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Abstract

The use of proxy variables to control for unobservables when esti-
mating a production function has become increasingly popular in em-
pirical works in recent years. The present paper aims to contribute to
this literature in three important ways. First, we provide a structured
review of the different estimators and their underlying assumptions.
Second, we compare the results obtained using different estimators for
a sample of Spanish manufacturing firms, using definitions and data
comparable to those used in most empirical works. In comparing the
performance of the different estimators, we rely on various proxy vari-
ables, apply different definitions of capital, use alternative moment
conditions and allow for different timing assumptions of the inputs.
Third, in the empirical analysis we propose a simple (non-graphical)
test of the monotonicity assumption between productivity and the
proxy variable. Our results suggest that productivity measures are
more sensitive to the estimator choice rather than to the choice of
proxy variables. Moreover, we find that the monotonicity assumption
does not hold for a non-negligible proportion of the observations in our
data. Importantly, results of a simple evaluation exercise where we
compare productivity distributions of exporters versus non-exporters
shows that different estimators yield different results, pointing to the
importance of making suitable timing assumptions and choosing the
appropriate estimator for the data at hand.

Keywords: Total factor productivity; Semiparametric estimator; Simultane-
ity; Timing assumptions; Generalized Method of Moments.
JEL Classification: C13, C14, D24, D40.
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1 Introduction

Total factor productivity (TFP) is an important tool for researchers in
evaluating the implications of various policy measures on firm performance.
However, obtaining reliable measures of firm-level TFP is not easy, since
firm-level productivity is typically unobserved by the econometrician. One
approach that has been used to tackle this problem consists in estimating
productivity as a residual of a production function. While it is possible to
estimate a production function using Ordinary Least Squares (OLS), this
results in an endogeneity bias due to the fact that productivity is known to
the firms when they choose their inputs. As a consequence, estimation of a
production function and the resulting TFP residual has itself been the topic of
a large and still growing literature.1 One of the most important contributions
to this literature in the last 15 years has been the use of estimators that model
the unobserved productivity by using observable firm-level variables. It is on
this class of estimators (often defined as semiparametric estimators) that the
current paper focuses.

The first semiparametric estimator was introduced by Olley and Pakes
(1996, henceforth OP). They address the simultaneity issue by developing
a two-step estimator of a production function, whereby firm’s (observed)
investment is used to proxy for its unobserved productivity. Since its pub-
lication, their estimator has been applied in many papers (see for instance
Pavcnik, 2002, De Loecker, 2011 and Konings and Vandenbussche, 2008). A
citation analysis in Google Scholar in July 2011 revealed 1,911 references to
the original paper of OP.

Several adaptations and extensions to the estimator of OP have been devel-
oped meanwhile. Levinsohn and Petrin (2003, henceforth LP) use interme-
diate inputs (e.g. materials and energy) rather than investment to proxy for
unobserved productivity. The semiparametric estimator of LP has also been
applied extensively in empirical work, see for instance Fernandes (2007) and
Javorcik and Spatareanu (2008), among others. More recently, the timing
assumptions underlying the semiparametric estimators of OP and LP have
been questioned by Ackerberg, Caves and Frazer (2006, henceforth ACF)
who suggest an alternative two-step estimator where all relevant parameters
are recovered in the second stage.2 Wooldridge (2009) on the other hand fo-

1For a review of the literature, we refer to Van Beveren (2011) and Van Biesebroeck
(2007).

2See Konings and Vanormelingen (2009) and Dumont, Merlevede, Piette and Rayp
(2010) for some recent applications.
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cuses on the inefficiencies associated with the two-step estimation procedure
of existing methodologies and proposes a framework in which production
function estimates can be obtained in one step. His framework allows for
the timing assumptions of both the original semiparametric estimators and
of the adapted framework of ACF and it has been applied to empirical data
by Acharya and Keller (2009).

The present paper focuses on the class of estimators that have emerged
since the seminal paper of Olley and Pakes (1996). We aim to contribute
to the literature in three important ways. First, we provide a structured
overview of these estimators and their underlying assumptions. While Acker-
berg, Benkard, Berry and Pakes (2007, henceforth ABBP) provide an excel-
lent review of the theoretical properties of most of the estimators that will
be discussed below, they provide little guidance regarding their practical
implementation. In our view, there are important aspects concerning the
implementation of these estimators that need to be clarified, particularly for
the one-step estimator proposed by Wooldridge (2009). Second, and more
importantly, we want to evaluate how these estimators perform in practice,
whether there are relevant differences between the estimates obtained and,
to what extent differences in coefficient estimates yield different results in an
evaluation exercise, where we compare the TFP distribution of exporters and
non-exporters. Third, we introduce a simple test for the underlying assump-
tion of all the estimators discussed that unobserved productivity is mono-
tonically increasing in the proxy variable. Although Levinsohn and Petrin
(2003) investigate the monotonicity assumption graphically, this is the first
paper, to the best of our knowledge, that introduces a simple non-graphical
test for the assumption that the unobserved productivity is monotonically
increasing in the proxy variable.

The empirical part of the paper uses panel data for a sample of large Span-
ish manufacturing firms over the period 1990-2006. The data are obtained
from the Encuesta Sobre Estrategias Empresariales (ESEE) and have been
used in other empirical work, see for instance Ornaghi (2006), Ornaghi (2008)
and Cassiman, Golovko and Mart́ınez-Ros (2010). The data set is compara-
ble to the typical data used by empirical researchers when estimating TFP,
i.e. it provides information on outputs and inputs at the firm level in nominal
value terms. Data on inputs and outputs in real terms are obtained by de-
flating these nominal values using appropriate industry-level price indices.3

3It should be noted that the ESEE data contain information on the evolution of firm-
level prices. However, in the absence of information on initial firm-level prices, this infor-
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Section 3 discusses the data and variables in greater detail.

The theoretical review presented in Section 2 highlights that the choice of
which estimator to apply depends crucially on the timing assumptions made
for the inputs in the production function, particularly for capital (through
the capital rule) and labour (with or without dynamic implications). In our
empirical analysis, we will remain agnostic on these timing assumption in
order to compare production function coefficients and TFP estimates ob-
tained using different estimators. Results reported in Section 4 show that
estimates for structural parameters and related productivity tend to be more
sensitive to the type of estimator than to the proxy variable used. In gen-
eral, we find that coefficients vary more between estimators for the same
proxy variable than within an estimator for different proxy variables. Our
results suggest that the choice of one estimator over another can lead to
very different outcomes when testing the hypothesis of constant returns to
scale and when comparing the productivity distribution for exporting and
non-exporting firms within an industry.

These results point to the importance of making suitable timing assump-
tions for the data at hand (and choosing the appropriate estimator based on
these timing assumptions). As timing assumptions are likely to be industry-
and country-specific, it is not straightforward for empirical researchers to
make this choice. Moreover, it is not inconceivable that different firms within
an industry allocate their inputs in different ways, in which case timing as-
sumptions might be suitable for some firms, but not necessarily for all firms
within a sector. Moreover, the monotonicity test we propose suggests that
the fundamental assumption of a positive monotonic relationship between
unobserved productivity and proxy variables seems to hold at large when
we use materials as proxy variable. On the contrary, our test cast some
doubts on the validity of this assumption when using investment or capacity
utilization as proxy variable.

The rest of the paper is structured as follows. Section 2 provides a struc-
tured review of the different semiparametric estimators that have been de-
veloped in the literature. Section 3 introduces the data used in the empirical
application and Section 4 uses these data to obtain insights into the relation-
ship between the different estimators. Section 5 concludes.

mation cannot be exploited when estimating TFP in levels, unless firm-level fixed effects
are included to control for initial price differences between firms.

5



2 Review of semiparametric estimators

2.1 General framework

As in previous works, we start out from a general Cobb-Douglas production
function.4

Yit = AitK
βk

it L
βl

itM
βm

it (1)

where Yit represents physical output of firm i in period t ; Kit, Lit and Mit

refer to capital, labour and materials respectively and Ait is the Hicksian
neutral efficiency level of firm i in period t.

Taking natural logs of (1) results in a linear production function,

yit = β0 + βkkit + βllit + βmmit + ωit + uit (2)

where lower-case letters refer to natural logarithms and ln(Ait) ≡ β0+ωit+uit.
The constant can be thought to measure the mean efficiency level across firms
while the remaining two terms measure unobservable (to the econometrician)
producer-specific deviations from the mean.5 The difference between the two
unobservable terms is that ωit refers to factors observed (or predictable) by
the firm which are likely to affect the firms’ input choices (for instance, man-
agerial ability), while uit is an i.i.d. component which captures unobserved
factors to the firm and the econometrician, hence affecting the output of
the firm but not the choice of the inputs (for instance, unexpected machine
break-downs). Alternatively, uit can represent measurement error in output
or errors due to functional form discrepancies. In this case, as the average of
these errors, ūit, will in practice be captured by β0, changes in the (industry-
and/or time-specific) intercept will not measure true differences in efficiency
if ūit 6= 0.

Typically, empirical researchers estimate (2) for all firms in a specific in-
dustry and productivity levels can then be calculated as:

ln(Âit) ≡ ω̂it + β̂0 + ûit = yit − β̂kkit − β̂llit − β̂mmit (3)

4ABBP show that semiparametric estimation methods carry over to other types of
production functions, provided some basic requirements are met. Specifically, variable
inputs need to have positive cross-partial derivatives with productivity, and the value
of the firm has to be increasing in the amount of fixed inputs used. De Loecker and
Warzynski (2009) and Rovegno (2011) estimate a translog production function using some
of the semiparametric methodologies explained below.

5Typically, researchers will include year dummies in (2). In this case, the constant will
be year-specific.
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or alternatively, as

ln(Âit) ≡ ω̂it + β̂0 = exp(ŷit − β̂kkit − β̂llit − β̂mmit)

depending on whether uit are assumed to be respectively, unobserved factors
contributing to the firms’ efficiency or (mean zero) classical measurement
errors.

The productivity measure resulting from the equations above can be used
to evaluate the influence and impact of various policy variables directly at the
firm level; or alternatively, firm-level TFP can be aggregated to the industry
level by calculating the share-weighted average of Âit.

6

Although (2) can be estimated using Ordinary Least Squares (OLS), this
method requires that the inputs in the production function are exogenous
or, in other words, determined independently from the firm’s efficiency level.
Marschak and Andrews (1944) already noted that inputs in the production
function are not independently chosen, but rather determined by the char-
acteristics of the firm, including its efficiency, resulting in an endogeneity
bias.

Intuitively, if the firm has prior knowledge of ωit at the time input de-
cisions are made, endogeneity arises since input quantities will be (partly)
determined by prior beliefs about its productivity (Olley and Pakes, 1996;
ABBP, 2007). Specifically, a positive productivity shock will likely lead to
increased variable input usage; i.e. E (xitωit) > 0 , where xit = (lit, mit);
introducing an upward bias in the input coefficients for labour and materials
(De Loecker, 2011). In the presence of many inputs and simultaneity issues,
it is generally impossible to determine the direction of the bias in the capital
coefficient. Levinsohn and Petrin (2003) illustrate, for a two-input produc-
tion function where labour is the only freely variable input and capital is
quasi-fixed, that the capital coefficient will be biased downward if a positive
correlation exists between labour and capital (which is the most likely setup).

The simultaneity problem has been the main focus of the methodolog-
ical literature dealing with TFP estimation since the issue was raised by
Marschak and Andrews (1944) more than sixty years ago. However, several
other methodological issues arise when estimating a production function.

6Weights used to aggregate firm-level TFP can be either firm-level output shares, as in
Olley and Pakes (1996); or employment shares, as in De Loecker and Konings (2006).
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First, if no allowance is made for entry and exit of firms, a selection bias
can emerge. The estimation algorithm of Olley and Pakes (1996) was the first
to implement a formal correction for this bias, by including the estimated
survival probability of the firm in the production function. However, very
small changes in the production function coefficients are generally found after
implementing the correction for the selection bias (see for instance De Loecker
(2011) and Van Beveren (2011)). As a result and also because empirical data
do not always allow for a clean definition of exit, the correction of Olley and
Pakes (1996) has not been widely introduced in practice7.

Second, as firm-level prices are generally not observed, econometricians
must use industry-level price indices to obtain an approximate measure of
firm-level quantities. This practice may bias the estimated coefficients of the
production function when markets are not perfectly competitive. Klette and
Griliches (1996) and De Loecker (2011) propose to control for the absence of
firm-level output prices through the introduction of an industry-level output
term, but this procedure has been criticized by others (Ornaghi, 2006). Fi-
nally, Bernard, Redding and Schott (2009) question the common practice of
estimating production functions for all firms in a particular industry. Usu-
ally firms are assigned to a particular industry based on their most important
sector of activity. However, recent work on multi-product firms (see for in-
stance Bernard, Redding and Schott (2010b), Mayer and Ottaviano (2008),
and Bernard, Van Beveren and Vandenbussche (2010a)) suggests that many
firms (typically the larger firms) produce more than one product, often in
more than one industry8.

While the biases introduced by the use of industry-level prices and by
estimating production functions for all firms in a particular industry can be
sizeable, they fall beyond the scope of the present paper. As noted above,
the primary focus of the semiparametric estimators has been to provide a
solution for the simultaneity bias and for this reason, this is also the focus

7It should be noted that the distinction between the use of a balanced versus an un-
balanced data set is important in empirical practice, yielding sizeable differences in the
production function coefficients obtained. Essentially, when using an unbalanced data set,
the data set implicitly allows for firm entry and exit, even in the absence of the formal
correction introduced by OP

8In the absence of firm-product specific information on input use, obtaining reliable
production function coefficients for multi-product and multi-industry firms remains an
important challenge in future empirical work. Currently, the multi-product literature
tends to rely on non-parametric approaches such as index numbers to avoid these caveats.
Bernard et al. (2009) offer some potential solutions to this particular problem.
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of our paper. Moreover, in the absence of information on firm-level prices
and on the product mix of the firm (which is still typically the case in most
firm-level data sets), it is not possible to control for these biases in empirical
practice.

Before we discuss the different estimators in-depth, it is useful to highlight
the two fundamental ingredients that all these estimators share. First, pro-
ductivity ω is assumed to be known by the firm (though not by the econo-
metrician) and to follow an exogenous first order Markov process.9 The
realization of productivity in the next period is fully determined by the in-
formation set available in period t, apart from the innovation in productivity
between t and t+1, ξit+1, which is unexpected at time t. Specifically:

ωit+1 = E(ωit+1|Iit) + ξit+1 = E(ωit+1|ωit) + ξit+1

where the news component ξit+1 is assumed to be uncorrelated with produc-
tivity and capital in period t+1.

The second, and most important, ingredient is that unobserved productiv-
ity can be proxied using an observable firm-level decision, i.e. the firm’s dy-
namic choice of investment levels or its optimal allocation of variable inputs,
such as materials or energy. This observed “proxy” variable p is assumed
to be a strictly increasing function of unobserved productivity and the other
state variable(s), such as capital. Specifically pit = ft(ωit, kit) if capital is the
only dynamic input entering the firm’s state space.10 Given the assumption
of strict monotonicity, the relationship can be inverted, allowing for produc-
tivity to be expressed as a function of observables: ωit = f−1

t (pit, kit).

Three clarifications about this function are in order. First, since the func-
tion f−1

t has an unknown functional form, it can be approached either non-
parametrically or parametrically. The origin of the term “semiparametric” to
refer to this particular class of estimators can be found here. Given that the
parametric approach, where the function f−1

t is approximated using a higher-
order polynomial in the proxy variable and the firm’s state variables is used
most often in practice,11 our empirical exercise will compare the parametric

9Doraszelski and Jaumandreu (2009) have recently relaxed the assumption that the
evolution of productivity is strictly exogenous by defining an econometric framework where
firms can control (part of) the first order Markow process through their R&D investments.

10We will come back to the issue of static versus dynamic inputs and its implications
for the estimation procedure below.

11An exception can be found in Levinsohn and Petrin (2003), who approximate this
function non-parametrically using Kernel techniques.
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version of all these estimators.

Second, the time subscript t suggests that this function should be allowed
to vary over time. LP allow for this by estimating a production function for
different periods of the macroeconomic cycle.12 Third, the inversion of ft
requires that the productivity term ωit is the only unobservable entering the
inversion function ft(ωit, kit) (“scalar unobservable”). This is a rather restric-
tive assumption, since it essentially rules out measurement or optimization
errors in these variables (Ackerberg et al., 2006), and it implicitly assumes
perfect competition in inputs markets. In fact, in the presence of imperfect
competition, firm-level prices of these inputs would determine the optimal
level of the proxy variable and in turn would enter the inverted function f−1

t .
If these prices are unobserved by the econometrician, the scalar unobserv-
able assumption would be violated, making it impossible to invert out the
productivity shock. Note that this problem is likely to be more problematic
when materials are used as a proxy variable than for investment, because of
the (well documented) large dispersion of intermediate inputs prices within
industries (see Ornaghi 2006).

Finally, it is useful to clarify some terminology regarding the timing and
dynamic implications of the different inputs in the production function. As
noted by ABBP (2007), inputs can be classified along two dimensions. The
first dimension relates to the timing of the input decision. Fixed inputs
are chosen before the productivity shock ξit is realized and are therefore
uncorrelated with the innovation in the productivity term. Variable inputs on
the other hand are chosen at the same time the productivity shock is realized
and are therefore correlated with the innovation ξit. The second dimension
relates to the dynamic implications of the inputs. Specifically, static inputs
are chosen in period t, without any implications for the firm in period t+ 1.
Dynamic inputs on the other hand have dynamic implications, i.e. allocation
of these inputs today will have implications for the next period. Dynamic
inputs enter the state space of the firm. This distinction is important to
characterize the different estimators that we will discuss hereafter.

12In our empirical exercise, we follow the common empirical practice of including time
dummies in the first stage of the estimation algorithm. Hence, we will not estimate time-
specific parameters for the polynomial term.
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2.2 Olley and Pakes (1996)

As noted above, Olley and Pakes (1996) were the first to introduce the use
of proxy variables to control for the unobservable productivity term in the
production function. The estimation algorithm of OP additionally provides a
solution to the selection problem, by taking into account the survival proba-
bility of the firm in the estimation algorithm. However, for reasons discussed
in Section 2.1, we will not treat the selection problem here and focus instead
on the simultaneity problem.

In terms of timing and the dynamic implications of the input variables
Olley and Pakes (1996) assume that materials and labour are both static
and variable while capital is a dynamic variable, fully determined by choices
made in period t − 1. Specifically, the law of motion for capital can be
assumed to be:

Kit = (1− δ)Kit−1 + Iit−1 (4)

where δ is the yearly depreciation rate and I measures new capital invest-
ments. This law of motion assumes that it takes a full period for investments
made by the firm to be translated into new capital. As a consequence, cap-
ital in period t is uncorrelated with the innovation in the productivity term
between t− 1 and t, ξit.

The novelty of the OP technique consists in defining the unobserved pro-
ductivity by inverting out the investment demand function:

ωit = f−1

t (pit, kit) (5)

where p refers to the proxy variable investment i. Substituting the latter into
(2) gives 13:

yit = β0 + βkkit + βllit + βmmit + f−1

t (pit, kit) + uit (6)

Estimation of (6) proceeds in two steps. Assuming that the unknown
function f−1

t can be approximated parametrically by polynomial expansion
of order J in pit and kit, i.e. ωit = f−1

t (pit, kit) ≈
∑J

j=0

∑J−j

w=0
γj,wp

j
itk

w
it , the

first stage consists of OLS estimation of the equation:

yit = βllit + βmmit + Φ(pit, kit) + uit (7)

13It should be noted that OP use a value added production function and they include
the age of the firm as an additional state variable.
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where Φ (pit, kit) ≡ β0 + βkkit +
∑J

j=0

∑J−j

w=0
γj,wp

j
itk

w
it .

14. Estimation of (7)
results in a consistent estimate of the coefficients on labour and materials
(the variable factors of production), as well as the composite term Φ (pit, kit).
Identification of βk is prevented by the fact that kit is collinear with the
polynomial in pit and kit. Note that β0 cannot be identified either as the
polynomial expansion includes a constant term γ0.

The second step of OP identifies the coefficient of capital using the es-
timates of Φ̂ (pit, kit). As mentioned above, OP assume that productivity
follows a first order Markov process:

ωit = E (ωit|ωit−1) + ξit = g(ωit−1) + ξit (8)

where g is un unknown function and ξit represents the news component to
productivity which was unforseen by the firm in period t− 1. The particular
timing assumption about investment decisions (see Section 2.1) implies that
this term is orthogonal to capital:

E [ξit| kit] = 0 (9)

thus defining the moment condition necessary to identify the capital coeffi-
cient.

In practice, given an initial guess of the capital coefficient β ′

k, it is possible
to compute ωit(βk) in all the periods (up to an intercept):

ωit(βk) = Φ̂ (pit, kit)− β ′

kkit (10)

By using a polynomial of order J to approximate the g function in (8),15

the ξit are then obtained as the residuals from the regression:

ω̂it(βk) =
J
∑

j=0

αjω̂it−1(βk)
j + ξit(βk)

The coefficient of capital is estimated by using the sample analogue to
(9), i.e. 1

T
1

N

∑

t

∑

i ξit(βk)kit = 0 and searching the value of βk for which this
is as close as possible to zero. Finally, standard errors can be obtained by
applying bootstrapping techniques.

14In the empirical exercise we will use a third order polynomial.
15In the empirical exercise we will use J=3.
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There are at least two important aspects that need to be considered when
applying this procedure in any empirical exercise. First, the moment condi-
tion (9) can be replaced by:

E [ξit + uit| kit] = 0 (11)

where u is the i.i.d error term defined in equation (1). In the empirical
application discussed in Section 4 we will experiment with the moments given
by equations (9) and (11) to evaluate to what extent they yield different
results.

Second, the coefficient of capital in the second stage can be estimated using
a non-linear least square (NLLS) estimator. Starting from the estimates β̂l

and β̂m obtained in the first stage, the production function (2) can be written
as

y̌it = βkkit + ωit + uit (12)

where y̌it ≡ yit − β̂llit − β̂mmit and β0 is omitted to simplify notation. Sub-
stituting in (8) results in:

y̌it = βkkit + g(ωit−1) + ξit + uit

= βkkit + g(Φ (pit−1, kit−1)− βkkit−1) + ξit + uit

Finally, by using the estimates of Φ̂ (pit, kit) and a polynomial to approxi-
mate the function g gives the empirical specification:

y̌it = βkkit +

J
∑

j=1

γj

(

Φ̂it−1 − βkkit−1

)j

+ ξit + uit (13)

which can be estimated using NLLS. Note that estimating equation (13) is
the least square equivalent to minimizing the moment condition (11). The
NLLS version of moment condition (9) would require using (y̌it − uit) on the
left-hand side of (13) (where uit is obtained in the first stage), instead of y̌it.
We will apply both the NLLS and GMM version of the OP estimator in the
empirical application to verify to what extent they yield different results.

2.3 Levinsohn and Petrin (2003)

The main novelty introduced by Levinsohn and Petrin (2003) is the of use
materials (or energy) as proxy variable, i.e. p ≡ m. Given that investments
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are generally lumpy and they often take the value of zero, there may be some
doubts about the strict monotonicity assumption of the investment equation.
The use of intermediate inputs to invert out ω seems a more reasonable
approach. As materials is now an argument of the inverted function ωit =
f−1
t (pit, kit), it is no longer possible to identify βm in the first stage, as it will
be collinear with f−1

t .16 Specifically, the LP approach implies that equation
(7) defined in Section 2.2 must be replaced by

yit = βllit + Φ(pit, kit) + uit (14)

so that only the coefficient on labour will be identified in the first stage.

Identification of the parameters βk and βm in the second stage requires an
additional moment condition to the one used by OP to identify the capital
coefficient. LP use the value of intermediate inputs in t− 1, given that this
can be assumed to be orthogonal to shocks in innovation between t−1 and t.
Accordingly, the LP estimator is based on the following moment condition:

E

[

ξit|
kit

mit−1

]

= 0 (15)

and estimation then involves searching for the pair (βk, βm) that makes the
empirical analogue of (15) as close as possible to zero.

Two things need to be noticed about the LP approach. First, given that
material is endogenous and needs to be instrumented with mit−1, it is not
possible to estimate the second stage parameters βk and βm using NLLS.17

Second, LP assume that the dynamics of capital depend on the investment
decision in period t:

Kit = (1− δ)Kit−1 + Iit (16)

Under this framework, capital is predetermined to the extent that the
firms are assumed to choose their investments before observing the produc-
tivity shock ξit. In other words, the correlation between capital and the
shocks is not determined by the subscript of the investment variable, but by
the point in time in which this investment is assumed to have been decided.

16Note that there are no differences with OP if energy is used as proxy variable.
17This problem does not arise when using a value added production function because

mit doest not enter the list of regressors.
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2.4 Ackerberg, Caves and Frazer (2006)

Ackerberg et al. (2006), henceforth ACF, critically review the assumptions
underlying the estimators proposed by OP and LP. They show that it is hard
(or even impossible) to identify coefficients on labour in the first-step of these
estimators because l is likely to be collinear with the non parametric terms
(i.e. the polynomial in the proxy variable and capital). While this problem
can arise in the context of both the OP and LP estimator, ACF argue that it
is particularly problematic when variable inputs are used as proxy variables.

For the LP estimator, since labour and materials are both chosen simulta-
neously, a natural assumption would be that they are both functions of the
same state variables:

mit = ft (ωit, kit)

lit = gt (ωit, kit)

Hence, both labour and materials depend on the fixed input k and pro-
ductivity ω. Using the invertibility condition of LP, i.e. ωit = f−1

t (mit, kit),
this leads to the following result:

lit = gt
(

f−1

t (mit, kit) , kit
)

The equation above shows that it is not possible to identify the labour
coefficient in the first stage as l is a function of the same variables that are
used to proxy the unobserved productivity ωit and it is therefore perfectly
collinear with the inverted function f−1

t . ACF further investigate to what
extent plausible assumptions can be made about the data generating process
for labour in order to save the LP first stage estimation, with little success.

This collinearity problem can also arise in the context of the OP estima-
tion procedure. However, for the OP estimator, identification of the labour
coefficient can be achieved by assuming that investment and labour are deter-
mined by different information sets. In particular, while investment in period
t is chosen while knowing the productivity ωit, the allocation of labour may
be decided between t − 1 and t when firms do not have perfect information
about their future productivity. If this assumption holds for the data at
hand, the labour coefficient can be identified in the first stage of the esti-
mation algorithm in the case of OP. For LP, this assumption does not solve
the collinearity problem, since choosing labour prior to choosing material
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inputs will make the choice of the latter directly dependent on the choice
of labour inputs, i.e. mit = f−1

t (ωit, kit, lit), again preventing identification
of the labour coefficient in the first stage. This difference between the two
estimators stems from the fact that investment, unlike materials, is not di-
rectly linked to period t outcomes, so that a firm’s allocation of labour will
not directly affect its investment decisions.

ACF suggest an alternative estimation procedure which builds on the LP
insight that it is more reasonable to use materials to invert out the unobserved
productivity ω, but where the coefficient on labour is no longer estimated
in the first stage of the algorithm. All input coefficients are obtained in the
second stage, while the first stage only serves to net out the error component
in the production function. The procedure proposed by ACF starts out from
a basic value added production function, but it carries over to an output
production function. Starting out from the output production shown in
(2), ACF assume that labour is chosen by the firm at time t − b, where
0 < b < 1 as it is “less variable” than materials (or energy), which is chosen
at time t. This implies that labour is allocated prior to m, but after kit.
This assumption is based on the idea that it takes some time before firms’
hiring and firing decisions take effect, though not as much time as is the case
for capital. Accordingly, labour enters the set of variables that affect the
choice of materials: pit = f−1

t (ωit, kit, lit).
18 Inverting this function for ω and

substituting into equation (2) results in:

yit = β0 + βkkit + βllit + βmmit + f−1

t (pit, kit, lit) + uit (17)

= Φ (pit, kit, lit) + uit

Equation (17) shows that none of the coefficients can now be recovered
from the first stage.19 This is true even if labour does not have dynamic
implications, since labour is assumed to be less variable than materials in
the current framework (i.e. it is decided just before materials).

Since labour is estimated in the second stage, the ACF approach is robust
to the assumption that labour is a dynamic input. Essentially, in the presence
of large hiring and firing costs, labour is costly to adjust and it enters the

18In the empirical specification, we will use a 3th order polynomial: ωit =
f−1

t (pit, kit, lit) ≈
∑3

j=0

∑3−j

w=0

∑3−j−w

g=0
γj,w,gp

j
itk

w
it l

g
it.

19Note that the coefficient βm cannot be estimated in the first step even if the proxy
variable used is not materials because this is likely to be perfectly collinear with the
variables entering the inverted f function.
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set of state variables on which the choice of the proxy variable depends.
Therefore, the fact that labour enters the function pit = ft (ωit, kit, lit) can
be due either to the assumption that l is a static input “less variable” than
the proxy p or to the fact that labour is actually a dynamic input subject to
large adjustment costs.

Estimation of (17) in the first stage allows for separating Φ from the un-
expected deviations due to measurement errors, unexpected delays or other
external circumstances which are subsumed in uit. Following the estimate of
Φ in the first stage, identification of βk, βl and βl can be obtained using the
moment conditions:

E

[

ξit|
kit
lit−1

mit−1

]

= 0. (18)

Under the assumption that labour is chosen before the shock to innovation
ξit is observed by the firm,20, it is possible to use lit instead of lit−1 in (18)
above. In the empirical estimation we will refer to the estimates obtained
using moment (18) as ACF and those obtained using the contemporaneous
value of labour as ACF-L.

It is important to note that in the ACF framework, labour is included in
the argument of f−1

t because it is assumed to be “less variable” than materials
and therefore, it is part of the information set that is known to the firm when
choosing the latter. This is not the case under the original LP framework,
where labour is a variable input determined at the same time as materials
and with no dynamic implications. Regardless of whether labour is used to
invert out the unobserved productivity, the essence of the ACF critique is
that βl cannot be identified in the first stage of LP as labour is perfectly
collinear with f−1

t (pit, kit). Since all the parameters are actually estimated
in the second stage regression, it is possible to address the collinearity issue
by using a single equation instrumental variables method. We come back to
this point in the next section, when we introduce the econometric approach
defined by Wooldridge (2009).

2.5 Wooldridge (2009)

20This can be the case if extensive training is required before workers can enter produc-
tion.
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Wooldridge (2009) defines an econometric framework where the two-step
estimators described above are re-defined as two equations to be estimated
in one step. After explaining the details of this new estimator in the context
of LP (or OP), the end of this section clarifies how the Wooldridge procedure
simplifies to a single equation method in the context of the ACF estimator.

Wooldridge (2009) notes that the two-step estimators, which require boot-
strapping techniques to obtain standard errors, are inefficient for two rea-
sons: (i) they ignore the contemporaneous correlation in the errors across
two equations; and (ii) they do not efficiently account for serial correlation
or heteroskedasticity in the errors. Wooldridge (2009) shows how these es-
timators can be implemented using a single set of moments to be estimated
in one step. This should address the inefficiencies of the OP and LP estima-
tors as it uses information on the covariance of the errors. His framework
additionally allows for the inclusion of cross equation restrictions and to test
the validity of the resulting specifications using the Sargan-Hansen test of
overidentifying restrictions.

Specifically, the first equation of the system is identical to (6), the first
stage equation of OP and LP. With proxy variable p and a polynomial of
order J to model the unobserved productivity, i.e. ωit = f−1

t (pit, kit) ≈
∑J

j=0

∑J−j

w=0
γj,wp

j
itk

w
it , equation (6) can be written as

yit = δkkit + βllit + δmmit +

J
∑

j=1

J−j
∑

w=1

γj,wp
j
itk

w
it + uit (19)

where δk ≡ βk + γk and δm ≡ βm + γm if materials is the proxy variable.21 If
the proxy variable is not materials, then δm ≡ βm. To simplify notation, the
equation above and those defined in the rest of this section will not include
the constant term. As before, the constant and the coefficient βk cannot
be identified. If materials is the proxy variable, βm additionally will not be
identified in (19).

Under the assumption that the errors uit are not observed by the firm,
all the regressors on the right-hand-side of (19) are exogenous. The most
straightforward choice of instrumental variables for (19) is simply:

zit1 ≡ (lit, cit) (20)

21In other words, δk includes the coefficient of capital in the production function, βk,
and in the polynomial term, labeled γk with a slight abuse of notation.
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where cit is a vector containing all the terms of the polynomial in (pit,kit).
These instruments correspond to the OLS regression in LP for estimating βl

in the first stage.

The interesting insight of Wooldridge (2009) is that the assumption that
productivity follows a first order Markov process as in (8) results in a second
equation:

yit = βkkit + βllit + βmmit + g(
J
∑

j=0

J−j
∑

w=0

γj,wp
j
it−1

kw
it−1) + ξit + uit.

where all the coefficient βs of interests can be identified when using appro-
priate instruments.

In the empirical application we will assume that g(·) can be approximated
by a 2nd order polynomial in v, i.e. g(v) = ρ0+ ρ1v+ ρ2v

2, thus resulting in:

yit = βkkit + βllit + βmmit +

2
∑

q=1

ρq(

J
∑

j=0

J−j
∑

w=0

γj,wp
j
it−1k

w
it−1)

q + ξit + uit. (21)

It must be noticed that the equation above restricts the γ’s parameters en-
tering the linear and quadratic term of the function g(v) to be the same.

The set of instruments for (21) would include fixed variables such as capital
in period t, lagged variable inputs in period t − 1, and functions of these
inputs:

zit2 ≡ (kit, lit−1, cit−1, qit−1) (22)

where qit−1 refers to nonlinear function of cit−1 and lit−1.
22 While all the

instruments used for (21) are also valid for (19), the contemporaneous mit

and lit are only valid instruments for (19) as they are likely to be correlated
with the innovation in the productivity ξit.

22Note that it is possible to include as many nonlinear function cit−1 as necessary to
identify all the ρ parameters. Lagged values of the inputs up to year t − 2 are also valid
instruments but adding more lags is costly in terms of lost initial time periods.
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Using the matrix of instruments

Zit ≡

(

zit1

0

0

zit2

)

,

and defining the residual function

rit(θ) =

(

rit1(θ)

rit2(θ)

)

(23)

=

(

yit − δkkit − βllit − δmmit −
∑J

j=1

∑J−j

w=1
γj,wp

j
itk

w
it

yit − βkkit − βllit − βmmit −
∑

2

q=1
ρq(
∑J

j=0

∑J−j

w=0
γj,wp

j
it−1

kw
it−1

)q

)

GMM estimation of the parameters in equation (19) and (21) requires solving
the moment conditions:

E [Z ′

itrit(θ)] = 0.

Provided sample averages are consistent estimators of population moments,
the analogy principle suggests choosing the estimator θ̂ to solve

1

T

1

N

∑

t

∑

i

[

Z ′

itrit(θ̂)
]

= 0.

Following the analysis of ACF, none of the parameters of interest can be
identified using (19) as lit is likely to be a deterministic function of (kit, mit).
Wooldridge (2009) notes that a simple way to address the ACF critique
would then be to use a single equation instrumental variables method applied
to equation (21). This allows the researcher to recover estimates for all
production function coefficients while controlling for the multicollinearity
of labour, even if labour does not have any dynamic implications.23 Note
that the assumption that labour is “less variable” than materials (or that
labour is a dynamic input that affects the choice of materials) would require
adding labour as an argument of the function used to invert out productivity
ωit = f−1

t (pit, kit, lit). This means that equation (21) would be replaced by:

yit = βkkit+βllit+βmmit+
2
∑

q=1

ρq(
J
∑

j=0

J−j
∑

w=0

J−j−w
∑

g=0

γj,w,gp
j
it−1

kw
it−1l

g
it−1

)q+ξit+uit.

(24)
In the empirical results, we will refer to the single equation estimator of

(21) and (24) as respectively one-step Wooldridge LP (WOOL-LP) and one-
step Wooldridge ACF (WOOL-ACF). It should be noted that if materials is

23We are thankful to Amil Petrin for pointing this out to us.
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the proxy variable, it has to be instrumented in equations (21) and ( 24) using
longer lags (starting in t-2), since mit−1 enters the polynomial. Similarly, in
equation 24 only longer lags (starting in t-2) can be used to instrument the
labour coefficient.

3 Data

The data used in the empirical application below come from the Encuesta
Sobre Estrategias Empresariales (ESEE). The ESEE conducts annual sur-
veys of a representative panel of Spanish manufacturing firms since 1990.
The unit surveyed is the firm, not the plant or the establishment. Each year,
about 1,800 firms (on average) are included in the survey. The data include
information on firms’ balance sheets and income statements, in addition to
questions concerning their innovation management (product and process in-
novation, R&D efforts) and export behaviour (export turnover, main export
markets). The data have been used in several empirical papers in recent
years, see for instance Delgado, Fariñas and Ruano (2002), Dolado and Stuc-
chi (2008), and Doraszelski and Jaumandreu (2009).

The sample used in Section 4 consists of an unbalanced panel observed
for the period 1990-2006. The raw data set consists of 4,357 firms for a
total number of 30,827 observations. We first select on availability of data
required for the production function estimations (including availability of the
different proxy variables). This implies that the sample used in the empirical
estimations will be identical for the different proxy variables, hence excluding
the possibility that differences in coefficients are due to sample selection issues
rather than proxy variables used. Moreover, we only retain firms that are
observed for at least 3 consecutive years. This leaves us with a final sample
of 2,032 firms and 17,673 firm-year observations. It should be noted that
in some cases the final sample size in the empirical estimations might be
reduced due to the use of lagged variables as instruments, hence omitting
one or more years from the sample.

Although the different estimators discussed in section 2 can be applied in
the context of a value added or output production function, the estimates
reported in section 4 use a value added production function throughout.
This choice is driven by the fact that we can use NLLS estimators in the
second step of LP approach even when materials is used as proxy variable.
Therefore, the variables we use in the empirical specifications are real value
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added, labour, real capital together with three proxy variables: investment,
materials and capacity utilization.

Firm-level investment and materials are the traditional proxy variables
introduced by OP and LP respectively and so they are naturally both in-
cluded. We use capacity utilization as an additional proxy variable. This
variable measures the rate of utilization of the standard capacity of produc-
tion at the firm level. Our definitions of firm-level output and inputs, as
well as of the proxy variables, follows common practice in the literature. In
particular, nominal values of value added and capital, obtained from firms’
annual accounts data available in the ESEE survey, are deflated using appro-
priate price indices. For capital and investment, the price index only varies
by year, while for value added and materials, the price index varies by sector
and year.24

As was noted in Section 2, we construct two different measures of the
capital stock: one using the law of motion (4) as in OP and the other based on
equation (16) as in LP. This eclectic approach in the construction and choice
of the variables used in the empirical exercise is important to understand
how these estimators perform in different circumstances. Employment is
measured as average number of workers (full-time equivalents) during the
year. Materials are defined as consumption of intermediates at the firm
level. Details on the definitions of these variables are provided in Appendix
A.

For the purpose of our empirical analysis, firms are divided into 10 sec-
tors.25 Table 1 provides some insights into the sector distribution of firms
in the sample used in the empirical analysis. The largest sector in terms of
number of firms is the Food and Beverages sector, followed by the Ferrous
and non-ferrous metals sector and Chemicals and plastics. In terms of av-
erage firm size (measured by the average number of employees or average

24Industry deflators for output, intermediary inputs and value added are obtained from
the web page of the the Spanish Institute of Statistics, INE. It should be noted that the
ESEE reports firm-level information on changes in (output/input) prices but we do not
use this information in our empirical exercise. As the survey does not report the level of
prices, our specifications would be still affected by measurement errors given that we do
not use firm fixed effects to control for unobserved heterogeneity in prices. In this way,
our empirical exercise mimics the approach used in most empirical exercises.

25The original industrial classification reported in the survey is based on 18 sectors.
We combine certain sectors in order to retain sufficient observations in all sectors for the
empirical estimations.
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value added across all firm-year observations in the sector), the Transport
sector is clearly the sector with the largest firms (on average), followed by
the Electrical goods sector, although firms in the Transport sector employ
on average three employees for one employee in the Electrical goods sector.
Table 2 summarizes the key variables used in the production function esti-
mations below. All variables are defined in logarithms, as they will be used
in the empirical application. From the table, it is clear that the number of
observations for all variables, including the proxy variables is identical.

4 Empirical application

The sample introduced in Section 3 will be used to estimate a value added
production function using the different estimators reviewed in Section 2.
Overall, there will be six different estimators: (i) the original OP-LP esti-
mator, using Non-Linear Least Squares in the second stage of the estimation
(OPLP-NLLS); (ii) the original OP-LP estimator, using GMM in the second
stage of the estimation (OPLP-GMM); (iii) the Ackerberg-Caves-Frazer es-
timator where lit is instrumented by lit−1 (ACF) or lit is not instrumented
(ACF-L); (iv) The two-equation Wooldridge estimator (WOOL); (v) The
one-equation Wooldridge IV estimator where labour has dynamic implica-
tions (WOOL-ACF) and finally (vi) the one-equation Wooldridge IV estima-
tor where labour does not have dynamic implication (WOOL-LP). Note that
the the second stage of estimators (ii) and (iii) will be implemented twice,
once using moment condition (9) and then using moment (11). Similarly,
the NLLS estimator (i) will be run first using both y̌it and (y̌it − uit) on the
left-hand side of equation (13).

For sake of clarity and brevity, Section 4.1 below only report results for
one industry, Food and Beverages. Besides being the largest sector in the
survey in terms of number of firms, an important feature of this sector is
that it has low R&D expenditure. All the estimators above assume that
productivity follows an exogenous Markov process. This assumption seems
particularly questionable for industries with high R&D where productivity
changes are in part governed by firms’ innovative effort.26 Given the im-
portance of the monotonicity assumption for the construction of all these
estimators, Section 4.2 describes a simple test to check whether productiv-
ity is indeed monotonically increasing with respect to the proxy variable.

26A recent paper by Doraszelski and Jaumandreu (2009) proposes a new econometric
approach which accounts for the uncertainty and heterogeneity in the link between R&D
and productivity.
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Section 4.3 summarizes the results for other sectors. Finally, in Section 4.4
we present a simple evaluation exercise to investigate to what extent TFP
estimates obtained using the different estimators, yield different results. To
this end, we compare the productivity distributions of exporters versus non-
exporters in our sample, using nonparametric techniques.

4.1 Comparing production function coefficients

Tables 3 and 4 report the estimated coefficients on labour and capital,
respectively. Each row contains results for a specific estimator (and moment
condition in some cases). The columns show results by proxy variable (in-
vestment, materials and capacity utilization) and for two different measures
of capital, computed using the law of motion (4) and (16). Standard errors of
the estimated coefficients (computed using bootstrapping techniques for the
two-stage estimators) are not reported for brevity but we indicate with an
asterisk whether the estimates are significant at 5 percent significance level
or higher.

The first row of these tables reports the OLS estimates obtained with cap-
ital rule (4) and (16), which is a useful benchmark to compare the other
estimators.27 The WOOL-ACF estimator is found to give unreasonable co-
efficient estimates on both labour and capital for all different proxy variables
and we will not comment further on this estimator. The second stage of the
OPLP-GMM and ACF does not converge for some combinations of proxy
variables and capital input. In these cases, results for the labour coefficients
obtained in the first stage of the OPLP estimator are also not reported. The
last column of the tables reports the mean within an estimator for different
proxy variables and capital rule, while the last row reports the mean across
different estimators for the same proxy variable and capital rule.

It should be noted that there exists no clear theoretical prior on the mag-
nitude of the production function coefficients. Hence, we follow the common
approach in the literature and compare the results to standard OLS results.
The mean of the coefficients on labour and capital (excluding the OLS and
the WOOL-ACF) are respectively 0.75 and 0.36. These values are very close
to those obtained with OLS. Looking at the last row, we see that the three
different proxy variables and the two capital rules tend to produce rather

27There is no proxy variable used for OLS, so that there are only two estimates for the
labour coefficient and two estimates for the capital coefficient, depending on which capital
rule is used.
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similar point estimates of βl and βk. But there are also some interesting
differences that emerge from the two tables. The OPLP-NLLS and OPLP-
GMM produce lower point estimates of βl than those obtained using OLS. At
the same time, we find that capital coefficient tend to rise in going from OLS
to OPLP-GMM, with results less clear-cut for the OPLP-NLLS. These re-
sults are broadly consistent with the idea that OLS will tend to overestimate
βl (given that there should be a positive correlation between unobserved pro-
ductivity and labour usage) and will usually underestimate βk (see Levinsohn
and Petrin (2003) for further details).

By the same token, it is surprising that the ACF and ACF-L estimators
tend to produce higher point estimates of βl than OLS. Similarly surprising
is the fact that ACF-L gives lower (higher) estimates of the labour (capital)
coefficient than ACF given that there is a higher correlation between output
and the number of workers in the same year. More generally, mean values
reported in the last column seem to suggest that the estimator proposed by
ACF is rather sensitive to the moment conditions and the instruments used.
This first set of results seem to cast some doubt on the methodology suggested
by ACF. We believe that the poor performance of the ACF estimator is due
the the fact that βl and βk are estimated in the second step together with
the coefficient on lagged capital and labour in t− 1. All these variables are
highly correlated and this may hamper the identification of the parameters
of interest.

Table 3 and 4 show that the WOOL estimates of labour coefficient are very
similar to the OLS coefficients while those of the WOOL-LP are lower than
OLS, as for the OPLP. At the same time, these two estimators produce low
point estimates for the capital coefficient compared to the other two-stage
estimators. It must also be noticed that the Hansen test of over-identifying
restrictions for the WOOL estimator (not reported in the tables) always
rejects the null hypothesis that all excluded instruments are exogenous for
any choice of the proxy variable and the capital rule. Finally, the estimated
coefficients on labour and capital are respectively larger and smaller when
capital is computed according to the OP rule (4). This result might be
due to the fact that capital computed using the LP rule (16) is more directly
linked to current output, thus reducing the importance of labour in explaining
output changes.

The heterogeneity of the results obtained, depending on the estimator,
moment conditions, proxy variable and capital rule becomes particularly clear
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when we test whether the obtained coefficients satisfy the constant returns
to scale hypothesis. Results of this test are reported in Table 5. We find that
the hypothesis is (almost) always rejected when using OLS and ACF-L. On
the contrary, we often fail to reject the hypothesis of constant returns to scale
when we use WOOL and WOOL-LP. One interesting finding is that ACF,
OPLP-GMM and (to less extent) the OPLP-NLLS tend to reject the null
hypothesis of constant return to scale with moment condition (9) but they fail
to reject it with moment condition (11). This exercise shows that empirical
results can be very sensitive to the type of estimator that is chosen and
the moment conditions that is used. Given that there is no clear indication
that the hypothesis is rejected more often for a particular proxy variable or
capital rule, the main source of heterogeneity in the estimates seems to be
due mainly to the choice of estimator.

The differences between the production function coefficients obtained using
the different estimators point to the importance of making suitable timing
assumptions for the data at hand. The choice of one estimator over another
should ideally be guided by the characteristics of the specific industries and
countries in terms of timing and dynamic implications of input choices.

For instance, in the presence of large hiring and firing costs (high employ-
ment protection), it can be argued that labour is likely to have dynamic
implications (pointing to the ACF or ACF-WOOL estimator as the most
appropriate choice). If employee training is important, it can additionally be
argued that current labour allocations are uncorrelated with the innovation in
productivity, since it will take considerable time before a worker has received
proper training and enters the workforce. These are the assumptions made by
Konings and Vanormelingen (2009), who use Belgian data to investigate the
impact of employee training on firm-level productivity. Similarly, depending
on the type of capital used (e.g. equipment, buildings, etc.), investments in
new capital will be translated into productive capital at different speeds.

While this approach seems intuitively plausible, it will not always be
straightforward to make plausible assumptions in empirical practice. Also,
if different industries require different timing assumptions, researchers inter-
ested in using data for all manufacturing industries would in principle have to
investigate timing assumptions separately for each industry and if necessary,
apply different estimators for different industries. This seems undesirable,
both from a comparative and practical point of view. Moreover, it is not
straightforward to test the validity of the assumptions made in the data.
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Finally, firms within industries are likely to allocate inputs in different ways.
For instance, it seems quite conceivable that firms employing a lot of high-
skilled workers that require specific training are faced with a lag between
the time labour is allocated and the time the employee actually contributes
to productivity. On the other hand, firms that employ mainly low-skilled
workers within the same industry might not be faced with this time lag.

4.2 Monotonicity test

All the estimators analysed above are based on the fundamental assump-
tion that there exists a monotonic relationship between the proxy variable
and the unobserved (to the econometrician) productivity, that is for any given
value of capital (for OP and LP) or capital and labour (for ACF), firms are
assumed to choose a higher value of materials, capacity and investments if
they observe a higher shock to productivity. It is therefore surprising that
LP is, to the best of our knowledge, the only paper that explores whether
this assumption actually holds in the data by means of a graphical analysis.

We propose a simple test that consists in assessing whether the value of
the estimated productivity does in fact increase for higher values of the proxy
variable. To see how this works in practice, consider the OP estimator. After
computing the productivity term as given by equation (3), we regress this
variable on a third-order polynomial in capital and investment and we then
get the estimated productivity for any chosen value of the two regressors.
More precisely, we consider five different values of capital (percentile 1, 25,
50, 75 and 99 of the distribution of capital) and, for any of these five values,
we compare estimated productivity for five different values of investment
(again, percentile 1, 25, 50, 75 and 99 of the distribution of investment). If
we find that the estimated productivity at percentile j of the distribution
of investment is higher than productivity of the firm at percentile i < j, we
assume that monotonicity is satisfied for all the firms with levels of investment
between percentile i and j. As said, the comparison of productivity is done
by keeping the value of capital fixed, first at percentile 1 of its distribution
and then at percentile 25, 50, 75 and 99.

Table 6 reports the percentage of firm-observations that, according to our
test, satisfies the monotonicity assumption. Across all the empirical spec-
ifications, monotonicity is found to hold in only 58 percent of cases. This
surprising finding seems to cast some doubt on the validity of an assumption
that is fundamental to all of these estimators, at least for the parametric
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version implemented in this paper. Mean values reported in the last column
suggest that the one-step estimators suggested by Wooldridge (2009) seem to
perform particularly bad along this dimension. It is nevertheless reassuring
to see that the monotonicity assumption generally seems to hold when using
materials as proxy variable.

4.3 Other manufacturing sectors

The average point estimates of labour and capital coefficients across the
ten industries are reported in Table 7 and 8, respectively28. For each estima-
tor, row N indicates the actual number of industries for which the relevant
coefficients can be estimated,29 while the standard deviation measures the
dispersion of these coefficients across the industries.

Some of the findings described in Section 4.1 are confirmed. For instance,
OPLP-NLLS and OPLP-GMM tend to produce lower point estimates of the
labour coefficient compared to OLS. OPLP-GMM results in higher point
estimate of capital than OLS. Again, the ACF (and to less extent the ACF-
L) produces higher coefficient on labour than OLS, with estimates varying
from 0.82 to 1.16. These values seem suspiciously high, thus confirming
our doubts on validity of the ACF approach in our sample. There are also
new interesting patterns that emerge in these Tables. First, the (average)
coefficients for labour estimated in the first step of the OPLP-NLLS and
OPLP-GMM are lower when using materials as proxy variable compared
to investments and capacity utilization. We speculate that this is due to
the fact that there is a stronger correlation between materials and labour,
thus reducing the explicative power of the latter when the first is included
in the polynomial of the first stage. Second, the point estimates of the
capital coefficient seem to be sensitive to the capital rule used when using
investment as proxy variable while this does not seem the case with materials
and capacity utilization. In particular, the law of motion (16) consistently
delivers higher point estimates than the capital rule (4). Finally, there are no
major differences between the WOOL and WOOL-LP estimators. These two
estimators produce estimates for βl similar to the OPLP and smaller than
OLS while the estimates of βk are generally smaller than OPLP and OLS.
Differently from the results of the Food and Beverages industry, we now find

28Results for the different sectors separately are reported in an online appendix, available
at http://www.econ.kuleuven.be/public/n06017/appendix.pdf

29When N is less then 10, it means that the estimators do not converge for some of the
industries.
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that the null hypothesis of the Hansen test cannot be rejected for most of
the specifications estimated with WOOL.

Table 9 reports the proportion of industries for which at least 80 percent
of the observations satisfies the monotonicity test proposed in Section 4.2.
We use this “admittedly” arbitrary threshold to indicate that the monotonic-
ity assumption holds in our data when using a particular estimator together
with a particular proxy variable and capital rule. Given that it is not always
possible to compute the relevant parameters of the production function, the
percentage reported in Table 9 does not always refer to the proportion out of
ten industries.30 Overall, the figures confirm the findings for the Food Indus-
try in Table 6 above: there is only mild empirical support for the monotonic-
ity assumption with large differences between proxy variables. In fact, while
the variable materials produces reasonably satisfactory results, investment
performs (not unexpectedly) rather poorly.

4.4 Comparing productivity distributions

Since the primary interest of obtaining a reliable value of firm-level total
factor productivity lies in its use as an evaluation tool in empirical research,
we present a simple evaluation exercise to compare the resulting productivity
distributions obtained using the different estimators. The ESEE data con-
tain data on firm-level export status. In what follows, we will compare the
productivity distribution of exporting and non-exporting firms in particular
industries using non-parametric techniques. Our approach largely follows
that of Cassiman et al. (2010) and Delgado et al. (2002).

Specifically, we test the equality of the productivity distributions for ex-
porters and non-exporters in a particular year (2001, the middle of our sam-
ple) using a Kolmogorov-Smirnov test of equality of distributions. The test
compares tests the hypothesis that TFP is smaller for exporters than for non-
exporters and the inverse hypothesis that TFP is larger for exporters. The
combined test reports the largest difference (positive or negative) between
the two distributions and calculates an exact p-value associated with this
difference. We compute the test statistic for two industries: the Food and
Beverages industry (as in previous sections) and the Chemicals and Plastics
sector, which is the only sector for which we have achieved convergence for
all the estimators. Results are reported in Tables 10 and 11.

30For instance, Table 8 shows that it is possible to compute the capital coefficient of
ACF-L with moment equation (9) for nine industries.
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The tables report the combined test statistic (the largest difference be-
tween the distributions) and its exact p-value. Significance levels indicate to
what extent reported differences are significant. While the largest difference
between the distribution for exporters and non-exporters is always positive,
significance levels vary widely between estimators. For the Food and Bever-
ages industry, the differences between the distributions are always significant
for the OPLP-GMM and ACF estimators (if convergence was achieved in the
estimation), while for the OPLP-NLLS and WOOL estimators, differences
are only significant in some cases. If investment is used as the proxy, results
seem to be sensitive to the capital rule used.

Results for the chemical sector (reported in Table 11) are less easy to gen-
eralize. Significance levels vary a lot between and within estimators. Results
for OPLP-GMM and ACF now seem to be sensitive to the moment condition
used (lower or insignificant p-values if equation 11 is used). When capacity
utilization is used together with the OP capital rule, the difference between
the productivity distribution of exporters and non-exporters is insignificant
in the majority of cases.

Overall, these differences suggest that the choice of the estimator can po-
tentially affect the results obtained in policy evaluation exercises. More-
over, the heterogeneity of results between the Food and Beverages sector
and Chemicals sector points to the importance of making suitable country-
and industry-specific timing assumptions.

5 Conclusions

The use of proxy variables to control for unobservables when estimating a
production function has become increasingly popular in recent years. This
paper reviews the main assumptions underlying these estimators and tests
the sensitivity of production function coefficients to the type of estimator
and proxy variable used. In the empirical part of the paper, we propose
a test that allows researchers to verify the validity of the monotonicity as-
sumption that underlies all estimators. We also perform a simple exercise to
evaluate whether there are significant differences between the productivity of
exporters and non-exporters for the different estimators used. Several inter-
esting findings emerge from our analysis, some of which could be the focus
of future research.
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Specifically, our empirical analysis reveals a high degree of heterogeneity
between coefficients obtained using different estimators. This heterogeneity
is confirmed by a constant returns to scale test, which yields very different
results depending on which estimator is used. Similarly, we find that produc-
tivity distribution of exporters and non-exporters is found to be statistically
different only for some estimators. All the estimators analysed in this paper
rely on the fundamental assumption that there is a monotonic relationship
between the proxy variable and the unobserved (to the econometrician) pro-
ductivity. We therefore propose a simple test, which assesses whether the
value of estimated productivity does in fact increase for higher values of
the proxy variable. Overall, results suggest that monotonicity fails in many
cases, and particularly often when investment is used as the proxy variable.
Estimators that use material as proxy variable seem to be preferred along
this dimension.

We acknowledge that our results provide very little theoretical guidance
on which estimator should be preferred over another. Many of the estimators
that have been introduced in recent years rely on specific timing assumptions,
which cannot be verified by the econometrician (and which might be different
for different industries, countries and even firms). Moreover, there is no clear
theoretical prior on how high production function coefficients should be in a
particular sector. The empirical findings of this paper suggest that whenever
possible, researchers should investigate which timing assumptions are the
most appropriate ones for the industry and country at hand (even though
this is likely to be hard in empirical practice) and that they should investigate
to what extent the monotonicity assumption holds for the data and estimator
at hand.

Finally, it can be argued that there are many other methodological issues
other than the simultaneity bias that affect production function estimations
and which remain unaddressed by the existing class of estimators. Specif-
ically, imperfect competition in input markets will violate the scalar unob-
servable assumption, which is required in order to preserve the invertibility
of the productivity shock. This problem is likely to be particularly relevant
when materials is used as the proxy variable. Furthermore, recent research
has highlighted the presence of multi-product firms in all industrial sectors.
Typically, these firms are very large and they can be active in multiple sec-
tors. These issues raise important questions concerning the relevant level of
analysis as well as the assumption of perfect competition in input and output
markets.
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A Appendix

The survey provides data on manufacturing firms with 10 or more employ-
ees. The survey setup is such that all firms with more than 200 employees
are invited to participate while a representative sample of about 5 percent
of firms with 200 or less employees is randomly selected. In 1990, the first
year of the panel, 715 firms with more than 200 employees were surveyed,
which accounts for 68 percent of all the Spanish firms of this size. Newly
established firms have been added every subsequent year to replace the exits
due to death and attrition.

We restrict the sample to firms with at least three years of data on all vari-
ables required for estimation. The original industrial classification reported
in the survey is based on 18 sectors. In this paper we use a classification
based on 10 sectors which seems to be a reasonable compromise between ho-
mogeneity of the activity and number of observations available to perform the
analysis. These 10 sectors are: 1) Food and beverages; 2) Textiles, clothing
and shoes; 3) Timber and furniture; 4) Paper and printing; 5) Chemical and
plastic products; 6) Metals and minerals; 7) Metal products; 8) Industrial
Machinery; 9) Electrical and electronic goods; 10) Vehicles and transport
equipment.

All the variables are expressed in terms of 1990 monetary value. Hereafter,
we give some details on the variables used in our empirical exercise.

• Investment. Value of current investments in equipment goods (exclud-
ing buildings, land, and financial assets) deflated by the price index of
investment.

• Capital. The first estimate is based on book values adjusted to take
account of replacement values. Values in the following years are con-
structed by capitalizing firms’ investments in machinery and equip-
ment, using sectorial rates of depreciation. The capital stock does not
include buildings. Real values are obtained using a capital price index.

• Capacity Utilization. Yearly average rate of utilization of the standard
capacity of production reported by the firms.

• Labour. Average number of workers during the year. This average is
computed considering the number of full-time and part-time permanent
workers at the beginning and the end of the year (two part-time workers
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are assumed to be equivalent to a full-time worker) and the number of
temporary workers during the four quarters of the year.

• Materials. Value of intermediate consumption (including raw materials,
components, energy, and services) deflated using an industry-specific
price index.

• Output. Value of produced goods and services computed as sales plus
the variation of inventories deflated by industry specific producer price
index.

• Value Added. Difference between output and materials. Real values
are obtained using an industry-specific value added price index.
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Sector Number of firms

Number of firm-

year 

observations

Average number 

of employees

Average value 

added (€ 1,000)

Food & beverages 296 2,575 290 16,003

Textiles, clothing & shoes 265 2,159 153 3,992

Timber & furniture 175 1,328 123 3,351

Paper & printing 177 1,548 208 9,961

Chemicals and plastics 273 2,474 267 13,722

Minerals 133 1,243 244 13,146

Ferrous and non-ferrous metals 272 2,410 215 10,428

Industrial machinery 152 1,390 254 9,036

Electrical goods 135 1,201 323 19,604

Transport 154 1,345 1018 40,671

Total 2,032 17,673

Table 1: Sector distribution of firms

The table lists the distribution of firms and firm-year observations across manufacturing sectors. Number of 

employees refer to the average number of employees in each year. Value added is defined as output minus 

material cost. Nominal values are deflated using a value added deflator (available at sector level). Values 

reported for value added are real values.
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Variable

Number of 

observations Mean

Standard 

deviation Minimum Maximum

ln(Value added) 17,673 14.67 1.89 6.79 21.74

ln(Employment) 17,673 4.52 1.49 1.10 10.11

ln(Capital OP rule) 17,673 14.60 2.31 6.23 21.95

ln(Capital LP rule) 17,673 14.91 2.28 6.76 22.02

ln(Materials) 17,673 15.33 2.04 7.40 22.20

ln(Investment) 17,673 12.46 2.48 3.50 21.48

ln(Capacity Utilization) 17,673 4.39 0.21 1.61 4.61

Table 2: Summary statistics of key variables

The table lists summary statistics for the key variables used in the production function estimations. Number of 

employees refer to the average number of employees in each year. Value added is defined as output minus material 

cost. Nominal values are deflated using a value added deflator (available at sector-year level). Values reported for 

value added are real values. Capital is calculated according to the OP or LP capital rule (cfr. Appendix A). Real 

values are reported, nominal values are deflated using a year-specific capital deflator. Materials, investment and 

capacity utilization are used as proxy variables in the production function estimations. Real values of materials are 

obtained using a materials deflator (available at sector-year level). Variables are defined in Appendix A.
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Proxy variable Investment Investment Materials Materials

Capacity

Utilization

Capacity

Utilization

Capital Rule Eq. (16) Eq. (4) Eq. (16) Eq. (4) Eq. (16) Eq. (4)

Estimator Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. mean

OLS 0.73* 0.81* 0.73* 0.81* 0.73* 0.81* 0.77

OPLP-NLLS (as) Moment Eq. (9) 0.67* 0.70* 0.73* 0.77* 0.68* 0.75* 0.72

OPLP-NLLS (as) Moment Eq. (11) 0.67* 0.70* 0.73* 0.77* 0.68* 0.75* 0.72

OPLP-GMM Moment: Eq. (9) 0.67* - 0.73* 0.77* 0.68* 0.75* 0.72

OPLP-GMM Moment Eq. (11) 0.67* - 0.73* 0.77* 0.68* 0.75* 0.72

ACF Moment Eq. (9) 0.78* - 0.85* 0.85* 0.96* 0.84* 0.85

ACF Moment Eq. (11) 0.71* - - 0.68* 0.90* 0.72* 0.75

ACF-L Moment Eq. (9) 0.76* 0.82* 0.77* 0.79* 0.87* 0.82* 0.80

ACF-L Moment Eq. (11) 0.66* 0.76* - 0.65* 0.63* 0.63* 0.67

WOOL 0.73* 0.78* 0.76* 0.78* 0.74* 0.80* 0.77

WOOL-ACF 2.91* 3.79* 2.35 3.73* 3.58* 24.87 -

WOOL-LP 0.65* 0.70* 0.66* 0.70* 0.66* 0.72* 0.68

mean 0.71 0.75 0.75 0.75 0.78 0.75 0.75

Table 3: Labour coefficients: Food and beverages sector

Values reported are labour coefficients, obtained from estimating a value added production function for the Food and beverages 

sector, using the estimators listed. Columns report results for different proxy variables and different capital rules (cfr. Equations 

(4) and (16) in the text). Different moment conditions are used for some GMM estimators, cfr. Equations (9) and (11) in the text. 

* indicates significance of at least 5 percent. Means are computed for statistically significant coefficients only (the mean does not 

include estimates for OLS and WOOL-ACF).  The number of observations equals 2,575 in the first stage of the estimation 

procedure and 2,032 in the second stage, for all estimators. If there is only one estimation stage, the number of observations equals 

2,032. The only exception is the WOOL-ACF estimator, where we lose one year of data due to the use of variables lagged two 

time periods as instruments. Here the number of observations drops to  1,612. If no value is reported, this implies no convergence 

was achieved in the estimation procedure. The WOOL-ACF estimator is omitted in the calculation of the mean, since the 

coefficients are not intuitively plausible.
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Proxy variable Investment Investment Materials Materials

Capacity

Utilization

Capacity

Utilization

Capital Rule Eq. (16) Eq. (4) Eq. (16) Eq. (4) Eq. (16) Eq. (4)

Estimator Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. mean

OLS 0.38* 0.32* 0.38* 0.32* 0.38* 0.32* 0.35

OPLP-NLLS (as) Moment Eq. (9) 0.38* 0.08* 0.34* 0.39* 0.44* 0.37* 0.33

OPLP-NLLS (as) Moment Eq. (11) 0.33* 0.06* 0.37* 0.29* 0.26* 0.27* 0.26

OPLP-GMM Moment: Eq. (9) 0.46* - 0.43* 0.40* 0.47* 0.43* 0.43

OPLP-GMM Moment Eq. (11) 0.44* - 0.44* 0.42* 0.45* 0.42* 0.43

ACF Moment Eq. (9) 0.39* - 0.37* 0.36* 0.30* 0.34* 0.35

ACF Moment Eq. (11) 0.42* - - 0.48* 0.31* 0.41* 0.40

ACF-L Moment Eq. (9) 0.40* 0.33* 0.41* 0.41* 0.35* 0.36* 0.38

ACF-L Moment Eq. (11) 0.45* 0.37* - 0.50* 0.47* 0.47* 0.45

WOOL 0.28* 0.07 0.29* 0.21* 0.28* 0.22* 0.25

WOOL-ACF 0.10 -0.36 0.09 0.16 0.02 -0.17 -

WOOL-LP 0.27* 0.82 0.29* 0.34* 0.28* 0.37* 0.31

mean 0.38 0.21 0.37 0.38 0.36 0.37 0.36

Table 4: Capital coefficients: Food and beverages sector

Values reported are capital coefficients, obtained from estimating a value added production function for the Food and 

beverages sector, using the estimators listed. Columns report results for different proxy variables and different capital rules 

(cfr. Equations (4) and (16) in the text). Different moment conditions are used for some GMM estimators, cfr. Equations (9) 

and (11) in the text. * indicates significance of at least 5 percent. Means are computed for statistically significant coefficients 

only (the mean does not include estimates for OLS and WOOL-ACF).  The number of observations equals 2,575 in the first 

stage of the estimation procedure and 2,032 in the second stage, for all estimators. If there is only one estimation stage, the 

number of observations equals 2,032. The only exception is the WOOL-ACF estimator, where we lose one year of data due to 

the use of variables lagged two time periods as instruments. Here the number of observations drops to  1,612. If no value is 

reported, this implies no convergence was achieved in the estimation procedure. The WOOL-ACF estimator is omitted in the 

calculation of the mean, since the coefficients are not intuitively plausible.
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Proxy variable Investment Investment Materials Materials

Capacity

Utilization

Capacity

Utilization

Capital Rule Eq. (16) Eq. (4) Eq. (16) Eq. (4) Eq. (16) Eq. (4)

Estimator p-value p-value p-value p-value p-value p-value

OLS 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

OPLP-NLLS (as) Moment Eq. (9) 0.02* 0.00* 0.00* 0.00* 0.00* 0.00*

OPLP-NLLS (as) Moment Eq. (11) 0.97 0.00* 0.00* 0.05* 0.05* 0.44

OPLP-GMM Moment: Eq. (9) 0.00* - 0.00* 0.00* 0.06 0.04*

OPLP-GMM Moment Eq. (11) 0.06 - 0.24 0.14 0.31 0.19

ACF Moment Eq. (9) 0.00* - 0.00* 0.00* 0.00* 0.36

ACF Moment Eq. (11) 0.30 - - 0.00* 0.01* 0.57

ACF-L Moment Eq. (9) 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

ACF-L Moment Eq. (11) 0.00* 0.00* - 0.00* 0.00* 0.00*

WOOL 0.86 0.14 0.38 0.88 0.68 0.70

WOOL-ACF - - - - - -

WOOL-LP 0.25 0.60 0.51 0.69 0.37 0.23

Values reported are p-values, obtained from a constant returns to scale test, using the estimated production function 

coefficients for the Food and beverages sector, reported in Tables 3 and 4. Columns report results for different proxy 

variables and different capital rules (cfr. Equations (4) and (16) in the text). Different moment conditions are used for 

some GMM estimators, cfr. Equations (9) and (11) in the text. * indicates significance of at least 5 percent. If no 

value is reported, this implies no convergence was achieved in the estimation procedure. Results for the Wooldridge-

ACF estimator are omitted since the labour and capital coefficients obtained are not intuitively plausible (cfr. Tables 3-

4).

Table 5: Constant returns to scale test: Food and beverages sector
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Proxy variable Investment Investment Materials Materials

Capacity

Utilization

Capacity

Utilization

Capital Rule Eq. (16) Eq. (4) Eq. (16) Eq. (4) Eq. (16) Eq. (4)

Estimator Percentage Percentage Percentage Percentage Percentage Percentage mean

OPLP-NLLS (as) Moment Eq. (9) 50 80* 75 90* 35 35 61

OPLP-NLLS (as) Moment Eq. (11) 50 80* 75 90* 35 35 61

OPLP-GMM Moment: Eq. (9) 50 - 75 90* 35 35 57

OPLP-GMM Moment Eq. (11) 50 - 75 90* 35 35 57

ACF Moment Eq. (9) 53 - 66 82* 69 70 68

ACF Moment Eq. (11) 53 - - 82* 69 70 69

ACF-L Moment Eq. (9) 53 76 66 82* 69 70 69

ACF-L Moment Eq. (11) 53 76 - 82* 69 70 70

WOOL 55 35 5 5 5 25 22

WOOL-ACF - - - - - - -

WOOL-LP 35 45 55 80* 30 25 45

mean 50 65 62 77 45 47 58

Table 6: Monotonicity test: Food and beverages sector

Values reported represent the percentage of observations for which the monotonicity test is passed. The details of the 

monotonicity test are explained in section 4.2.1. If the test is passed for at least 80 percent of cases, monotonicity is assumed 

to hold for the data and estimator concerned. This is indicated by a * in the table. Columns report results for different proxy 

variables and different capital rules (cfr. Equations (4) and (16) in the text). Different moment conditions are used for some 

GMM estimators, cfr. Equations (9) and (11) in the text.If no value is reported, this implies no convergence was achieved in 

the estimation procedure. Results for the Wooldridge-ACF estimator are omitted since the labour and capital coefficients 

obtained are not intuitively plausible (cfr. Tables 3-4).
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Proxy variable Investment Investment Materials Materials

Capacity

Utilization

Capacity

Utilization

Capital Rule Eq. (16) Eq. (4) Eq. (16) Eq. (4) Eq. (16) Eq. (4)

Estimator Values Values Values Values Values Values

OLS Mean 0.84 0.87 0.84 0.87 0.84 0.87
Stdev. 0.09 0.08 0.09 0.08 0.09 0.08

N 10 10 10 10 10 10

OPLP-NLLS (as) Moment Eq. (9) Mean 0.80 0.82 0.66 0.67 0.81 0.85
Stdev. 0.10 0.10 0.09 0.09 0.10 0.09

N 10 10 10 10 10 10

OPLP-NLLS (as) Moment Eq. (11) Mean 0.80 0.82 0.66 0.67 0.81 0.85
Stdev. 0.10 0.10 0.09 0.09 0.10 0.09

N 10 10 10 10 10 10

OPLP-GMM Moment: Eq. (9) Mean 0.80 0.86 0.64 0.69 0.80 0.88
Stdev. 0.10 0.09 0.08 0.09 0.10 0.08

N 10 5 9 8 9 8

OPLP-GMM Moment Eq. (11) Mean 0.79 0.90 0.66 0.67 0.81 0.85

Stdev. 0.10 0.03 0.09 0.09 0.10 0.09

N 7 4 9 10 10 9

ACF Moment Eq. (9) Mean 0.82 0.85 0.97 0.96 0.88 0.85
Stdev. 0.12 0.09 0.14 0.17 0.13 0.09

N 8 7 10 10 9 10

ACF Moment Eq. (11) Mean 0.97 1.16 0.96 0.89 0.82 0.86

Stdev. 0.72 0.86 0.33 0.26 0.24 0.29

N 9 9 8 10 8 10

ACF-L Moment Eq. (9) Mean 0.82 0.88 0.88 0.91 0.85 0.86
Stdev. 0.11 0.09 0.08 0.11 0.09 0.09

N 9 9 10 10 10 10

ACF-L Moment Eq. (11) Mean 0.80 0.88 0.84 0.87 0.81 0.83

Stdev. 0.15 0.15 0.18 0.17 0.16 0.16

N 9 9 9 10 10 10

WOOL Mean 0.80 0.83 0.65 0.67 0.79 0.84
Stdev. 0.11 0.10 0.12 0.10 0.09 0.10

N 10 10 10 10 9 9

WOOL-ACF Mean 3.24 2.85 2.12 2.69 3.67 4.98

Stdev. 0.91 0.80 0.68 0.80 2.32 7.04

N 10 10 10 10 9 10

WOOL-LP Mean 0.79 0.81 0.61 0.64 0.79 0.82

Stdev. 0.12 0.11 0.13 0.10 0.12 0.11

N 10 10 10 10 10 10

Table 7: Labour coefficients: Comparison across sectors

Values reported are obtained from estimating a value added production function at the sector level, using the estimators listed. 

Columns report results for different proxy variables and different capital rules (cfr. Equations (4) and (16) in the text). Different 

moment conditions are used for some GMM estimators, cfr. Equations (9) and (11) in the text. The number of observations 

equals 2,575 in the first stage of the estimation procedure and 2,032 in the second stage, for all estimators. If there is only one 

estimation stage, the number of observations equals 2,032. The only exception is the WOOL-ACF estimator, where we lose one 

year of data due to the use of variables lagged two time periods as instruments. Here the number of observations drops to 

1,612. For each estimator, we report the number of observations the mean labour coefficient across the different sectors and its 

standard deviation. If the number of observations is smaller than 10, this implies that convergence was not achieved for one or 

more industries.
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Proxy variable Investment Investment Materials Materials

Capacity

Utilization

Capacity

Utilization

Capital Rule Eq. (16) Eq. (4) Eq. (16) Eq. (4) Eq. (16) Eq. (4)

Estimator Values Values Values Values Values Values

OLS Mean 0.24 0.21 0.24 0.21 0.24 0.21
Stdev. 0.08 0.07 0.08 0.07 0.08 0.07

N 10 10 10 10 10 10

OPLP-NLLS (as) Moment Eq. (9) Mean 0.26 0.20 0.20 0.15 0.25 0.22
Stdev. 0.09 0.09 0.07 0.09 0.09 0.07

N 10 10 10 10 10 10

OPLP-NLLS (as) Moment Eq. (11) Mean 0.19 0.08 0.17 0.12 0.19 0.19
Stdev. 0.08 0.06 0.08 0.09 0.05 0.09

N 10 10 10 10 10 10

OPLP-GMM Moment: Eq. (9) Mean 0.27 0.21 0.38 0.33 0.27 0.23
Stdev. 0.11 0.07 0.06 0.09 0.11 0.11

N 10 5 9 8 9 8

OPLP-GMM Moment Eq. (11) Mean 0.29 0.09 0.29 0.31 0.23 0.24

Stdev. 0.10 0.21 0.21 0.20 0.15 0.14

N 7 4 9 10 10 9

ACF Moment Eq. (9) Mean 0.28 0.23 0.21 0.20 0.24 0.25
Stdev. 0.10 0.07 0.11 0.12 0.07 0.09

N 8 7 10 10 9 10

ACF Moment Eq. (11) Mean 0.25 0.14 0.17 0.25 0.27 0.28

Stdev. 0.21 0.23 0.22 0.20 0.17 0.16

N 9 9 8 10 8 10

ACF-L Moment Eq. (9) Mean 0.27 0.22 0.25 0.23 0.26 0.24
Stdev. 0.09 0.07 0.10 0.11 0.08 0.09

N 9 9 10 10 10 10

ACF-L Moment Eq. (11) Mean 0.28 0.22 0.22 0.25 0.26 0.26

Stdev. 0.12 0.12 0.18 0.16 0.15 0.14

N 9 9 9 10 10 10

WOOL Mean 0.18 0.08 0.15 0.10 0.20 0.19
Stdev. 0.06 0.11 0.06 0.09 0.05 0.09

N 10 10 10 10 9 9

WOOL-ACF Mean -0.12 0.15 -0.04 0.08 -0.14 0.06

Stdev. 0.18 1.32 0.14 0.14 0.43 0.14

N 10 10 9 10 10 9

WOOL-LP Mean 0.17 0.54 0.17 0.14 0.18 0.24

Stdev. 0.06 0.44 0.07 0.10 0.05 0.09

N 10 10 10 10 10 10

Table 8: Capital coefficients: Comparison across sectors

Values reported are obtained from estimating a value added production function at the sector level, using the estimators listed. 

Columns report results for different proxy variables and different capital rules (cfr. Equations (4) and (16) in the text). 

Different moment conditions are used for some GMM estimators, cfr. Equations (9) and (11) in the text. The number of 

observations equals 2,575 in the first stage of the estimation procedure and 2,032 in the second stage, for all estimators. If 

there is only one estimation stage, the number of observations equals 2,032. The only exception is the WOOL-ACF estimator, 

where we lose one year of data due to the use of variables lagged two time periods as instruments. Here the number of 

observations drops to 1,612. For each estimator, we report the number of observations the mean capital coefficient across the 

different sectors and its standard deviation. If the number of observations is smaller than 10, this implies that convergence 

was not achieved for one or more industries.
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Proxy variable

Capital Rule

Estimator

OLS D 0.25** 0.24** 0.25** 0.24** 0.25** 0.24**

exact p 0.01 0.01 0.01 0.01 0.01 0.01

OPLP-NLLS (as) Moment Eq. (9) D 0.17 0.33*** 0.18 0.31*** 0.28*** 0.24**

exact p 0.16 0.00 0.12 0.00 0.00 0.01

OPLP-NLLS (as) Moment Eq. (11) D 0.12 0.34*** 0.21** 0.18 0.17 0.11

exact p 0.53 0.00 0.04 0.10 0.15 0.59

OPLP-GMM Moment: Eq. (9) D 0.31*** - 0.32*** 0.30*** 0.34*** 0.32***

exact p 0.00 0.00 0.00 0.00 0.00

OPLP-GMM Moment Eq. (11) D 0.30*** - 0.33*** 0.32*** 0.31*** 0.31***

exact p 0.00 0.00 0.00 0.00 0.00

ACF Moment Eq. (9) D 0.29*** - 0.32*** 0.33*** 0.36*** 0.31***

exact p 0.00 0.00 0.00 0.00 0.00

ACF Moment Eq. (11) D 0.29*** - - 0.34*** 0.30*** 0.28***

exact p 0.00 0.00 0.00 0.00

ACF-L Moment Eq. (9) D 0.29*** 0.27*** 0.33*** 0.32*** 0.32*** 0.30***

exact p 0.00 0.00 0.00 0.00 0.00 0.00

ACF-L Moment Eq. (11) D 0.30*** 0.24** - 0.33*** 0.31*** 0.28***

exact p 0.00 0.01 0.00 0.00 0.00

WOOL D 0.11 0.31*** 0.14 0.13 0.11 0.11

exact p 0.65 0.00 0.32 0.42 0.60 0.64

WOOL-ACF D - - - - - -

exact p

WOOL-LP D 0.20* 0.48*** 0.16 0.14 0.17 0.21**

exact p 0.05 0.00 0.21 0.33 0.15 0.04

Values reported are obtained using a Kolmogorov-Smirnov test for equality of the distributions for exporting and non-exporting 

firms. The number of observations equals 170. The D-values indicate the largest difference between the distribution for 

exporters and non-exporters (combining positive and negative differences, while the exact p-value indicates whether the 

distributions are significantly different between exporters and non-exporters. Columns report results for TFP estimated using 

different proxy variables and different capital rules (cfr. Equations (4) and (16) in the text). Different moment conditions are 

used for some GMM estimators, cfr. Equations (9) and (11) in the text. If no value is reported, this implies no convergence 

was achieved in the estimation procedure.  The WOOL-ACF estimator is omitted as well, since the coefficients are not 

intuitively plausible. Significance levels (based on the exact p-value reported): *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 10: TFP distribution of exporters versus non-exporters in 2001: Food and beverages

Statistic

Investment

Eq. (16)

Investment

Eq. (4)

Materials

Eq. (16)

Materials

Eq. (4)

Capacity 

Utilization 

Eq. (16)

Capacity 

Utilization

Eq. (4)
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Proxy variable

Capital Rule

Estimator

OLS D 0.22* 0.19 0.22* 0.19 0.22* 0.19

exact p 0.07 0.15 0.07 0.15 0.07 0.15

OPLP-NLLS (as) Moment Eq. (9) D 0.22* 0.21* 0.49*** 0.50*** 0.22* 0.19

exact p 0.05 0.07 0.00 0.00 0.05 0.15

OPLP-NLLS (as) Moment Eq. (11) D 0.32*** 0.36*** 0.51*** 0.53*** 0.31*** 0.20

exact p 0.00 0.00 0.00 0.00 0.00 0.12

OPLP-GMM Moment: Eq. (9) D 0.22* 0.21* 0.22* 0.19 0.22* 0.20

exact p 0.05 0.07 0.07 0.13 0.07 0.12

OPLP-GMM Moment Eq. (11) D 0.28** 0.22* 0.58*** 0.55*** 0.51*** 0.33***

exact p 0.01 0.06 0.00 0.00 0.00 0.00

ACF Moment Eq. (9) D 0.22* 0.21* 0.19 0.20 0.22* 0.19

exact p 0.05 0.08 0.16 0.10 0.07 0.13

ACF Moment Eq. (11) D 0.27** 0.28** 0.37*** 0.32*** 0.31*** 0.25**

exact p 0.01 0.01 0.00 0.00 0.00 0.02

ACF-L Moment Eq. (9) D 0.23** 0.23* 0.19 0.32** 0.22* 0.19

exact p 0.04 0.05 0.13 0.04 0.07 0.13

ACF-L Moment Eq. (11) D 0.26** 0.27** 0.56*** 0.39*** 0.32*** 0.25**

exact p 0.02 0.01 0.00 0.00 0.00 0.02

WOOL D 0.37*** 0.27** 0.50*** 0.55*** 0.33*** 0.25**

exact p 0.00 0.01 0.00 0.00 0.00 0.02

WOOL-ACF D - - - - - -

exact p

WOOL-LP D 0.36*** 0.19 0.52*** 0.53*** 0.33*** 0.13

exact p 0.00 0.16 0.00 0.00 0.00 0.60

Values reported are obtained using a Kolmogorov-Smirnov test for equality of the distributions for exporting and non-exporting 

firms. The number of observations equals 180. The D-values indicate the largest difference between the distribution for 

exporters and non-exporters (combining positive and negative differences, while the exact p-value indicates whether the 

distributions are significantly different between exporters and non-exporters. Columns report results for TFP estimated using 

different proxy variables and different capital rules (cfr. Equations (4) and (16) in the text). Different moment conditions are 

used for some GMM estimators, cfr. Equations (9) and (11) in the text. If no value is reported, this implies no convergence 

was achieved in the estimation procedure.  The WOOL-ACF estimator is omitted as well, since the coefficients are not 

intuitively plausible. Significance levels (based on the exact p-value reported): *** p < 0.01, ** p < 0.05, * p < 0.10.

Table 11: TFP distribution of exporters versus non-exporters in 2001: Chemicals

Statistic

Investment

Eq. (16)

Investment

Eq. (4)

Materials

Eq. (16)

Materials

Eq. (4)

Capacity 

Utilization 

Eq. (16)

Capacity 

Utilization

Eq. (4)
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