), i.e., with
{am;m ∈ Z} replaced by 〈B〉 in equations (2)–(3).

We will prove the

Theorem 20 For finite or countable sets B which contain at least one sequence
with zero or infinite limit, we can extract from 〈B〉 a family a = (am;m ∈ Z)
which is an asymptotic scale such that AAB/I(B),E,P = Aa(E,P ).

Remark 21 The reason for the requirement of having at least one sequence of
zero or infinite limit is obvious: If B contains only sequences bounded from below
or above, then AB also contains only bounded sequences, and no sequence with
zero limit can be invertible; therefore there may be sequences in I(B) which don’t
have zero limit, and this cannot be the case for an ideal defined by an asymptotic
scale, in view of am+1 = o(am).

Lemma 22 If B is finite or countable, then there is a subset {rm;m ∈ Z} ⊂ 〈B〉
with r−m = 1/rm such that for any finite subset B′ ⊂ 〈B〉

∃m ∈ N ∀b ∈ B′ ∀λ ∈ Λ : rm(λ) < b(λ) < r−m(λ) . (8)

Proof. One key point in the proof is the observation that, although 〈B〉
does not necessarily contain min(x, y) := (min {xλ, yλ})λ∈Λ nor max(x, y) :=
(max {xλ, yλ})λ∈Λ, we have

∀x, y ∈ 〈B〉 : max(x, y) < x+ y ∈ 〈B〉

and
min(x, y) < x ‖ y := (x−1 + y−1)−1 ∈ 〈B〉 .

Now it is straightforward to construct the sequence (rm). First we observe
that in view of its definition, the set 〈B〉 is countable whenever B is at most
countable, i.e., we can write 〈B〉 = {b0, b1, b2, ...}. Now let r0 = 1 ∈ 〈B〉 and for
m ∈ N,

r′m = rm ‖ bm < min(rm, bm) , r′′m = r−m + bm > max(r−m, bm) ,

and finally rm+1 := r′m ‖ 1/r′′m < min(r′m, 1/r′′m), r−m−1 := 1/rm+1 > r′′m. This
way we obviously have a subset {rm;m ∈ Z} ⊂ 〈B〉 with the property

∀m ∈ N ∀k < n : rm+1 < rm < bk < r−m = 1/rm < r−m−1 .
!
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Proof of the Theorem. Now it remains to extract from (rm)m∈Z a subse-
quence (am)m∈Z which verifies the additional requirements of an asymptotic
scale, namely am+1 = o(am) and ∀m : ∃M : aM = O(a2m). This is obviously
possible whenever B contains a sequence with zero (or infinite) limit: Indeed,
this sequence (or its inverse) will appear at a given moment as bm in the proof
of the preceding Lemma. From then on, all rm′ , m′ > m will have zero limit,
and we can let a1 = rm+1. Furthermore, for each am, its square (am)2 will also
appear eventually as some bm′′ , and the associated rm′′+1 = O(a2m) = o(am), so
we can let am+1 = rm′′+1 and have all of the required properties. !

4 Colombeau type asymptotic algebras

From the construction given in the preceding proof we can see that we have

Theorem 23 A (C,E, P )–algebra generated by a finite set B = {b1, ..., bn}
(of which at least one element has zero or infinite limit) is a Colombeau type
algebra generated by a single element tB ∈ 〈B〉 ( i.e., an asymptotic algebra
corresponding to the scale {am = tm; m ∈ Z}), given by

tB = b1 + · · ·+ bn + (b1)
−1 + · · ·+ (bn)

−1 .

Proof. The element tB is obviously strictly larger, and its inverse is strictly
smaller, than any b ∈ B. So any polynomial

∑
m∈Nn αmbm ∈ N[B] \ {0} is

majorated and minorated by some power of tB , and the same applies therefore
to the set 〈B〉 of rational fractions of such polynomials. From there it is easy
to see that

AB =
{
x ∈ KΛ | ∃m ∈ Z : x = O(tmB )

}
,

I(B) =
{
x ∈ KΛ | ∀m ∈ Z : x = O(tmB )

}
,

i.e., we have a Colombeau type asymptotic algebra with the scale {am = tmB }m∈Z.
!

5 Conclusion

To conclude, we can say that (C,E, P )–algebras defined by some completely
arbitrary C = A/I, e.g., with I = {o} or I = A or I containing sequences
which do not have zero limit, can certainly not be written as an asymptotic
algebra. Moveover, this also seems impossible when A cannot be written as
A = AB with some countable set B. However, in all practical applications we
are aware of, it is sufficient to consider B–generated (C,E, P )–algebras with a
finite or countable set B containing at least one sequence with zero or infinite
limit. As proved in the present note, in this case the resulting algebra can also
be interpreted as asymptotic algebra in the sense of Delcroix and Scarpalezos,
with an asymptotic scale which can be constructed explicitely as shown above.

Moreover, when the algebra is generated by a finite set, then it is equivalent
to a Colombeau type algeba. This is however not the case, in general, for
asymptotic scales obtained, e.g., by composition of function, as shown by the
example of Delcroix and Scarpalezos’ exponential algebra.
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Algebras of this type can be useful in a setting where one wants to construct
solutions by successive approximations. Then the stability of the algebra under
iteration of the relevant map will imply that the iterative process yields and
element of the algebra after each step. These ideas will be developed in more
detail in a separate forthcoming paper.
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